Package ‘dub’

October 13, 2022

Type Package
Title Unpacking Assignment for Lists via Pattern Matching

Version 0.2.0

Description Provides an operator for assigning nested components of a list to
names via a concise pattern matching syntax. This is especially convenient for
assigning individual names to the multiple values that a function may return
in the form of a list, and for extracting deeply nested list components.

License MIT + file LICENSE
Encoding UTF-8

LazyData true
ByteCompile true

Suggests covr, testthat

URL https://github.com/egnha/dub

BugReports https://github.com/egnha/dub/issues
Collate 'util.R''assert.R' 'tree.R' 'names.R' 'assign.R’
RoxygenNote 6.1.0

NeedsCompilation no

Author Eugene Ha [aut, cre]

Maintainer Eugene Ha <eha@posteo.de>

Repository CRAN

Date/Publication 2018-10-27 12:10:02 UTC

R topics documented:
Do<<-To . . . o

Index

https://github.com/egnha/dub
https://github.com/egnha/dub/issues

2 Yo<<-%

%<<=% Assign nested components of a list to names

Description

The %<<-% operator assigns multiple (nested) components of a list or vector to names via pattern
matching (“unpacking assignment”). Think of the “dub(ble) arrow” <<- as a pictograph represent-
ing multiple <-’s.

%<<-% is especially convenient for:

* assigning individual names to the multiple values that a function may return in the form of a
list;

* extracting deeply nested list components.

Usage

pattern %<<-% value

value %->>% pattern

Arguments
pattern Pattern of names that the components of value are assigned to (see below).
value List or vector.

Value

Returns value invisibly.

Pattern-matching names

Names are matched to the (nested) components of a list using a concise pattern matching syntax that
mirrors the structure of the list. Apart from names, the syntax consists of two classes of symbols:

* List constructors — Use a pair of parentheses to indicate a list, and a colon, rather than a
comma, to indicate successive names.

* Wildcards — Use a dot (.) to skip assignment of a specific component, or dots (. . .) to skip
assignment of a range of components.

See the examples for an illustration of common use cases.

Prior art

Unpacking/multiple assignment appears in other languages (e.g., Python, JavaScript, Clojure).
While R has no such feature, using a custom operator to do this has long been a folklore method.
An early implementation is due to Gabor Grothendieck (2004), cf. 1ist in the gsubfn package.

https://docs.python.org/3/tutorial/datastructures.html#tuples-and-sequences
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://clojure.org/guides/destructuring
https://stat.ethz.ch/pipermail/r-help/2004-June/053343.html
https://cran.r-project.org/package=gsubfn

To<<-%

Examples

Assign successive components
(one : two : three) %<<-% list(1, 2, 3)
stopifnot(one == 1, two == 2, three == 3)

Assign nested components
(P :(@:r:(s:t))) %w<-%list(1, list(2, 3, list(4, 5)))
(P : (@Q:R:9S)) %<-% list(1, list(2, 3, list(4, 5)))
stopifnot(p == 1, q==2, r == 3, s == 4, t == 5,

P==1, Q==2, R==3, identical(S, list(4, 5)))

Unpack nested components with nested parentheses
(W) %<<-% list(1:3)

(((2))) %<<-% list(list(list("z")))

((x @ y)) %<<=% list(list("x", "y"))

nyn non " II)

stopifnot(w == 1:3, x == "x", y =="y", z == "z

Skip a component with a dot (.)

(a: . 1 b) %#<<-% list("a", "skip this”, "b")
((c =) ¢) %<<-% list(list("c", "skip this"), "skip this")
stopifnot(a == "a", b == "b", ¢ == "c")

Skip a range of components with dots (...)

(first : ... : last) %<<-% letters
(. : second : ...) %<<-% letters
(mpg : cyl : ...) %<<-% mtcars
stopifnot(
first == "a", second == "b", last == "z",

mpg == mtcars$mpg, cyl == mtcars$cyl
)

Index

%=>>% (%h<<=%), 2
%<<=%, 2

	%<<-%
	Index

