Package ‘distillery’

November 29, 2024

Version 1.2-2
Date 2024-11-26
Title Method Functions for Confidence Intervals and to Distill

Information from an Object

Author Eric Gilleland [aut, cre] (<https://orcid.org/0000-0002-8058-7643>)
Maintainer Eric Gilleland <eric.gilleland@colostate.edu>
Depends R (>=2.10.0)

Description Some very simple method functions for confidence interval calculation, bootstrap resam-
pling aimed at atmospheric science applications, and to distill pertinent information from a po-

tentially complex object; primarily used in common with packages extRemes and Spa-

tialVx. To reference this package and for a tutorial on the bootstrap functions, please see Gille-
land (2020) <doi:10.1175/JTECH-D-20-0069.1> and Gilleland (2020) <doi:10.1175/JTECH-D-
20-0070.1>.

License GPL (>=2)

NeedsCompilation no

Repository CRAN

Date/Publication 2024-11-28 23:40:06 UTC

Contents
distillery-package 2
booter e e e 2
Cl o e e 5
cibooted. L e 6
datagrabber 8
distill e e e e e 9
ISLBVEIL . . v v o e 10
isformula e e 11
MatrixSqrt e e 12
PDOOtEr e 13
tibber e e e e 15

Index 21

https://orcid.org/0000-0002-8058-7643
https://doi.org/10.1175/JTECH-D-20-0069.1
https://doi.org/10.1175/JTECH-D-20-0070.1
https://doi.org/10.1175/JTECH-D-20-0070.1

2 booter

distillery-package distillery: Methods to Distill Information from R Objects

Description

distillery contains primarily method functions to distill out pertinent information from R objects, as
well as to compute confidence intervals. It now also contains new fairly general bootstrap functions.

Details

Primary functions include:

distill: Typically, to distill pertinent information from a complicated (usually a list) object and
return a named vector.

ci: Calculate confidence intervals. This is a method function for calculating confidence intervals.
Includes methods for numeric vectors and matrices, whereby the mean is taken (column-wise for
matrices) and normal approximation confidence intervals for the mean are calculated and returned.

booter, pbooter and tibber: Functions to perform bootstrap resampling that work with ci (booter
and pbooter). Allows for m < n bootstrap resampling, circular block bootstrapping, parametric
bootstrap resampling (pbooter), and the test-inversion bootstrap approach (tibber).

Author(s)
Eric Gilleland

Examples

See help files for above named functions and datasets
for specific examples.

booter Bootstrap Resampling

Description

Generate B bootstrap replicates of size rsize and apply a statistic to them. Can do IID or Circular
Block Bootstrap (CBB) methods.

Usage

booter(x, statistic, B, rsize, block.length = 1, v.terms, shuffle = NULL,
)

booter 3

Arguments
X Original data series. May be a vector, matrix or data frame object.
statistic Function that minimally takes arguments: data and The argument data
must be the input data for which resamples are taken. Must return a vector of all
desired statistics.
B number of bootstrap resamples to make.
rsize Number giving the resample size for each bootstrap sample. Must be between 1

and the length of x, if x is a vector, else the number of rows of x. Default is to
use the size of the original data.

block.length Number giving the desired block lengths. Default (block.length = 1) is to do
IID resamples. Should be longer than the length of dependence in the data, but
much shorter than the size of the data.

v.terms If statistic returns variance estimates for other parameters, then use this ar-
gument to specify the indices returned that give the variance estimates. There
must be a component for every other parameter returned, and they must be in the
same order as the other parameters (see examples below). If an estimate does
not exist, an NA should be returned for that spot.

shuffle rsize by B matrix giving the indices for each bootstrap replication. If provided,
B may be missing.

Optional arguments passed to statistic.

Details

Similar functionality to boot from package boot, but allows for easier implementation of certain
other approaches. For example, m-out-of-n bootstrap resampling (appropriate for heavy-tail dis-
tributed data) can be performed via the rsize argument. The ci function is used to obtain subse-
quent confidence limits. For parameteric bootstrap resampling, see pbooter.

