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Description1

This package implements small-sample degrees of freedom adjustments to robust and cluster-robust
standard errors in linear regression, as discussed in Imbens and Kolesár [2016]. The implementation
can handle models with fixed effects, and cases with a large number of observations or clusters

library(dfadjust)

To give some examples, let us construct an artificial dataset with 11 clusters

set.seed(7)
d1 <- data.frame(y = rnorm(1000), x1 = c(rep(1, 3), rep(0,

997)), x2 = c(rep(1, 150), rep(0, 850)), x3 = rnorm(1000),
cl = as.factor(c(rep(1:10, each = 50), rep(11, 500))))

Let us first run a regression of y on x1. This is a case in which, in spite of moderate data size, the
effective number of observations is small since there are only three treated units:

r1 <- lm(y ~ x1, data = d1)
## No clustering
dfadjustSE(r1)
#>
#> Coefficients:
#> Estimate HC1 se HC2 se Adj. se df p-value
#> (Intercept) 0.00266 0.0311 0.031 0.0311 996.00 0.932
#> x1 0.12940 0.8892 1.088 2.3743 2.01 0.916

1We thank Bruce Hansen for comments and Ulrich Müller for suggesting to us a version of Lemma 2 below.
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We can see that the usual robust standard errors (HC1 se) are much smaller than the effective
standard errors (Adj. se), which are computed by taking the HC2 standard errors and applying a
degrees of freedom adjustment.

Now consider a cluster-robust regression of y on x2. There are only 3 treated clusters, so the
effective number of observations is again small:

r1 <- lm(y ~ x2, data = d1)
# Default Imbens-Kolesár method
dfadjustSE(r1, clustervar = d1$cl)
#>
#> Coefficients:
#> Estimate HC1 se HC2 se Adj. se df p-value
#> (Intercept) -0.0236 0.0135 0.0169 0.0222 4.94 0.2215
#> x2 0.1778 0.0530 0.0621 0.1157 2.43 0.0826
# Bell-McCaffrey method
dfadjustSE(r1, clustervar = d1$cl, IK = FALSE)
#>
#> Coefficients:
#> Estimate HC1 se HC2 se Adj. se df p-value
#> (Intercept) -0.0236 0.0135 0.0169 0.0316 2.42 0.2766
#> x2 0.1778 0.0530 0.0621 0.1076 2.70 0.0731

Now, let us run a regression of y on x3, with fixed effects. Since we’re only interested in x3, we
specify that we only want inference on the second element (the first one being the intercept):

r1 <- lm(y ~ x3 + cl, data = d1)
dfadjustSE(r1, clustervar = d1$cl, ell = 2)
#>
#> Coefficients:
#> Estimate HC1 se HC2 se Adj. se df p-value
#> x3 0.0261 0.0463 0.0595 0.0928 3.23 0.688
dfadjustSE(r1, clustervar = d1$cl, ell = 2, IK = FALSE)
#>
#> Coefficients:
#> Estimate HC1 se HC2 se Adj. se df p-value
#> x3 0.0261 0.0463 0.0595 0.0928 3.23 0.688

Finally, an example in which the clusters are large. We have 500,000 observations:

d2 <- do.call("rbind", replicate(500, d1, simplify = FALSE))
d2$y <- rnorm(length(d2$y))
r2 <- lm(y ~ x2, data = d2)
summary(r2)
#>
#> Call:
#> lm(formula = y ~ x2, data = d2)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
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#> -5.073 -0.675 0.000 0.675 4.789
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -0.000991 0.001535 -0.65 0.52
#> x2 -0.003590 0.003963 -0.91 0.37
#>
#> Residual standard error: 1 on 499998 degrees of freedom
#> Multiple R-squared: 1.64e-06, Adjusted R-squared: -3.59e-07
#> F-statistic: 0.821 on 1 and 5e+05 DF, p-value: 0.365
# Default Imbens-Kolesár method
dfadjustSE(r2, clustervar = d2$cl)
#>
#> Coefficients:
#> Estimate HC1 se HC2 se Adj. se df p-value
#> (Intercept) -0.000991 0.00133 0.00168 0.00294 2.66 0.603
#> x2 -0.003590 0.00483 0.00568 0.00997 2.65 0.578
# Bell-McCaffrey method
dfadjustSE(r2, clustervar = d2$cl, IK = FALSE)
#>
#> Coefficients:
#> Estimate HC1 se HC2 se Adj. se df p-value
#> (Intercept) -0.000991 0.00133 0.00168 0.00315 2.42 0.607
#> x2 -0.003590 0.00483 0.00568 0.00984 2.70 0.577

Methods

This section describes the implementation of the Imbens and Kolesár [2016] and Bell and McCaffrey
[2002] degrees of freedom adjustments.

