Package 'ddtlcm'

April 4, 2024

Type Package

Title Latent Class Analysis with Dirichlet Diffusion Tree Process Prior

Version 0.2.1

Date 2024-03-26

Maintainer Mengbing Li <mengbing@umich.edu>

Description Implements a Bayesian algorithm for overcoming weak separation in Bayesian latent class analysis.

Reference: Li et al. (2023) <arXiv:2306.04700>.

Depends R(>= 4.3)

biocViews

Imports ape (>= 5.6-2), data.table (>= 1.14.4), extraDistr (>= 1.9.1), ggplot2 (>= 3.4.0), ggpubr (>= 0.6.0), ggtext (>= 0.1.2), ggtree (>= 3.4.0), label.switching (>= 1.8), matrixStats (>= 0.62.0), methods (>= 4.2.3), phylobase (>= 0.8.10), poLCA (>= 1.6.0.1), testthat (>= 3.1.7), truncnorm (>= 1.0-8), BayesLogit (>= 2.1), Matrix (>= 1.5-1), Rdpack (>= 2.5), R.utils (>= 2.12.2)

Suggests knitr, parallel, rmarkdown, xfun

License MIT + file LICENSE

Encoding UTF-8

LazyData true

VignetteBuilder knitr

RoxygenNote 7.3.1

URL https://github.com/limengbinggz/ddtlcm

BugReports https://github.com/limengbinggz/ddtlcm/issues

Config/testthat/edition 3

NeedsCompilation no

Author Mengbing Li [cre, aut] (https://orcid.org/0000-0002-2264-8006>), Briana Stephenson [ctb], Zhenke Wu [ctb] (https://orcid.org/0000-0001-7582-669X>)

Repository CRAN

Date/Publication 2024-04-04 02:32:57 UTC

R topics documented:

add_leaf_branch	3
add_multichotomous_tip	4
add_one_sample	4
add_root	5
attach_subtree	6
a_t_one	7
a_t_two	8
compute_IC	9
create_leaf_cor_matrix	9
data_synthetic	10
ddtlcm_fit	11
div_time	13
draw_mnorm	14
expit	14
exp_normalize	15
H_n	15
initialize	16
initialize_hclust	18
initialize_poLCA	19
initialize_randomLCM	19
J_n	20
logit	20
logllk_ddt	21
logllk_ddt_lcm	22
logllk_div_time_one	
logllk_div_time_two	24
logllk_lcm	24
logllk_location	
logllk_tree_topology	26
log_expit	
parameter_diet	
plot.ddt_lcm	28
plot.summary.ddt_lcm	29
plot_tree_with_barplot	30
plot_tree_with_heatmap	31
predict.ddt_lcm	32
predict.summary.ddt_lcm	
print.ddt_lcm	
_ print.summary.ddt_lcm	34

2

proposal_log_prob	35
quiet	36
random_detach_subtree	37
reattach_point	38
result_diet_1000iters	39
sample_class_assignment	39
sample_c_one	40
sample_c_two	40
sample_leaf_locations_pg	41
sample_sigmasq	42
sample_tree_topology	42
simulate_DDT_tree	43
simulate_lcm_given_tree	44
simulate_lcm_response	46
simulate_parameter_on_tree	47
summary.ddt_lcm	48
WAIC	50

Index

add_leaf_branch Add a leaf branch to an existing tree tree_old

Description

Add a leaf branch to an existing tree tree_old

Usage

add_leaf_branch(tree_old, div_t, new_leaf_label, where, position)

Arguments

tree_old	the original "phylo" tree (with K leaves) to which the leaf branch will be added
div_t	divergence time of the new branch
new_leaf_label	the label of the newly added leaf
where	node name of to which node in the existing tree the new leaf branch should connect to
position	the numerical location of the left side of the added branch

Value

a "phylo" tree with K+1 leaves

51

add_multichotomous_tip

Add a leaf branch to an existing tree tree_old to make a multichotomus branch

Description

Add a leaf branch to an existing tree tree_old to make a multichotomus branch

Usage

```
add_multichotomous_tip(tree_old, div_t, new_leaf_label, where)
```

Arguments

tree_old	the original "phylo" tree (with K leaves) to which the leaf branch will be added
div_t	divergence time of the new branch
new_leaf_label	the label of the newly added leaf
where	node name of to which node in the existing tree the new leaf branch should connect to