For more complicated bootstrap resampling, e.g., Bayesian bootstrap sampling, the shuffle ar-
gument may prove useful. That is, no weighting is allowed with this function through the stan-
dard mechanism, but the same result may be obtained by supplying your own indices through the
shuffle argument. For parametric bootstrap resampling, see the pbooter function, but for certain
types of parametric resampling, the shuffle argument could prove useful.

If the block length is > 1, then rsize overlapping blocks of this length are sampled from the data.
In order to minimize over or under sampling of the end points, the blocks are circular (cf. Lahiri
2003).

Many good books and other materials are available about bootstrap resampling. One good text on

IID bootstrap resampling is Efron and Tibshirani (1998) and for the block bootstrap, Lahiri (2003).
Value

A list object of class “booted” is returned with components:

call the function call
data original data series

statistic statistic argument passed in

statistic.args
B
block.length

v.terms

rsize

indices

orig.v

original.est

results

type

Author(s)
Eric Gilleland

References

booter

all other arguments passed by ...
Number of bootstrap replicate samples
The block length used

if variance terms are returned by statistic, the argument is repeated in the re-
turned object.

the size of the bootstrap resamples.

rsize by B matrix giving the resample indices used (rows) for each bootstrap
resample (columns).

B length vector or B column matrix (if statistic returns a vector) giving the esti-
mated parameter variances for each bootstrap replicate.

vector giving the parameter variances (i.e. se”2) of statistic when applied to the
original data.

vector giving the estimated parameter values when statistic is applied to the
original data.

B length vector or B column matrix giving the parameter estimates for each
bootstrap resample.

character stating whether the resample method is iid or cbb.

Efron, B. and Tibshirani, R. J. (1998) An Introduction to the Bootstrap. Chapman and Hall, Boca
Raton, Florida, 436 pp.

Lahiri, S. N. (2003) Resampling Methods for Dependent Data. Springer-Verlag, New York, New

York, 374 pp.

See Also

pbooter, ci.booted tibber

Examples

z <- rnorm(100)

zfun <- function(data, ...) {

return(c(mean(data), var(data), mean(data*2), var(data*2)))

} # end of 'zfun'
res <- booter(x
print(res)

Not run: ci(

function.

= z, statistic = zfun, B = 500, v.terms = c(2, 4))

res)

ci Find Confidence Intervals

Description

Method function for finding confidence intervals.

Usage

ci(x, alpha = 0.05, ...)

S3 method for class 'matrix'
ci(x, alpha = 0.05, ...)

S3 method for class 'numeric'
ci(x, alpha = 0.05, ...)

S3 method for class 'ci'

print(x, ...)
Arguments
X ci: an R object that has a ci method function for it.
print: output from ci.
alpha number between zero and one giving the 1 - alpha confidence level.
Optional arguments depending on the specific method function. In the case of
those for ci.matrix and ci.numeric, these are any optional arguments to mean
and var.
Not used by print method function.
Details

ci.numeric: Calculates the mean and normal approximation CIs for the mean.

ci.matrix: Does the same as ci.numeric, but applies to each column of x.

Value

ci.numeric: a numeric vector giving the CI bounds and mean value.

ci.matrix: a matrix giving the mean and CI bounds for each column of x.

Author(s)
Eric Gilleland

6 ci.booted

Examples

ci(rnorm(100, mean=10, sd=2))

ci(matrix(rnorm(10000, mean=40, sd=10), 100, 100))

ci.booted Bootstrap Confidence Intervals

Description

Calculate confidence intervals for objects output from the booter and pbooter functions.

Usage
S3 method for class 'booted'
ci(x, alpha = 0.05, ..., type = c("perc”, "basic”, "stud”, "bca”, "norm"))
Arguments
X object of class “booted” as returned by the booter or pbooter function.
alpha Significance level for which the (1 - alpha) * 100 percent confidence intervals
are determined.
Not used.
type character stating which intervals are to be reutrned. Default will do them all.

