Option Pricing Functions to Accompany
Derivatives Markets

Robert McDonald

2022-04-11

Contents
1 Introduction 1

2 Pricing functions and greeks 1
2.1 FEuropean Callsand Puts 1
2.2 Barrier Options 2
2.3 Perpetual American Options 3
24 Option Greeks 4

2.5 Binomial Pricing of European and American Options 8
2.6 Asian Options 10
2.7 Compound Options 11
2.8 Jumps and Stochastic Volatility 13
2.9 Bonds 13
3 Monte Carlo simulation of prices 14
3.1 Long vs wide output L 14
3.2 Simulated price paths 15
3.3 Multiple correlated stockso 17
4 Functions with Graphical Output 19
4.1 Quincunx or Galton Board 19
4.2 Plotting the Solution to the Binomial Pricing Model 19
References 24

1 Introduction

This vignette is an overview to the functions in the derivmkts package, which was
conceived as a companion to my book Derivatives Markets McDonald (2013). The

material has an educational focus. There are other option pricing packages for R, but
this package has several distinguishing features:

2

2.1

function names (mostly) correspond to those in Derivatives Markets.
vectorized Greek calculations are convenient both for individual options and for
portfolios

the simprice function produces simulated asset prices

the quincunx function illustrates the workings of a quincunx (Galton board).
binomial functions include a plotting function that provides a visual depiction
of early exercise

Pricing functions and greeks

European Calls and Puts

Table 1 lists the Black-Scholes related functions in the package.! The functions bscall,
bsput, and bsopt provide basic pricing of European calls and puts. There are also
options with binary payoffs: cash-or-nothing and asset-or-nothing options. All of these
functions are vectorized. The function bsopt by default provides option greeks. Here
are some examples:

s <- 100; k <= 100; r <- 0.08; v <- 0.30; tt <- 2; d <=0
bscall(s, k, v, r, tt, d)

[1] 24.02

bsput(s, c(95, 100, 105), v, r, tt, d)

[1] 7.488 9.239 11.188
Table 1: Black-Scholes related option pricing functions
Function Description
bscall European call
bsput European put
bsopt European call and put and associated Greeks: delta, gamma, vega,
theta, rho, psi, and elasticity
assetcall Asset-or-nothing call
assetput Asset-or-nothing put
cashcall Cash-or-nothing call

cashput Cash-or-nothing put

1See Black and Scholes (1973) and Merton (1973).

2.2 Barrier Options
There are pricing functions for the following barrier options:?

e down-and-in and down-and-out barrier binary options

e up-and-in and up-and-out barrier binary options

« more standard down- and up- calls and puts, constructed using the barrier binary
options

Naming for the barrier options generally follows the convention
[uld] [ilo] [calllput]

which means that the option is up'' ordown™, in'' orout”, and a call or put.®> An
up-and-in call, for example, would be denoted by uicall. For binary options, we add
the underlying, which is either the asset or $1: cash:

[asset|cash] [uld] [ilo] [call|put]

H <- 115

bscall(s, c(80, 100, 120), v, r, tt, d)
[1] 35.28 24.02 15.88

Up-and-in call

uicall(s, c(80, 100, 120), v, r, tt, 4, H)
[1] 34.55 23.97 15.88

bsput (s, c(80, 100, 120), v, r, tt, d)
[1] 3.450 9.239 18.141

Up-and-out put

uoput (s, c(80, 100, 120), v, r, tt, d, H)
[1] 2.328 5.390 9.070

2.3 Perpetual American Options

The functions callperpetual and putperetual price infinitely-lived American op-
tions.? The pricing formula assumes that all inputs (risk-free rate, volatility, dividend
yield) are fixed. This is of course usual with the basic option pricing formulas, but it is
more of a conceptual stretch for an infinitely-lived option than for a 3-month option.

