
Package ‘distcomp’
October 13, 2022

Title Computations over Distributed Data without Aggregation

Maintainer Balasubramanian Narasimhan <naras@stat.Stanford.EDU>

Version 1.3-3

VignetteBuilder knitr

URL http://dx.doi.org/10.18637/jss.v077.i13

Depends survival, stats, R (>= 3.5.0)

Imports utils, shiny, httr (>= 1.0.0), digest, jsonlite, stringr, R6
(>= 2.0), dplyr, rlang, magrittr, homomorpheR, gmp

Suggests opencpu, knitr, covr, rmarkdown

Description Implementing algorithms and fitting models when sites (possibly remote) share
computation summaries rather than actual data over HTTP with a master R process (using
'opencpu', for example). A stratified Cox model and a singular value decomposition are
provided. The former makes direct use of code from the R 'survival' package. (That is,
the underlying Cox model code is derived from that in the R 'survival' package.)
Sites may provide data via several means: CSV files, Redcap API, etc. An extensible
design allows for new methods to be added in the future and includes facilities
for local prototyping and testing. Web applications are provided (via 'shiny') for
the implemented methods to help in designing and deploying the computations.

Copyright inst/COPYRIGHTS

Encoding UTF-8

License LGPL (>= 2)

RoxygenNote 7.2.1

NeedsCompilation yes

Author Balasubramanian Narasimhan [aut, cre],
Marina Bendersky [aut],
Sam Gross [aut],
Terry M. Therneau [ctb],
Thomas Lumley [ctb]

Repository CRAN

Date/Publication 2022-09-01 21:00:02 UTC

1

http://dx.doi.org/10.18637/jss.v077.i13

2 R topics documented:

R topics documented:

availableComputations . 3
availableDataSources . 4
CoxMaster . 4
CoxWorker . 6
createHEWorkerInstance . 7
createNCPInstance . 8
createWorkerInstance . 9
defineNewComputation . 10
destroyInstanceObject . 11
distcomp . 11
distcompSetup . 12
executeHEMethod . 14
executeMethod . 14
generateId . 15
getComputationInfo . 15
getConfig . 16
HEMaster . 17
HEQueryCountMaster . 18
HEQueryCountWorker . 20
makeDefinition . 22
makeHEMaster . 23
makeMaster . 23
makeNCP . 24
makeWorker . 24
NCP . 25
QueryCountMaster . 28
QueryCountWorker . 29
resetComputationInfo . 30
runDistcompApp . 31
saveNewComputation . 31
saveNewNCP . 32
setComputationInfo . 33
setupMaster . 33
setupWorker . 34
SVDMaster . 34
SVDWorker . 36
uploadNewComputation . 39
uploadNewNCP . 40
writeCode . 40

Index 42

availableComputations 3

availableComputations Return the currently available (implemented) computations

Description

The function availableComputations returns a list of available computations with various com-
ponents. The names of this list (with no spaces) are unique canonical tags that are used throughout
the package to unambiguously refer to the type of computation; web applications particularly rely
on this list to instantiate objects. As more computations are implemented, this list is augmented.

Usage

availableComputations()

Value

a list with the components corresponding to a computation

desc a textual description (25 chars at most)

definitionApp the name of a function that will fire up a shiny webapp for defining the particular
computation

workerApp the name of a function that will fire up a shiny webapp for setting up a worker
site for the particular computation

masterApp the name of a function that will fire up a shiny webapp for setting up a master
for the particular computation

makeDefinition the name of a function that will return a data frame with appropriate fields
needed to define the particular computation assuming that they are populated
in a global variable. This function is used by web applications to construct
a definition object based on inputs specified by the users. Since the full in-
formation is often gathered incrementally by several web applications, the in-
puts are set in a global variable and therefore retrieved here using the function
getComputationInfo designed for the purpose

makeMaster a function that will construct a master object for the computation given the defi-
nition and a logical flag indicating if debugging is desired

makeWorker a function that will construct a worker object for that computation given the
definition and data

See Also

getComputationInfo()

Examples

availableComputations()

4 CoxMaster

availableDataSources Return currently implemented data sources

Description

The function availableDataSources returns the currently implemented data sources such as CSV
files, Redcap etc.

Usage

availableDataSources()

Value

a list of named arguments, each of which is another list, with required fields named desc, a textual
description and requiredPackages

Examples

availableDataSources()

CoxMaster Create a master object to control CoxWorker worker objects

Description

CoxMaster objects instantiate and run a distributed Cox model computation fit

Methods

Public methods:
• CoxMaster$new()

• CoxMaster$kosher()

• CoxMaster$logLik()

• CoxMaster$addSite()

• CoxMaster$run()

• CoxMaster$summary()

• CoxMaster$clone()

Method new(): CoxMaster objects instantiate and run a distributed Cox model computation fit

Usage:
CoxMaster$new(defn, debug = FALSE)

Arguments:
defn a computation definition

CoxMaster 5

debug a flag for debugging, default FALSE

Returns: R6 CoxMaster object

Method kosher(): Check if inputs and state of object are sane. For future use
Usage:
CoxMaster$kosher()

Returns: TRUE or FALSE

Method logLik(): Return the partial log likelihood on all data for given beta parameter.
Usage:
CoxMaster$logLik(beta)

Arguments:
beta the parameter vector

Returns: a named list with three components: value contains the value of the log likelihood,
gradient contains the score vector, and hessian contains the estimated hessian matrix

Method addSite(): Add a url or worker object for a site for participating in the distributed
computation. The worker object can be used to avoid complications in debugging remote calls
during prototyping.