Details

Many methods exist for sampling parameters associated with a data set, and many methods for
calculating confidence intervals from those resamples are also available. Some points to consider
when using these methods are the accuracy of the intervals, and whether or not they are range-
preserving and/or transformation-respecting. An interval that is range-preserving means that if a
parameter can only take on values within a specified range, then the end points of the interval
will also fall within this range. Transformation-respecting means that if a parameter, say phi, is
transformed by a monotone function, say m(phi), then the (1 - alpha) * 100 percent confidence
interval for m(phi) can be derived by applying m() to the limits of the (1 - alpha) * 100 percent
interval for phi. That is [L(phi), U(phi)] = [m(L(phi)), m(U(phi))].

For accuracy, a (1 - 2 * alpha) * 100 percent confidence interval, (L, U), is presumed to have
probability alpha of not covering the true value of the parameter from above or below. That is, if
theta is the true value of the parameter, then Pr(theta < L) = alpha, and Pr(theta > U) = alpha.
A second-order accurate interval means that the error in these probabilities tends to zero at a rate
that is inversely proportional to the sample size. On the other hand, first-order accuracy means that
the error tends to zero more slowly, at a rate inversely proportional to the square root of the sample
size.

the types of intervals available, here, are described below along with some considerations for their
use.

ci.booted 7

Percentile intervals (type = “perc”) are 1st order accurate, range-preserving, and transformation-
respecting. However, they may have poor coverage in some situations. They are given by (L,
U) where L and U are the 1 - alpha / 2 and alpha / 2 quantiles of the non-parametric distribution
obtained through bootstrap resampling.

The basic interval (type = “basic”) is the originally proposed interval and is given by (2 * theta - U,
2 * theta - L), where U and L are as for the percentile interval. This interval is 1st order accurate,
but is not range-preserving or transformation-respecting.

Studentized (or Bootstrap-t) intervals (type = “stud”) are 2nd order accurate, but not range-preserving
or transformation-respecting, and they can be erratic for small samples, as well as sensitive to out-
liers. They are obtained by the basic bootstrap, but where U and L are taken from the studentized
version of the resampled parameter estimates. That is, T is taken for each bootstrap replicate, b, to
be:

T’(b) = (theta’(b) - theta) / (se’(b)), where theta’(b) and se’(b) are the estimated value of the pa-
rameter and its estimated standard error, resp., for bootstrap replicate b, and theta is the estimated
parameter value using the original data.

The bias-corrected and accelerated (BCa, type = “bca”) method applies a bias correction and ad-
justment to the percentile intervals. The intervals are 2nd order accurate, range-preserving and
transformation-respecting. However, the estimation performed, here (Eq 14.15 in Efron and Tibshi-
rani 1998), requires a further jacknife resampling estimation, so the computational burden can be
more expensive. The estimates for the bias-correction and acceleration adjustment can be found in
Efron and Tibshirani (1998) p. 178 to 201. The bias-correction factor includes an adjustment for
ties.

Finally, the normal approximation interval (type = “norm”) uses the average of the estimated pa-
rameters from the bootstrap replicates, call it m, and their standard deviation, call is s, to make the
usual normal approximation interval. An assumption of normality for the parameter estimates is
assumed, which means that they will be symmetric. This method yields 1st order accurate intervals
that are not range-preserving or transformation-respecting.

Value

A list object of class “ci.booted” is returned with components depending on which types of intervals
are calculated.

booted.object The object passed through the x argument.
perc, basic, stud, bca, norm

vectors of length 3 or 3-column matrices giving the intervals and original pa-

rameter estimates for each CI method.
bias.correction, accelerated

If type includes “bca”, then the estiamted bias correction factor and acceleration
are given in these components.

Author(s)
Eric Gilleland

References

Efron, B. and Tibshirani, R. J. (1998) An Introduction to the Bootstrap. Chapman and Hall, Boca
Raton, Florida, 436 pp.

8 datagrabber

See Also

booter, pbooter

Examples

##
See the help file for booter and/or pbooter for examples.
#H#

datagrabber Get Original Data from an R Object

Description

Get the original data set used to obtain the resulting R object for which a method function exists.