In order for the option to have a determined value, the dividend yield on the underlying
asset must be positive if the option is a call. If this is not true, the call is never

2See Merton (1973), p. 175, for the first derivation of a barrier option pricing formula and
McDonald (2013), Chapter 14, for an overview.

3This naming convention differs from that in McDonald (2013), in which names are callupin,
callupout, etc. Thus, I have made both names available for these functions.

4Merton (1973) derived the price of a perpetual American put.

exercised and the price is undefined.® Similarly, the risk-free rate must be positive if
the option is a put.

By default, the perpetual pricing formulas return the price. By setting
showbarrier=TRUE, the function returns both the option price and the stock
price at which the option is optimally exercised (the “barrier’’). Here are some
examples:

s <- 100; k <= 100; r <- 0.08; v <= 0.30; tt <= 2; d <- 0.04
callperpetual(s, c(95, 100, 105), v, r, d)

[1] 44.71 43.82 43.00

callperpetual(s, c(95, 100, 105), v, r, d, TRUE)
$price

[1] 44.71 43.82 43.00

$barrier
[1] 338.6 356.4 374.2

2.4 Option Greeks

Options greeks are mathematical derivatives of the option price with respect to inputs;
see McDonald (2013), Chapters 12 and 13, for a discussion of the greeks for vanilla
options. Greeks for vanilla and barrier options can be computed using the greeks
function, which is a wrapper for any pricing function that returns the option price
and which uses the default naming of inputs.%

H <- 105

greeks(uicall(s, k, v, r, tt, d, H))
uicall

Premium 18.719815

Delta 0.605436

Gamma 0.008011

Vega 0.480722

Rho 0.836133

Theta -0.012408

°A well-known result (see Merton (1973)) is that a standard American call is never exercised
before expiration if the dividend yield is zero and the interest rate is non-negative. A perpetual call
with 6 = 0 and r > 0 would thus never be exercised. The limit of the option price as 6 — 0 is s, so
in this case the function returns the stock price as the option value.

6In this version of the package, I have two alternative functions that return Greeks: a) The bsopt
function by default produces prices and Greeks for European calls and puts, and b) The greeks?2
function takes as arguments the name of the pricing function and then inputs as a list. These may be
deprecated in the future. greeks2 is more cumbersome to use but may be more robust. I welcome
feedback on these functions and what you find useful.

Psi -1.210530
Elasticity 3.234200

The value of this approach is that you can easily compute Greeks for spreads and
custom pricing functions. Here are two examples. First, the value at time 0 of a
prepaid contract that pays S¢ at time 7' is given by the powercontract () function:

powercontract <- function(s, v, r, tt, d, a) {
price <- exp(-rxtt)*s”a*x exp((ax(r-d) + 1/2*ax(a-1)*v~2)*tt)

}

We can easily compute the Greeks for a power contract:

greeks (powercontract (s=40, .08, 0.08, 0.25, 0, 2))
powercontract

Premium 1634.936

Delta 81.747

Gamma 2.044

Vega 0.654

Rho 4.087

Theta -0.387

Psi -8.175

Elasticity 2.000

Second, consider a bull spread in which we buy a call with a strike of k; and sell a call
with a strike of k3. We can create a function that computes the value of the spread,
and then compute the greeks for the spread by using this newly-created function
together with greeks():

bullspread <- function(s, v, r, tt, d, ki1, k2) {
bscall(s, k1, v, r, tt, d) - bscall(s, k2, v, r, tt, d)

}
greeks (bullspread(39:41, .3, .08, 1, 0, 40, 45))
bullspread_39 bullspread_40 bullspread_41
Premium 2.0020318 2.1551927 2.306e+00
Delta 0.1542148 0.1519426 1.487e-01
Gamma -0.0017692 -0.0027545 -3.614e-03
Vega -0.0080732 -0.0132218 -1.822e-02
Rho 0.0401235 0.0392251 3.793e-02
Theta -0.0005476 -0.0003164 -8.246e-05
Psi -0.0601438 -0.0607771 -6.099e-02
Elasticity 3.0041376 2.8200287 2.645e+00

