Package ‘dqrng’

May 29, 2024

Type Package
Title Fast Pseudo Random Number Generators

Version 0.4.1

Description Several fast random number generators are provided as C++
header only libraries: The PCG family by O'Neill (2014
<https://www.cs.hmc.edu/tr/hmc-cs-2014-0905.pdf>) as well as
the Xoroshiro / Xoshiro family by Blackman and Vigna (2021
<doi:10.1145/3460772>). In addition fast functions for generating random
numbers according to a uniform, normal and exponential distribution
are included. The latter two use the Ziggurat algorithm originally
proposed by Marsaglia and Tsang (2000, <doi:10.18637/jss.v005.108>).
The fast sampling methods support unweighted sampling both with and without
replacement. These functions are exported to R and as a C++ interface and are
enabled for use with the default 64 bit generator from the PCG family,
Xoroshiro128+/++/** and Xoshiro256+/++/** as well as the 64 bit version of the
20 rounds Threefry engine (Salmon et al., 2011, <doi:10.1145/2063384.2063405>)
as provided by the package 'sitmo’.

License AGPL-3

Depends R (>=3.5.0)

Imports Rcpp (>=0.12.16)

LinkingTo Rcpp, BH (>= 1.64.0-1), sitmo (>=2.0.0)

RoxygenNote 7.3.1

Suggests BH, testthat, knitr, rmarkdown, mvtnorm (>= 1.2-3), bench,
sitmo

VignetteBuilder knitr
URL https://dagana.github.io/dgrng/, https://github.com/dagana/dqrng

BugReports https://github.com/dagana/dqrng/issues
Encoding UTF-8

NeedsCompilation yes

https://www.cs.hmc.edu/tr/hmc-cs-2014-0905.pdf
https://doi.org/10.1145/3460772
https://doi.org/10.18637/jss.v005.i08
https://doi.org/10.1145/2063384.2063405
https://daqana.github.io/dqrng/
https://github.com/daqana/dqrng
https://github.com/daqana/dqrng/issues

2 dqrng-package

Author Ralf Stubner [aut, cre] (<https://orcid.org/0009-0009-1908-106X>),
dagana GmbH [cph],
David Blackman [cph] (Xoroshiro / Xoshiro family),
Melissa O'Neill [cph] (PCG family),
Sebastiano Vigna [cph] (Xoroshiro / Xoshiro family),
Aaron Lun [ctb],
Kyle Butts [ctb],
Henrik Sloot [ctb],
Philippe Grosjean [ctb] (<https://orcid.org/0000-0002-2694-9471>)

Maintainer Ralf Stubner <ralf.stubner@gmail.com>
Repository CRAN
Date/Publication 2024-05-28 22:40:02 UTC

R topics documented:

dgrng-package e 2
dgrmvnorm L e e e 3
dgRNGkind e 4
dgsample e e e 6
generateSeedVectors L. e e e 7
register_methods 8

Index 10

dgrng-package dqrng: Fast Pseudo Random Number Generators
Description

Several fast random number generators are provided as C++ header only libraries: The PCG family
by O’Neill (2014 https://www.cs.hmc.edu/tr/hmc-cs-2014-0905. pdf) as well as the Xoroshiro
/ Xoshiro family by Blackman and Vigna (2021 doi:10.1145/3460772). In addition fast functions
for generating random numbers according to a uniform, normal and exponential distribution are
included. The latter two use the Ziggurat algorithm originally proposed by Marsaglia and Tsang
(2000, doi:10.18637/jss.v005.108). The fast sampling methods support unweighted sampling both
with and without replacement. These functions are exported to R and as a C++ interface and are
enabled for use with the default 64 bit generator from the PCG family, Xoroshiro128+/++/** and
Xoshiro256+/++/** as well as the 64 bit version of the 20 rounds Threefry engine (Salmon et al.,
2011, doi:10.1145/2063384.2063405) as provided by the package sitmo’.

Author(s)
Maintainer: Ralf Stubner <ralf.stubner@gmail.com> (ORCID)

Other contributors:

» dagana GmbH [copyright holder]

https://orcid.org/0009-0009-1908-106X
https://orcid.org/0000-0002-2694-9471
https://www.cs.hmc.edu/tr/hmc-cs-2014-0905.pdf
https://doi.org/10.1145/3460772
https://doi.org/10.18637/jss.v005.i08
https://doi.org/10.1145/2063384.2063405
https://orcid.org/0009-0009-1908-106X

dqrmvnorm

* David Blackman (Xoroshiro / Xoshiro family) [copyright holder]

* Melissa O’Neill <oneill@pcg-random.org> (PCG family) [copyright holder]

* Sebastiano Vigna <vigna@acm.org> (Xoroshiro / Xoshiro family) [copyright holder]
¢ Aaron Lun [contributor]

* Kyle Butts <kyle.butts@colorado.edu> [contributor]

¢ Henrik Sloot [contributor]