Value

a "phylo" tree with K+1 leaves that could possibly be multichotomus

add_one_sample	Functions to simulate trees and node parameters from a DDT process.
	Add a branch to an existing tree according to the branching process of DDT

Description

Functions to simulate trees and node parameters from a DDT process. Add a branch to an existing tree according to the branching process of DDT

Usage

add_one_sample(tree_old, c, c_order, theta, alpha)

add_root

Arguments

tree_old	a "phylo" object. The tree (K leaves) to which a new branch will be added.
с	hyparameter of divergence function a(t)
c_order	equals 1 (default) or 2 to choose divergence function $a(t) = c/(1-t)$ or $c/(1-t)^2$.
alpha, theta	hyparameter of branching probability $a(t)$ Gamma(m-alpha) / Gamma(m+1+theta) Allowable range: $0 \le beta \le 1$, and alpha ≥ -2 beta For DDT, alpha = theta = 0. For general multifurcating tree from a Pitman-Yor process, specify positive values to alpha and theta. It is, however, recommended using alpha = theta = 0 in inference because multifurcating trees have not been tested rigorously.

Value

a "phylo" object. A tree with K+1 leaves. if $t_2 > t_1$, then select which path to take, with probability proportional to the number of data points that already traversed the path

add_root

Add a singular root node to an existing nonsingular tree

Description

Add a singular root node to an existing nonsingular tree

Usage

```
add_root(tree_old, root_edge_length, root_label, leaf_label)
```

Arguments

tree_old	the original nonsingular "phylo" tree
root_edge_length	
	a number in $(0, 1)$ representing the distance between the new and the original root nodes
root_label	a character label of the new root node
leaf_label	a character label of the leaf node

Value

a singular "phylo" tree

attach_subtree

Description

Attach a subtree to a given DDT at a randomly selected location

Usage

```
attach_subtree(
   subtree,
   tree_kept,
   detach_div_time,
   pa_detach_node_label,
   c,
   c_order = 1,
   theta = 0,
   alpha = 0
)
```

Arguments

subtree	subtree to attach to tree_kept
tree_kept	the tree to be attached to
detach_div_time	e
	divergence time of subtree when it was extracted from the original tree
pa_detach_node	_label
	label of the parent node of the detached node
с	hyparameter of divergence function a(t)
c_order	equals 1 (default) or 2 to choose divergence function
alpha, theta	hyparameter of branching probability $a(t)$ Gamma(m-alpha) / Gamma(m+1+theta) For DDT, alpha = theta = 0. For general multifurcating tree from a Pitman-Yor process, specify positive values to alpha and theta. It is, however, recommended using alpha = theta = 0 in inference because multifurcating trees have not been tested rigorously.

See Also

Other sample trees: random_detach_subtree(), reattach_point()

a_t_one

Description

Compute value, cumulative hazard, and inverse for divergence function a(t) = c/(1-t)

Usage

a_t_one(c, t)
a_t_one_cum(c, t)

A_t_inv_one(c, y)

Arguments

с	a positive number for the divergence hyperparameter. A larger value implies earlier divergence on the tree
t	a number in the interval $(0, 1)$ indicating the divergence time
У	a positive number to take inverse

Value

The value and cumulative hazard return a positive number. The inverse function returns a number in the interval (0, 1).

Functions

- a_t_one(): value of the divergence function
- a_t_one_cum(): cumulative hazard function
- A_t_inv_one(): inverse function

See Also

Other divergence functions: a_t_two()

Examples

```
a_t_one(1, 0.5)
a_t_one_cum(1, 0.5)
A_t_inv_one(1, 2)
```

a_t_two

Description

Compute value, cumulative hazard, and inverse for divergence function $a(t) = c/(1-t)^2$

Usage

a_t_two(c, t)
a_t_two_cum(c, t)

A_t_inv_two(c, y)

Arguments

с	a positive number for the divergence hyperparameter. A larger value implies earlier divergence on the tree
t	a number in the interval $(0, 1)$ indicating the divergence time
У	a positive number to take inverse

Value

The value and cumulative hazard return a positive number. The inverse function returns a number in the interval (0, 1).

