Package ‘dtlg’

September 23, 2025

Title A Performance-Focused Package for Clinical Trial Tables
Version 0.0.2

Description Create high-performance clinical reporting tables (TLGs) from
ADaM-like inputs. The package provides a consistent, programmatic API
to generate common tables such as demographics, adverse event incidence,
and laboratory summaries, using 'data.table' for fast aggregation over
large populations. Functions support flexible target-variable selection,
stratification by treatment, and customizable summary statistics, and
return tidy, machine-readable results ready to render with downstream
table/formatting packages in analysis pipelines.

License MIT + file LICENSE
Imports data.table, vctrs

Suggests dplyr, random.cdisc.data, rmarkdown, tern, kableExtra,
testthat (>= 3.0.0), bench, tidyr, rtables, dtlg.data (>=
0.2.0), withr

Encoding UTF-8

RoxygenNote 7.3.2

Depends R (>=4.1.0)

Config/testthat/edition 3

Config/Needs/website rmarkdown, ascentsoftware/ascentdown
Config/Needs/check ascentsoftware/dtlg.data

LazyData true

URL https://AscentSoftware.github.io/dtlg/

Additional_repositories https://ascentsoftware.r-universe.dev
NeedsCompilation no

Author Max Ebenezer-Brown [aut],
Max Norman [aut],
Xinye Li [aut],
Anja Peebles-Brown [aut],
Ramiro Magno [aut, cre]

https://AscentSoftware.github.io/dtlg/
https://ascentsoftware.r-universe.dev

2 adae

Maintainer Ramiro Magno <ramiro.morgado@ascent.io>

Repository CRAN

Date/Publication 2025-09-23 08:00:25 UTC

Contents
adae e e e 2
adlb . . . e e e e e 3
adsl . .. e e e e e 3
ACST . . . e e 4
AETO1 table e 5
AETO2 table e 6
as_dtlg_table 7
calc_counts e 8
calc_desc e 9
calc_StatS e 10
cross_tab_to_obsv_tab L e 11
dt_copy_SemantiCs e e e e e e e e 12
EVENE_COUNT o i e i e 13
event_count_by L. e e e e e e 14
label e e e 16
maybe_copy_dt e e e e e e 16
merge_table_lists 17
multi_event_true e e e e e e 19
print_dtlg 21
round_pet e e e e 22
round_SUM o vt e e e e e e e 23
summary_table 24
summary_table_by L 25
summary_table_by_targets 26
tern_AETOl table. e e 27
tern_AETO2_ table e e 28
tern_summary_table L 29
total_events e 30
with_label e e 31

Index 33

adae Adverse Event Analysis Dataset example dataset
Description

adae is a re-export of the random.cdisc.data::cadae dataset, included in {dt1lg} for function usage
illustration and testing.

adlb 3

Usage

adae

Format

An object of class tbl_df (inherits from tbl, data. frame) with 1934 rows and 92 columns.

Examples

adae

adlb ADaM Basic Data Structure (BDS) example dataset

Description

adlb is a re-export of the random.cdisc.data::cadlb dataset, included in {dtlg} for function usage
illustration and testing.

Usage
adlb

Format

An object of class data. table (inherits from data. frame) with 8400 rows and 102 columns.

Examples

adlb

adsl Subject-Level Analysis Dataset (ADSL) example dataset

Description

adsl is a re-export of the random.cdisc.data::cadsl dataset, included in {dtlg} for function usage
illustration and testing.

Usage
adsl

4 aesi

Format

An object of class tb1_df (inherits from tbl, data. frame) with 400 rows and 55 columns.

Examples

adsl

aesi Adverse Events of Special Interest (AESI) example dataset

Description

aesi is a modified version of the random.cdisc.data::cadae dataset, filtered to include only analysis-
flagged records (ANLO1FL == "Y") and extended with binary indicator variables corresponding to
adverse events of special interest (AESIs).

Usage

aesi

Format
A data. frame with a subset of rows from cadae and additional derived columns including:

FATAL Logical flag for fatal AEs (AESDTH == "Y").

SEV Logical flag for severe AEs (AESEV == "SEVERE").

SER Logical flag for serious AEs (AESER == "Y").

SERWD Serious AE leading to withdrawal (AESER == "Y" & AEACN == "DRUG WITHDRAWN").
SERDSM Serious AE leading to dose modification/interruption.
RELSER Serious and related AE.

WD AE leading to withdrawal.

DSM AE leading to dose modification/interruption.

REL Related AE.

RELWD Related AE leading to withdrawal.

RELDSM Related AE leading to dose modification/interruption.

Details

These derived flags include seriousness, severity, fatality, relatedness, and treatment consequence
(e.g., dose modification or withdrawal), and are used to illustrate key safety summaries in clinical
reporting.

Each derived variable is labeled using with_label () for compatibility with tabulation functions.

This dataset is included in {dtlg} to support function testing, usage examples, and reproducible
safety analyses.