The Greeks function is vectorized, so you can create vectors of greek values with a

single call. This example plots, for a bull spread, the gamma as a function of the stock
price; see Figure 1.

sseq <- seq(l, 100, 0.5)
greeks(bullspread(sseq, .3, .08, 1, O, 40, 45) ,
TRUE, TRUE) %>%
filter(greek == 'Gamma') %>%
ggplot (aes(S, value)) + geom_line()
0.010-
0.005-
o
2
©
>
0.000-
-0.005-
0 25 50 75 100

S

Figure 1: Gamma for a 40-45 bull spread

This code produces the plots in Figure 2:

k <= 100; r <- 0.08; v <= 0.30; tt <- 2; d <=0

S <- seq(.5, 200, .5)

Call <- greeks(bscall(S, k, v, r, tt, d), TRUE)

Put <- greeks(bsput(S, k, v, r, tt, d), TRUE)

ggplot(rbind(Call, Put), aes(s, value, funcname)) +
geom_line() + facet_wrap(~ greek, 'free_y') +
scale_color_discrete('Option', c('Call','Put')) +

scale_x_continuous('Stock', c(0, 100, 200)) +
scale_y_continuous('Value')

Delta Elast Gamma
1.0-
05- 104 0.010-
007 1 0.005
_05 ' / O T \ |
-1.0- -5- 0.000 -
Premium Psi Rho
120~ 1- /\
90 - 0- 1- Option
() -
c_:’“ 60 - 0- Call
> —2-
30- _3- _q- — Put
0- —4- | . .
Theta Vega 0 100 200
0.02- 0.5-
0.01 - 0.4-
0.00 - 0.3-
0.2-
-0.01- 0.1 4
_002 L]]] OO L]]]
0 100 200 0 100 200

Stock

Figure 2: All option Greeks for a call and a put, computed using the greeks function

2.5 Binomial Pricing of European and American Options
There are two functions related to binomial option pricing:”

e binomopt computes prices of American and European calls and puts. The
function has three optional parameters that control output:

— returnparams=TRUE will return as a vector the option pricing inputs, com-
puted parameters, and risk-neutral probability.

— returngreeks=TRUE will return as a vector the price, delta, gamma, and
theta at the initial node.

— returntrees=TRUE will return as a list the price, greeks, the full stock price

"See Cox, Ross, and Rubinstein (1979), Rendleman and Bartter (1979), and McDonald (2013),
Chapter 11

tree, the exercise status (TRUE or FALSE) at each node, and the replicating
portfolio at each node.

« binomplot displays the asset price tree, the corresponding probability of being
at each node, and whether or not the option is exercised at each node. This
function is described in more detail in Section 4.2.

Here are examples of pricing, illustrating the default of just returning the price, and
the ability to return the price plus parameters, as well as the price, the parameters,
and various trees:

s <- 100; k <= 100; r <- 0.08; v <= 0.30; tt <- 2; d <- 0.03

binomopt(s, k, v, r, tt, d, 3)
price
20.8
binomopt(s, k, v, r, tt, d, 3, TRUE)
price s k v r tt d nstep
20.7961 100.0000 100.0000 0.3000 0.0800 2.0000 0.0300 3.0000
p up dn h
0.4391 1.3209 0.8093 0.6667
binomopt(s, k, v, r, tt, d, 3, TRUE)
price
12.94
binomopt(s, k, v, r, tt, d, 3, TRUE, TRUE)
$price
price
12.94
$greeks
delta gamma theta

-0.335722 0.010614 -0.007599

$params
s k v r tt d nstep p
100.0000 100.0000 0.3000 0.0800 2.0000 0.0300 3.0000 0.4391
up dn h

