Package ‘denoiSeq’

October 13, 2022

Type Package
Title Differential Expression Analysis Using a Bottom-Up Model
Version 0.1.1

Description Given count data from two conditions, it determines which transcripts are differen-
tially expressed across the two conditions using Bayesian inference of the parameters of a bot-
tom-up model for PCR amplification. This model is developed in Ndifon Wilfred, Hi-
lah Gal, Eric Shifrut, Rina Aharoni, Nissan Yissachar, Nir Waysbort, Shlomit Re-
ich Zeliger, Ruth Arnon, and Nir Fried-
man (2012), <http://www.pnas.org/content/109/39/15865.full>, and results in a distri-
bution for the counts that is a superposition of the binomial and negative binomial distribution.

License GPL-2

Encoding UTF-8

LazyData true

RoxygenNote 6.0.1

Imports methods, stats, utils
Suggests knitr, rmarkdown
VignetteBuilder knitr, rmarkdown
NeedsCompilation no

Author Gershom Buri [aut, cre],
Wilfred Ndifon [aut]

Maintainer Gershom Buri <buri@aims.edu.gh>
Repository CRAN
Date/Publication 2018-01-31 20:26:31 UTC

R topics documented:

denoiseq e e e e e
ERCC . . . e
getSamplesOf
readsData e
results . . .o

http://www.pnas.org/content/109/39/15865.full

2 denoiseq

setlnitValues e 6
setReplicates e 7
SEESIEPSIZES « . v v o e e e e e e e e e e 8
simdat e e 8
tunedStepSize L 9
Index 10
denoiseq Differential expression analysis using a bottom-up model
Description

The denoiseq function perfoms default analysis by first normalising the counts and then estimating
the model parameters using Bayesian inference. Size factors are estimated from count matrix and
used for the normalisation. The Gibb’s sampling algorithm is then used to sample from the joint
posterior distribution of the model parameters.

Usage

denoiseq(RDobject, steps, tuningSteps = floor(steps/3))

Arguments
RDobject A readsData object.
steps An integer representing the number of iterations.
tuningSteps An integer representing the number of iterations to be used for tuning the step
sizes. Defaulted to a third of steps.
Details

The denoiSeq package is based on a bottom-up model for PCR sequencing developed by Ndifon et
al. (2012). The model generates, in a bottom-up manner, a probability distribution for the final copy
number of a gene, that is a superposition of the negative binomial and the binomial distributions.
The derived distribution has three main parameters, i.e N, p and f, which represent the initial gene
amount before amplification, the amplification efficiency and the dilution rate, respectively.

Bayesian inference is used to estimate the model parameters. The counts in each column are used to
estimate the size factors (Anders and Huber, 2010) which are in turn used to normalise the counts.
For an m by n matrix, inference aims at estimating the three sets of parameters, i.e p, f and N; ’s
(2m in total because we are considering 2 conditions with the same m genes in each). denoiseq uses
the rows in each condition to estimate parameter IN; for each gene in that condition, and uses the
entire dataset, combined from both conditions, to estimate p and f.

For differential expression analysis, the primary parameters of interest are N;4 and N;p (from
conditions A and B respectively), for each gene .

ERCC 3

Value

The same readsData object but with a filled output slot. The output slot now contains 2 lists, i.e
samples which contains posterior samples for each of the parameters N;, p and f, and stepsize
which contains the tuned step sizes.

Examples

#pre -filtering to remove lowly expressed genes

ERCC <- ERCC[rowSums(ERCC)>0,]

RD <- new('readsData', counts = ERCC)

steps <- 30

#30 steps are used for illustration here. Atleast 5000 steps are adequate.
BI <- denoiseq(RD, steps)

ERCC ERCC dataset

Description

RNA-seq data from biological replicates of 3 cell lines. This dataset contains a mixture of spike-in
synthetic oligonucleotides that are mixed into samples A and B at four mixing ratios: 1/2, 2/3, 1
and 4.

Usage

ERCC

Format
A matrix with 92 rows and 10 columns:

Conditions There are 5 columns for each of the conditions A and B.

Transcripts There are 92 distinct transcripts distinguishable by their names.