Usage
datagrabber(x, ...)
Arguments
X An R object that has a method function for datagrabber.
Not used.
Details

Often when applying functions to data, it is handy to be able to grab the original data for subse-
quent routines (e.g., plotting, etc.). In some cases, information about where to obtain the original
data might be available (more difficult) and in other cases, the data may simply be contained within
a fitted object. This method function is generic, but some packages (e.g., extRemes >= 2.0, Spa-
tialVx >= 1.0) have datagrabber functions specific to particular object types.

Value

The original pertinent data in whatever form it takes.

Author(s)

Eric Gilleland

distill 9

Examples

Not run:

From the extRemes (>= 2.0) package.

y <= rnorm(100, mean=40, sd=20)

y <- apply(cbind(y[1:99], y[2:100]), 1, max)
bl <- rep(1:3, each=33)

ydc <- decluster(y, quantile(y, probs=c(0.95)), r=1, blocks=bl)
yorig <- datagrabber(ydc)

all(y - yorig == 0)

End(Not run)

distill Distill An Object

Description

Distill a complex object to something easier to manage, like a numeric vector.

Usage
distill(x, ...)

S3 method for class 'list'
distill(x, ...)

S3 method for class 'matrix'
distill(x, ...)

S3 method for class 'data.frame'
distill(x, ...)

Arguments
X A list, vector, matrix or data frame, or other object that has a distill method,
e.g., fevd objects.
Not used.
Details

Perhaps a fine line exists between functions such as c, print, str, summary, etc. The idea behind
the distill method is to have a function that “distills” out the most pertinent information from a
more complex object. For example, when fitting a model to a number of spatial locations, it can be

10 is.even

useful to pull out only certain information into a vector for ease of analysis. With many models, it
might not be feasible to store (or analyze) large complicated data objects. In such a case, it may
be useful to keep only a vector with the most pertinent information (e.g., parameter estimates, their
standard errors, the likelihood value, AIC, BIC, etc.). For example, this is used within extRemes >=
2.0 on the “fevd” class objects with the aim at fitting models to numerous locations within an apply
call so that something easily handled is returned, but with enough information as to be useful.

The data frame and matrix methods attempt to name each component of the vector. The list method
simply does c(unlist(x)).
Value

numeric vector, possibly named.

Author(s)
Eric Gilleland

See Also

c,unlist, print, summary, str, args

Examples
x <- cbind(1:3, 4:6, 7:9)
distill(x)

x <- data.frame(x=1:3, y=4:6, z=7:9)
distill(x)

is.even Identify Even or Odd Numbers

Description

Simple functions to test for or return the even or odd numbers.

Usage

is.even(x)
is.odd(x)
even(x)
odd(x)

Arguments

X any numeric, but maybe makes the most sense with integers.

is.formula 11

Details

Return a logical vector/matrix of the same dimension as the argument x telling whether each com-
ponent is odd (is.odd) or even (is.even), or return just the even (even) or odd (odd) numbers
from the vector/matrix. Uses %%.

Value

Returns a logical vector/matrix/array of the same dimension as x in the case of is.even and is.odd,
and returns a vector of length less than or equal to x in the case of even and odd; or if no even/odd
values, returns integer(0).

Author(s)
Eric Gilleland

See Also
%%

Examples

is.even(1:7)
is.odd(1:7)
even(1:7)
odd(1:7)

is.formula Is the R Object a Formula

Description

Tests to see if an object is a formula or not.

Usage

is.formula(x)

Arguments

X An R object.

Details
This function is a very simple one that simplifies checking whether or not the class of an object is a
formula or not.

Value

single logical

12 MatrixSqrt

Author(s)
Eric Gilleland

Examples

is.formula(~1)
is.formula(1:3)

MatrixSqrt Square-Root of a Square Matrix

Description

Find the (approximate) square-root of a square matrix that is possibly not positive definite using
the singular-value decomposition.