1.3209 0.8093 0.6667

$oppricetree

[,1] [,2] [,3] [,4]
[1,] 12.94 3.816 0.000 0.00
[2,] 0.00 21.338 7.176 0.00
[3,] 0.00 0.000 34.507 13.49
[(4,] 0.00 0.000 0.000 47.00

$stree

[,1] [,2] [,3] [,4]
[1,] 100 132.09 174.47 230.45
[2,] 0 80.93 106.89 141.19
[3,] 0 0.00 65.49 86.51
(4,] 0O 0.00 0.00 53.00

$probtree

[,1] [,2] [,3] [,4]
[1,] 1 0.4391 0.1928 0.08464
[2,] 0 0.5609 0.4926 0.32441
[3,] 0 0.0000 0.3146 0.41445
(4,] 0 0.0000 0.0000 0.17650

$exertree

(11 [,21 [,3] [,4]
[1,] FALSE FALSE FALSE FALSE
[2,] FALSE FALSE FALSE FALSE
[3,] FALSE FALSE TRUE TRUE
[4,] FALSE FALSE FALSE TRUE

$deltatree

[,1] [,2] [,3]
[1,] -0.3357 -0.1041 0.0000
[2,] 0.0000 -0.6471 -0.2419
[3,] 0.0000 0.0000 -0.9802

$bondtree

(,11 [,2] [,3]
[1,] 46.51 17.56 0.00
[2,] 0.00 73.71 33.03
[3,] 0.00 0.00 94.81

2.6 Asian Options

There are analytical functions for valuing geometric Asian options and Monte Carlo
routines for valuing arithmetic Asian options.® Be aware that the greeks () function
at this time will not work with the Monte Carlo valuation for arithmetic Asian options.

8See Kemna and Vorst (1990).

I plan to address this in a future release.”

2.6.1 Geometric Asian Options

Geometric Asian options can be valued using the Black-Scholes formulas for vanilla
calls and puts, with modified inputs. The functions return both call and put prices
with a named vector:

s <- 100; k <= 100; r <- 0.08; v <= 0.30; tt <- 2; d <- 0.03; m <- 3
geomavgpricecall(s, 98:102, v, r, tt, d, m)

[1] 14.01 13.56 13.12 12.70 12.28

geomavgpricecall(s, 98:102, v, r, tt, d, m, TRUE)

[1] 10.952 10.498 10.058 9.632 9.219

geomavgstrikecall(s, k, v, r, tt, d, m)

[1] 9.058

2.6.2 Arithmetic Asian Options

Monte Carlo valuation is used to price arithmetic Asian options. For efficiency, the
function arithasianmc returns call and put prices for average price and average strike
options. By default the number of simulations is 1000. Optionally the function returns
the standard deviation of each estimate

arithasianmc(s, k, v, r, tt, d, 3, 5000, TRUE)
Call Put sd Call sd Put

Avg Price 13.762 8.031 21.51 11.258

Avg Strike 8.115 5.216 13.98 7.358

Vanilla 19.602 10.970 32.37 14.930

The function arithavgpricecv uses the control variate method to reduce the variance
in the simulation. At the moment this function prices only calls, and returns both the
price and the regression coefficient used in the control variate correction:

arithavgpricecv(s, k, v, r, tt, d, 3, 5000)
price Dbeta
13.950 1.032

9As the functions are currently written, each invocation of the pricing function will start with a
different random number seed, resulting in price variation that is due solely to random variation.
Moreover, random number generation changes the random number seed globally. In a future release
I hope to address this by saving and restoring the seed within the greeks function. For the curious, a
Stackoverflow post discusses this issue.

10

http://stackoverflow.com/questions/14324096/setting-seed-locally-not-globally-in-r
http://stackoverflow.com/questions/14324096/setting-seed-locally-not-globally-in-r

2.7 Compound Options

A compound option is an option where the underlying asset is an option.!® The
terminology associated with compound options can be confusing, so it may be easiest
to start with an example.

