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Dowser implements recently developed phylogenetic tests to characterize B cell migration, differenti-
ation, and isotype switching. These are “discrete” traits because their values are not continuous.

Discrete trait statistics

There are two main statistics implemented by Dowser to characterize the distribution of trait values
at the tips of trees. These all derive from using a maximum parsimony algorithm to reconstruct
trait values at the internal nodes of each tree. Then “switches” between discrete characters are
quantified along the tree topologies.

1. PS: Parsimony score, the total number of switches among all trait values.
2. SP: Switch proportion, the proportion of switches from one trait to another.

The significance of each of these statistics is estimated using a permutation test, which randomizes
trait values at the tree’s tips.

Full published details on these methods are available here

Caveats and interpretting results

Before using these tests, it’s important to understand how the test works and what potential biases
can affect the results. These tests are detailed in full here. These tests summarize the distribution of
trait values along trees. They don’t directly test for cellular migration and differentiation. As such,
it’s important to understand potential caveats and explore alternative explanations.


https://doi.org/10.1371/journal.pcbi.1009885
https://doi.org/10.1371/journal.pcbi.1009885

What does a significant SP test mean? A significant SP test from tissue A to tissue B indicates
that there is a greater proportion of switches from A to B along the trees than expected by random
tip/trait relationships. This can be due to B cells preferentially migrating from tissue A to B, but
there are other possibilities.

As explored in the original paper, a significant SP test from tissue A to B could be due to:

1. Biased migration from A to B.

2. Biased sampling, especially under-sampling tissue A.

3. Significantly higher mutation rate over time in the cells in B than in A, placing it further
down the tree.

4. Extremely low rate of switching events (if no downsampling used, see below).

Usually option #1 is most biologically interesting, but it is important to consider the other options
as well.

Setting up IgPhyML

All of the switch count statistics on this page require IgPhyML. IgPhyML needs to be compiled
and the location of the executable needs to be passed to the findSwitches function. To set up
IgPhyML, please visit the docs page. This is true even if IgPhyML is not used to build the trees.
If you’re not using a Linux computer, your best option is likely to use the Immcantation Docker
container.

Set up data structures and trees

This step proceeds as in tree building, but it is important to specify the column of the discrete trait
you want to analyze in the formatClones step. In this example we are using simulated data from
nose and lung biospies. However, this could be any discrete trait value such as cell types. Filtering
out clones that contain only a single trait value type is not strictly necessary but can dramatically
improve computing time.

library(dowser)

# load example AIRR tsv data
data(ExampleAirr)

# trait value of interest
trait="biopsy"

# Process example data using default settings
clones = formatClones(ExampleAirr,
traits=trait, num_fields="duplicate_count", minseq=3)

# Column shows which biopsy the B cell was obtained from
print(table(ExampleAirr[[trait]]))
#Lung Nose

# 145 244


https://igphyml.readthedocs.io
https://igphyml.readthedocs.io/en/latest/install.html#docker-image-recommended
https://igphyml.readthedocs.io/en/latest/install.html#docker-image-recommended

# Calculate number of tissues sampled in tree
tissue_types = unlist(lapply(clones$data, function(x)
length(unique (x@datal[trait]]))))

# Filter to multi-type trees
clones = clones[tissue_types > 1,]

# Build trees using mazimum likelihood (can use alternative builds if desired)
trees = getTrees(clones, build="pml")

Visualize maximum parsimony trait reconstruction

Sometimes it can be useful to visualize the predicted state of each internal node in the tree using
maximum parsimony. In Dowser, this can be accomplished by modifying the getTrees call to
specify the trait value of interest, and the location of the igphyml executable. The internal node
states can be plotted using plotTrees with nodes=TRUE and tips specifying the trait value. Edges
in the tree are colored by the predicted state of their descendant (lower) node.

# the location of the igphyml executable

# this is location in Docker image, will likely be different if you've set it up yourself
# note this is the location of the compiled executable file, not just the source folder
igphyml_location = "/usr/local/share/igphyml/src/igphyml"

# build trees as before, but use IgPhyML to reconstruct the states of internal
# modes using maximum Pparsimony
trees = getTrees(clones, build="pml", trait=trait, igphyml=igphyml_location)

# show internal node (edge) predictions based on maximum parsimony
plotTrees(trees, tips=trait, nodes=TRUE, palette="Setl1") [[1]]
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Discrete trait analysis with fixed trees

Once we’ve set up the tree objects, we can calculate the switches along these trees using a maximum
parsimony algorithm implemented in IgPhyML. We only need to perform this computationally
intensive step once. All discrete trait tests use the resulting object. Note the IgPhyML location
must be properly configured for your setup. Note also that your results may differ slightly from the
ones shown below, due to the stochasticity of this test.