Usage:
CoxMaster$addSite(name, url = NULL, worker = NULL)

Arguments:
name of the site
url web url of the site; exactly one of url or worker should be specified
worker worker object for the site; exactly one of url or worker should be specified

Method run(): Run the distributed Cox model fit and return the estimates
Usage:
CoxMaster$run(control = coxph.control())

Arguments:
control parameters, same as survival::coxph.control()

Returns: a named list of beta, var, gradient, iter, and returnCode #’ @description ’ Return
the summary of fit as a data frame

Method summary():
Usage:
CoxMaster$summary()

Returns: a summary data frame columns for coef, exp(coef), ’ standard error, z-score, and
p-value for each parameter in the model following the same format as the survival package

Method clone(): The objects of this class are cloneable with this method.
Usage:
CoxMaster$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

6 CoxWorker

See Also

CoxWorker which generates objects matched to such a master object

CoxWorker R6 class for object to use as a worker with CoxMaster master objects

Description

CoxWorker objects are worker objects at each data site of a distributed Cox model computation

Methods

Public methods:
• CoxWorker$new()

• CoxWorker$getP()

• CoxWorker$getStateful()

• CoxWorker$logLik()

• CoxWorker$var()

• CoxWorker$kosher()

• CoxWorker$clone()

Method new(): Create a new CoxWorker object.

Usage:
CoxWorker$new(defn, data, stateful = TRUE)

Arguments:

defn the computation definition
data the local data
stateful a boolean flag indicating if state needs to be preserved between REST calls

Returns: a new CoxWorker object

Method getP(): Return the dimension of the parameter vector.

Usage:
CoxWorker$getP(...)

Arguments:

... other args ignored

Returns: the dimension of the parameter vector

Method getStateful(): Return the stateful status of the object.

Usage:
CoxWorker$getStateful()

Returns: the stateful flag, TRUE or FALSE

createHEWorkerInstance 7

Method logLik(): Return the partial log likelihood on local data for given beta parameter.

Usage:
CoxWorker$logLik(beta, ...)

Arguments:
beta the parameter vector
... further arguments, currently unused

Returns: a named list with three components: value contains the value of the log likelihood,
gradient contains the score vector, and hessian contains the estimated hessian matrix

Method var(): Return the variance of estimate for given beta parameter on local data.

Usage:
CoxWorker$var(beta, ...)

Arguments:
beta the parameter vector
... further arguments, currently unused

Returns: variance vector

Method kosher(): Check if inputs and state of object are sane. For future use

Usage:
CoxWorker$kosher()

Returns: TRUE or FALSE

Method clone(): The objects of this class are cloneable with this method.

Usage:
CoxWorker$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

CoxMaster which goes hand-in-hand with this object

createHEWorkerInstance

Given the definition identifier of an object, instantiate and store object
in workspace

Description

The function createHEWorkerInstance uses a definition identified by defnId to create the appro-
priate object instance for HE computations. The instantiated object is searched for in the instance
path and loaded if already present, otherwise it is created and assigned the instanceId and saved
under the dataFileName if the latter is specified. This instantiated object may change state between
iterations when a computation executes

8 createNCPInstance

Usage

createHEWorkerInstance(
defnId,
instanceId,
pubkey_bits = NULL,
pubkey_n = NULL,
den_bits = NULL,
dataFileName = NULL

)

Arguments

defnId the identifier of an already defined computation

instanceId an indentifier to use for the created instance

pubkey_bits number of bits for public key

pubkey_n the n for public key

den_bits the number of bits for the denominator

dataFileName a file name to use for saving the data. Typically NULL, this is only needed when
one is using a single opencpu server to behave like multiple sites in which case
the data file name serves to distinguish the site-specific data files. When it is
NULL, the data file name is taken from the configuration settings

Value

TRUE if everything goes well

See Also

availableComputations()

createNCPInstance Given the definition identifier of an object, instantiate and store object
in workspace

Description

This function uses an identifier (defnId) to locate a stored definition in the workspace to create the
appropriate object instance. The instantiated object is assigned the instanceId and saved under the
dataFileName if the latter is not NULL. This instantiated object may change state between iterations
when a computation executes

createWorkerInstance 9

Usage

createNCPInstance(
name,
ncpId,
instanceId,
pubkey_bits,
pubkey_n,
den_bits,
dataFileName = NULL

)

Arguments

name identifying the NC party

ncpId the id indicating the NCP definition

instanceId an indentifier to use for the created instance

pubkey_bits the public key number of bits

pubkey_n the pubkey n

den_bits the denominator number of bits for for rational approximations

dataFileName a file name to use for saving the data. Typically NULL, this is only needed when
one is using a single opencpu server to behave like multiple sites in which case
the data file name serves to distinguish the site-specific data files. When it is
NULL, the data file name is taken from the configuration settings

Value

TRUE if everything goes well

createWorkerInstance Given the definition identifier of an object, instantiate and store object
in workspace

Description

The function createWorkerInstance uses a definition identified by defnId to create the appropri-
ate object instance. The instantiated object is assigned the instanceId and saved under the dataFile-
Name if the latter is specified. This instantiated object may change state between iterations when a
computation executes

10 defineNewComputation

Usage

createWorkerInstance(
defnId,
instanceId,
pubkey_bits = NULL,
pubkey_n = NULL,
den_bits = NULL,
dataFileName = NULL

)

Arguments

defnId the identifier of an already defined computation
instanceId an indentifier to use for the created instance
pubkey_bits number of bits for public key
pubkey_n the n for public key
den_bits the number of bits for the denominator
dataFileName a file name to use for saving the data. Typically NULL, this is only needed when

one is using a single opencpu server to behave like multiple sites in which case
the data file name serves to distinguish the site-specific data files. When it is
NULL, the data file name is taken from the configuration settings

Value

TRUE if everything goes well

See Also

availableComputations()

defineNewComputation Define a new computation

Description

This function just calls runDistcompApp() with the parameter "definition"

Usage

defineNewComputation()

Value

the results of running the web application

See Also

runDistcompApp()

destroyInstanceObject 11

destroyInstanceObject Destroy an instance object given its identifier

Description

The function destroyInstanceObject deletes an object associated with the instanceId. This is
typically done after a computation completes and results have been obtained.