Figure 3 is a timeline for a compound option that is an option to buy a put. The
compound option expires at ¢; and the put expires at t5. The owner of the compound
option only acquires the put if at time ¢; it is worth at least k.,, and only exercises
the put if at time ¢, the stock price is less than k,,.

l | l
| N !

Time 0 Time ¢ Time tg
Buy compound Compound exercise Put exercise decision
option decision: Pay k., Sell stock for k.7
to buy put?

Figure 3: The timeline for a compound option: a call to buy a put. The compound
option expires at time ¢; and the underlying asset is a put option that expires at time
ty. At time t1, the owner decides whether to pay k., to buy a put option which has
time to expiration t5 — t;. At time t5 the owner decides whether to exercise the put,
selling the stock for the strike price of k.

2.7.1 Definition of a Compound Option

Based on the example, you can see that there are three prices associated with a
compound option:

e The price of an underlying asset.

e The price of the underlying option, which is an option to buy or sell the
underlying asset (we will refer to this as the price of the underlying option)

o The price of the compound option, which gives us the right to buy or sell the
underlying option

The definition of a compound option therefore requires that we specify
e whether the underlying option is a put or a call
o whether the compound option is a put or a call
o the strike price at which you can exercise the underlying option (k)
o the strike price at which you can exercise the compound option (k)

o the date at which you can exercise the compound option (first exercise date, ¢;)

10Gee Geske (1979) and McDonald (2013), Chapter 14.

11

» the date at which you can exercise the underlying option expires, to > t;.

Given these possibilities, you can have a call on a call, a put on a call, a call on a put,
and a put on a put. The valuation procedure require calculating the underlying asset
price at which you are indifferent about acquiring the underlying option.

The price calculation requires computing the stock price above or below which you
would optimally exercise the option at time ;.

2.7.2 Examples

As an example, consider the following inputs for a call option to buy a call option:

s <= 100; kuo <- 95; v <= 0.30; r <= 0.08; t1 <- 0.50; t2 <= 0.75; d <- 0
kco <- 3.50

calloncall(s, kuo, kco, v, r, t1, t2, d, TRUE)
price scritical
13.12 88.68

With these parameters, after 6 months (¢; = 0.5), the compound option buyer decides
whether to pay $3.50 to acquire a 3-month call on the underlying asset. (The volatility
of the underlying asset is 0.3.) It will be worthwhile to pay the compound strike,
$3.50, as long as the underlying asset price exceeds 88.68.

Similarly, there is a put on the call, and a call and put on the corresponding put:

putoncall(s, kuo, kco, v, r, t1, t2, d, TRUE)
price scritical
0.5492 88.6800

callonput(s, kuo, kco, v, r, t1, t2, d, TRUE)
price scritical
3.425 98.298

putonput (s, kuo, kco, v, r, t1, t2, d, TRUE)
price scritical
1.384 98.298

2.8 Jumps and Stochastic Volatility

The mertonjump function returns call and put prices for a stock that can jump
discretely.'! A poisson process controls the occurrence of a jump and the size of the
jump is lognormally distributed. The parameter lambda is the mean number of jumps
per year, the parameter alphaj is the log of the expected jump, and sigmaj is the

See Merton (1976).

12

standard deviation of the log of the jump. The jump amount is thus drawn from the
distribution
Y ~ N(ay —0.503,03)

mertonjump(s, k, v, r, tt, d, 0.5, -0.2, 0.3)
Call Put

1 28.15 13.37

c(bscall(s, k, v, r, tt, d), bsput(s, k, v, r, tt, d))

[1] 24.025 9.239

2.9 Bonds

The simple bond functions provided in this version compute the present value of cash
flows (bondpv), the IRR of the bond (bondyield), Macaulay duration (duration),
and convexity (convexity).

coupon <- 8; mat <- 20; yield <- 0.06; principal <- 100;
modified <- FALSE; freq <- 2

price <- bondpv(coupon, mat, yield, principal, freq)
price

[1] 123.1

bondyield(price, coupon, mat, principal, freq)