Usage

MatrixSqrt(Sigma, verbose = getOption("verbose"))

Arguments

Sigma matrix for which the square root is to be taken.

verbose logical, should progress information be printed to the screen.
Details

The eigen function is first called in order to obtain the eigen values and vectors. If any are complex
then a symmetry transformation is applied (i.e., Sigma = 0.5 * (Sigma + t(Sigma))) and then the
eigen function is called again. Eigen values that are less than zero, but close to zero, are set to zero.
If the matrix is positive definite, then the chol function is called in order to return the Cholesky
decomposition. Otherwise, U sqrt(D) U’ is returned, where U is the matrix of eigen vectors and D
a diagonal matrix whose diagonal contains the eigen values. The function will try to find the square
root even if it is not positive definite, but it may fail.

Value

A matrix is returned.

Author(s)
Eric Gilleland

References

Hocking, R. R. (1996) Methods and Applications of Linear Models. Wiley Series in Probability and
Statistics, New York, NY, 731 pp.

pbooter 13

See Also

eigen, chol

Examples

Simulate 3 random variables, Y, X1 and X2, such that
Y is correlated with both X1 and X2, but X1 and X2
are uncorrelated.

set.seed(2421);

Z <- matrix(rnorm(300), 100, 3);
R1 <- cbind(c(1, 0.8, 0.6), c(0.8, 1, @), c(0.6, 0, 1));
R2 <- MatrixSqrt(R1);

R1;
R2 %*% t(R2);
zapsmall(R2 %*% t(R2));

Z<-12

Y <- 2[,1];

X1 <- z[,21;
X2 <- Z7[,3];
cor(Y, X1);
cor(Y, X2);
cor(X1, X2);

plot(Y, X1, pch = 20, col = "darkblue”,

bg = "darkblue”, cex = 1.5);
points(Y, X2, col = "darkgray”, pch = "+", cex = 1.5);
plot(X1, X2);

Not run:
The following line will give an error message.

chol(R1);

End(Not run)

pbooter Parametric Bootstrap Resampling

Description
Creates sample statistics for several replicated samples derived by sampling from a parametric dis-
tribution.

Usage

pbooter(x, statistic, B, rmodel, rsize, v.terms, verbose = FALSE, ...)

14

Arguments

X

statistic

B

rmodel

rsize

v.terms

verbose

Details

pbooter

Original data set. If it is a vector, then it is assumed to be univariate. If itis a
matrix, it is assumed to be multivariate where each column is a variate.

Function that minimally takes arguments: data and The argument data
must be the input data for which resamples are taken. Must return a vector of all
desired statistics.

number of bootstrap resamples to make.

Function that generates the data to be applied to statistic. Must have arguments
size, giving the size of the data to be returned, and

Number giving the resample size for each bootstrap sample. If missing and x is
a vector, it will be the length of x, and if it is a matrix, it will be the number of
rows of x.

If statistic returns variance estimates for other parameters, then use this ar-
gument to specify the indices returned that give the variance estimates. There
must be a component for every other parameter returned, and they must be in the
same order as the other parameters (see examples below). If an estimate does
not exist, an NA should be returned for that spot.

logical, should progress information be printed to the screen?

Optional arguments to statistic or rmodel.

Similar functionality to boot from boot when sim = “parametric”. In this case, the function is a
little simpler, and is intended for use with ci.booted, or just ci. It is similar to booter, but uses
parametric sampling instead of resampling from the original data.

Value

A list object of class “booted” is returned with components:

call

data

statistic
statistic.args
B

v.terms

rsize

rdata

orig.v

the function call

original data series

statistic argument passed in

all other arguments passed by ...
Number of bootstrap replicate samples

if variance terms are returned by statistic, the argument is repeated in the re-
turned object.

the size of the bootstrap resamples.
rsize by B matrix giving the rmodel generated data.

B length vector or B column matrix (if statistic returns a vector) giving the esti-
mated parameter variances for each bootstrap replicate.

vector giving the parameter variances (i.e. se”2) of statistic when applied to the
original data.

tibber 15

original.est vector giving the estimated parameter values when statistic is applied to the
original data.

results B length vector or B column matrix giving the parameter estimates for each
bootstrap resample.

type character stating whether the resample method is iid or cbb.