Usage

destroyInstanceObject(instanceId)

Arguments

instanceId the id of the object to destroy

Value

TRUE if everything goes well

See Also

createWorkerInstance()

distcomp Distributed Computing with R

Description

distcomp is a collection of methods to fit models to data that may be distributed at various sites.
The package arose as a way of addressing the issues regarding data aggregation; by allowing sites
to have control over local data and transmitting only summaries, some privacy controls can be
maintained. Even when participants have no objections in principle to data aggregation, it may still
be useful to keep data local and expose just the computations. For further details, please see the
reference cited below.

Details

The initial implementation consists of a stratified Cox model fit with distributed survival data and a
Singular Value Decomposition of a distributed matrix. General Linear Models will soon be added.
Although some sanity checks and balances are present, many more are needed to make this truly
robust. We also hope that other methods will be added by users.

We make the following assumptions in the implementation: (a) the aggregate data is logically a
stacking of data at each site, i.e., the full data is row-partitioned into sites where the rows are ob-
servations; (b) Each site has the package distcomp installed and a workspace setup for (writeable)

12 distcompSetup

use by the opencpu server (see distcompSetup(); and (c) each site is exposing distcomp via an
opencpu server.

The main computation happens via a master process, a script of R code, that makes calls to distcomp
functions at worker sites via opencpu. The use of opencpu allows developers to prototype their dis-
tributed implementations on a local machine using the opencpu package that runs such a server
locally using localhost ports.

Note that distcomp computations are not intended for speed/efficiency; indeed, they are orders of
magnitude slower. However, the models that are fit are not meant to be recomputed often. These
and other details are discussed in the paper mentioned above.

The current implementation, particularly the Stratified Cox Model, makes direct use of code from
survival::coxph(). That is, the underlying Cox model code is derived from that in the R survival
survival package.

For an understanding of how this package is meant to be used, please see the documented examples
and the reference.

References

Software for Distributed Computation on Medical Databases: A Demonstration Project. Journal of
Statistical Software, 77(13), 1-22. doi:10.18637/jss.v077.i13

Appendix E of Modeling Survival Data: Extending the Cox Model by Terry M. Therneau and
Patricia Grambsch. Springer Verlag, 2000.

See Also

The examples in system.file("doc", "examples.html", package="distcomp")

The source for the examples: system.file("doc_src", "examples.Rmd", package="distcomp").

distcompSetup Setup a workspace and configuration for a distributed computation

Description

The function distcompSetup sets up a distributed computation and configures some global param-
eters such as definition file names, data file names, instance object file names, and ssl configuration
parameters. The function creates some of necessary subdirectories if not already present and throws
an error if the workspace areas are not writeable

Usage

distcompSetup(
workspacePath = "",
defnPath = paste(workspacePath, "defn", sep = .Platform$file.sep),
instancePath = paste(workspacePath, "instances", sep = .Platform$file.sep),
defnFileName = "defn.rds",
dataFileName = "data.rds",

distcompSetup 13

instanceFileName = "instance.rds",
resultsCacheFileName = "results_cache.rds",
ssl_verifyhost = 1L,
ssl_verifypeer = 1L

)

Arguments

workspacePath a folder specifying the workspace path. This has to be writable by the opencpu
process. On a cloud opencpu server on Ubuntu, for example, this requires a
one-time modification of apparmor profiles to enable write permissions to this
path

defnPath the path where definition files will reside, organized by computation identifiers

instancePath the path where instance objects will reside

defnFileName the name for the compdef definition files

dataFileName the name for the data files
instanceFileName

the name for the instance files
resultsCacheFileName

the name for the instance results cache files for HE computations

ssl_verifyhost integer value, usually 1L, but for testing with snake-oil certs, one might set this
to 0L

ssl_verifypeer integer value, usually 1L, but for testing with snake-oil certs, one might set this
to 0L

Value

TRUE if all is well

See Also

getConfig()

Examples

Not run:
distcompSetup(workspacePath="./workspace")

End(Not run)

14 executeMethod

executeHEMethod Given the id of a serialized object, invoke a method on the object with
arguments using homomorphic encryption

Description

The function executeHEMethod is a homomorphic encryption wrapper around executeMethod. It
ensures any returned result is encrypted using the homomorphic encryption function.

Usage

executeHEMethod(objectId, method, ...)

Arguments

objectId the (instance) identifier of the object on which to invoke a method
method the name of the method to invoke
... further arguments as appropriate for the method

Value

a list containing an integer and a fractional result converted to characters

executeMethod Given the id of a serialized object, invoke a method on the object with
arguments

Description

The function executeMethod is really the heart of distcomp. It executes an arbitrary method on an
object that has been serialized to the distcomp workspace with any specified arguments. The result,
which is dependent on the computation that is executed, is returned. If the object needs to save state
between iterations on it, it is automatically serialized back for the ensuing iterations

Usage

executeMethod(objectId, method, ...)

Arguments

objectId the (instance) identifier of the object on which to invoke a method
method the name of the method to invoke
... further arguments as appropriate for the method

Value

a result that depends on the computation being executed

generateId 15

generateId Generate an identifier for an object

Description

A hash is generated based on the contents of the object

Usage

generateId(object, algo = "xxhash64")

Arguments

object the object for which a hash is desired
algo the algorithm to use, default is "xxhash64" from digest::digest()

Value

the hash as a string

See Also

digest::digest()

getComputationInfo Get the value of a variable from the global store

Description

In distcomp, several web applications need to communicate between themselves. Since only one
application is expected to be active at any time, they do so via a global store, essentially a hash
table. This function retrieves the value of a name

Usage

getComputationInfo(name)

Arguments

name the name for the object

Value

the value for the variable, NULL if not set

See Also

setComputationInfo()

16 getConfig

getConfig Return the workspace and configuration setup values

Description

The function getConfig returns the values of the configuration parameters set up by distcompSetup

Usage

getConfig(...)