[1] 0.06

duration(price, coupon, mat, principal, freq, modified)
[1] 11.23

convexity(price, coupon, mat, principal, freq)

[1] 170.3

3 Monte Carlo simulation of prices

The function simprice provides a flexible way to generate prices that can be used for
Monte Carlo valuation or just to illustrate sample paths.'? This function implements
“naive” Monte Carlo, not using any variance reduction techniques. When supplied with
a covariance matrix, simprice produces simulations of multiple assets with correlated
returns. There are default values for all inputs.

Other option pricing functions in this package assume that you specify volatility as the
annualized return standard deviation. With a scalar volatility input, the simprice
function also interprets the value as a standard deviation. A matrix, however, is
interpreted as a covariance matrix, which means that the individual stock volatilities

12For more information on Monte Carlo see McDonald (2013), Chapter 19, and Glasserman (2004),
especially Chapter 4.

13

are square root of the diagonal elements. Because scalar and matrix inputs are treated
differently, there is an option To change the behavior for a scalar input. To interpret
the value as a variance, specify scalar_v_is_stddev = FALSE.

3.1 Long vs wide output

The function simprice can produce either long or wide output. Here are examples of
each, using the default parameters.?

args (simprice)

function (100, 0.3, 0.08, 1, 0, 2,
3, FALSE, 0, 0, 0,
NULL, TRUE, TRUE)
NULL
simprice(TRUE)
asset trial period numjumps price

1.1.1 1 1 0 0 100.00
1.1.2 1 1 1 0 94.09
1.1.3 1 1 2 0 109.96
1.1.4 1 1 3 0 103.61
1.2.1 1 2 0 0 100.00
1.2.2 1 2 1 0 114.50
1.2.3 1 2 2 0 130.01
1.2.4 1 2 3 0 108.98
simprice(FALSE)

asset hO hl1 h2 h3
1 1 100 94.09 110 103.6
2 1 100 114.50 130 109.0

3.2 Simulated price paths

A simple example is to generate 5 random sample paths of daily stock prices for a

year; see Figure 4:

sO <- 100; v <- 0.3; r <- 0.10; d <= 0; tt <- 1

trials <- 5; periods <- 365; set.seed(1)

s <- simprice(s0, v, r, tt, d, trials,

periods, FALSE, TRUE)

ggplot(s, aes(period, price, trial, trial)) +

geom_line()

13The simprice function save and restores the random number seed, so repeated invocations
without intermediate seed-changing actions will produce the same result.

14

price

150 -

50-

100 200 300
period

Figure 4: Five simulated paths for the same stock, no jumps.

15

trial

a K~ W N =

We can do the same exercise adding jumps; see Figure 5.

sO <- 100; v <- 0.3; r <- 0.10; d <= 0; tt <- 1

trials <- 5; periods <- 365; jump <- TRUE; lambda <- 2;

alphaj <- -0.1; vj <- 0.2; set.seed(1)

S <- simprice(s0 = s0, v =v, r = r, tt = tt, d = d, trials = trials,
periods = periods, jump = jump, alphaj = alphaj,
lambda = lambda, vj = vj, long = TRUE)

ggplot(s, aes(x = period, y = price, color = trial, group = trial)) +
geom_line()

200 -

trial

150 - T

price

100 - fi:v
Vﬂv#\y r‘"ﬁ“ ‘ 1
S A

0 100 200 300
period

Figure 5: Five simulated paths for the same stock, which can jump.

16

a B~ W DN

3.3 Multiple correlated stocks

When you supply an n x n covariance matrix as the volatility input, simprice produces
simulations for n stocks using the specified covariances. This makes it convenient to
use an esimated covariance matrix to produce a simulation.