Functions

- a_t_two(): value of the divergence function
- a_t_two_cum(): cumulative hazard function
- A_t_inv_two(): inverse function

See Also

Other divergence functions: a_t_one()

Examples

```
a_t_two(1, 0.5)
a_t_two_cum(1, 0.5)
A_t_inv_two(1, 2)
```

compute_IC

Description

Compute information criteria for the DDT-LCM model, including the Widely Applicable Information Criterion (WAIC), and Deviance Information Criterion (DIC). WAIC and DIC are computed using two different methods described in Gelman, Hwang, and Vehtari (2013), one based on (1) posterior means and the other based on (2) posterior variances.

Usage

compute_IC(result, burnin = 5000, ncores = 1L)

Arguments

result	a "ddt_lcm" object
burnin	an integer specifying the number of burn-in iterations from MCMC chain
ncores	an integer specifying the number of cores to compute marginal posterior log- likelihood in parallel

Value

a named list of the following elements

WAIC_result a list of WAIC-related results computed using the two methods

DIC1 DIC computed using method 1.

DIC2 DIC computed using method 2.

Examples

```
data(result_diet_1000iters)
IC_result <- compute_IC(result = result_diet_1000iters, burnin = 800, ncores = 1L)</pre>
```

create_leaf_cor_matrix

Create a tree-structured covariance matrix from a given tree

Description

Retrieve the covariance matrix of leaf nodes of a DDT tree

Usage

create_leaf_cor_matrix(tree_phylo4d)

Arguments

tree_phylo4d a "phylo4d" object

Value

a K by K covariance matrix

Examples

```
# load the MAP tree structure obtained from the real HCHS/SOL data
data(data_synthetic)
# extract elements into the global environment
list2env(setNames(data_synthetic, names(data_synthetic)), envir = globalenv())
create_leaf_cor_matrix(tree_with_parameter)
```

data_synthetic Synthetic data example

Description

This list contains one synthetic data with K = 3 latent classes. The elements are as follows:

Usage

```
data(data_synthetic)
```

Format

A list with 8 elements

Details

- tree_phylo. A "phylo" tree with K = 3 leaves.
- class_probability. A K-vector with entries between 0 and 1.
- item_membership_list. A list of G = 7 elements, where the g-th element contains the indices of items belonging to major food group g.
- item_name_list. A list of G = 7 elements, where the g-th element contains the item labels of items in major food group g, and the name of the g-th element is the major food group label.
- Sigma_by_group. A G-vector greater than 0. The group-specific diffusion variances.
- response_matrix. A binary matrix with N = 100 rows and J = 80 columns. Each row contains a multivariate binary response vector of a synthetic individual.
- response_prob. A K by J probability matrix. The k-th row contains the item response probabilities of class k.
- tree_with_parameter. A phylobase::phylo4d object. Basically the tree_phylo embedded with additional logit(response_prob) at the leaf nodes.

 ${\tt ddtlcm_fit}$

Description

Use DDT-LCM to estimate latent class and tree on class profiles for multivariate binary outcomes.

Usage

Arguments

К	number of classes (integer)
data	an NxJ matrix of multivariate binary responses, where N is the number of indi- viduals, and J is the number of granular items
item_membershi	p_list
	a list of G elements, where the g-th element contains the column indices of data corresponding to items in major group g, and G is number of major item groups
total_iters	number of posterior samples to collect (integer)
initials	a named list of initial values of the following parameters:
	tree_phylo4d a phylo4d object. The initial tree have K leaves (labeled as "v1" through "vK"), 1 singleton root node (labeled as "u1"), and K-1 internal nodes (labeled as "u1" through u_{K-1}). The tree also contains parameters for the leaf nodes and the root node (which equals 0). The parameters for the internal nodes can be NAs because they will not be used in the algorithm.
	response_prob a K by J matrix with entries between 0 and 1. The initial values for the item response probabilities. They should equal to the expittransformed leaf parameters of tree_phylo4d.
	class_probability a K-vector with entries between 0 and 1. The initial val- ues for the class probabilities. Entries should be nonzero and sum up to 1, or otherwise will be normalized