Arguments

... any further arguments

Value

a list consisting of

workspacePath a folder specifying the workspace path. This has to be writable by the opencpu
process. On a cloud opencpu server on Ubuntu, for example, this requires a
one-time modification of apparmor profiles to enable write permissions to this
path

defnPath the path where definition files will reside, organized by computation identifiers

instancePath the path where instance objects will reside

defnFileName the name for the compdef definition files

dataFileName the name for the data files
instanceFileName

the name for the instance files

ssl_verifyhost integer value, usually 1L, but for testing with snake-oil certs, one might set this
to 0L

ssl_verifypeer integer value, usually 1L, but for testing with snake-oil certs, one might set this
to 0L

See Also

distcompSetup()

Examples

Not run:
getConfig()

End(Not run)

HEMaster 17

HEMaster Create a HEMaster process for use in a distributed homomorphic en-
crypted (HE) computation

Description

HEMaster objects run a distributed computation based upon a definition file that encapsulates all
information necessary to perform a computation. A master makes use of two non-cooperating
parties which communicate with sites that perform the actual computations using local data.

Public fields

den denominator for rational arithmetic

den_bits number of bits for denominator for rational arithmetic

Methods

Public methods:
• HEMaster$new()

• HEMaster$getNC_party()

• HEMaster$getPubkey()

• HEMaster$addNCP()

• HEMaster$run()

• HEMaster$clone()

Method new(): Create a HEMaster object to run homomorphic encrypted computation

Usage:
HEMaster$new(defn)

Arguments:
defn the homomorphic computation definition

Returns: a HEMaster object

Method getNC_party(): Return a list of noncooperating parties (NCPs)

Usage:
HEMaster$getNC_party()

Returns: a named list of length 2 of noncooperating party information

Method getPubkey(): Return the public key from the public private key pair

Usage:
HEMaster$getPubkey()

Returns: an R6 Pubkey object

Method addNCP(): Add a noncooperating party to this master either using a url or an object in
session for prototyping

18 HEQueryCountMaster

Usage:
HEMaster$addNCP(ncp_defn, url = NULL, ncpWorker = NULL)

Arguments:
ncp_defn the definition of the NCP
url the url for the NCP; only one of url and ncpWorker should be non-null
ncpWorker an instantiated worker object; only one of url and ncpWorker should be non-null

Method run(): Run a distributed homomorphic encrypted computation and return the result

Usage:
HEMaster$run(debug = FALSE)

Arguments:
debug a flag for debugging, default FALSE

Returns: the result of the distributed homomorphic computation

Method clone(): The objects of this class are cloneable with this method.

Usage:
HEMaster$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

NCP()

HEQueryCountMaster Create a homomorphic computation query count master object to em-
ploy worker objects generated by HEQueryCountWorker()

Description

HEQueryCountMaster objects instantiate and run a distributed homomorphic query count compu-
tation; they’re instantiated by non-cooperating parties (NCPs)

Super class

distcomp::QueryCountMaster -> HEQueryCountMaster

Public fields

pubkey the master’s public key visible to everyone

pubkey_bits the number of bits in the public key (used for reconstructing public key remotely by
serializing to character)

pubkey_n the n for the public key used for reconstructing public key remotely

den the denominator for rational arithmetic

den_bits the number of bits in the denominator used for reconstructing denominator remotely

HEQueryCountMaster 19

Methods

Public methods:
• HEQueryCountMaster$new()

• HEQueryCountMaster$setParams()

• HEQueryCountMaster$kosher()

• HEQueryCountMaster$queryCount()

• HEQueryCountMaster$cleanup()

• HEQueryCountMaster$run()

• HEQueryCountMaster$clone()

Method new(): Create a new HEQueryCountMaster object.

Usage:
HEQueryCountMaster$new(defn, partyNumber, debug = FALSE)

Arguments:

defn the computation definition
partyNumber the party number of the NCP that this object belongs to (1 or 2)
debug a flag for debugging, default FALSE

Returns: a new HEQueryCountMaster object

Method setParams(): Set some parameters of the HEQueryCountMaster object for homomor-
phic computations

Usage:
HEQueryCountMaster$setParams(pubkey_bits, pubkey_n, den_bits)

Arguments:

pubkey_bits the number of bits in public key
pubkey_n the n for the public key
den_bits the number of bits in the denominator (power of 2) used in rational approximations

Method kosher(): Check if inputs and state of object are sane. For future use

Usage:
HEQueryCountMaster$kosher()

Returns: TRUE or FALSE

Method queryCount(): Run the distributed query count, associate it with a token, and return
the result

Usage:
HEQueryCountMaster$queryCount(token)

Arguments:

token a token to use as key

Returns: the partial result as a list of encrypted items with components int and frac

Method cleanup(): Cleanup the instance objects

20 HEQueryCountWorker

Usage:

HEQueryCountMaster$cleanup()

Method run(): Run the homomorphic encrypted distributed query count computation

Usage:

HEQueryCountMaster$run(token)

Arguments:

token a token to use as key

Returns: the partial result as a list of encrypted items with components int and frac

Method clone(): The objects of this class are cloneable with this method.

