
Package ‘dtts’
July 18, 2024

Type Package

Title 'data.table' Time-Series

Version 0.1.3

Date 2024-07-18

Author Dirk Eddelbuettel and Leonardo Silvestri

Maintainer Dirk Eddelbuettel <edd@debian.org>

Description High-frequency time-series support via 'nanotime' and 'data.table'.

License GPL (>= 2)

Imports nanotime, data.table (>= 1.5.0), methods, bit64, Rcpp (>=
0.11.5), RcppCCTZ (>= 0.2.0)

Suggests tinytest

LinkingTo Rcpp, RcppCCTZ, RcppDate, nanotime

BugReports https://github.com/eddelbuettel/dtts/issues

RoxygenNote 7.2.2

Encoding UTF-8

NeedsCompilation yes

Repository CRAN

Date/Publication 2024-07-18 10:50:02 UTC

Contents
align . 2
align_idx . 4
frequency,data.table-method . 8
grid_align . 9
ops . 11

Index 13

1

https://github.com/eddelbuettel/dtts/issues

2 align

align Align a data.table onto a nanotime vector

Description

align returns the subset of data.table x that aligns on the temporal vector y

Usage

align(x, y, start, end, ...)

S4 method for signature 'data.table,nanotime,nanoduration,nanoduration'
align(
x,
y,
start = as.nanoduration(0),
end = as.nanoduration(0),
sopen = FALSE,
eopen = TRUE,
func = NULL

)

S4 method for signature 'data.table,nanotime,missing,missing'
align(
x,
y,
start = as.nanoduration(0),
end = as.nanoduration(0),
sopen = FALSE,
eopen = TRUE,
func = NULL

)

S4 method for signature 'data.table,nanotime,nanoduration,missing'
align(
x,
y,
start = as.nanoduration(0),
end = as.nanoduration(0),
sopen = FALSE,
eopen = TRUE,
func = NULL

)

S4 method for signature 'data.table,nanotime,missing,nanoduration'
align(
x,

align 3

y,
start = as.nanoduration(0),
end = as.nanoduration(0),
sopen = FALSE,
eopen = TRUE,
func = NULL

)

S4 method for signature 'data.table,nanotime,nanoperiod,nanoperiod'
align(
x,
y,
start = as.nanoperiod(0),
end = as.nanoperiod(0),
sopen = FALSE,
eopen = TRUE,
tz,
func = NULL

)

S4 method for signature 'data.table,nanotime,nanoperiod,missing'
align(
x,
y,
start = as.nanoperiod(0),
end = as.nanoperiod(0),
sopen = FALSE,
eopen = TRUE,
tz,
func = NULL

)

S4 method for signature 'data.table,nanotime,missing,nanoperiod'
align(
x,
y,
start = as.nanoperiod(0),
end = as.nanoperiod(0),
sopen = FALSE,
eopen = TRUE,
tz,
func = NULL

)

Arguments

x the data.table time-series to align from

y the nanotime vector to align to

4 align_idx

start scalar or vector of same length as y of type integer64; start is added to each
element in y and it then defines the starting point of the interval under consider-
ation for the alignment on that element of y

end scalar or vector of same length as y of type integer64; start is added to each
element in y and it then defines the ending point of the interval under consider-
ation for the alignment on that element of y

... further arguments passed to or from methods.

sopen boolean scalar or vector of same lengths as y that indicates if the start of the
interval is open or closed. Defaults to FALSE.

eopen boolean scalar or vector of same lengths as y that indicates if the end of the
interval is open or closed. Defaults to TRUE.

func a function taking one argument and which provides an arbitrary aggregation of
its argument; if NULL then a function which takes the closest observation is used.

tz scalar or vector of same length as y of type character. Only used when the type
of start and end is nanoperiod. It defines the time zone for the definition of
the interval.