Author(s)
Eric Gilleland

References

Efron, B. and Tibshirani, R. J. (1998) An Introduction to the Bootstrap. Chapman and Hall, Boca
Raton, Florida, 436 pp.

See Also

booter, ci.booted tibber

Examples

z <- rnorm(100)
zfun <- function(data, ...) {
return(c(mean(data), var(data), mean(data*2), var(data*2)))
} # end of 'zfun' function.
rfun <- function(size, ...) rnorm(size, ...)

res <- pbooter(x = z, statistic = zfun, rmodel = rfun, B = 500,
rsize = 100, v.terms = c(2, 4))

print(res)

Not run: ci(res)

tibber Test-Inversion Bootstrap

Description

Calculate (1 - alpha) * 100 percent confidence intervals for an estimated parameter using the test-
inversion bootstrap method.

Usage

tibber

tibber(x, statistic, B, rmodel, test.pars, rsize, block.length = 1, v.terms,

shuffle

NULL, replace = TRUE, alpha = 0.05, verbose = FALSE, ...)

tibberRM(x, statistic, B, rmodel, startval, rsize, block.length = 1,
v.terms, shuffle = NULL, replace = TRUE, alpha = 0.05, step.size,
tol = 1e-04, max.iter = 1000, keep.iters = TRUE, verbose = FALSE,

)

Arguments

X

statistic

B

rmodel

test.pars

startval

rsize

block.length

v.terms

shuffle

replace
alpha
step.size
tol

max.iter

numeric vector or data frame giving the original data series.

function giving the estimated parameter value. Must minimally contain argu-
ments dataand

number of replicated bootstrap samples to use.

function that simulates data based on the nuisance parameter provided by test.pars.
Must minimally take arguments: data, par, n, and The first, data, is the
data series (it need not be used by the function, but it must have this argument,

and the original data are passed to it via this argument), par is the nuisance pa-
rameter, n is the sample size, and ... are any additional arguments that might

be needed.

single number or vector giving the nuisance parameter value. If a vector of
length greater than one, then the interpolation method will be applied to estimate
the confidence bounds.

one or two numbers giving the starting value for the nuisance parameter in the
Robbins-Monro algorithm. If two numbers are given, the first is used as the
starting value for the lower bound, and the second for the upper.

(optional) numeric less than the length of the series given by x, used if an m-
out-of-n bootstrap sampling procedure should be used.

(optional) length of blocks to use if the circular block bootstrap resampling
scheme is to be used (default is iid sampling).

(optional) gives the positions of the variance estimate in the output from statistic.
If supplied, then Studentized intervals are returned instead of (tibberRM) of in
addition to (tibber) the regular intervals. Generally, such intervals are not ideal
for the test-inversion method.

n (or rsize) by B matrix giving the indices for the resampling procedure (obvi-
ates arguments block. length and B).

logical stating whether or not to sample with replacement.
significance level for the test.
Step size for the Robbins-Monro algorithm.

tolerance giving the value for how close the estimated p-value needs to be to
alpha before stopping the Robbins-Monro algorithm.

Maximum number of iterations to perform before stopping the Robbins-Monro
algorithm.

tibber 17

keep.iters logical, should information from each iteration of the Robbins-Monro algorithm
be saved?
verbose logical should progress information be printed to the screen.

Optional arguments to booter, statistic and rmodel.

Details

The test-inversion bootstrap (Carpenter 1999; Carpenter and Bithell 2000; Kabaila 1993) is a para-
metric bootstrap procedure that attempts to take advantage of the duality between confidence inter-
vals and hypothesis tests in order to create bootstrap confidence intervals. Let X = X_1,...,X_n be
a series of random variables, T, is a parameter of interest, and R(X) is an estimator for T. Further,
let x = x_1,...,x_n be an observed realization of X, and r(x) an estimate for R(X), and let x* be
a bootstrap resample of x, etc. Suppose that X is distributed according to a distribution, F, with
parameter T and nuisance parameter V.