Usage:

HEQueryCountMaster$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

HEQueryCountWorker() which goes hand-in-hand with this object

HEQueryCountWorker Create a homomorphic computation query count worker object for use
with master objects generated by HEQueryCountMaster()

Description

HEQueryCountWorker objects are worker objects at each site of a distributed query count model
computation using homomorphic encryption

Super class

distcomp::QueryCountWorker -> HEQueryCountWorker

Public fields

pubkey the master’s public key visible to everyone

den the denominator for rational arithmetic

HEQueryCountWorker 21

Methods

Public methods:
• HEQueryCountWorker$new()

• HEQueryCountWorker$setParams()

• HEQueryCountWorker$queryCount()

• HEQueryCountWorker$clone()

Method new(): Create a new HEQueryMaster object.
Usage:
HEQueryCountWorker$new(
defn,
data,
pubkey_bits = NULL,
pubkey_n = NULL,
den_bits = NULL

)

Arguments:
defn the computation definition
data the data which is usually the list of sites
pubkey_bits the number of bits in public key
pubkey_n the n for the public key
den_bits the number of bits in the denominator (power of 2) used in rational approximations
Returns: a new HEQueryMaster object

Method setParams(): Set some parameters for homomorphic computations
Usage:
HEQueryCountWorker$setParams(pubkey_bits, pubkey_n, den_bits)

Arguments:
pubkey_bits the number of bits in public key
pubkey_n the n for the public key
den_bits the number of bits in the denominator (power of 2) used in rational approximations

Method queryCount(): Run the query count on local data and return the appropriate encrypted
result to the party

Usage:
HEQueryCountWorker$queryCount(partyNumber, token)

Arguments:
partyNumber the NCP party number (1 or 2)
token a token to use for identifying parts of the same computation for NCP1 and NCP2
Returns: the count as a list of encrypted items with components int and frac

Method clone(): The objects of this class are cloneable with this method.
Usage:
HEQueryCountWorker$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

22 makeDefinition

See Also

HEQueryCountMaster() which goes hand-in-hand with this object

makeDefinition Make a computation definition given the computation type

Description

The function makeDefinition returns a computational definition based on current inputs (from the
global store) given a canonical computation type tag. This is a utility function for web applications
to use as input is being gathered

Usage

makeDefinition(compType)

Arguments

compType the canonical computation type tag

Value

a data frame corresponding to the computation type

See Also

availableComputations()

Examples

Not run:
makeDefinition(names(availableComputations())[1])

End(Not run)

makeHEMaster 23

makeHEMaster Instantiate a master process for HE operations

Description

Instantiate a master process for HE operations

Usage

makeHEMaster(defn)

Arguments

defn the computation definition

Value

an master object for HE operations

makeMaster Make a master object given a definition

Description

The function makeMaster returns a master object corresponding to the definition. The types of
master objects that can be created depend upon the available computations

Usage

makeMaster(defn, partyNumber = NULL, debug = FALSE)

Arguments

defn the computation definition

partyNumber the number of the noncooperating party, which can be optionally set if HE is
desired

debug a debug flag

Value

a master object of the appropriate class based on the definition

See Also

availableComputations()

24 makeWorker

makeNCP Instantiate an noncooperating party

Description

Instantiate an noncooperating party

Usage

makeNCP(
ncp_defn,
comp_defn,
sites = list(),
pubkey_bits = NULL,
pubkey_n = NULL,
den_bits = NULL

)

Arguments

ncp_defn the NCP definition

comp_defn the computation definition

sites a list of sites each entry a named list of name, url, worker

pubkey_bits number of bits for public key

pubkey_n the n for the public key

den_bits the log to base 2 of the denominator

Value

an NCP object

makeWorker Make a worker object given a definition and data

Description

The function makeWorker returns an object of the appropriate type based on a computation defi-
nition and sets the data for the object. The types of objects that can be created depend upon the
available computations

Usage

makeWorker(defn, data, pubkey_bits = NULL, pubkey_n = NULL, den_bits = NULL)

NCP 25

Arguments

defn the computation definition

data the data for the computation

pubkey_bits the number of bits for the public key (used only if he is TRUE in computation
definition)

pubkey_n the n for public key (used only if he is TRUE in computation definition)

den_bits the number of bits for the denominator (used only if he is TRUE in computation
definition)

Value

a worker object of the appropriate class based on the definition

See Also

availableComputations()

NCP R6 object to use as non-cooperating party in a distributed homomor-
phic computation

Description

NCP objects are worker objects that separate a master process from communicating directly with
the worker processes. Typically two such are needed for a distributed homomorphic computa-
tion. A master process can communicate with NCP objects and the NCP objects can communicate
with worker processes. However, the two NCP objects, designated by numbers 1 and 2, are non-
cooperating in the sense that they don’t communicate with each other and are isolated from each
other.

Public fields

pubkey the master’s public key visible to everyone

pubkey_bits the number of bits in the public key (used for reconstructing public key remotely by
serializing to character)

pubkey_n the n for the public key used for reconstructing public key remotely

den the denominator for rational arithmetic

den_bits the number of bits in the denominator used for reconstructing denominator remotely

26 NCP

Methods

Public methods:

• NCP$new()

• NCP$getStateful()

• NCP$setParams()

• NCP$getSites()

• NCP$setSites()

• NCP$addSite()

• NCP$cleanupInstance()

• NCP$run()

• NCP$clone()

Method new(): Create a new NCP object.