3.3.1 Negatively correlated assets

To illustrate the use of a covariance matrix, Figure 6 plots two stocks which are highly
negatively correlated.

set.seed (1)
s0 <- 100; r <- 0.08; tt <- 1; d <- 0; jump <- FALSE
trials <- 1; periods <- 52;

v <- .37 2%matrix(c(1, -.99, -.99, 1), 2)

s <- simprice(s0, v, T, tt, d, trials,
periods, jump, TRUE)

ggplot (s, aes(period, price, asset, asset)) +

geom_line()

130 -

120 -

110 - asset
()
O 1
ol

— 2
100 -
90 -

0 10 20 30 40 50
period

Figure 6: Two stocks for which the returns have a correlation of -.99.

17

3.3.2 Three correlated assets

Here is an example using a three-asset covariance matrix, showing that the simulated
series have the correct variance structure. We have three correlated stocks with
standard deviations of 60%, 20%, and 45%., with the covariance matrix given by v.
We can compare the estimated covariance matrix with the input,v:

set.seed (1)
tt <- 2; periods <- tt*365

vc <- vols <- diag(3)
diag(vols) <- c(.6, .2, .45) ## volatilities
corrs <- c(.4, -.3, .25)
vc[lower.tri(vc)] <- corrs ## correlations
vec <- t(vc) ## lower triangular becomes upper triangular
vc[lower.tri(vc)] <- corrs
v <- vols %x*% vc %*% vols
v
[,1] [,2] [,3]
[1,] 0.360 0.0480 -0.0810
[2,] 0.048 0.0400 0.0225
[3,] -0.081 0.0225 0.2025

s <- simprice(s0, v, T, tt, d, 1,
periods, FALSE, TRUE)

threestocks <- s %>
filter(trial == 1) %>%
group_by(asset) %>%
mutate (log(price/lag(price)),
row_number ()) %>%
select(asset, period, ret) %>%

spread (asset, ret)
var (threestocks[2:4], TRUE) *365
1 2 3

1 0.37637 0.04590 -0.07944
2 0.04590 0.04163 0.02933
3 -0.07944 0.02933 0.23029

18

4 Functions with Graphical Output

Several functions provide visual illustrations of some aspects of the material.

4.1 Quincunx or Galton Board

The quincunx is a physical device the illustrates the central limit theorem. A ball rolls
down a pegboard and strikes a peg, falling randomly either to the left or right. As it
continues down the board it continues to strike a series of pegs, randomly falling left or
right at each. The balls collect in bins and create an approximate normal distribution.

The quincunx function allows the user to simulate a quincunx, observing the path
of each ball and watching the height of each bin as the balls accumulate. More
interestingly, the quincunx function permits altering the probability that the ball will
fall to the right.

Figure 7 illustrates the function after dropping 200 balls down 20 levels of pegs with a
70% probability that each ball will fall right:

par (c(2,2,2,2))
quincunx (n=20, 200, 0, 0.7)

4.2 Plotting the Solution to the Binomial Pricing Model

The binomplot function calls binomopt to compute the option price and the various
trees, which it then uses in plotting:

The first plot, figure 8, is basic:

sO <= 100; k <= 100; v <- 0.3; r <- 0.08; tt <- 2; d <- 0
binomplot(s0, k, v, r, tt, d, 6, TRUE, TRUE)

The second plot, figure 9, adds a display of stock prices and arrows connecting the
nodes.

binomplot(s0, k, v, r, tt, d, 6, TRUE, TRUE,
TRUE, TRUE)

As a final example, consider an American call when the dividend yield is positive and
nstep has a larger value. Figure 10 shows the plot, with early exercise evident.

d <- 0.06
binomplot(s0, k, v, r, tt, d, 40, TRUE)

The large value of nstep creates a high maximum terminal stock price, which makes
details hard to discern in the boundary region where exercise first occurrs. We can
zoom in on that region by selecting values for ylimval; the result is in Figure 11.