AETOI1_table 5

See Also

random.cdisc.data::cadae, multi_event_true()

Examples

aesi

AETQ1_table Generate Core Safety Tables for Clinical Study Reports

Description

AETQ1_table() produces and combines the main safety summary tables typically found in Section
14.3.1 of a Clinical Study Report (CSR). It calculates patient counts and event totals for deaths,
AE-related withdrawals, total AEs, and adverse events of special interest (AESIs).

Usage

AETQ1_table(
adsl,
adae,
patient_var,
treat_var,
aesi_vars,
aesi_heading = "Total number of patients with at least one”,
indent = " "

Arguments

adsl A subject-level dataset (typically ADaM ADSL).

adae A dataset of adverse events, preprocessed with AESI flags.
patient_var A string indicating the subject identifier variable (e.g., "USUBJID").
treat_var A string indicating the treatment arm variable (e.g., "ARM").
aesi_vars A character vector of binary AESI flags in adae.

aesi_heading Optional character string used as a heading in the AESI block.
indent A string used to indent AESI row labels (default is 2 spaces).

Value

A merged data. table summarising the main safety outcomes.

6 AETO02_table

Examples

AETO1_summary <- AETQ1_table(

adsl = adsl,

adae = aesi,

patient_var = "USUBJID",

treat_var = "ARM",

aesi_vars = c("FATAL", "SER”, "SERWD”, "SERDSM", "RELSER”,

"WD", "DSM”, "REL”, "RELWD", "RELDSM", "SEV")

)
print(AETQ1_summary)

AETQ2_table Create AET02-style AE summary table

Description

Summarises adverse events in a format similar to the AETO02 table from a CSR, showing total AE
counts, patients with AEs, and a breakdown by System Organ Class (SOC) and Preferred Term
(PT).

Usage

AETQ2_table(
adsl,
adae,
patient,
treat,
target = "AEDECOD",
rows_by = "AEBODSYS",
indent = nbsp(n = 4L)

)
Arguments

adsl Subject-level dataset.

adae Adverse event dataset.

patient Unique subject identifier variable.

treat Treatment arm variable.

target Preferred term variable for grouping (default: "AEDECOD").

rows_by Higher-level term for nesting (default: "AEBODSYS").

indent Character or string to indent nested rows (default: 4 non-breaking spaces).
Value

A merged data.table containing AE summary.

as_dtlg_table

Examples

Create a AETQ2 table
AETQ2_table(
adsl = adsl,
adae = aesi,
patient = "USUBJID",
treat = "ARM",
target = "AEDECOD",
rows_by = "AEBODSYS"
indent = " "

as_dtlg_table Convert a TableTree to a dtlg table

Description

as_dtlg_table() reformats a TableTree object into a format close to that of dtlg’s data. table.

Usage

as_dtlg_table(tt, .label_col = "stats")

Arguments
tt A TableTree object. Typically obtained with tern_summary_table().
.label_col Label for stats’ column.

Value
A data.table.

Examples

vars <- c('AGE', 'RACE', 'ETHNIC', 'BMRKR1')
var_labels <- c("Age (yr)", "Race", "Ethnicity"”, "Continuous Level Biomarker 1")

Summary statistics table split by ARM with custom labels.
(tt <- tern_summary_table(

adsl,

target = vars,

treat = 'ARM',

target_name = var_labels

)

Format as a dtlg table
as_dtlg_table(tt)

8 calc_counts

calc_counts Calculate counts of a categorical variable

Description

calc_counts() counts observations of a categorical variable (target) by another (treat) and
reports summary statistics in clinical trial reporting format.

Usage

calc_counts(
dt,
target,
target_name = target,
treat,
indent = nbsp(n = 4L),
.total_dt = NULL,

pct_dec =1
)
Arguments
dt A data. frame containing, at least, the variables indicated in target and treat.
target Target variable passed as a string for which summary statistics are to be calcu-
lated.
target_name Heading for the target variable as a string. Defaults to target.
treat A string indicating the grouping variable, e.g. the variable specifying the treat-
ment population.
indent A string to be used as indentation of summary statistics labels. Defaults to four
HTML non-breaking spaces ().
.total_dt Separate table from dt from which to derive total counts per group.
pct_dec This argument is ignored, and is only kept for backward compatibility reasons.
Value

A list containing a data. table formatted as follows:

* First column is named stats and contains the target variable name indicated in target in the
first row. Subsequent rows contain the levels of target.

* Other columns are for the levels of the grouping variable (treat).
* All columns are of character type.

This table is structured for easy integration with Shiny output widgets.