# the location of the igphyml executable

# this ©s location in Docker image, will likely be different <f you've set it up yourself
# note this is the location of the compiled executable file, not just the source folder
igphyml_location = "/usr/local/share/igphyml/src/igphyml"

# calculate switches along trees compared to 100 random permutations
# this may take a while, and can be parallelized using nproc
switches

igphyml

findSwitches(trees, permutations=100, trait=trait,
igphyml_location, fixtrees=TRUE)

# Perform PS test on switches

ps = testPS(switches$switches)

print (ps$means)

# A tibble: 1 z© 6

# RECON PERMUTE  PLT DELTA STAT  REPS
# <dbl> <dbl> <dbl> <dbl> <chr> <int>
#1 8 8.6 0.4 -0.6 PS 100

sp = testSP(switches$switches, alternative="greater")
print (sp$means)



# A tibble: 2z 8

# Groups:  FROM [2]

# FROM TO RECON PERMUTE  PGT DELTA STAT  REPS
# <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <int>
#1 Lung Nose 0.131 0.323 1 -0.192 SP 100
#2 Nose Lung 0.869 0.677 0 0.192 SP 100

PS test The object ps contains the results of the PS test. The means dataframe contains the test
summary statistics, while the reps dataframe contains information from each repetition. RECON
shows the number of switches across all trees, PERMUTE shows the mean number of switches across
all permutations, and DELTA shows the mean difference between these two values. PLT is the P
value that there are at least as many switches in the observed trees as in the permuted data. If PLT
< 0.05, this indicates that there are signifcantly fewer switches among biopsies than expected by
random tree/trait association. This indicates that sequences within the sample biopsies are more
clustered together within the trees than expected. In this case, PLT is 0.4, so we can’t draw that
conclusion.

SP test The object sp contains the results of the SP test. As with the PS test, the means dataframe
contains summary statistics. The columns are largely the same as in the PS test, but the SP test is
performed in a particular direction. In this case, we have an SP test from Lung to Nose and then
from Nose to Lung. We can see that the SP value from Nose to Lung in our trees (RECON) is much
higher than the mean SP statistic in our permuted trees (PERMUTE). DELTA is the mean difference
between RECON and PERMUTE values, so a positive DELTA indicates greater SP values in observed
trees than permuted trees. The p value in the PGT column (0) shows that the SP statistic from Nose
to Lung is significant. This indicates that there are a greater proportion of switches from the Nose
to the Lungs within these trees than expected from random tree/trait association. This is consistent
with biased movement from Nose to Lungs in this dataset (but see Caveats and interpretting results
section).

Accounting for uncertainty in tree topology

The previous analysis used fixed tree topologies, which will speed up calculations but does not
account for uncertainty in tree topology. To account for this, be sure fixtrees=FALSE (the default
option). For this option, the trees will be re-built for each permutation in the manner specified
(same parameters as getTrees).

# calculate switches along bootstrap distridbution of trees

# build using the 'pml' mazimum likelihood option

# in a real analysis it's important to use at least 100 permutations

switches = findSwitches(trees, permutations=10, trait=trait,
igphyml=igphyml_location, fixtrees=FALSE, build="pml")

sp = testSP(switches$switches, alternative="greater")
print (sp$means)

# A tibdble: 2 = 8

# Groups:  FROM [2]

# FROM TO RECON PERMUTE  PGT DELTA STAT  REPS
# <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <int>



#1 Lung DNose 0.168 0.358 1 -0.190 SP 10
#2 Nose Lung 0.832 0.642 0.1 0.190 SP 10

Within and between lineage permutations

In some cases it may be preferable to permute trait values among trees rather than within them.
This will detect association between traits within a tree as well as directional relationships. In
general it is harder to interpret. To perform this test, set permuteAl11=TRUE.

sp = testSP(switches$switches, alternative="greater", permuteAll=TRUE)
print (sp$means)

# A tibdble: 2 = 8

# Groups:  FROM [2]

# FROM TO RECON PERMUTE  PGT  DELTA STAT  REPS

# <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <int>

#1 Lung DNose 0.168 0.241 0.6 -0.0736 SP 10

#2 Nose Lung 0.832 0.759 0.4 0.0736 SP 10

Controlling false positive rate through downsampling

The SP test has been shown to have a high false positive rate if switching events are rare along
very large trees (see paper). To reduce this effect, by default a downsampling algorithm in
findSwitches will downsample all trees to have a maximum tip-to-switch ratio of 20. This ratio
can be toggled by altering the tip_switch parameter. This feature can also be turned off by setting
downsample=FALSE, but this is not recommended.