Usage:
NCP$new(
ncp_defn,
comp_defn,
sites = list(),
pubkey_bits = NULL,
pubkey_n = NULL,
den_bits = NULL

)

Arguments:

ncp_defn the NCP definition; see example
comp_defn the computation definition
sites list of sites
pubkey_bits the number of bits in public key
pubkey_n the n for the public key
den_bits the number of bits in the denominator (power of 2) used in rational approximations

Returns: a new NCP object

Method getStateful(): Retrieve the value of the stateful field

Usage:
NCP$getStateful()

Method setParams(): Set some parameters of the NCP object for homomorphic computations

Usage:
NCP$setParams(pubkey_bits, pubkey_n, den_bits)

Arguments:

pubkey_bits the number of bits in public key
pubkey_n the n for the public key
den_bits the number of bits in the denominator (power of 2) used in rational approximations

NCP 27

Method getSites(): Retrieve the value of the private sites field

Usage:
NCP$getSites()

Method setSites(): Set the value of the private sites field

Usage:
NCP$setSites(sites)

Arguments:

sites the list of sites

Method addSite(): Add a url or worker object for a site for participating in the distributed
computation. The worker object can be used to avoid complications in debugging remote calls
during prototyping.

Usage:
NCP$addSite(name, url = NULL, worker = NULL)

Arguments:

name of the site
url web url of the site; exactly one of url or worker should be specified
worker worker object for the site; exactly one of url or worker should be specified

Method cleanupInstance(): Clean up by destroying instance objects created in workspace.

Usage:
NCP$cleanupInstance(token)

Arguments:

token the token for the instance

Method run(): Run the distributed homomorphic computation

Usage:
NCP$run(token)

Arguments:

token a unique token for the run, used to ensure that correct parts of cached results are returned
appropriately

Returns: the result of the computation

Method clone(): The objects of this class are cloneable with this method.

Usage:
NCP$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

28 QueryCountMaster

QueryCountMaster Create a master object to control worker objects generated by
QueryCountWorker()

Description

QueryCountMaster objects instantiate and run a distributed query count computation

Methods

Public methods:
• QueryCountMaster$new()

• QueryCountMaster$kosher()

• QueryCountMaster$queryCount()

• QueryCountMaster$getSites()

• QueryCountMaster$addSite()

• QueryCountMaster$run()

• QueryCountMaster$clone()

Method new(): Create a new QueryCountMaster object.

Usage:
QueryCountMaster$new(defn, debug = FALSE)

Arguments:
defn the computation definition
debug a flag for debugging, default FALSE

Returns: a new QueryCountMaster object

Method kosher(): Check if inputs and state of object are sane. For future use

Usage:
QueryCountMaster$kosher()

Returns: TRUE or FALSE

Method queryCount(): Run the distributed query count and return the result

Usage:
QueryCountMaster$queryCount()

Returns: the count

Method getSites(): Retrieve the value of the private sites field

Usage:
QueryCountMaster$getSites()

Method addSite(): Add a url or worker object for a site for participating in the distributed
computation. The worker object can be used to avoid complications in debugging remote calls
during prototyping.

QueryCountWorker 29

Usage:
QueryCountMaster$addSite(name, url = NULL, worker = NULL)

Arguments:

name of the site
url web url of the site; exactly one of url or worker should be specified
worker worker object for the site; exactly one of url or worker should be specified

Method run(): Run the distributed query count

Usage:
QueryCountMaster$run()

Returns: the count

Method clone(): The objects of this class are cloneable with this method.

Usage:
QueryCountMaster$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

QueryCountWorker() which goes hand-in-hand with this object

QueryCountWorker R6 worker object for use as a worker with master objects generated by
QueryCountMaster()

Description

QueryCountWorker objects are worker objects at each site of a distributed QueryCount model com-
putation

Methods

Public methods:
• QueryCountWorker$new()

• QueryCountWorker$getStateful()

• QueryCountWorker$kosher()

• QueryCountWorker$queryCount()

• QueryCountWorker$clone()

Method new(): Create a new QueryCountWorker object.

Usage:
QueryCountWorker$new(defn, data, stateful = FALSE)

30 resetComputationInfo

Arguments:
defn the computation definition
data the local data
stateful the statefulness flag, default FALSE

Returns: a new QueryCountWorker object

Method getStateful(): Retrieve the value of the stateful field

Usage:
QueryCountWorker$getStateful()

Method kosher(): Check if inputs and state of object are sane. For future use

Usage:
QueryCountWorker$kosher()

Returns: TRUE or FALSE

Method queryCount(): Return the query count on the local data

Usage:
QueryCountWorker$queryCount()

Method clone(): The objects of this class are cloneable with this method.

Usage:
QueryCountWorker$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

QueryCountMaster() which goes hand-in-hand with this object

resetComputationInfo Clear the contents of the global store

Description

In distcomp, several web applications need to communicate between themselves. Since only one
application is expected to be active at any time, they do so via a global store, essentially a hash
table. This function clears the store, except for the working directory.

Usage

resetComputationInfo()

Value

an empty list

runDistcompApp 31

See Also

setComputationInfo(), getComputationInfo()

runDistcompApp Run a specified distcomp web application

Description

Web applications can define computation, setup worker sites or masters. This function invokes the
appropriate web application depending on the task

Usage

runDistcompApp(appType = c("definition", "setupWorker", "setupMaster"))

Arguments

appType one of three values: "definition", "setupWorker", "setupMaster"

Value

the results of running the web application

See Also

defineNewComputation(), setupWorker(), setupMaster()

saveNewComputation Save a computation instance, given the computation definition, asso-
ciated data and possibly a data file name to use

Description

The function saveNewComputation uses the computation definition to save a new computation
instance. This is typically done for every site that wants to participate in a computation with its
own local data. The function examines the computation definition and uses the identifier therein to
uniquely refer to the computation instance at the site. This function is invoked (maybe remotely)
on the opencpu server by uploadNewComputation() when a worker site is being set up

Usage

saveNewComputation(defn, data, dataFileName = NULL)

32 saveNewNCP

Arguments

defn an already defined computation

data the (local) data to use

dataFileName a file name to use for saving the data. Typically NULL, this is only needed when
one is using a single opencpu server to behave like multiple sites in which case
the data file name serves to distinguish the site-specific data files. When it is
NULL, the data file name is taken from the configuration settings