Examples

calc_counts(dt = adsl, "RACE", treat = "ARM", indent =" ")[[1]]

calc_desc 9

calc_desc Calculate descriptive summary statistics for a numeric variable

Description

calc_desc() summarises a numeric variable (target) by another (treat) and reports summary
statistics in clinical trial reporting format. The following statistics are calculated for target, per
group, i.e. by variable treat levels:

* n: number of observations

¢ Mean (SD): mean and standard deviation of target
¢ Median: median of target

e Min, Max: minimum and maximum of target

* Missing: number of missing target values

Usage
calc_desc(
dt,
target,
target_name = target,
treat,
indent = nbsp(n = 4L),
pct_dec =1
)
Arguments
dt A data.frame containing, at least, the variables indicated in target and treat.
target Target variable passed as a string for which summary statistics are to be calcu-
lated.
target_name Heading for the target variable as a string. Defaults to target.
treat A string indicating the grouping variable, e.g. the variable specifying the treat-
ment population.
indent A string to be used as indentation of summary statistics labels. Defaults to four
HTML non-breaking spaces ().
pct_dec Decimal places for reported figures.
Value

A list containing a data. table formatted as follows:

* First column is named stats and contains the target variable name indicated in target in the
first row. Subsequent rows contain the summarised statistics labels.

* Other columns are for the levels of the grouping variable (treat).

* All columns are of character type.

This table is structured for easy integration with Shiny output widgets.

10 calc_stats

Examples

Calculate summary statistics for the age of the subjects in each region.
calc_stats(dt = adsl, "AGE", treat = "REGION1")[[11]1]

Calculate summary statistics for biomarker 1 in each of the three arms
(CARM™).
calc_stats(dt = adsl, "BMRKR1", treat = "ARM")[[11]]

calc_stats Calculate summary statistics for a variable

Description

calc_stats() calculates summary statistics for a variable on groups. This is a generic function;
note that it dispatches based on the class of target (second argument), not dt (first argument).

Usage

calc_stats(
dt,
target,
target_name = target,
treat,
indent = nbsp(n = 4L),
.total_dt = NULL,

pct_dec =1
)
Arguments

dt A data. frame containing, at least, the variables indicated in target and treat.

target Target variable passed as a string for which summary statistics are to be calcu-
lated.

target_name Heading for the target variable as a string. Defaults to target.

treat A string indicating the grouping variable, e.g. the variable specifying the treat-
ment population.

indent A string to be used as indentation of summary statistics labels. Defaults to four
HTML non-breaking spaces ().

.total_dt Separate table from dt from which to derive total counts per group.

pct_dec Decimal places for reported figures.

cross_tab_to_obsv_tab 11

Value
A data.table of summary statistics. The format depends on the type of the target variable:

* If the target variable is categorical, i.e. type character, factor or logical then the output
is that of calc_counts().

* If the target variable is numeric, then the output is that of calc_desc().

Examples

Calculate summary statistics of a numeric variable, e.g. “AGE".
calc_stats(dt = adsl, "AGE"”, treat = "ARM")[[11]

Calculate summary statistics of a categorical variable, e.g. “SEX".
calc_stats(dt = adsl, "SEX", treat = "ARM")[[11]

cross_tab_to_obsv_tab Convert a contingency table to a long-format observation-level data
frame

Description

cross_tab_to_obsv_tab() expands a contingency table or matrix of counts into a long-format
data frame where each row represents one observation. The output contains one column per dimen-
sion of the input, with repeated rows according to the frequency counts.

Usage

cross_tab_to_obsv_tab(cross_tab, strings_as_factors = TRUE)

Arguments
cross_tab A two-way or multi-way contingency table (matrix or table) with named dimnames.
Each combination of factor levels is assumed to represent a count of occur-
rences.

strings_as_factors
Should character columns in the output be converted to factors?

Value

A data. frame in long format with one row per implied observation and one column per dimension
of the input table.

Examples

dim_names <- list(Sex = c("Male”, "Female"),

Response = c("Yes"”, "No"))
cross_tab <- matrix(c(2, 1, 3, 4), nrow = 2, dimnames = dim_names)
cross_tab_to_obsv_tab(cross_tab)

12 dt_copy_semantics

dt_copy_semantics Get or set data.table copy semantics

Description

These functions control how maybe_copy_dt () decides whether to return a data. table by refer-
ence (in place) or by value (as a deep copy).

Usage

dt_copy_semantics()

set_dt_copy_semantics(dt_copy_semantics = c("reference”, "value"))

Arguments

dt_copy_semantics
Character string. Either "reference” or "value”.

Details

The copy semantics are stored in the global option dt1g_dt_copy_semantics. The option can take
two values:
* "reference” (default): inputs are treated with reference semantics.

— If the input is already a data. table, it is returned unchanged and aliases are preserved.

— Iftheinputisadata.frame,itis converted to a data.table in place viadata. table: :setDT(),
mutating the caller’s object.

* "value”: inputs are treated with value semantics.

— The input is converted to a data. table (if necessary) and a deep copy is returned, leaving
the original unchanged.

Value

* dt_copy_semantics() returns the current semantics as a string, "reference"” or "value”.

* set_dt_copy_semantics() sets the semantics, returning the previous semantics invisibly.

See Also

maybe_copy_dt ()

event_count 13

Examples

Get current semantics (defaults to "reference”)
dt_copy_semantics()

Switch to value semantics
old <- set_dt_copy_semantics("value")
dt_copy_semantics()

Restore previous semantics
set_dt_copy_semantics(old)

event_count Count events

Description

event_count () counts events defined by predicate expressions passed in . filters.