# Downsample each tree to a tip-to-switch ratio of 10 instead of 20

# this will reduce the false positive rate but also (likely) power

switches = findSwitches(trees, permutations=100, trait=trait,
igphyml=igphyml_location, fixtrees=TRUE, tip_switch=10)

# didn't have much effect for this dataset

sp = testSP(switches$switches, alternative="greater")
print (sp$means)

# A tibble: 2z 8

# Groups:  FROM [2]

# FROM TO RECON PERMUTE  PGT DELTA STAT  REPS
# <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <int>
#1 Lung Nose 0.168 0.358 1 -0.190 SP 10
#2 Nose Lung 0.832 0.642 0.1 0.190 SP 10

Incorporating switching constraints

Some processes, like Ig isotype switching, can only happen in a particular direction. Using regular
parsimony to reconstruct these processes will likely end up predicting impossible switches. Instead,
it’s possible to contrain the maximum parsimony reconstruction to only happen in a particular
direction. There are a couple of steps to do this.



1. Create a vector with the states in the order they occur in.
2. Create a model file with makeModelFile.
3. Repeat maximum parsimony analyses with IgPhyML specifying the model file.

makeModelFile produces a physical file - you can open it with a text editor to inspect it. All runs
of findSwitches create a model file, it’s just normally not seen by the user and by default contains
no constraints.

# the location of the igphyml exzecutable

# this is location tn Docker image, will likely be different if you've set it up yourself
# note this is the location of the compiled executable file, not just the source folder
igphyml_location = "/usr/local/share/igphyml/src/igphyml"

# constant region column name
trait = "c_call"

# Vector of human isotypes in the proper order. Isotype switching

# can only go from left to right (e.g. IGHM to IGHA1). One exception

# 1s IGHD, which can switch to IGHM.

isotypes = c("IGHM","IGHD","IGHG3","IGHG1","IGHA1","IGHG2",
"IGHG4","IGHE","IGHA2")

# Process exzample data using default settings with "c_call" as a trait value
clones = formatClones(ExampleAirr, traits=trait, minseq=3)

# Column shows which constant region assoctated with a BCR
print(table(ExampleAirr[[trait]]))

# IGHA1 IGHAZ2 IGHD IGHG1 IGHG2 IGHG3 IGHG4 IGHM

# 55 56 11 58 64 60 63 22

# Calculate number of istoypes sampled in each tree
isotype_counts = unlist(lapply(clones$data, function(x)
length(unique (x@datal[trait]]))))

# make model file with irreversibility constiraints

# Will prohibit switches from right to left in the "states" wector

# IGHD to IGHM switching listed as an exception, since this can occur

makeModelFile(file="isotype_model.txt", states=isotypes,
constraints="irrev", exceptions=c("IGHD,IGHM"))

# Build trees and predict states at internal nodes using marimum parsimony
trees = getTrees(clones[isotype_counts > 1,], trait=trait, igphyml=igphyml_location,
modelfile="isotype_model.txt")

# show internal node (edge) predictions based on maximum parsimony
plotTrees(trees, tips=trait, nodes=TRUE, palette="Paired", ambig="grey") [[1]]
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Performing the SP test is the same as before, just specify the model file created earlier using the
modelfile option. Note that no switches occur in directions that are forbidden by our model. If
you try this without specifying the model file, you'll likely get many biologically impossible switches!

# Downsample each tree to a tip-to-switch ratio of 10 instead of 20

# this will reduce the false positive rate but also (likely) power

switches = findSwitches(trees, permutations=100, trait=trait,
igphyml=igphyml_location, fixtrees=TRUE, tip_switch=10,
modelfile="isotype_model.txt")

# didn't have much effect for this dataset

sp = testSP(switches$switches, alternative='"greater")
print (sp$means,n=42)