	class_assignments a N-vector with integer entries from 1,, K. The initial values for individual class assignments.
	Sigma_by_group a G-vector greater than 0. The initial values for the group- specific diffusion variances.
	c a value greater than 0. The initial values for the group-specific diffusion variances.
	Parameters not supplied with initial values will be initialized using the initialize function with arguments in initialize_args.
priors	a named list of values of hyperparameters of priors. See the function initialize for explanation.
	shape_sigma a G-vector of positive values. The g-th element is the shape parameter for the inverse-Gamma prior on diffusion variance parameter sigma_g^2. Default is rep(2, G).
	rate_sigma a G-vector of positive values. Rate parameter. See above. Default is rep(2, G).
	prior_dirichlet a K-vector with entries positive entries. The parameter of the Dirichlet prior on class probability.
	shape_c a positive value. The shape parameter for the Gamma prior on diver- gence function hyperparameter c. Default is 1.
	rate_c a positive value. The rate parameter for c. Default is 1.
	a_pg a positive value. The scale parameter for the generalized logistic distribu- tion used in the augmented Gibbs sampler for leaf parameters. Default is 1, corresponding to the standard logistic distribution.
controls	a named list of control variables.
	fix_tree a logical. If TRUE (default), the tree structure will be sampled in the algorithm. If FALSE, the tree structure will be fixed at the initial input.
	c_order a numeric value. If 1, the divergence function is $a(t) = c/(1 - t)$. If 2, the divergence function is $a(t) = c/(1 - t)^2$.
initialize_args	3
	a named list of initialization arguments. See the function initialize for expla-

Value

an object of class "ddt_lcm"; a list containing the following elements:

nation.

- tree_samples a list of information of the tree collected from the sampling algorithm, including: accept: a binary vector where 1 indicates acceptance of the proposal tree and 0 indicates rejection. tree_list: a list of posterior samples of the tree. dist_mat_list: a list of tree- structured covariance matrices representing the marginal covariances among the leaf parameters, integrating out the internal node parameters and all intermediate stochastic paths in the DDT branching process.
- response_probs_samples a total_iters x K x J array of posterior samples of item response probabilities
- class_probs_samples a K x total_iters matrix of posterior samples of class probabilities

Z_samples a N x total_iters integer matrix of posterior samples of individual class assignments Sigma_by_group_samples a G x total_iters matrix of posterior samples of diffusion variances c_samples a total_iters vector of posterior samples of divergence function hyperparameter

loglikelihood a total_iters vector of log-likelihoods of the full model

loglikelihood_lcm a total_iters vector of log-likelihoods of the LCM model only

setting a list of model setup information, including: K, item_membership_list, and G

controls a list of model controls, including: fix_tree: FALSE to perform MH sampling of the tree, TRUE to fix the tree at the initial input. c_order: a numeric value of 1 or 2 (see Arguments))

data the input data matrix

Examples

```
# load the MAP tree structure obtained from the real HCHS/SOL data
data(data_synthetic)
# extract elements into the global environment
list2env(setNames(data_synthetic, names(data_synthetic)), envir = globalenv())
# run DDT-LCM
result <- ddtlcm_fit(K = 3, data = response_matrix, item_membership_list, total_iters = 50)</pre>
```

div_time	Sample divergence time on an edge uv previously traversed by $m(v)$
	data points

Description

Sample divergence time on an edge uv previously traversed by m(v) data points

Usage

div_time(t_u, m_v, c, c_order = 1, alpha = 0, theta = 0)

Arguments

t_u	a number in the interval $(0, 1)$ indicating the divergence time at node u
m_v	an integer for the number of data points traversed through node v
С	a positive number for the divergence hyperparameter. A larger value implies earlier divergence on the tree
c_order	equals 1 if using divergence function $a(t) = c/(1-t)$, or 2 if $a(t) = c/(1-t)^2$. Default is 1
alpha, theta	hyparameter of branching probability $a(t)$ Gamma(m-alpha) / Gamma(m+1+theta) For DDT, alpha = theta = 0. For general multifurcating tree from a Pitman-Yor process, specify positive values to alpha and theta. It is, however, recommended using alpha = theta = 0 in inference because multifurcating trees have not been tested rigorously.

Value

a number in the interval (0, 1)

draw_mnorm	Efficiently sample multivariate normal using precision matrix from
	$x N(Q^{-1}a, Q^{-1})$, where Q^{-1} is the precision matrix

Description

Efficiently sample multivariate normal using precision matrix from $x N(Q^{-1}a, Q^{-1})$, where Q^{-1} is the precision matrix

Usage

```
draw_mnorm(precision_mat, precision_a_vec)
```

Arguments

precision_mat precision matrix Q of the multivariate normal distribution precision_a_vec

a vector a such that the mean of the multivariate normal distribution is $Q^{-1}a$

Description

The expit function: $f(x) = \exp(x) / (1 + \exp(x))$, computed in a way to avoid numerical underflow.