Usage
event_count(
dt,
patient,
treat,
label,
.filters = NULL,
.total_dt = dt,
pct_dec =1
)
Arguments
dt A data.frame containing, at least, the variables indicated in target and treat.
patient A string indicating the subject identifying variable.
treat A string indicating the grouping variable, e.g. the variable specifying the treat-
ment population.
label A string to be used as label in the output reporting table. This should be a text
descriptive of the event being counted.
.filters Predicate expressions identifying events in dt. Argument should be passed as a
character vector of expressions to be evaluated in the frame of dt.
.total_dt Separate table from dt from which to derive total counts per group.
pct_dec This argument is ignored, and is only kept for backward compatibility reasons.
Value

A one-element list, where the element is a data. table.

14 event_count_by

Examples

Count deaths per arm.
event_count(

adsl,
patient = "USUBJID",
treat = "ARM",
label = "Total number of deaths”,
.filters = "DTHFL == 'Y'"
YLL1]]

Count patients withdraw from study due to an adverse event.
withdrawn_lbl <- "Total number of patients withdrawn from study due to an AE”
event_count(

adsl,
patient = "USUBJID",
treat = "ARM",

label = withdrawn_1bl,
.filters = "DCSREAS == 'ADVERSE EVENT'"
YL[111

Count patients with at least one adverse event.
NB: When ~.filters™ is “NULL™ (i.e., omitted), all records in ~dt~ are used
for counting events.
event_count(
adae,
patient = "USUBJID",
treat = "ARM",
label = "Total number of patients with at least one AE",
.filters = "ANLQ1FL == 'Y'",
.total_dt = adsl
YL[111

event_count_by Summarise adverse events by arm and other grouping variables

Description

event_count_by() creates a tabular summary of adverse events grouped by a higher-level classifi-
cation variable (e.g., system organ class), and counts both the number of events and the number of
unique patients per treatment arm.

Usage

event_count_by(
dt,
patient,
treat,
rows_by,

event_count_by 15

target,
.total_dt = dt,
indent = nbsp(n = 4L),

pct_dec =1
)
Arguments
dt A data.frame or data.table containing the adverse event data and patient-
level identifiers.
patient A string giving the name of the patient identifier variable (e.g., "USUBJID").
treat A string giving the name of the treatment arm variable (e.g., "ARM").
rows_by A string giving the name of the grouping variable (e.g., "AEBODSYS" for body
system).
target A string giving the name of the variable to report within each group (e.g.,
"AEDECOD" for preferred term).
.total_dt A data.frame or data. table containing the denominator population. Defaults
to dt.
indent A string used to indent row labels (e.g., " " or nbsp(n = 4L)).
pct_dec Integer. Number of decimal places to show in percentages. Defaults to 1.
Value

A data. table with the following structure:

* One row per combination of rows_by and target
* One row per group total (Total number of events)
* One row per patient-level total (Total number of patients with at least one event)

Columns include:

e stats: character column with labels
* one column per level of the treat variable, formatted as "n (x%)"

See Also

event_count(), calc_stats(), total_events()

Examples

event_count_by(
dt = adae[adae$ANLO1FL == "Y"],
patient = 'USUBJID',
treat = 'ARM',
rows_by = 'AEBODSYS',
target = 'AEDECOD',
.total_dt = adsl,
indent = ' '

16 maybe_copy_dt

label Retrieve the label of an object

Description

label() gets the attached label to an object.

Usage
label(x)

Arguments

X An R object.

Value

The label attribute (string) associated with object passed in x or NULL if the label attribute does not
exist.

See Also
with_label()

Examples

label(1)
label(with_label(1, "my label”))

maybe_copy_dt Return a data.table by reference or by value

Description

maybe_copy_dt () returns its input as a data. table, with behaviour controlled by the global copy
semantics option dt_copy_semantics().

Usage
maybe_copy_dt (x)

Arguments

X A data.table or data.frame.

merge_table_lists 17

Details

e If the semantics are "reference” (default):

— If x is already a data. table, it is returned unchanged. Aliasing holds, so mutations with
;= will affect both input and output.

— If xisadata.frame,itis converted to adata. table in place via data. table: :setDT(),
mutating the caller’s object. The returned object is a data. table with the same contents.
For efficiency, the column vectors are reused without a deep copy.

e If the semantics are "value":

— x is converted to a data. table (if necessary) and a deep copy is returned. Mutating the
result does not affect the input.

Value
A data.table. Whether the return value aliases the input depends on the semantics:

* "reference”: input is mutated in place, aliasing guaranteed if x is already a data. table.

* "value": a fresh copy is returned, independent of the input.

