The Bernstein Mechansim

diffpriv team

July 18, 2017

Abstract

This vignette presents a short tutorial on the application of the generic Bernstein mechanism
DPMechBernstein for differentially-private release of functions in the diffpriv R package®.

1 Introduction

The primary use case of the Bernstein mechanism is releasing real-valued functions on [0, 1]¢. The
typical function released will depend on an arbitrary sensitive dataset (which could be numeric or
otherwise), and after release the function may be evaluated on unlimited points.

If you make use of the mechanism in your work, please consider citing the original paper
https://arxiv.org/abs/1507.04499 in subsequent writeups:

Francesco Alda and Benjamin I. P. Rubinstein. “The Bernstein Mechanism: Function
Release under Differential Privacy”, in Proceedings of the 31st AAAI Conference on Ar-
tificial Intelligence (AAAI’2017), pp. 1705-1711, 2017.

2 Bernstein Polynomial Approximation

Like the more common Taylor polynomial approximation, Bernstein approximations of a target
function f : [0,1]¢ — R involve a weighted sum of basis polynomials. We’ll refer to these weights as
coefficients, and introduce the Bernstein approximation for the simple one-dimensional d = 1 case.
For details on the multidimensional case (implemented in diffpriv see the reference paper above).

The k + 1 Bernstein basis polynomials of degree k are defined as b, j(z) = (fj) 2V (1 — x)k= for
v ranging over 0, ..., k. Fixing v and for varying x € [0, 1], the basis function corresponds to the
probability that k coin tosses results in v heads, where the chance of a head is x. Taken as a whole,
the set of basis functions therefore makes up the entire probability mass for the Binomial(k,x)
distribution.

The coefficients of the Bernstein approximation of target f are simply the evaluations of f on
the (k 4 1)-point regular grid covering [0, 1]: at points {0,1/k, ..., k/k}.

Together, then, f(x) is approximated as f(z) = Z];:o f(v/k)by r(x) which can be interpreted
as the expectation of f(X/k) for X ~ Binomial(k,x). We note in passing that nice guarantees

exist about the closeness of f to f, with natural conditions on smoothness of f.

!The diffpriv can be found at https://github.com/brubinstein/diffpriv

2.1 Example

To see Bernstein approximation in action in diffpriv, consider approximating the function f(x) =
xsin(10x) on x € [0, 1] with a Bernstein polynomial of degree k = 25.

library(diffpriv)
targetF <- function(x) x * sin(10 * x)
bernsteinF <- bernstein(targetF, dims = 1, k = 25)

The returned value is an S3 object of class bernstein, a list with various slots including one
that holds the & + 1 coefficients of the approximation.

bernsteinF$coeffs

#> [1] 0.00000000 0.01557673 0.05738849 0.11184469
#> [5] 0.15993178 0.18185949 0.16211116 0.09379668
#> [9] -0.01867973 -0.15930736 -0.30272100 -0.41870491
#> [13] -0.47815901 -0.45939642 -0.35350932 -0.16764930
#> [17] 0.07459149 0.33599708 0.57144086 0.73561895
#> [21] 0.79148660 0.71786308 0.51472713 0.20505872
#> [25] -0.16735371 -0.54402111

Predictions f(:v) can be made for objects of type bernstein using the predict.bernstein()
function implementing the S3 generic predict ().

predict(bernsteinF, D = 0.2) # approzimate f(0.5)
#> [1] 0.1101786
targetF(0.2) # actual f(0.5)

#> [1] 0.1818595

Evaluation on a collection of points is also easy.

xs <- seq(from = 0, to = 1, length = 50)

plot(xs, targetF(xs), xlim = c(0,1), ylim = c(-1,1), 1ty = "dashed", lwd = 2,
col = "red", type="1", xlab="x", ylab="y",
main="Bernstein polynomial approximation")

lines(xs, predict(bernsteinF, xs), col = "blue", lwd = 2)

3 Differential Privacy with the Bernstein Mechanism

The S4 class DPMechBernstein subclasses the virtual DPMech within the diffpriv package, imple-
menting the generic Bernstein mechanism. The mechanism

e First instantiates the target function, itself a function of sensitive input data (such as a
classifier or statistical model).

Bernstein polynomial approximation

0.0 05 1.0

-1.0
I

0.0 0.2 0.4 0.6 0.8 1.0

Figure 1: Bernstein polynomial approximation (blue) vs target (red).

e [t then forms a Bernstein polynomial approximation as described above.

e The Laplace mechanism [DMNS06] DPMechLaplace is used to perturb the Bernstein approx-
imation coefficients. As these are the only component of the approximation that depends
on the target function (and hence input dataset; the basis polynomials are target/data-
independent), this is sufficient for preserving differential privacy [DMNS06].

e Subsequent evaluations of the perturbed approximation function are simply sums of the basis
polynomials, weighted by these perturbed coefficients.