# A tibble: 42 x 8

# Groups:  FROM [7]

# FROM TO RECON PERMUTE  PGT DELTA STAT  REPS
# <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <int>
# 1 IGHA1 IGHA2 0.0972 0.0994 0.56 -0.00219 SP 100
# 2 IGHA1 IGHD O 0 1 0 SP 100
# 3 IGHA1 IGHG1 O 0 1 0 SP 100
# 4 IGHA1 IGHGZ2 0.00815 0.00833 0.58 -0.000184 SP 100
# &5 IGHA1 IGHG3 0 0 1 0 SP 100
# 6 IGHA1 IGHG4 0.00352 0.00409 0.59 -0.000575 SP 100
# 7 IGHA2 IGHA1 O 0 1 0 SP 100
# 8 IGHA2 IGHD 0 0 1 0 SP 100
# 9 IGHAZ2 IGHG1 0 0 1 0 SP 100
#10 IGHA2 IGHG2 0 0 1 0 SP 100
#11 IGHA2 IGHG3 0 0 1 0 SP 100
#12 IGHA2 IGHG4 O 0 1 0 SP 100
#13 IGHD IGHA1 0 0 1 0 SP 100



#14 IGHD IGHA2 0 0 1 0 SP 100
#15 IGHD IGHG1 0.0144 0.0127 0.42 0.00173 SP 100
#16 IGHD IGHG2 0.00926 0.00981 0.54 -0.000545 SP 100
#17 IGHD IGHG3 0.0157 0.0113 0.3 0.00440 SP 100
#18 IGHD IGHG 0.00203 0.00271 0.58 -0.000681 SP 100
#19 IGHG1 IGHA1 0.00632 0.00757 0.59 -0.00126 SP 100
#20 IGHG1 IGHA2 0.00326 0.00419 0.51 -0.000932 SP 100
#21 IGHG1 IGHD 0 0 1 0 SP 100
#22 IGHG1 IGHG2 0.0417 0.0545 0.86 -0.0127 SP 100
#23 IGHG1 IGHG3 0 0 1 0 SP 100
#24 IGHG1 IGHG4 0.0451 0.0493 0.66 -0.00427 SP 100
#25 IGHG2 IGHA1 0 0 1 0 SP 100
#26 IGHG2 IGHA2 0.00542 0.00511 0.45 0.000316 SP 100
#27 IGHG2 IGHD 0 0 1 0 SP 100
#28 IGHG2 IGHG1 0 0 1 0 SP 100
#29 IGHG2 IGHG3 0 0 1 0 SP 100
#30 IGHG2 IGHG4 0.0715 0.0581 0.08 0.0133 SP 100
#31 IGHG3 IGHA1 0.0716 0.0600 0.16 0.0116 SP 100
#32 IGHG3 IGHA2 0.0508 0.0492 0.37 0.00154 SP 100
#33 IGHG3 IGHD 0 0 1 0 SP 100
#34 IGHG3 IGHG1 0.159 0.181  0.96 -0.0225 SP 100
#35 IGHG3 IGHG2 0.228 0.203  0.05 0.0250 SP 100
#36 IGHG3 IGHG4 0.161 0.175 0.8 =-0.0137 SP 100
#37 IGHG/ IGHA1 0 0 1 0 SP 100
#38 IGHG, IGHA2 0.00596 0.00437 0.27 0.00159 SP 100
#39 IGHG, IGHD 0 0 1 0 SP 100
#40 IGHG, IGHG1 0 0 1 0 SP 100
#41 IGHG, IGHG2 0 0 1 0 SP 100
#42 IGHG, IGHG3 0 0 1 0 SP 100

If you’re interested only in switches to a particular tissue or isotype, you can specify this using
the to option in the testSP function. Here, we only look at the proportion of switches that go to
IGHA2:

sp = testSP(switches$switches, alternative="greater", to="IGHA2")
print (sp$means)

# A tibble: 8 x 8

# Groups:  FROM [8]

# FROM TO RECON PERMUTE  PGT DELTA STAT  REPS
# <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <int>
#1 IGHA1 IGHAZ2 0.620 0.634 0.59 -0.0144 SP 100
#2 IGHD 1IGHAZ2 0 0 1 0 SP 100
#3 IGHE IGHAZ O 0 1 0 SP 100
#4 IGHG1 IGHAZ2 0.0116 0.0292 0.85 -0.0176 SP 100
#5 IGHG2 IGHA2 0.0371 0.0252 0.32 0.0119 SP 100
#6 IGHG3 IGHA2 0.297 0.283 0.45 0.0144 SP 100
#7 IGHG4 IGHAZ 0.0346 0.0290 0.36 0.00563 SP 100
#8 IGHM IGHA2 0 0 1 0 SP 100
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