* Philippe Grosjean (ORCID) [contributor]

See Also
Useful links:

* https://dagana.github.io/dqrng/
e https://github.com/dagana/dqrng
* Report bugs at https://github.com/dagana/dqrng/issues

dgrmvnorm Multivariate Distributions

Description

Multivariate Distributions

Usage
dgrmvnorm(n, ...)
Arguments
n number of observations
forwarded to rmvnorm
Value

numeric matrix of multivariate normal distributed variables

See Also

rmvnorm

Examples

sigma <- matrix(c(4,2,2,3), ncol=2)

x <- dgrmvnorm(n=500, mean=c(1,2), sigma=sigma)
colMeans(x)

var(x)

plot(x)

https://orcid.org/0000-0002-2694-9471
https://daqana.github.io/dqrng/
https://github.com/daqana/dqrng
https://github.com/daqana/dqrng/issues

4 dqRNGkind

dgRNGkind R interface

Description

The dgrng package provides several fast random number generators together with fast functions
for generating random numbers according to a uniform, normal and exponential distribution. These
functions are modeled after the base functions set . seed, RNGkind, runif, rnorm, and rexp. How-
ever, note that the functions provided here do not accept vector arguments for the number of obser-
vations as well as the parameters describing the distribution functions. Please see register_methods
if you need this functionality.

dgrrademacher uses a fast algorithm to generate random Rademacher variables (-1 and 1 with
equal probability). To do so, it generates a random 64 bit integer and then uses each bit to generate
a 0/1 variable. This generates 64 integers per random number generation.

dgrng_get_state and dgrng_set_state can be used to get and set the RNG’s internal state. The
character vector should not be manipulated directly.

Usage
dgRNGkind(kind, normal_kind = "ignored")
dgrng_get_state()
dgrng_set_state(state)
dgrunif(n, min = @, max = 1)
dgrnorm(n, mean = @, sd = 1)
dgrexp(n, rate = 1)

dgrrademacher(n)

dgset.seed(seed, stream = NULL)

Arguments
kind string specifying the RNG (see details)
normal_kind ignored; included for compatibility with RNGkind
state character vector representation of the RNG’s internal state
n number of observations
min lower limit of the uniform distribution
max upper limit of the uniform distribution

mean mean value of the normal distribution

dqRNGkind 5

sd standard deviation of the normal distribution
rate rate of the exponential distribution
seed integer scalar to seed the random number generator, or an integer vector of
length 2 representing a 64-bit seed. Maybe NULL, see details.
stream integer used for selecting the RNG stream; either a scalar or a vector of length 2
Details
Supported RNG kinds:

pcg64 The default 64 bit variant from the PCG family developed by Melissa O’Neill. See https:
//www.pcg-random.org/ for more details.

Xoroshiro128++ and Xoshiro256++ RNGs developed by David Blackman and Sebastiano Vigna.
See https://prng.di.unimi. it/ for more details. The older generators Xoroshiro128+ and
Xoshiro256+ should be used only for backwards compatibility.

Threefry The 64 bit version of the 20 rounds Threefry engine as provided by sitmo-package

Xoroshiro128++ is the default since it is fast, small and has good statistical properties.
The functions dqrnorm and dqrexp use the Ziggurat algorithm as provided by boost . random.

See generateSeedVectors for rapid generation of integer-vector seeds that provide 64 bits of
entropy. These allow full exploration of the state space of the 64-bit RNGs provided in this package.

If the provided seed is NULL, a seed is generated from R’s RNG without state alteration.

Value

dgrunif, dgrnorm, and dgrexp return a numeric vector of length n. dqrrademacher returns an
integer vector of length n. dqrng_get_state returns a character vector representation of the RNG’s
internal state.

See Also

set.seed, RNGkind, runif, rnorm, and rexp

Examples

library(dgrng)

Set custom RNG.
dgRNGkind("Xoshiro256++")

Use an integer scalar to set a seed.
dgset.seed(42)

Use integer scalars to set a seed and the stream.
dgset.seed(42, 123)

Use an integer vector to set a seed.
dgset.seed(c(31311L, 24123423L))

https://www.pcg-random.org/
https://www.pcg-random.org/
https://prng.di.unimi.it/

6 dgsample

Use an integer vector to set a seed and a scalar to select the stream.
dgset.seed(c(31311L, 24123423L), 123)

Random sampling from distributions.
dgrunif(5, min = 2, max = 10)
dgrexp(5, rate = 4)

dgrnorm(5, mean = 5, sd = 3)

get and restore the state
(state <- dgrng_get_state())
dgrunif(5)
dgrng_set_state(state)
dqrunif(5)

dgsample Unbiased Random Samples and Permutations

Description

Unbiased Random Samples and Permutations

Usage

dgsample(x, size, replace = FALSE, prob = NULL)

dgsample.int(n, size = n, replace = FALSE, prob = NULL)