The procedure is carried out by estimating the p-value, say p*, from r*_1, ..., r*_B estimated from
a simulated sample from rmodel assuming a specific value of V by way of finding the sum of r*_i
< r(x) (with an additional correction for the ties r*_i = r(x)). The procedure is repeated for each
of k values of V to form a sample of p-values, p*_1, ..., p*_k. Finally, some form of root-finding
algorithm must be employed to find the values r*_L and r*_U that estimate the lower and upper
values, resp., for R(X) associated with (1 - alpha) * 100 percent confidence limits. For tibber, the
routine can be executed one time if test.pars is of length one, which will enable a user to employ
their own root-finding algorithm. If test.pars is a vector, then an interpolation estimate is found
for the confidence end points. tibberRM makes successive calls to tibber and uses the Robbins-
Monro algorithm (Robbins and Monro 1951) to try to find the appropriate bounds, as suggested by
Garthwaite and Buckland (1992).

Value

For tibber, if test.pars is of length one, then a 3 by 1 matrix is returned (or, if v. terms is supplied,
then a 4 by 1 matrix) where the first two rows give estimates for R(X) based on the original simulated
series and the median from the bootstrap samples, respectively. the last row gives the estimated p-
value. If v. terms is supplied, then the fourth row gives the p-value associated with the Studentized

p-value.

If test.pars is a vector with length k > 1, then a list object of class “tibbed” is returned, which has
components:

results 3 by k matrix (or 4 by k, if v.terms is not missing) giving two estimates for

R(X) (one from the simulated series and one of the median of the bootstrap
resamples, resp.) and the third row giving the estimated p-value for each value
of V.

TIB.interpolated, STIB.interpolated
numeric vector of length 3 giving the lower bound estimate, the estimate from
the original data (i.e., r(x)), and the estimated upper bound as obtained from
interpolating over the vector of possible values for V given by test.pars. The
Studentized TIB interval, STIB. interpolated, is only returned if v. terms is
provided.

Plow, Pup, PstudLow, PstudUp
Estimated p-values used for interpolation of p-value.

18 tibber

call the original function call.

data the original data passed by the x argument.

statistic, B, rmodel, test.pars, rsize, block.length, alpha, replace
arguments passed into the orignal function call.

n original sample size.

total.time Total time it took for the function to run.

For tibberRM, a list of class “tibRMed” is returned with components:

call the original function call.

X, statistic, B, rmodel, rsize, block.length, alpha, replace
arguments passed into the orignal function call.

result vector of length 3 giving the estimated confidence interval with the original pa-
rameter estimate in the second component.

lower.p.value, upper.p.value
Estimated achieved p-values for the lower and upper bounds.

lower.nuisance.par, upper.nuisance.par
nuisance parameter values associated with the lower and upper bounds.

lower.iterations, upper.iterations
number of iterations of the Robbins-Monro algorithm it took to find the lower
and upper bounds.

total.time Total time it took for the function to run.

Author(s)
Eric Gilleland

References

Carpenter, James (1999) Test inversion bootstrap confidence intervals. J. R. Statist. Soc. B, 61 (1),
159-172.

Carpenter, James and Bithell, John (2000) Bootstrap confidence intervals: when, which, what? A
practical guide for medical statisticians. Statist. Med., 19, 1141-1164.

Garthwaite, P. H. and Buckland, S. T. (1992) Generating Monte Carlo confidence intervals by the
Robbins-Monro process. Appl. Statist., 41, 159-171.

Kabaila, Paul (1993) Some properties of profile bootstrap confidence intervals. Austral. J. Statist.,
35 (2), 205-214.

Robbins, Herbert and Monro, Sutton (1951) A stochastic approximation method. Ann. Math
Statist., 22 (3), 400-407.