See Also

dt_copy_semantics(), set_dt_copy_semantics()

Examples

Default: reference semantics

df <- data.frame(a = 1:3)

out <- maybe_copy_dt(df)

data.table::is.data.table(df) # TRUE, converted in place

Switch to value semantics

old <- set_dt_copy_semantics("value")

dt <- data.table::data.table(a = 1:3)

out2 <- maybe_copy_dt(dt)

out2[, b := 99L]

"b" %in% names(dt) # FALSE, original unchanged

Restore previous semantics
set_dt_copy_semantics(old)

merge_table_lists Merge a list of list-wrapped data.tables into one data.table

Description

This function is typically used to combine multiple reporting tables, each produced by event_count (),
total_events(),ormulti_event_true(), into a single summary table. These intermediate tables
are often returned as one-element lists containing a data. table.

18 merge_table_lists

Usage

merge_table_lists(dt_1)

Arguments
dt_1 A list of one-element lists, where each element is a list containing a single
data. table.
Details

This helper unwraps and merges them, row-wise, to produce a consolidated safety report table —
commonly used in clinical study reports or data monitoring reviews.
Value

A single merged data. table, row-bound from all input tables.

Examples

Count deaths by treatment arm
death_table <- event_count(

adsl,

patient = "USUBJID",

treat = "ARM",

label = "Total number of deaths”,
.filters = "DTHFL == 'Y'"

Count study withdrawals due to adverse events
withdrawal_table <- event_count(

adsl,

patient = "USUBJID",

treat = "ARM",

label = "Total number of patients withdrawn from study due to an AE",

.filters = "DCSREAS == 'ADVERSE EVENT'"
)

Count patients with at least one adverse event
patients_with_ae_table <- event_count(

adae,

patient = "USUBJID",

treat = "ARM",

label = "Total number of patients with at least one AE"

)

Count total number of adverse events (not patients)
total_ae_events_table <- total_events(

dt = adae,

treat = "ARM",

label = "Total number of AEs”

multi_event_true 19

Summarise AESIs (e.g., serious, related, severe, etc.)
aesi_vars <- c("FATAL”, "SER”, "SERWD", "SERDSM", "RELSER",
"WD”, "DSM”, "REL”, "RELWD", "RELDSM”, "SEV")

aesi_table <- multi_event_true(
dt = aesi,
event_vars = aesi_vars,
patient = "USUBJID",

treat = "ARM",

heading = "Total number of patients with at least one”,
.total_dt = adsl,

indent = " "

Combine all safety tables into a single summary table
safety_summary <- merge_table_lists(list(
patients_with_ae_table,
total_ae_events_table,
death_table,
withdrawal_table,
aesi_table

))

safety_summary

multi_event_true Summarise multiple AESI-like events per treatment arm

Description

multi_event_true() generates a summary table showing the number and percentage of patients
with at least one event across multiple binary indicator variables (e.g., flags for adverse events of
special interest).

Usage

multi_event_true(
dt,
event_vars,
patient,
treat,
heading,
label = NULL,
.total_dt = NULL,
indent = nbsp(n = 4L),
pct_dec =1

20

Arguments

dt

event_vars

patient

treat

heading

label

.total_dt

indent

pct_dec

Details

multi_event_true

A data.frame or data.table containing the binary event flags and subject-
level data.

A character vector of column names (binary flags) to summarise.

A string giving the name of the variable that uniquely identifies each patient
(e.g., "USUBJID").

A string giving the name of the treatment variable (e.g., "ARM").

A string to be shown as the first row in the output, usually a summary descriptor
such as "Total number of patients with at least one”.

Optional. A character vector of the same length as event_vars giving human-
readable labels for the output table rows. If NULL, labels are extracted from the
label attribute of each variable, or fall back to the variable name.

A data.frame or data. table containing the total analysis population (denom-
inator). If NULL, dt is used as the denominator.

non

A string to indent the row labels (e.g.,
spaces).

or nbsp(n =4L) for non-breaking

An integer indicating how many decimal places to show in percentages (default
is 1).

Each event is counted only once per patient. This function is typically used for summarising Adverse
Events of Special Interest (AESIs) or other derived flags (e.g., SER, FATAL, RELDSM) that are binary

(TRUE/FALSE).

Value

A one-element list containing a data. table with one row per event plus one header row. The first

column is "stats”
"n (x%)" format.

See Also

(row labels), and subsequent columns are one per treatment arm, with values in

event_count(), total_events()

Examples

aesi_vars <- c(
"FATAL", "SER",

"SERWD", "SERDSM”, "RELSER”,

"WD", "DSM", "REL", "RELWD", "RELDSM", "SEV"

)
heading <- "Total

multi_event_true(
dt = aesi,

number of patients with at least one AE"

event_vars = aesi_vars,

print_dtlg 21

patient = "USUBJID",
treat = "ARM",
heading = heading,
.total_dt = adsl,
indent = " "

YL

print_dtlg Print a dtlg table

Description

A convenience wrapper around print () for printing dt1g tables with consistent formatting options.