Usage

expit(x)

Arguments

```
Х
```

a value or a numeric vector between 0 and 1 (exclusive)

Value

a number or real-valued vector

Examples

expit(0.2)
expit(c(-1, -0.3, 0.6))

exp_normalize

Description

Compute normalized probabilities: $exp(x_i) / sum_j exp(x_j)$

Usage

exp_normalize(x)

Arguments

x a number or real-valued vector

Value

a number or real-valued vector

H_n

Harmonic series

Description

Harmonic series

Usage

H_n(k)

Arguments

k a positive integer

initialize

Description

Initialize the MH-within-Gibbs algorithm for DDT-LCM

Usage

```
initialize(
 Κ,
 data,
 item_membership_list,
 c = 1,
 c_{order} = 1,
 method_lcm = "random",
 method_dist = "euclidean",
 method_hclust = "ward.D",
 method_add_root = "min_cor",
 fixed_initials = list(),
  fixed_priors = list(),
 alpha = 0,
  theta = 0,
  . . .
)
```

Arguments

К	number of classes (integer)
data	an NxJ matrix of multivariate binary responses, where N is the number of indi- viduals, and J is the number of granular items
item_membershi	p_list
	a list of G elements, where the g-th element contains the column indices of data corresponding to items in major group g
С	hyparameter of divergence function a(t)
c_order	equals 1 (default) or 2 to choose divergence function $a(t) = c/(1-t)$ or $c/(1-t)^2$.
method_lcm	a character. If random (default), the initial LCM parameters will be random values. If poLCA, the initial LCM parameters will be EM algorithm estimates from the poLCA function.
method_dist	string specifying the distance measure to be used in dist(). This must be one of "euclidean" (defaults), "maximum", "manhattan", "canberra", "binary" or "minkowski". Any unambiguous substring can be given.
method_hclust	string specifying the distance measure to be used in hclust(). This should be (an unambiguous abbreviation of) one of "ward.D" (defaults), "ward.D2", "sin- gle", "complete", "average" (= UPGMA), "mcquitty" (= WPGMA), "median" (= WPGMC) or "centroid" (= UPGMC).

initialize

<pre>method_add_root</pre>	
	string specifying the method to add the initial branch to the tree output from hclust(). This should be one of "min_cor" (the absolute value of the minimum between-class correlation; default) or "sample_ddt" (randomly sample a small divergence time from the DDT process with $c = 100$)
fixed_initials	a named list of fixed initial values, including the initial values for tree ("phylo4d"), response_prob, class_probability, class_assignments, Sigma_by_group, and c. Default is NULL. See
fixed_priors	a named list of fixed prior hyperparameters, including the the Gamma prior for c, inverse-Gamma prior for sigma_g^2, and Dirichlet prior for pi. Moreover, we allow for a type III generalized logistic distribution such that $f(eta; a_pg) =$ theta. This becomes a standard logistic distribution when $a_pg = 1$. See Dalla Valle, L., Leisen, F., Rossini, L., & Zhu, W. (2021). A Pólya–Gamma sampler for a generalized logistic regression. Journal of Statistical Computation and Simulation, 91(14), 2899-2916. An example input list is list("shape_c" = 1, "rate_c" = 1, "shape_sigma" = rep(2, G), "rate_sigma" = rep(2, G), "a_pg" = 1.0), where G is the number of major item groups. Default is NULL.
alpha, theta	hyparameter of branching probability a(t) Gamma(m-alpha) / Gamma(m+1+theta) For DDT, alpha = theta = 0
	optional arguments for the poLCA function

Value

phylo4d object of tree topology

See Also

ddtlcm_fit()

Other initialization functions: initialize_hclust(), initialize_poLCA()

Examples

initialize_hclust

Description

Estimate an initial binary tree on latent classes using hclust()

Usage

```
initialize_hclust(
  leaf_data,
  c,
  c_order = 1,
  method_dist = "euclidean",
  method_hclust = "ward.D",
  method_add_root = "min_cor",
  alpha = 0,
  theta = 0,
  ...
)
```