See Also

booter, pbooter

tibber

Examples

The following example follows the example provided at:

#
http://influentialpoints.com/Training/bootstrap_confidence_intervals.htm
#
which is provided with a creative commons license:
#
https://creativecommons.org/licenses/by/3.0/
#
y<-c¢c(7,7,6,9,8,7,8,7,7,7,6,6,6,8,7,7,7,7,6, 1,
8,7,7,6,8,7,8,7,8,7,7,7,5,7,7,7,6,7,8,7,17,
8, 6, 9, 7, 14, 12, 10, 13, 15)
trm <- function(data, ...) {
res <- try(mean(data, trim = 0.1, ...))
if(class(res) == "try-error”) return(NA)
else return(res)
} # end of '"trm' function.
genf <- function(data, par, n, ...) {

y <- data * par
h<-1.06*xsd(Cy)/ (n*(1/75))
y <=y + rnorm(rnorm(n, @, h))

y <-round(y * (y>0))

return(y)
} # end of 'genf' function.

look <- tibber(x =y, statistic = trm, B = 500, rmodel = genf,
test.pars = seq(0.85, 1.15, length.out = 100))

look

plot(look)
outer vertical blue lines should cross horizontal blue lines
near where an estimated p-value is located.

Not run:
tibber(x =y, statistic = trm, B = 500, rmodel = genf, test.pars = 1)

look2 <- tibberRM(x =y, statistic = trm, B = 500, rmodel = genf, startval = 1,
step.size = 0.03, verbose = TRUE)

look?2
lower achieved est. p-value should be close to 0.025
upper should be close to 0.975.

20

tibber

plot(look2)

trm2 <- function(data, par, n, ...) {
a <- list(...)
res <- try(mean(data, trim = a$trim))
if(class(res) == "try-error”) return(NA)

else return(res)
} # end of 'trm2' function.

tibber(x =y, statistic = trm2, B = 500, rmodel = genf,
test.pars = seq(0.85, 1.15, length.out = 100), trim = 0.1)

Try getting the STIB interval. v.terms = 2 below because mfun

returns the variance of the estimated parameter in the 2nd position.

#

Note: the STIB interval can be a bit unstable.

mfun <- function(data, ...) return(c(mean(data), var(data)))

gennorm <- function(data, par, n, ...) {
return(rnorm(n = n, mean = mean(data), sd = sqrt(par)))

} # end of 'gennorm' function.

set.seed(1544)

z <= rnorm(50)

mean(z)

var(z)

Trial-and-error is necessary to get a good result with interpolation method.

res <- tibber(x = z, statistic = mfun, B = 500, rmodel = gennorm,
test.pars = seq(0.95, 1.10, length.out = 100), v.terms = 2)

res

plot(res)

Much trial-and-error is necessary to get a good result with RM method.

If it fails to converge, try increasing the tolerance.

res2 <- tibberRM(x = z, statistic = mfun, B = 500, rmodel = gennorm,
startval = ¢(0.95, 1.1), step.size = 0.003, tol = 0.001, v.terms = 2,
verbose = TRUE)

Note that it only gives the STIB interval.

res2

plot(res2)

End(Not run)

Index

x algebra
MatrixSqrt, 12
* arith
is.even, 10
* array
MatrixSqrt, 12
* classes
is.formula, 11
x datagen
booter, 2
pbooter, 13
+ data
datagrabber, 8
x distribution

booter, 2
pbooter, 13
* htest
booter, 2
ci, 5
ci.booted, 6
tibber, 15
* logic
is.even, 10
* manip
datagrabber, 8
distill, 9
is.even, 10
+« methods
ci,5
distill, 9
* misc
distill, 9
* nonparametric
booter, 2
* package

distillery-package, 2

args, 10

booter, 2,8, 15, 18

c, 10

chol, 13

ci, 5
ci.booted, 4,6, 15

datagrabber, 8
distill, 9

distillery (distillery-package), 2
distillery-package, 2

eigen, I3
even (is.even), 10

is.even, 10
is.formula, 11
is.odd (is.even), 10

MatrixSqrt, 12
odd (is.even), 10

pbooter, 4, 8,13, 18
print, 10
print.ci(ci), 5

str, 10
summary, 10

tibber, 15, 15
tibberRM (tibber), 15

unlist, /0

	distillery-package
	booter
	ci
	ci.booted
	datagrabber
	distill
	is.even
	is.formula
	MatrixSqrt
	pbooter
	tibber
	Index