Usage

print_dtlg(
dt,
row.names = FALSE,
trunc.cols = TRUE,
class = FALSE,
nrows = Inf,
justify = "left”

)
Arguments
dt A dtlg table, typically a data.frame or data.table.
row.names If TRUE, row indices will be printed alongside x.
trunc.cols If TRUE, only the columns that can be printed in the console without wrapping
the columns to new lines will be printed (similar to tibbles).
class If TRUE, the resulting output will include above each column its storage class (or
a self-evident abbreviation thereof).
nrows The number of rows which will be printed before truncation is enforced.
justify String. Column alignment; one of "left”, "right"”, "centre”, or "none”.
Defaults to "left".
Value

Invisibly returns the printed object.

Examples

calc_stats(dt = adsl, "AGE"”, treat = "ARM"”, indent =" ")[[11] |>
print_dtlg()

22 round_pct

round_pct Rounded percentage

Description

round_pct () returns the rounded percentages of x values.

Usage
round_pct(x, digits = 1L, method = c("round”, "round_sum”))
Arguments
X A numeric vector of non-negative values for which you want percentages to be
determined and rounded. Missing values (NA) are ignored.
digits The number of decimal places to round to. Default is @ (integer rounding).
method Rounding method: "round” that uses R’s base round() or "round_sum” that
uses dtlg::round_sum.
Value

A numeric vector of the same length as x with rounded percentages.

Examples

x<-c(1/3,1/3,17/3)

Default method ensures precise rounding but total might not be 100%.
round_pct(x = x)
sum(round_pct(x = x))

You can trade off rounding precision for precision on the total with the
method ~"round_sum"".

round_pct(x = x, method = "round_sum")

sum(round_pct(x = x, method = "round_sum"))

Vary the number of decimal places, e.g. increase to three.
round_pct(x = x, digits = 3, method = "round_sum")

Missing values are ignored.
x <= c(1, 2, NA)
round_pct(x = x, digits = 3)

round_sum 23

round_sum Rounds numbers while preserving the total sum

Description

round_sum() rounds a numeric vector of non-negative values to a specified number of decimal
places while ensuring that the sum of the rounded value remains as close as possible to the original
total.

Usage

round_sum(x, digits = 0L)

Arguments
X A numeric vector of non-negative values that you want to round. Missing values
(NA) are ignored.
digits The number of decimal places to round to. Default is @ (integer rounding).
Value

A numeric vector of the same length as x, with values rounded in such a way that the total sum is
preserved.

Examples

Rounds to integers, preserving the sum of 100.
x <- ¢(33.3333, 33.3333, 33.3334)

(y <= round_sum(x))

identical(sum(x), sum(y))

Rounds to integers, preserving the sum of 1002.
x <= c(100.5, 200.25, 300.75, 400.5)

(y <= round_sum(x))

identical (sum(x), sum(y))

Rounds to one decimal place, preserving the total sum.
x <- c(12.345, 67.890, 19.765)

(y <- round_sum(x))

identical(sum(x), sum(y))

24

summary_table

summary_table

Summary Table

Description

summary_table () summarises clinical variables into a report table using data. table as backend.

Usage

summary_table(

dt,
target,
treat,

target_name = target,
indent = nbsp(n = 4L),
.total_dt = dt,

pct_dec =

treat_order
skip_absent

Arguments

dt
target

treat

target_name

indent

.total_dt
pct_dec
treat_order

skip_absent

Value

NULL,
TRUE

A data.frame containing, at least, the variables indicated in target and treat.

Target variable passed as a string for which summary statistics are to be calcu-
lated.

A string indicating the grouping variable, e.g. the variable specifying the treat-
ment population.

Heading for the target variable as a string. Defaults to target.

A string to be used as indentation of summary statistics labels. Defaults to four
HTML non-breaking spaces ().

Separate table from dt from which to derive total counts per group.
Decimal places for reported figures.
Customise the column order of the output table.

Whether to ignore variables passed in treat_order that are absent from dt.
Default is TRUE; FALSE will throw an error in case there are missing variables.

A data.table of summary statistics. The format depends on the type of the target variable:

* If the target variable is categorical, i.e. type character, factor or logical then the output
is that of calc_counts().

* If the target variable is numeric, then the output is that of calc_desc().

summary_table_by 25

See Also

tern_summary_table()

Examples

dmg_vars <- c("AGE”, "RACE", "ETHNIC")
dmg_var_lbls <- c("Age (yr)", "Race”, "Ethnicity")

Demographics table (DMTO1)
summary_table(

adsl,

target = dmg_vars,

treat = 'ARM',

target_name = dmg_var_lbls

)

Demographics table (DMT@1) with continuous variable (e.g., BMRKR1)
summary_table(

adsl,
target = c(dmg_vars, "BMRKR1"),
treat = 'ARM',
target_name = c(dmg_var_lbls, "Biomarker 1")
)
summary_table_by Create a summary table using multiple rows for grouping on one target
column
Description

Create a summary table using multiple rows for grouping on one target column

Usage

summary_table_by(
dt,
target,
treat,
rows_by,
indent = nbsp(n = 4L),
.total_dt = dt,
pct_dec = 1,
treat_order = NULL,
skip_absent = TRUE

26

Arguments

dt
target

treat

rows_by
indent

.total_dt
pct_dec
treat_order
skip_absent

Value

summary_table_by_targets

A data.frame containing, at least, the variables indicated in target and treat.