Arguments

leaf_data	a K by J matrix of $logit(theta_{kj})$	
с	hyparameter of divergence function a(t)	
c_order	equals 1 (default) or 2 to choose divergence function	
method_dist	string specifying the distance measure to be used in dist(). This must be one of "euclidean", "maximum", "manhattan", "canberra", "binary" or "minkowski". Any unambiguous substring can be given.	
<pre>method_hclust</pre>	string specifying the distance measure to be used in hclust(). This should be (an unambiguous abbreviation of) one of "ward.D", "ward.D2", "single", "complete", "average" (= UPGMA), "mcquitty" (= WPGMA), "median" (= WPGMC) or "centroid" (= UPGMC).	
method_add_root		
	string specifying the method to add the initial branch to the tree output from hclust(). This should be one of "min_cor" (the absolute value of the minimum between-class correlation) or "sample_ddt" (randomly sample a small divergence time from the DDT process with a large $c = 100$)	
alpha, theta	hyparameter of branching probability a(t) Gamma(m-alpha) / Gamma(m+1+theta) For DDT, alpha = theta = 0	
	optional arguments for the poLCA function	

Value

phylo4d object of tree topology

initialize_poLCA

See Also

Other initialization functions: initialize(), initialize_poLCA()

initialize_poLCA Estimate an initial response profile from latent class model using poLCA()

Description

Estimate an initial response profile from latent class model using poLCA()

Usage

initialize_poLCA(K, data, ...)

Arguments

К	number of latent classes
data	a N by J observed binary matrix, where the i,j-th element is the response of item j for individual i
	optional arguments for the poLCA function

Value

a K by J probability matrix, the k,j-th entry being the response probability to item j of an individual in class ${\bf k}$

See Also

Other initialization functions: initialize(), initialize_hclust()

initialize_randomLCM Provide a random initial response profile based on latent class mode

Description

Provide a random initial response profile based on latent class mode

Usage

initialize_randomLCM(K, data)

Arguments

К	number of latent classes
data	a N by J observed binary matrix, where the i,j-th element is the response of item j for individual i

Value

a K by J probability matrix, the k,j-th entry being the response probability to item j of an individual in class ${\bf k}$

J_n	Compute factor in the exponent of the divergence time distribution

Description

Compute factor in the exponent of the divergence time distribution

Usage

J_n(1, r)

Arguments

1	number of data points to the left
r	number of data points to the right

logit

The logistic function

Description

The logit function: $f(x) = \log(x / (1/x))$. Large absolute values of x will be truncated to +/- 5 after logit transformation according to its sign.

Usage

logit(x)

Arguments

х

a value or a numeric vector between 0 and 1 (exclusive)

Value

a number or real-valued vector

logllk_ddt

Examples

logit(0.2)
logit(c(0.2, 0.6, 0.95))

logllk_ddt	Calculate loglikelihood of a DDT, including the tree structure and
	node parameters

Description

Calculate loglikelihood of a DDT, including the tree structure and node parameters

Usage

```
logllk_ddt(
    c,
    c_order,
    Sigma_by_group,
    tree_phylo4d,
    item_membership_list,
    tree_structure_old = NULL,
    dist_mat_old = NULL
)
```

Arguments

c	a positive number for the divergence hyperparameter. A larger value implies earlier divergence on the tree	
c_order	equals 1 if using divergence function $a(t) = c / (1-t)$, or 2 if $a(t) = c/(1-t)^2$. Default is 1	
Sigma_by_group	a vector of diffusion variances of G groups from the previous iteration	
tree_phylo4d	a "phylo4d" object	
item_membership	p_list	
	a list of G elements, where the g-th element contains the column indices of data corresponding to items in major group g	
tree_structure_old		
	a list of at least named elements: loglikelihoods of the input tree topology and divergence times. These can be directly obtained from the return of this function. Default is NULL. If given a list, then computation of the loglikelihoods will be skipped to save time. This is useful in the Metropolis-Hasting algorithm when the previous proposal is not accepted.	
dist_mat_old	a tree-structured covariance matrix from a given tree. Default is NULL.	