A sufficient level of Laplace noise depends on the global sensitivity of the target function,
required as an argument to DPMechBernstein construction unless the sensitivity sampler is used
(demonstrated in the example below). Intuitively, targets that are more volatile—vary more with
perturbed input data—require more smoothing by Laplace noise.

3.1 Example

Suppose we want to fit a sensitive dataset D with Priestly-Chao kernel regression, using the Gaus-
sian kernel with a bandwidth hyperparameter specifying kernel smoothness. For simplicity, we’ll
consider a single co-variate. A fitting function for the estimator is given as follows. It takes codeD
a 2-column matrix with examples in rows, and returns a function for making predictions on new
data.

pck_regression <- function(D, bandwidth = 0.1) {
K <- function(x) exp(-x~2/2)
ids <- sort(D[,1], decreasing = FALSE, index.return = TRUE)$ix

D <- D[ids,]
n <- nrow(D)
ws <- (D[2:n,1] - D[1:(n-1),1]) * D[2:n,2]
predictor <- function(x) {
sum(ws * sapply((x - D[2:n,1]) / bandwidth, K)) / bandwidth

}

return(predictor)

We have the following (synthetic) sensitive dataset, as a 250 x 2 matrix with the first column
representing co-variates/features and the second column representing dependent variables/labels.

N <- 250
D <- runif(N)
D <- cbind(D, sin(D*10)*D + rnorm(N, mean=0, sd=0.2))

Let’s fit three models for comparison:

e A non-private exact Priestly-Chao regression given by model;
e A non-private Bernstein approximation of the exact regression bmodel; and

e A privatized regression produced by DPMechBernstein, pmodel.

Non private fitting
model <- pck_regression(D)

Bernstein non private fitting
K <- 25
bmodel <- bernstein(model, dims=1, k=K)

Private Bernstein fitting
m <- DPMechBernstein(target=pck_regression, latticeK=K, dims=1)
P <- function(n) { # a sampler of random, "plausible"”, datasets
Dx <- runif(n)
Dy <- rep(0, n)
if (runif(1) < 0.95) Dy <- Dy + Dx
if (runif(1) < 0.5) Dy <- Dy * sin(Dx)
if (runif(1) < 0.5) Dy <- Dy * cos(Dx)
cbind(Dx, Dy + rnorm(n, mean=0, sd=0.2))
}
m <- sensitivitySampler(m, oracle=P, n=N, gamma=0.20, m=500)
R <- releaseResponse(m, privacyParams=DPParamsEps(epsilon=5), X=D)
pmodel <- R$response

The private model is produced as described above. sensitivitySampler() probes the non-
private model with 500 random pairs of datasets, sampled from P(), to estimate the target’s
sensitivity. The resulting perturbed private model preserves random differential privacy with level
e = 5 and confidence v = 0.2. In practice we could easily take v much smaller (much higher
confidence) by increasing sensitivity sample size m.

Priestly—Chao Kernel Regression

1.0

-1.0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 2: Kernel regression on 1D training data (gray points): non-private model (red dashed);
non-private Bernstein polynomial approximation (black dotted); private Bernstein mechanism (blue
solid).

Let’s now take our three fitted models, and predict the dependent variable/label across a range
of covariates/features.

xs <- seq(from=0, to=1, length=50)
yhats <- sapply(xs, model)
yhats.b <- predict(bmodel, xs)
yhats.p <- R$response(xs)

We can now finally visually compare the three fitted models, alongside the original training
dataset.

xlim <- ¢(0, 1)

ylim <- range(c(yhats.b, yhats.p, yhats, D[,2]))

plot(D, pch=20, cex=0.6, xlim=c(0,1), ylim=ylim, xlab="X", ylab="Y",
main="Priestly-Chao Kernel Regression", col="lightgrey")

lines(xs, yhats.p, col="blue", type="1", lty="solid", lwd = 2)

lines(xs, yhats.b, col="black", type="1", lty="dotted", lwd = 3)

lines(xs, yhats, col="red", type="1", lty="dashed", lwd =2)

We could safely release the model pmodel but not the other non-private models. Also note that
while a target’s sensitivity can be computed/bounded manually in many cases, when the target is
more complex sensitivity analysis can be prohibative. The sensitivity sampler offers a pragmatic
approach to such situations, replacing exact bounds with random probing and estimation. For the
resulting random differential privacy to make sense, the sampling distribution (passed as argument
‘oracle’ to the sensitivity sampler) should reflect public knowledge about the dataset. This could be

noninformative (like a uniform/normal distribution), it could be a public Bayesian prior, it could
even be the result of density estimation on a real dataset (potentially privately estimated).
If using the sensitivity sampler, we suggest citing the original paper:

Benjamin I. P. Rubinstein and Francesco Alda. “Pain-Free Random Differential
Privacy with Sensitivity Sampling”, to appear in the 34th International Conference on
Machine Learning (ICML’2017), 2017.

Further details on the sampler can be found there.

References

[DMNSO06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise
to sensitivity in private data analysis. In Theory of Cryptography Conference, pages
265-284. Springer, 2006.