Details

For each element in y, intervals are created around this element with start and end. All the
elements of x that fall within this interval are given as argument to the function func. The function
func show reduce this data.frame to one unique row that will be associated with the nanotime
value in y.

Value

a data.table time-series of the same length as y; this is a subset of x with the nanotime index of
y

Examples

Not run:
y <- nanotime((1:10)*1e9)
x <- data.table(index=nanotime((1:10)*1e9), data=1:10)
align(x, y, as.nanoduration(-1e9), as.nanoduration(1e9), colMeans)

End(Not run)

align_idx Get the index of the alignment of one vector onto another

Description

align_idx returns the index of the alignment of x on y

align_idx 5

Usage

align_idx(x, y, start, end, ...)

S4 method for signature 'nanotime,nanotime,nanoduration,nanoduration'
align_idx(
x,
y,
start,
end,
sopen = FALSE,
eopen = TRUE,
bypass_x_check = FALSE,
bypass_y_check = FALSE

)

S4 method for signature 'nanotime,nanotime,missing,missing'
align_idx(
x,
y,
start,
end,
sopen = FALSE,
eopen = TRUE,
bypass_x_check = FALSE,
bypass_y_check = FALSE

)

S4 method for signature 'nanotime,nanotime,missing,nanoduration'
align_idx(
x,
y,
start,
end,
sopen = FALSE,
eopen = TRUE,
bypass_x_check = FALSE,
bypass_y_check = FALSE

)

S4 method for signature 'nanotime,nanotime,nanoduration,missing'
align_idx(
x,
y,
start,
end,
sopen = FALSE,
eopen = TRUE,
bypass_x_check = FALSE,

6 align_idx

bypass_y_check = FALSE
)

S4 method for signature 'nanotime,nanotime,nanoperiod,nanoperiod'
align_idx(
x,
y,
start = as.nanoperiod(0),
end = as.nanoperiod(0),
sopen = FALSE,
eopen = TRUE,
tz,
bypass_x_check = FALSE,
bypass_y_check = FALSE

)

S4 method for signature 'nanotime,nanotime,missing,nanoperiod'
align_idx(
x,
y,
start = as.nanoperiod(0),
end = as.nanoperiod(0),
sopen = FALSE,
eopen = TRUE,
tz,
bypass_x_check = FALSE,
bypass_y_check = FALSE

)

S4 method for signature 'nanotime,nanotime,nanoperiod,missing'
align_idx(
x,
y,
start = as.nanoperiod(0),
end = as.nanoperiod(0),
sopen = FALSE,
eopen = TRUE,
tz,
bypass_x_check = FALSE,
bypass_y_check = FALSE

)

Arguments

x the nanotime vector to align from

y the nanotime vector to align to

start scalar or vector of same length as y of type nanoduration or nanoperiod;
start is added to each element in y and it then defines the starting point of the

align_idx 7

interval under consideration for the alignment on that element of y

end scalar or vector of same length as y of type nanoduration or nanoperiod;
start is added to each element in y and it then defines the ending point of the
interval under consideration for the alignment on that element of y

... further arguments passed to or from methods.

sopen boolean scalar or vector of same lengths as y that indicates if the start of the
interval is open or closed. Defaults to FALSE.

eopen boolean scalar or vector of same lengths as y that indicates if the end of the
interval is open or closed. Defaults to TRUE.

bypass_x_check logical indicating if the sorting of x should be bypassed. This can provide a
marginal speedup, but should be used carefully.

bypass_y_check logical indicating if the sorting of y should be bypassed. This can provide a
marginal speedup, but should be used carefully.

tz scalar or vector of same length as y of type character. Only used when the type
of start and end is nanoperiod. It defines the time zone for the definition of
the interval.

Details

In order to perform the alignment, intervals are created around each elements in y using start
and end. For each such interval, the closest element in x is chosen. If no element in x falls in the
interval, then NaN is returned.