19

O
o)
od
00
oo
000
ooo[
0000
ooooO
00000
00000
00000¢
ooooQpl
0000P®O
ocoo@pooll
000QB8®O00O0
cooe®epoooo
leXeXoRcYeXoXeXeoXeo)
Qogoooooo
POQPOOO0000O0
00000000000
0000000000
ooooooo0o00O
000000000
oooooooo
00000000
ooooooo
0000000
oooooo
000000
ooooo
00000
ooooO

Qggggggggaggﬁﬂﬁﬁﬁﬁg@@

(N D I
09 Oy O0¢

0

13 15 17 19

11

2 3 4 56 7 89

1

0

Figure 7: Output from the Quincunx function

20

American Put
Stock = 100, Strike = 100, Time = 2 years, Price = 11.228

o
o —
(ap)
g . .
g _
~ &7 ° o
S @
& = o o
o @ ® o ¢ O
s 1@ *— =
T ' o ® ® ®
B - ® e v
I I I I I
0.0 0.5 1.0 15 2.0

Binomial Period

Figure 8: Basic option plot showing stock prices and nodes at which the option is
exercised.

21

American Put
Stock = 100, Strike = 100, Time = 2 years, Price = 11.228

331.8

o
)
1)

)

9

} -

a 3

~ Al

(@]

o

S

n
o
)
—
o
Tp]

Binomial Period

Figure 9: Same plot as Figure 8 except that values and arrows are added to the plot.

22

Stock Price

1000 1500

500

American Call
Stock = 100, Strike = 100, Time = 2 years, Price = 16.732

0.0 0.5 1.0 1.5 2.0

Binomial Period

Figure 10: Binomial plot when nstep is 40.

23

d <- 0.06
binomplot(s0, k, v, r, tt, d, nstep=40, american=TRUE, ylimval=c(75, 225))

American Call
Stock = 100, Strike = 100, Time = 2 years, Price = 16.732

200
I

150

Stock Price

100

0.0

Binomial Period

Figure 11: Binomial plot when nstep is 40 using the argument ylimval to focus on a
subset.

References

Black, Fischer, and Myron Scholes. 1973. “The Pricing of Options and Corporate
Liabilities.” Journal of Political Economy 81: 637-59.

Cox, John C., Stephen A. Ross, and Mark Rubinstein. 1979. “Option Pricing: A
Simplified Approach.” Journal of Financial Economics 7 (3): 229-63.

Geske, Robert. 1979. “The Valuation of Compound Options.” Journal of Financial
Economics 7: 63-81.

Glasserman, Paul. 2004. Monte Carlo Methods in Financial Engineering. Applications
of Mathematics 53. New York: Springer-Verlag.

Kemna, A. G. Z., and A. C. F. Vorst. 1990. “A Pricing Method for Options Based on
Average Asset Values.” Journal of Banking and Finance 14: 113-29.

McDonald, Robert L. 2013. Derivatives Markets. 3rd ed. Boston, MA: Pear-
son/Addison Wesley.

Merton, Robert C. 1973. “Theory of Rational Option Pricing.” Bell Journal of
Economics and Management Science 4 (1): 141-83.

24

. 1976. “Option Pricing When Underlying Stock Returns Are Discontinuous.”
Journal of Financial Economics 3 (1): 125-44.

Rendleman, Richard J., Jr., and Brit J. Bartter. 1979. “Two-State Option Pricing.”
Journal of Finance 34 (5): 1093-1110.

25

	Introduction
	Pricing functions and greeks
	European Calls and Puts
	Barrier Options
	Perpetual American Options
	Option Greeks
	Binomial Pricing of European and American Options
	Asian Options
	Compound Options
	Jumps and Stochastic Volatility
	Bonds

	Monte Carlo simulation of prices
	Long vs wide output
	Simulated price paths
	Multiple correlated stocks

	Functions with Graphical Output
	Quincunx or Galton Board
	Plotting the Solution to the Binomial Pricing Model
	References