There are S clusters, and we observe ns observations in cluster s, for a total of n = ∑S
s=1 ns

observations. We handle the case with independent observations by letting each observation be in
its own cluster, with S = n. Consider the linear regression of a scalar outcome Yi onto a p-vector of
regressors Xi,

Yi = X′
i β + ui, E[ui | Xi] = 0.

We’re interested in inference on ℓ′β for some fixed vector ℓ ∈ Rp. Let X, u, and Y denote the design
matrix, and error and outcome vectors, respectively. For any n × k matrix M, let Ms denote the
ns × k block corresponding to cluster s, so that, for instance, Ys corresponds to the outcome vector
in cluster s. For a positive semi-definite matrix M, let M1/2 be a matrix satisfying M1/2′M1/2 = M,
such as its symmetric square root or its Cholesky decomposition.

Assume that
E[usu′

s | X] = Ωs, and E[usu′
t | X] = 0 if s ̸= t.

Denote the conditional variance matrix of u by Ω, so that Ωs is the block of Ω corresponding to
cluster s. We estimate ℓ′β using OLS. In R, the OLS estimator is computed via a QR decomposition,
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X = QR, where Q′Q = I and R is upper-triangular, so we can write the estimator as

ℓ′ β̂ = ℓ′
(

∑
s

X′
sXs

)−1

∑
s

XsYs = ℓ̃′ ∑
s

Q′
sYs, ℓ̃ = R−1′ℓ.

It has variance

V := var(ℓ′ β̂ | X) = ℓ′
(
X′X

)−1 ∑
s

X′
sΩsXs

(
X′X

)−1
ℓ = ℓ̃′ ∑

s
Q′

sΩsQs ℓ̃.

Variance estimate

We estimate V using a variance estimator that generalizes the HC2 variance estimator to clustering.
Relative to the LZ2 estimator described in Imbens and Kolesár [2016], we use a slight modification
that allows for fixed effects:

V̂ = ℓ′(X′X)−1 ∑
s

X′
s Asûsû′

s A′
sXs(X′X)−1ℓ = ℓ′R−1 ∑

s
Q′

s Asûsû′
s A′

sQsR′−1
ℓ =

S

∑
s=1

(û′
sas)

2,

where
ûs := Ys − Xs β̂ = us − QsQ′u, as = A′

sQs ℓ̃,

and As is a generalized inverse of the symmetric square root of I − QsQ′
s, the block of the hat matrix

corresponding to cluster s. In presence of cluster-specific fixed effects, I − QsQ′
s is not generally

invertible, which necessitates taking a generalized inverse. So long as the vector ℓ doesn’t load on
these fixed effects, V̂ will be unbiased under homoskedasticity, as the next result, which slightly
generalizes the Theorem 1 in Pustejovsky and Tipton [2018], shows.

Lemma 1. Suppose that X = (W, L) is full rank, and suppose that the vector ℓ loads only on elements of
W. Let Ẅ denote the residual from projecting W onto L, and suppose that for each cluster s, (i) L′

sẄs = 0
and that (ii) ∑S

k=1 I(k ̸= s)Ẅ ′
kẄk is full rank. Then V̂ is unbiased under homoskedasticity.

The proof is given in the last section. By definition of projection, L and Ẅ are orthogonal. Condition
(i) of the lemma strengthens this requirement to orthogonality within each cluster. It holds if L
corresponds to a vector of cluster fixed effects, or more generally if L contains cluster-specific
variables. Condition (ii) ensures that after partialling out L, it is feasible to run leave-one-cluster-out
regressions. Without clustering, the condition is equivalent to the requirement that the partial
leverages associated with Ẅ are smaller than one.2

If the observations are independent, the vector of leverages (Q′
1Q1, . . . , Q′

nQn) can be computed
directly using the stats::hatvalues function. In this case, we use this function to compute

Ai = 1/
√

1 − Q′
iQi directly, and we then compute ai = AiQ′

i ℓ̃ using vector operations. For the case
with clustering, computing an inverse of I − QsQ′

s can be expensive or even infeasible if the cluster
size ns is large. We therefore use the following result, which allows us to compute as by computing
a spectral decomposition of a p × p matrix.

2To see this, let H = Ẅ(Ẅ ′Ẅ)−1Ẅ ′ denote the partial projection matrix. Since H = H2,

Hii − H2
ii = ∑

j ̸=i
Hij Hji = Ẅ ′

i (Ẅ
′Ẅ)−1[∑

j ̸=i
ẄjẄ ′

j ](Ẅ
′Ẅ)−1Ẅi.

so that Hii = 1 iff ∑j ̸=i ẄjẄ ′
j is reduced rank.
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Lemma 2. Let Q′
sQs = ∑

p
i=1 λisrisr′is be the spectral decomposition of Q′

sQs. Then as = QsDs ℓ̃, where
Ds = ∑i : λi ̸=1(1 − λi)

−1/2risr′is.