Arguments
X either a vector of one or more elements from which to choose, or a positive
integer.
size a non-negative integer giving the number of items to choose.
replace should sampling be with replacement?
prob a vector of probability weights for obtaining the elements of the vector being
sampled.
n a positive number, the number of items to choose from.
See Also

vignette("sample”, package = "dgrng"), sample and sample.int

generateSeed Vectors 7

generateSeedVectors Generate seed as a integer vector

Description

Generate seed as a integer vector

Usage

generateSeedVectors(nseeds, nwords = 2L)

Arguments

nseeds Integer scalar, number of seeds to generate.

nwords Integer scalar, number of words to generate per seed.
Details

Each seed is encoded as an integer vector with the most significant bits at the start of the vector.
Each integer vector is converted into an unsigned integer (in C++ or otherwise) by the following
procedure:

1. Start with a sum of zero.

2. Add the first value of the vector.

3. Left-shift the sum by 32.

4. Add the next value of the vector, and repeat.

The aim is to facilitate R-level generation of seeds with sufficient randomness to cover the entire
state space of pseudo-random number generators that require more than the ~32 bits available in an
int. It also preserves the integer nature of the seed, thus avoiding problems with casting double-
precision numbers to integers.

It is possible for the seed vector to contain NA_integer_ values. This should not be cause for alarm,
as R uses ~INT_MAX to encode missing values in integer vectors.

Value

A list of length n, where each element is an integer vector that contains nwords words (i.e., 32*nwords
bits) of randomness.

Author(s)

Aaron Lun

Examples

generateSeedVectors(10, 2)

generateSeedVectors(5, 4)

register_methods

register_methods Registering as user-supplied RNG

Description

The random-number generators (RNG) from this package can be registered as user-supplied RNG.
This way all r<dist> functions make use of the provided fast RNGs.

Usage

register_methods(kind = c("both”, "rng"))

restore_methods()

Arguments

kind

Details

Which methods should be registered? Either "both” or "rng".

Caveats:

While runif and dqrunif as well as rnorm and dqrnorm will produce the same results, this
is not the case for rexp and dqrexp.

The dqr<dist> functions are still faster than r<dist> when many random numbers are gen-
erated.

You can use only the RNG from this package using register_method(”"rng"”) or both the
RNG and the Ziggurat method for normal draws with register_method("both"”). The latter
approach is used by default. Using only the Ziggurat method will give undefined behavior and
is not supported!

Calling dgset . seed (NULL) re-initializes the RNG from R’s RNG. This no longer makes sense
when the RNG has been registered as user-supplied RNG. In that case set . seed{NULL} needs
to be used.

With R’s in-build RNGs one can get access to the internal state using .Random. seed. This is
not possible here, since the internal state is a private member of the used C++ classes.

You can automatically register these methods when loading this package by setting the option
dgrng.register_methods to TRUE, e.g. with options(dqrng.register_methods=TRUE).

Notes on seeding:

When a user-supplied RNG is registered, it is also seeded from the previously used RNG. You
will therefore get reproducible (but different) whether you call set.seed() before or after
register_methods().

When called with a single integer as argument, both set.seed() and dgset.seed() have the
same effect. However, dgset . seed() allows you to call it with two integers thereby supplying
64 bits of initial state instead of just 32 bits.

register_methods 9

Value

Invisibly returns a three-element character vector of the RNG, normal and sample kinds before the
call.

See Also

RNGkind and Random.user

Examples

register_methods()

set.seed and dgset.seed influence both (dg)runif and (dg)rnorm
set.seed(4711); runif(5)
set.seed(4711); dqrunif(5)
dgset.seed(4711); rnorm(5)
dgset.seed(4711); dgrnorm(5)

similarly for other r<dist> functions
set.seed(4711); rt(5, 10)
dgset.seed(4711); rt(5, 10)

but (dg)rexp give different results
set.seed(4711); rexp(5, 10)
set.seed(4711); dqrexp(5, 10)
restore_methods()

Index

dgrexp (dgRNGkind), 4
dgrmvnorm, 3

dgrng (dgrng-package), 2
dgrng-package, 2
dgrng_get_state (dgRNGkind), 4
dgrng_set_state (dgRNGkind), 4
dgRNGkind, 4

dgrnorm (dgRNGkind), 4
dgrrademacher (dgRNGkind), 4
dgrunif (dgRNGkind), 4
dgsample, 6

dgset.seed (dgRNGkind), 4

generateSeedVectors, 5, 7

Random.user, 9

register_methods, 4, 8
restore_methods (register_methods), 8
rexp, 4, 5

rmvnorm, 3

RNGkind, 4, 5, 9

rnorm, 4, 5

runif, 4, 5

sample, 6
sample.int, 6
set.seed, 4, 5

10

	dqrng-package
	dqrmvnorm
	dqRNGkind
	dqsample
	generateSeedVectors
	register_methods
	Index