Value

TRUE if everything goes well

See Also

uploadNewComputation()

saveNewNCP Save an NCP instance, given the sites as associated data and possibly
a data file name to use

Description

The function saveNewNCP uses the list of sites definition to save a new NCP instance. This is typi-
cally done for every pair of NCPs used in a computation. The function examines the computation
definition and uses the identifier therein to uniquely refer to the computation instance at the site.
This function is invoked (maybe remotely) on the opencpu server by uploadNewComputation()
when a worker site is being set up

Usage

saveNewNCP(defn, comp_defn, data, dataFileName = NULL)

Arguments

defn a definition of the ncp

comp_defn the computation definition

data the list of sites with name and url to use

dataFileName a file name to use for saving the data. Typically NULL, this is only needed when
one is using a single opencpu server to behave like multiple sites in which case
the data file name serves to distinguish the site-specific data files. When it is
NULL, the data file name is taken from the definition settings

Value

TRUE if everything goes well

setComputationInfo 33

See Also

uploadNewNCP()

setComputationInfo Set a name to a value in a global variable

Description

In distcomp, several web applications need to communicate between themselves. Since only one
application is expected to be active at any time, they do so via a global store, essentially a hash
table. This function sets a name to a value

Usage

setComputationInfo(name, value)

Arguments

name the name for the object
value the value for the object

Value

invisibly returns the all the name value pairs

See Also

getComputationInfo()

setupMaster Setup a computation master

Description

This function just calls runDistcompApp() with the parameter "setupMaster"

Usage

setupMaster()

Value

the results of running the web application

See Also

runDistcompApp()

34 SVDMaster

setupWorker Setup a worker site

Description

This function just calls runDistcompApp() with the parameter "setupWorker"

Usage

setupWorker()

Value

the results of running the web application

See Also

runDistcompApp()

SVDMaster R6 class for SVD master object to control worker objects generated by
SVDWorker()

Description

SVDMaster objects instantiate and run a distributed SVD computation

Methods

Public methods:
• SVDMaster$new()

• SVDMaster$kosher()

• SVDMaster$updateV()

• SVDMaster$updateU()

• SVDMaster$fixFit()

• SVDMaster$reset()

• SVDMaster$addSite()

• SVDMaster$run()

• SVDMaster$summary()

• SVDMaster$clone()

Method new(): SVDMaster objects instantiate and run a distributed SVD computation

Usage:
SVDMaster$new(defn, debug = FALSE)

SVDMaster 35

Arguments:
defn a computation definition
debug a flag for debugging, default FALSE

Returns: R6 SVDMaster object

Method kosher(): Check if inputs and state of object are sane. For future use

Usage:
SVDMaster$kosher()

Returns: TRUE or FALSE

Method updateV(): Return an updated value for the V vector, normalized by arg

Usage:
SVDMaster$updateV(arg)

Arguments:
arg the normalizing value
... other args ignored

Returns: updated V

Method updateU(): Update U and return the updated norm of U

Usage:
SVDMaster$updateU(arg)

Arguments:
arg the normalizing value
... other args ignored

Returns: updated norm of U

Method fixFit(): Construct the residual matrix using given the V vector and d so far

Usage:
SVDMaster$fixFit(v, d)

Arguments:
v the value for v
d the value for d

Returns: result

Method reset(): Reset the computation state by initializing work matrix and set up starting
values for iterating

Usage:
SVDMaster$reset()

Method addSite(): Add a url or worker object for a site for participating in the distributed
computation. The worker object can be used to avoid complications in debugging remote calls
during prototyping.

Usage:

36 SVDWorker

SVDMaster$addSite(name, url = NULL, worker = NULL)

Arguments:

name of the site

url web url of the site; exactly one of url or worker should be specified

worker worker object for the site; exactly one of url or worker should be specified

Method run(): Run the distributed Cox model fit and return the estimates

Usage:

SVDMaster$run(thr = 1e-08, max.iter = 100)

Arguments:

thr the threshold for convergence, default 1e-8

max.iter the maximum number of iterations, default 100

Returns: a named list of V, d

Method summary(): Return the summary result

Usage:

SVDMaster$summary()

Returns: a named list of V, d

Method clone(): The objects of this class are cloneable with this method.

Usage:

SVDMaster$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

SVDWorker() which goes hand-in-hand with this object

SVDWorker R6 class for a SVD worker object to use with master objects generated
by SVDMaster()

Description

SVDWorker objects are worker objects at each site of a distributed SVD model computation

SVDWorker 37

Methods

Public methods:
• SVDWorker$new()

• SVDWorker$reset()

• SVDWorker$dimX()

• SVDWorker$updateV()

• SVDWorker$updateU()

• SVDWorker$normU()

• SVDWorker$fixU()

• SVDWorker$getN()

• SVDWorker$getP()

• SVDWorker$getStateful()

• SVDWorker$kosher()

• SVDWorker$clone()

Method new(): Create a new SVDWorker object.

Usage:
SVDWorker$new(defn, data, stateful = TRUE)

Arguments:
defn the computation definition
data the local x matrix
stateful a boolean flag indicating if state needs to be preserved between REST calls, TRUE by

default

Returns: a new SVDWorker object

Method reset(): Reset the computation state by initializing work matrix and set up starting
values for iterating

Usage:
SVDWorker$reset()

Method dimX(): Return the dimensions of the matrix

Usage:
SVDWorker$dimX(...)

Arguments:
... other args ignored

Returns: the dimension of the matrix

Method updateV(): Return an updated value for the V vector, normalized by arg

Usage:
SVDWorker$updateV(arg, ...)

Arguments:
arg the normalizing value

38 SVDWorker

... other args ignored

Returns: updated V

Method updateU(): Update U and return the updated norm of U

Usage:
SVDWorker$updateU(arg, ...)