Target variable passed as a string for which summary statistics are to be calcu-
lated.

A string indicating the grouping variable, e.g. the variable specifying the treat-
ment population.

string, grouping variable to split events by.

A string to be used as indentation of summary statistics labels. Defaults to four
HTML non-breaking spaces ().

Separate table from dt from which to derive total counts per group.
Decimal places for reported figures.
Customise the column order of the output table.

Whether to ignore variables passed in treat_order that are absent from dt.
Default is TRUE; FALSE will throw an error in case there are missing variables.

The same output as summary_table() except that folded by variables indicated in rows_by.

Examples

summary_table_by(adlb, target = "AVAL", treat = "ARM", rows_by = c("PARAM",6"AVISIT"))

summary_table_by_

targets
Create a summary table using multiple rows for grouping on two target
column ideal for creating change from baseline tables

Description

Create a summary

table using multiple rows for grouping on two target column ideal for creating

change from baseline tables

Usage

summary_table_by_targets(

dt,
target,
treat,
rows_by,

indent = nbsp(n = 4L),
.total_dt = NULL,

pct_dec = 1,
treat_order =
skip_absent =

NULL,
TRUE

tern AETO1 table 27

Arguments
dt table to perform function on
target vector of column names desired to obtain information on
treat string of treatment variable used for splitting / grouping data
rows_by string, grouping variable to split events by.
indent indent to be used for display and formatting purposes
.total_dt optional table for total counts to be derived
pct_dec decimal places for percentages
treat_order customise the column order of output table

skip_absent Logical, default TRUE. Passed to data.table::setcolorder, if treat_order includes
columns not present in dt, TRUE will silently ignore them, FALSE will throw
an error.

Value

data.table

Examples

adlb <- random.cdisc.data::cadlb|>dplyr::filter(AVISIT != "SCREENING")

labs <- summary_table_by_targets(adlb, c('AVAL', 'CHG'), '"ARM', c('PARAM', 'AVISIT'), ' ', NULL)
tern_AET@1_table Generate Core Safety Tables (CSR Section 14.3.1) using
tern/rtables
Description

tern_AET@1_table() produces a consolidated safety summary table using rtables and tern. It
mirrors the output and interface of AET@1_table(), generating standard adverse event summaries
(e.g. death, withdrawal, AESIs) for Clinical Study Reports (CSR) Section 14.3.1.

Usage

tern_AETQ1_table(
adsl,
adae,
patient_var,
treat_var,
aesi_vars,
aesi_heading = "Total number of patients with at least one”,
indent = " "

28 tern_ AETO02_ table

Arguments
adsl A subject-level dataset (typically ADaM ADSL).
adae A dataset of adverse events, preprocessed with AESI flags.

patient_var A string indicating the subject identifier variable (e.g., "USUBJID").
treat_var A string indicating the treatment arm variable (e.g., "ARM").
aesi_vars A character vector of binary AESI flags in adae.

aesi_heading Ignored (included for interface compatibility).

indent Ignored (included for interface compatibility).

Details
The function returns a single formatted rtables table summarising core safety endpoints by treat-
ment arm.

Value

A TableTree object from the rtables package.

Examples

tern_AETO1_table(
adsl = adsl,
adae = aesi,
patient_var = "USUBJID",
treat_var = "ARM",
aesi_vars = c("FATAL", "SER", "SERWD", "SERDSM", "RELSER",
"WD", "DSM", "REL", "RELWD", "RELDSM", "SEV")

tern_AET0@2_table Generate AET02-style AE summary using tern and rtables

Description

This function builds a System Organ Class (SOC) and Preferred Term (PT) adverse event summary
table, following the AET02 CSR format, using the tern and rtables packages.

Usage

tern_AET@2_table(
adsl,
adae,
patient,
treat,
target = "AEDECOD",

tern_summary_table 29

rows_by = "AEBODSYS",

indent = " "
)
Arguments
adsl Subject-level dataset.
adae Adverse event dataset.
patient Unique subject identifier variable.
treat Treatment arm variable.
target Preferred term variable (default: "AEDECOD").
rows_by Higher-level nesting term (default: "AEBODSYS").
indent Ignored (included for compatibility).
Value

A TableTree object with AE summary by SOC/PT.

See Also
AET0Q2_table()

tern_summary_table Create a clinical reporting table with tern/rtables

Description

tern_summary_table() is a convenience wrapper around {rtables} and {tern} commands to
generate a clinical reporting summary statistics tables whilst using a similar interface as summary_table().
This can be helpful for side by side comparisons of the two functions.