Value

a numeric of loglikelihood

See Also

```
Other likelihood functions: logllk_ddt_lcm(), logllk_div_time_one(), logllk_div_time_two(),
logllk_lcm(), logllk_location(), logllk_tree_topology()
```

logllk_ddt_lcm Calculate loglikelihood of the DDT-LCM

Description

Calculate loglikelihood of the DDT-LCM

Usage

```
logllk_ddt_lcm(
    c,
    Sigma_by_group,
    tree_phylo4d,
    item_membership_list,
    tree_structure_old = NULL,
    dist_mat_old = NULL,
    response_matrix,
    leaf_data,
    prior_class_probability,
    prior_dirichlet,
    ClassItem,
    Class_count
)
```

Arguments

С	a positive number for the divergence hyperparameter. A larger value implies earlier divergence on the tree	
Sigma_by_group	a vector of diffusion variances of G groups	
tree_phylo4d	a "phylo4d" object	
item_membership_list		
	a list of G elements, where the g-th element contains the column indices of data corresponding to items in major group g	
<pre>tree_structure_old</pre>		
	a list of at least named elements: loglikelihoods of the input tree topology and divergence times. These can be directly obtained from the return of this function. Default is NULL. If given a list, then computation of the loglikelihoods will be skipped to save time. This is useful in the Metropolis-Hasting algorithm when the previous proposal is not accepted.	
dist_mat_old	a tree-structured covariance matrix from a given tree. Default is NULL.	

response_matrix		
	a N by J binary matrix, where the i,j-th element is the response of item ${\rm j}$ for individual ${\rm i}$	
leaf_data	a K by J matrix of $logit(theta_k j)$	
prior_class_probability		
	a length K vector, where the k-th element is the probability of assigning an individual to class k. It does not have to sum up to 1	
prior_dirichlet		
	a vector of length K. The Dirichlet prior of class probabilities	
ClassItem	a K by J matrix, where the k,j-th element counts the number of individuals that belong to class k have a positive response to item ${\rm j}$	
Class_count	a length K vector, where the k-th element counts the number of individuals belonging to class \boldsymbol{k}	

Value

a numeric of loglikelihood

See Also

Other likelihood functions: logllk_ddt(), logllk_div_time_one(), logllk_div_time_two(), logllk_lcm(), logllk_location(), logllk_tree_topology()

 $logllk_div_time_one$ Compute loglikelihood of divergence times for a(t) = c/(1-t)

Description

Compute loglikelihood of divergence times for a(t) = c/(1-t)

Usage

```
logllk_div_time_one(c, l, r, t)
```

Arguments

С	a positive number for the divergence hyperparameter. A larger value implies earlier divergence on the tree
1	number of data points to the left
r	number of data points to the right
t	a number in the interval $(0, 1)$ indicating the divergence time

See Also

Other likelihood functions: logllk_ddt(), logllk_ddt_lcm(), logllk_div_time_two(), logllk_lcm(), logllk_location(), logllk_tree_topology() $logllk_div_time_two$ Compute loglikelihood of divergence times for $a(t) = c/(1-t)^2$

Description

Compute loglikelihood of divergence times for $a(t) = c/(1-t)^2$

Usage

logllk_div_time_two(c, l, r, t)

Arguments

с	a positive number for the divergence hyperparameter. A larger value implies earlier divergence on the tree
1	number of data points to the left
r	number of data points to the right
t	a number in the interval $(0, 1)$ indicating the divergence time

See Also

Other likelihood functions: logllk_ddt(), logllk_ddt_lcm(), logllk_div_time_one(), logllk_lcm(), logllk_location(), logllk_tree_topology()

logllk_lcm	Calculate loglikelihood of the latent class model, conditional on tree
	structure

Description

Calculate loglikelihood of the latent class model, conditional on tree structure

Usage

```
logllk_lcm(
  response_matrix,
  leaf_data,
  prior_class_probability,
  prior_dirichlet,
  ClassItem,
  Class_count
)
```

logllk_location

Arguments

response_matrix		
	a N by J binary matrix, where the i,j-th element is the response of item j for individual i	
leaf_data	a K by J matrix of $logit(theta_{kj})$	
prior_class_probability		
	a length K vector, where the k-th element is the probability of assigning an individual to class k. It does not have to sum up to 1	
prior_dirichlet		
	a vector of length K. The Dirichlet prior of class probabilities	
ClassItem	a K by J matrix, where the k,j-th element counts the number of individuals that belong to class k have a positive response to item j	
Class_count	a length K vector, where the k-th element counts the number of individuals belonging to class k	