The lemma follows from the fact that I − QsQ′
s has eigenvalues 1 − λis and eigenvectors Qsris.

More precisely, let Qs = ∑i λ1/2
is uisr′is denote the singular value decomposition of Qs, so that

I − QsQ′
s = ∑i(1 − λis)uisu′

is, and we can take As = ∑i : λis ̸=1(1 − λis)
−1/2uisu′

is. Then,

A′
sQs = ∑

i : λi ̸=1
(1 − λis)

−1/2λ1/2
is uisr′is = Qs ∑

i : λi ̸=1
(1 − λis)

−1/2risr′is,

where the second equality uses Qsris = λ1/2
is uis.

Degrees of freedom correction

Let G be an n× S matrix with columns (I −QQ′)′sas. Then the Bell and McCaffrey [2002] adjustment
sets the degrees of freedom to

fBM =
tr(G′G)2

tr((G′G)2)
.

Since (G′G)st = a′s(I − QQ′)s(I − QQ)′tat = as(1{s = t} − QsQ′
t)at, the matrix G′G can be effi-

ciently computed as
G′G = diag(a′sas)− BB′ Bsk = a′sQsk.

Note that B is an S × p matrix, so that computing the degrees of freedom adjustment only involves
p × p matrices:

fBM =
(∑s a′sas − ∑s,k B2

sk)
2

∑s(a′sas)2 − 2 ∑s,k(a′sas)B2
sk + ∑s,t(B′

sBt)2
.

If the observations are independent, we compute B directly as B <- a*Q, and since ai is a scalar, we
have

fBM =
(∑i a2

i − ∑sk B2
sk)

2

∑i a4
i − 2 ∑i a2

i B′
i Bi + ∑i,j(B′

i Bj)2
.

The Imbens and Kolesár [2016] degrees of freedom adjustment instead sets

f IK =
tr(G′Ω̂G)2

tr((G′Ω̂G)2)
,

where Ω̂ is an estimate of the Moulton [1986] model of the covariance matrix, under which
Ωs = σ2

ϵ Ins + ριns ι
′
ns

. Using simple algebra, one can show that in this case,

G′ΩG = σ2
ϵ diag(a′sas)− σ2

ϵ BB′ + ρ(D − BF′)(D − BF′)′,

where
Fsk = ι′ns

Qsk, D = diag(a′sιns)

which can again be computed even if the clusters are large. The estimate Ω̂ replaces σ2
ϵ and ρ with

analog estimates.
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Proof of Lemma 1

The estimator of the block of V associated with W implied by V̂ is given by

(Ẅ ′Ẅ)−1 ∑
s

Ẅ ′
s As(I − QQ′)suu′(I − QQ′)′s A′

sẄs(Ẅ ′Ẅ)−1,

which is unbiased under homoskedasticity if for each s,

Ẅ ′
s As(I − QsQ′

s)A′
sẄs = Ẅ ′

sẄs. (1)

We will show that (1) holds. To this end, we first claim that under conditions (i) and (ii), Ẅs is
in the column space of I − QsQ′

s (a claim that’s trivial if this matrix is full rank). Decompose
I − QQ′ = I − HẄ − HL, where HẄ and HL are hat matrices associated with Ẅ and L. The block
associated with cluster s can thus be written as I − QsQ′

s = I − Ls(L′L)−1L′
s − Ẅs(Ẅ ′Ẅ)−1Ẅ ′

s . Let
Bs = Ẅs(Ẅ ′Ẅ − Ẅ ′

sẄs)−1Ẅ ′Ẅ, which is well-defined under condition (ii). Then, using condition
(i), we get

(I − QsQ′
s)Bs = (I − Ẅs(Ẅ ′Ẅ)−1Ẅ ′

s)Bs

= Ẅs(I − (Ẅ ′Ẅ)−1Ẅ ′
sẄs)(Ẅ ′Ẅ − Ẅ ′

sẄs)
−1Ẅ ′Ẅ = Ẅs,

proving the claim. Letting C denote the symmetric square root of I − QsQ′
s, the left-hand side of (1)

can therefore be written as

Ẅ ′
s As(I − QsQ′

s)A′
sẄs = B′

sCCAsCCA′
sCCBs = Ẅ ′

sẄs,

where the second equality follows by the definition of a generalized inverse.
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