Source

https://bitbucket.org/soccin/seqc/src/ccd0502ef25422e83b31208f50f8e252f62f17a3/data/
?at=master

https://bitbucket.org/soccin/seqc/src/ccd0502ef25422e83b3f208f50f8e252f62f17a3/data/?at=master
https://bitbucket.org/soccin/seqc/src/ccd0502ef25422e83b3f208f50f8e252f62f17a3/data/?at=master

4 readsData

getSamplesOf Get posterior samples of a parameter

Description
Extracts posterior samples of individual parameters contained in the output slot of the readsData
object returned by denoiSeq.

Usage

getSamplesOf (RDobject, parm, steps, condition = "A")

Arguments
RDobject A readsData object with a filled output slot.
parm A parameter name string i.e p, f or gene name.
steps An integer representing number of iterations used while calling denoiseq.
condition A character (either A or B) representing the two experimental conditions.
Value

A vector of parameter samples, of length equal to steps.

Examples

#pre-filtering to remove lowly expressed genes

ERCC <- ERCC[rowSums(ERCC)>0,]

RD <- new('readsData', counts = ERCC)

steps <- 30

#30 steps are just for illustration here. Atleast 5000 steps are adequate.
BI <- denoiseq(RD, steps)

samples <- getSamplesOf(BI, 'ERCC-00051', steps)

plot(samples, type='l', main = 'History plot of ERCC-00051'")

readsData An 84 class to represent summarised counts and the output of Bayesian
inference.

Description

An S4 class to represent summarised counts and the output of Bayesian inference.

results 5

Slots

counts A positive integer matrix containing summarised counts for each genomic event (genes,
exons, transcripts, etc) in the two conditions, A and B.

replicates A list containing the indices of the columns that belong to each of the two experimen-
tal conditions, A and B. It is defaulted to A = 1:(n/2), B = (n/2+1):n for an m by n matrix.

geneNames A character vector containing the names of the genomic event. It is appropriately de-
faulted to names of the matrix.

initValues A listcontaining initial values for each parameter. Defaulted to N_A = rep(1, nrow(counts)),
N_B = rep(1, nrow(counts)), p= 0.0001, f = 0.01.

stepSizes A list containing step sizes for sampling each parameter. Defaulted to stepsizeN_A =
rep(1, nrow(counts)), stepsizeN_B = rep(1, nrow(counts)), stepsize_p= le3, stepsize_f
= 5e7

output A list containing the samples for each parameter which are generated by Bayesian infer-
ence. It can only be filled inside the results function.

results Compute the test statistic

Description
Extracts posterior samples of the parameters which are returned by denoiseq function and computes
the summary and test statistics.

Usage

results(RDobject, steps, burnin = floor(steps/3), rope_limit = 0.5)

Arguments
RDobject A readsData object with a filled output slot.
steps An integer representing the number of iterations.
burnin An integer for the number of iterations to be considered as burn in values. A
default value equivalent to a third of steps is used.
rope_limit A float that delimits the range of the region of practical equivalence, ROPE. A
default value of 0.5 is used.
Details

To calculate the test statistic, this function first log2 transforms the posterior samples of the two
relevant parameters i.e IV, 4 and N;p. It then randomly subtracts posterior samples of one of the
parameters from the other and determines the proportion of this distribution of differences that lies
in the region of practical equivalence (ROPE) (Kruschke, 2011). The genes can then be arranged in
an ascending order of the ROPE_propn column and we can select the most differentially expressed
genes as those whose ROPE_propn is less than a particular threshold value.

Using both real and simulated data, optimal values between 0.0007 and 0.4 were obtained for the
threshold.

6 setInitValues

Value

A dataframe with 3 columns namely; the log2 fold change (log2FC), the standard error of the log2
fold change (IgfcSE) and the test static (ROPE_propn).