Arguments:

arg the initial value
... other args ignored

Returns: updated norm of U

Method normU(): Normalize U vector

Usage:
SVDWorker$normU(arg, ...)

Arguments:

arg the normalizing value
... other args ignored

Returns: TRUE invisibly

Method fixU(): Construct residual matrix using arg

Usage:
SVDWorker$fixU(arg, ...)

Arguments:

arg the value to use for residualizing
... other args ignored

Method getN(): Getthe number of rows of x matrix

Usage:
SVDWorker$getN()

Returns: the number of rows of x matrix

Method getP(): Getthe number of columnsof x matrix

Usage:
SVDWorker$getP()

Returns: the number of columns of x matrix

Method getStateful(): Return the stateful status of the object.

Usage:
SVDWorker$getStateful()

Returns: the stateful flag, TRUE or FALSE

Method kosher(): Check if inputs and state of object are sane. For future use

uploadNewComputation 39

Usage:
SVDWorker$kosher()

Returns: TRUE or FALSE

Method clone(): The objects of this class are cloneable with this method.

Usage:
SVDWorker$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

SVDMaster() which goes hand-in-hand with this object

uploadNewComputation Upload a new computation and data to an opencpu server

Description

The function uploadNewComputation is really a remote version of saveNewComputation(), in-
voking that function on an opencpu server. This is typically done for every site that wants to
participate in a computation with its own local data. Note that a site is always a list of at least a
unique name element (distinguishing the site from others) and a url element.

Usage

uploadNewComputation(site, defn, data)

Arguments

site a list of two items, a unique name and a url

defn the identifier of an already defined computation

data the (local) data to use

Value

TRUE if everything goes well

See Also

saveNewComputation()

40 writeCode

uploadNewNCP Upload a new Non-Cooperating Party (NCP) information and sites to
an opencpu server

Description

The function uploadNewNCP is really a remote version of saveNewNCP(), invoking that function on
an opencpu server. This is typically done for the two NCPs participating in a computation with the
list of sites. Note that sites are always a list of at least a unique name element (distinguishing the
site from others) and a url element.

Usage

uploadNewNCP(defn, comp_defn, url = NULL, worker = NULL, sites)

Arguments

defn a definition for the NCP

comp_defn the computation definition

url the url for the NCP. Only one of url and worker can be non-null

worker the worker for the NCP if local. Only one of url and worker can be non-null

sites a list of lists, each containing two items, a unique name and a (not necessarily
unique) url. This is the data for the NCP!

Value

TRUE if everything goes well

See Also

saveNewNCP()

writeCode Write the code necessary to run a master process

Description

Once a computation is defined, worker sites are set up, the master process code is written by this
function. The current implementation does not allow one to mix localhost URLs with non-localhost
URLs

Usage

writeCode(defn, sites, outputFilenamePrefix)

writeCode 41

Arguments

defn the computation definition

sites a named list of site URLs participating in the computation
outputFilenamePrefix

the name of the output file prefix using which code and data will be written

Value

the value TRUE if all goes well

See Also

setupMaster()

Index

availableComputations, 3
availableComputations(), 8, 10, 22, 23, 25
availableDataSources, 4

CoxMaster, 4
CoxWorker, 6
createHEWorkerInstance, 7
createNCPInstance, 8
createWorkerInstance, 9
createWorkerInstance(), 11

defineNewComputation, 10
defineNewComputation(), 31
destroyInstanceObject, 11
digest::digest(), 15
distcomp, 11
distcompSetup, 12
distcompSetup(), 12, 16

executeHEMethod, 14
executeMethod, 14

generateId, 15
getComputationInfo, 15
getComputationInfo(), 3, 31, 33
getConfig, 16
getConfig(), 13

HEMaster, 17
HEQueryCountMaster, 18
HEQueryCountMaster(), 20, 22
HEQueryCountWorker, 20
HEQueryCountWorker(), 18, 20

makeDefinition, 22
makeHEMaster, 23
makeMaster, 23
makeNCP, 24
makeWorker, 24

NCP, 25

NCP(), 18

QueryCountMaster, 28
QueryCountMaster(), 29, 30
QueryCountWorker, 29
QueryCountWorker(), 28, 29

resetComputationInfo, 30
runDistcompApp, 31
runDistcompApp(), 10, 33, 34

saveNewComputation, 31
saveNewComputation(), 39
saveNewNCP, 32
saveNewNCP(), 40
setComputationInfo, 33
setComputationInfo(), 15, 31
setupMaster, 33
setupMaster(), 31, 41
setupWorker, 34
setupWorker(), 31
survival::coxph(), 12
SVDMaster, 34
SVDMaster(), 36, 39
SVDWorker, 36
SVDWorker(), 34, 36

uploadNewComputation, 39
uploadNewComputation(), 31, 32
uploadNewNCP, 40
uploadNewNCP(), 33

writeCode, 40

42

	availableComputations
	availableDataSources
	CoxMaster
	CoxWorker
	createHEWorkerInstance
	createNCPInstance
	createWorkerInstance
	defineNewComputation
	destroyInstanceObject
	distcomp
	distcompSetup
	executeHEMethod
	executeMethod
	generateId
	getComputationInfo
	getConfig
	HEMaster
	HEQueryCountMaster
	HEQueryCountWorker
	makeDefinition
	makeHEMaster
	makeMaster
	makeNCP
	makeWorker
	NCP
	QueryCountMaster
	QueryCountWorker
	resetComputationInfo
	runDistcompApp
	saveNewComputation
	saveNewNCP
	setComputationInfo
	setupMaster
	setupWorker
	SVDMaster
	SVDWorker
	uploadNewComputation
	uploadNewNCP
	writeCode
	Index