When only x and y are specified, the default is to close the intervals so that the alignment simply
picks up equal points. Note that it is possible to specify meaningless intervals, for instance with a
start that is beyond end. In this case, the alignment will simply return NA for each element in y.
In principle, the start and end are chosen to define an interval is the past, or around the points in
y, but if they are both positive, they can define intervals in the future.

Value

a vector of indices of the same length as y; this vector indexes into x and represent the closest point
of x that is in the interval defined around each point in y

Examples

Not run:
align_idx(nanotime(c(10:14, 17:19)), nanotime(11:20))
[1] 2 3 4 5 NA NA 6 7 8 NA

End(Not run)

8 frequency,data.table-method

frequency,data.table-method

Return the number of observations per interval

Description

frequency returns the number of observations in data.table x for each interval specified by by.

Usage

S4 method for signature 'data.table'
frequency(
x,
by,
grid_start,
grid_end,
tz,
ival_start = -by,
ival_end,
ival_sopen = FALSE,
ival_eopen = TRUE

)

Arguments

x the data.table time-series for which to calculate the frequency

by interval specified as a nanoduration or nanoperiod.

grid_start scalar nanotime defining the start of the grid; by default the first element of x is
taken.

grid_end scalar nanotime defining the end of the grid; by default the last element of x is
taken.

tz scalar of type character. Only used when the type of by and end is nanoperiod.
It defines the time zone for the definition of the interval.

ival_start scalar of type nanoduration or nanoperiod; ival_start is added to each el-
ement of the grid and it then defines the starting point of the interval under
consideration for the alignment onto that element. This defaults to -by and most
likely does not need to be overriden.

ival_end scalar of type nanoduration or nanoperiod; ival_end is added to each ele-
ment of the grid and it then defines the ending point of the interval under con-
sideration for the alignment onto that element. This defaults to 0 and most likely
does not need to be overriden.

ival_sopen boolean scalar that indicates if the start of the interval is open or closed. Defaults
to FALSE.

ival_eopen boolean scalar that indicates if the end of the interval is open or closed. Defaults
to TRUE.

grid_align 9

Value

a data.table time-series with the number of observations in x that fall withing the intervals defined
by the grid interval defined by by.

Examples

Not run:
one_second <- as.nanoduration("00:00:01")
one_minute <- 60 * one_second
x <- data.table(index=nanotime((1:100) * one_second), 1)
setkey(x, index)
frequency(x, one_minute)

End(Not run)

grid_align Align a data.table onto a nanotime vector grid

Description

grid_align returns the subset of data.table x that aligns on the grid defined by by, start and
end

Usage

grid_align(x, by, ...)

S4 method for signature 'data.table,nanoduration'
grid_align(
x,
by,
func = NULL,
grid_start = x[[1]][1] + by,
grid_end = tail(x[[1]], 1),
ival_start = -by,
ival_end = as.nanoduration(0),
ival_sopen = FALSE,
ival_eopen = TRUE

)

S4 method for signature 'data.table,nanoperiod'
grid_align(
x,
by,
func = NULL,
grid_start = plus(x[[1]][1], by, tz),
grid_end = tail(x[[1]], 1),

10 grid_align

ival_start = -by,
ival_end = as.nanoperiod(0),
ival_sopen = FALSE,
ival_eopen = TRUE,
tz

)

Arguments

x the data.table time-series to align from

by interval specified as a nanoduration or nanoperiod.

... further arguments passed to or from methods.

func a function taking one argument and which provides an arbitrary aggregation of
its argument; if NULL then a function which takes the closest observation is used.

grid_start scalar nanotime defining the start of the grid; by default the first element of x is
taken.

grid_end scalar nanotime defining the end of the grid; by default the last element of x is
taken.

ival_start scalar of type nanoduration or nanoperiod; ival_start is added to each el-
ement of the grid and it then defines the starting point of the interval under
consideration for the alignment onto that element.

ival_end scalar of type nanoduration or nanoperiod; ival_end is added to each ele-
ment of the grid and it then defines the ending point of the interval under con-
sideration for the alignment onto that element.

ival_sopen boolean scalar that indicates if the start of the interval is open or closed. Defaults
to FALSE.

ival_eopen boolean scalar that indicates if the end of the interval is open or closed. Defaults
to TRUE.

tz scalar of type character. Only used when the type of by and end is nanoperiod.
It defines the time zone for the definition of the interval.