Examples

#pre -filtering to remove lowly expressed genes

ERCC <- ERCC[rowSums(ERCC) > @, 1

RD <- new('readsData', counts = ERCC)

steps <- 30

#30 steps are just for illustration here. At least 5000 steps are adequate.
BI <- denoiseq(RD, steps)

rez <- results(BI, steps)

head(rez)

#Re-ordering according to most differentially expressed
rez <- rez[with(rez, order(ROPE_propn)), 1]
head(rez, 10)

#Determine significant genes using a threshold of 0.38.
sgf <- rez[rez$ROPE_propn<0.38, 1]

head(sgf)

dim(sgf)

setInitValues Generic for altering the initValues slot

Description

Updates the value of the initValues slot for the readsData object supplied.
Usage
setInitValues(object, initval)

S4 method for signature 'readsData’
setInitValues(object, initval)

Arguments

object a readsData object

initval A list of initial values for each of the parameters.
Value

The same readsData object with the initValues slot updated.

setReplicates

Methods (by class)

* readsData: Alters the value of the initValues slot of a readsData object.

Examples

RD <- new("readsData”, counts = ERCC)

initvals <- 1list(N_A = rep(2, 92), N_B = rep(1.5, 92), p = 0.0005, f = 0.03)
RD <- setInitValues(RD, initvals)

RD@initValues

setReplicates Generic for the altering setReplicates slot.

Description

Updates the value of the replicates slot for the readsData object supplied.
Usage
setReplicates(object, repsval)

S4 method for signature 'readsData’
setReplicates(object, repsval)

Arguments

object a readsData object

repsval A list of column indices for the samples in each condition.
Value

The same readsData object with the replicates slot updated.

Methods (by class)

* readsData: Alters the value of the replicates slot of a readsData object.

Examples

RD <- new("readsData”, counts = ERCC)

reps <- list(A = c(2,4,5,3,10),B = c(9,7,1,8,6))
RD <- setReplicates(RD, reps)

RD@replicates

8 simdat
setStepSizes Generic for altering the stepSizes slot.

Description

Updates the value of the stepSizes slot for the readsData object supplied.
Usage

setStepSizes(object, stepSizesval)

S4 method for signature 'readsData’

setStepSizes(object, stepSizesval)
Arguments

object a readsData object

stepSizesval A list of step sizes for each of the parameters.
Value

The same readsData object with the stepSizes slot updated.

Methods (by class)

* readsData: Alters the value of the stepSizes slot of a readsData object.

Examples

RD <- new("readsData”, counts = ERCC)

ss <- list(N_A = rep(2, 92), N_B = rep(1.5, 92), p = 3e5, f = 3.5e7)

RD <- setStepSizes(RD, ss)
RD@stepSizes

simdat simulated data

Description

A dataset containing simulated data based on parameter values N = 1,2,...,50 , p = 0.0017 and
f =0.1,0.2,...,0.5. The values of N were repeated 15 times to generate 750 genes. This dataset
contains 750 observational genes with 5 experimental samples for each condition, summarised as
a 750 by 10 integer matrix. The first 428 genes are not differentially expressed between the two
conditions whereas the last 322 genes are. The gene counts were generated in accordance to the

probability distribution derived in Ndifon et al.

tunedStepSize

Usage

simdat

Format
A matrix with 750 rows and 10 columns:

Conditions There are 5 columns for each of the conditions A and B.

Transcripts There are 750 distinct genes without names.

tunedStepSize Get values of the tuned step sizes.

Description

Extracts the tuned step sizes for sampling each parameter from the return value of denoiseq.

Usage

tunedStepSize(RDobject)

Arguments

RDobject A readsData object with a filled output slot.

Value

A list of the tuned step sizes for sampling each of the parameters.

Examples

#pre -filtering to remove lowly expressed genes

ERCC <- ERCC[rowSums(ERCC)>0,]

RD <- new('readsData', counts = ERCC)

steps <- 30

#30 steps are just for illustration here. Atleast 5000 steps are adequate.
BI <- denoiseq(RD, steps)

tunedStepSize(BI)

Index

x datasets
ERCC, 3
simdat, 8

denoiseq, 2
ERCC, 3
getSamplesOf, 4

readsData, 4
results, 5

setInitValues, 6
setInitValues,readsData-method

(setInitValues), 6
setReplicates, 7
setReplicates,readsData-method

(setReplicates), 7
setStepSizes, 8
setStepSizes,readsData-method

(setStepSizes), 8
simdat, 8

tunedStepSize, 9

10

	denoiseq
	ERCC
	getSamplesOf
	readsData
	results
	setInitValues
	setReplicates
	setStepSizes
	simdat
	tunedStepSize
	Index