Usage

tern_summary_table(dt, target, treat, target_name = target)

Arguments
dt A data. frame containing, at least, the variables indicated in target and treat.
target Target variable passed as a string for which summary statistics are to be calcu-
lated.
treat A string indicating the grouping variable, e.g. the variable specifying the treat-

ment population.

target_name Heading for the target variable as a string. Defaults to target.

30 total events

Value

A data.table of summary statistics. The format depends on the type of the target variable:

* If the target variable is categorical, i.e. type character, factor or logical then the output
is that of calc_counts().

* If the target variable is numeric, then the output is that of calc_desc().

See Also

summary_table()

Examples

dmg_vars <- c("AGE", "RACE", "ETHNIC")
dmg_var_lbls <- c("Age (yr)", "Race”, "Ethnicity")

Demographics table (DMTQ1)
tern_summary_table(

adsl,

target = dmg_vars,

treat = 'ARM',

target_name = dmg_var_lbls

)

Demographics table (DMT@1) with continuous variable (e.g., BMRKR1)
tern_summary_table(

adsl,
target = c(dmg_vars, "BMRKR1"),
treat = 'ARM',
target_name = c(dmg_var_lbls, "Biomarker 1")
)
total_events Count total events
Description

total_events() counts the number of observations in dt in each group defined by treat levels.
Counts are returned in wide format, i.e. one column per level in treat.

Usage

total_events(dt, treat, label)

with_label

Arguments
dt A data. frame containing, at least, the variable indicated in treat.
treat A string indicating the grouping variable, e.g. the variable specifying the treat-
ment population.
label A string to be used as label in the output reporting table. This should be a text
descriptive of the event being counted.
Value

A list wrapping a one-row data. table of 1 + n variables, where n is the number of levels in treat.
First variable is stats, character type, whose value is the argument passed in as 1abel. Following

variables are of integer type and provide the counts.

Examples

In the absence of pre-filtering, ~total_events()", actually, just counts
observations in “dt-.
total_events(dt = adsl, treat = "ARM"”, label = "Subjects”)[[1]]

If “dt° is pre-filtered, e.g. with a condition matching an event, then
~total_events()" can be used to (effectively) count events.

total_events(dt = adsl[adsl$DTHFL == 'Y'], treat = "ARM", label = "Deaths”)[[1]]

Another example using the complement predicate condition.

total_events(dt = adsl[adsl$DTHFL == 'N'], treat = "ARM", label = "Lives")[[1]]
with_label Add a label attribute to an object
Description

Add a label attribute to an object

Usage
with_label(x, label)

Arguments

X An R object.

label A label provided as a single string.
Value

x labeled by label.

32 with_label

See Also
label ()

Examples

label(1)
label(with_label(1, "my label”))

Index

+ datasets
adae, 2
adlb, 3
adsl, 3
aesi, 4

adae, 2, 2

adlb, 3,3

adsl, 3,3

aesi, 4,4
AETQ1_table, 5
AETQ1_table(), 5, 27
AETQ2_table, 6
AET@2_table(), 29
as_dtlg_table, 7
as_dtlg_table(), 7

calc_counts, 8
calc_counts(), 8, 11, 24, 30
calc_desc, 9
calc_desc(), 9,11, 24, 30
calc_stats, 10
calc_stats(), 10, 15
cross_tab_to_obsv_tab, 11
cross_tab_to_obsv_tab(), 71

data.table::setDT(), 12, 17
dt_copy_semantics, 12
dt_copy_semantics(), 16, 17
dtlg: :round_sum, 22

event_count, 13
event_count(), 13, 15, 20
event_count_by, 14

label, 16
label(), 16, 32

maybe_copy_dt, 16

maybe_copy_dt(), 12, 16
merge_table_lists, 17

33

multi_event_true, 19
multi_event_true(), 5

print(), 21
print_dtlg, 21

random.cdisc.data::cadae, 2,4, 5
random.cdisc.data: :cadlb, 3
random.cdisc.data: :cadsl, 3
round(), 22

round_pct, 22

round_pct(), 22

round_sum, 23

round_sum(), 23

set_dt_copy_semantics
(dt_copy_semantics), 12
set_dt_copy_semantics(), 17
summary_table, 24
summary_table(), 24, 26, 29, 30
summary_table_by, 25
summary_table_by_targets, 26

tern_AETQ1_table, 27
tern_AETQ1_table(), 27
tern_AETQ2_table, 28
tern_summary_table, 29
tern_summary_table(), 7, 25, 29
total_events, 30
total_events(), 15, 20, 30

with_label, 31
with_label(), 4, 16

	adae
	adlb
	adsl
	aesi
	AET01_table
	AET02_table
	as_dtlg_table
	calc_counts
	calc_desc
	calc_stats
	cross_tab_to_obsv_tab
	dt_copy_semantics
	event_count
	event_count_by
	label
	maybe_copy_dt
	merge_table_lists
	multi_event_true
	print_dtlg
	round_pct
	round_sum
	summary_table
	summary_table_by
	summary_table_by_targets
	tern_AET01_table
	tern_AET02_table
	tern_summary_table
	total_events
	with_label
	Index