Details

A grid defined by the parameter by, start and end is created. The function then does a standard
alignment of x onto this grid (see the align function)

Value

a data.table time-series of the same length as y with the aggregations computed by func

Examples

Not run:
one_second <- 1e9
x <- data.table(index=nanotime(cumsum(sin(seq(0.001, pi, 0.001)) * one_second)))
x <- x[, V2 := 1:nrow(x)]
setkey(x, index)

ops 11

grid_align(x, as.nanoduration("00:01:00"), sum)

End(Not run)

ops Arithmetic operations on two data.table time-series

Description

ops returns the y time-series on which the x time-series values are applied using the specified
operator op.

Usage

ops(x, y, op_string)

S4 method for signature 'data.table,data.table,character'
ops(x, y, op_string)

Arguments

x the data.table time-series that determines the left operand

y the data.table time-series that determines the right operand nanoperiod.

op_string string defining the operation to apply; the supported values for op are "*", "/",
"+", "-".

Details

The n elements of the x time-series operand define a set of n-1 intervals, and the value associated
with each interval is applied to all the observations in the y time-series operand that fall in the
interval. Note that the interval is closed at the beginning and open at the end. The supported values
for op are "*", "/", "+", "-".

There has to be one numeric column in x and y; there has to be either a one to one correspondance
between the number of numeric columns in x and y, or there must be only one numeric column
in x that will be applied to all numeric columns in y. Non-numeric columns must not appear in x,
whereas they will be skipped of they appear in y.

Examples

Not run:
one_second_duration <- as.nanoduration("00:00:01")
t1 <- nanotime(1:2 * one_second_duration * 3)
t2 <- nanotime(1:4 * one_second_duration)
dt1 <- data.table(index=t1, data1 = 1:length(t1))
setkey(dt1, index)
dt2 <- data.table(index=t2, data1 = 1:length(t2))
setkey(dt2, index)
ops(dt1, dt2, "+")

12 ops

End(Not run)

Index

align, 2
align,data.table,nanotime,missing,missing-method

(align), 2
align,data.table,nanotime,missing,nanoduration-method

(align), 2
align,data.table,nanotime,missing,nanoperiod-method

(align), 2
align,data.table,nanotime,nanoduration,missing-method

(align), 2
align,data.table,nanotime,nanoduration,nanoduration-method

(align), 2
align,data.table,nanotime,nanoperiod,missing-method

(align), 2
align,data.table,nanotime,nanoperiod,nanoperiod-method

(align), 2
align_idx, 4
align_idx,nanotime,nanotime,missing,missing-method

(align_idx), 4
align_idx,nanotime,nanotime,missing,nanoduration-method

(align_idx), 4
align_idx,nanotime,nanotime,missing,nanoperiod-method

(align_idx), 4
align_idx,nanotime,nanotime,nanoduration,missing-method

(align_idx), 4
align_idx,nanotime,nanotime,nanoduration,nanoduration-method

(align_idx), 4
align_idx,nanotime,nanotime,nanoperiod,missing-method

(align_idx), 4
align_idx,nanotime,nanotime,nanoperiod,nanoperiod-method

(align_idx), 4

frequency,data.table-method, 8

grid_align, 9
grid_align,data.table,nanoduration-method

(grid_align), 9
grid_align,data.table,nanoperiod-method

(grid_align), 9

ops, 11

ops,data.table,data.table,character-method
(ops), 11

13

	align
	align_idx
	frequency,data.table-method
	grid_align
	ops
	Index