Value

a numeric of loglikelihood

See Also

Other likelihood functions: logllk_ddt(), logllk_ddt_lcm(), logllk_div_time_one(), logllk_div_time_two(), logllk_location(), logllk_tree_topology()

logllk_location Compute log likelihood of parameters

Description

Compute the marginal log likelihood of the parameters on the leaves of a tree

Usage

```
logllk_location(
   tree_phylo4d,
   Sigma_by_group,
   item_membership_list,
   dist_mat = NULL,
   tol = 1e-07
)
```

Arguments

tree_phylo4d	a "phylo4d" object	
Sigma_by_group	a vector of diffusion variances of G groups	
item_membership_list		
	a list of G elements, where the g-th element contains the column indices of data corresponding to items in major group g	
dist_mat	a tree-structured covariance matrix from a given tree. Default is NULL. If given a matrix, then computation of the covariance matrix will be skipped to save time. This is useful in the Metropolis-Hasting algorithm when the previous proposal is not accepted.	
tol	a small number to prevent underflow when computing eigenvalues	

Value

A list of two elements: a numeric loglikelihood, a covariance matrix of the input tree

See Also

```
Other likelihood functions: logllk_ddt(), logllk_ddt_lcm(), logllk_div_time_one(), logllk_div_time_two(),
logllk_lcm(), logllk_tree_topology()
```

logllk_tree_topology Compute loglikelihood of the tree topology

Description

Compute loglikelihood of the tree topology

Usage

```
logllk_tree_topology(1, r)
```

Arguments

1	number of data points to the left
r	number of data points to the right

See Also

Other likelihood functions: logllk_ddt(), logllk_ddt_lcm(), logllk_div_time_one(), logllk_div_time_two(), logllk_lcm(), logllk_location()

26

log_expit

Description

Numerically accurately compute $f(x) = \log(x / (1/x))$.

Usage

```
log_expit(x)
```

Arguments

Х

a value or a numeric vector between 0 and 1 (exclusive)

Value

a number or real-valued vector

parameter_diet Parameters for the HCHS dietary recall data example

Description

A list of five variables containing the food items and parameter estimates obtained from MCMC chains. The real multivariate binary dataset is not included for privacy. The variables are as follows:

Usage

data(parameter_diet)

Format

An object of class list of length 5.

Details

- item_membership_list. A list of G = 7 elements, where the g-th element contains the indices of items belonging to major food group g.
- item_name_list. A list of G = 7 elements, where the g-th element contains the item labels of items in major food group g, and the name of the g-th element is the major food group label.
- tree_phylo. The maximum a posterior tree estimate with K = 6 leaves obtained from the real HCHS data. Class "phylo".
- class_probability. A K-vector with entries between 0 and 1. The posterior mean estimate for class probabilities obtained from the real HCHS data.
- Sigma_by_group. A G-vector greater than 0. The posterior mean estimate for group-specific diffusion variances obtained from the real HCHS data.

References

https://arxiv.org/abs/2306.04700

plot.ddt_lcm

Create trace plots of DDT-LCM parameters

Description

Create trace plots of DDT-LCM parameters

Usage

```
## S3 method for class 'ddt_lcm'
plot(
    x,
    parameter_names = c("responseprob_1,1,1", "classprob_1", "c", "diffusionvar_1"),
    burnin = 50,
    ...
)
```

Arguments

х

a "ddt_lcm" object

parameter_names

a character vector to specify the parameters to be plotted. Each element can take the be 1) of format "parameter_index" to plot specific parameters with specific indices, 2) of format "parameter" to plot the parameters across all indices, or 3) equal to "all" to plot all parameters in the model. For 1), the item response probabilities should be named "responseprob_class,group,item"; the class probabilities should be named "classprob_class"; the divergence function parameter is "c"; the group-specific diffusion variances should be named "diffusionvar_group". For 2), "responseprob" to plot all item response probabilities; "classprob" to plot all class probabilities; "diffusionvar" to plot all diffusion variances. the number of posterior samples as burn-in, which will not be plotted.

... Further arguments passed to each method

Value

NULLS

burnin

Examples

```
data(result_diet_1000iters)
# Plot "c" for the divergence function parameter; "diffusionvar_1" for diffusion variance of group 1
plot(x = result_diet_1000iters, parameter_names = c("c", "diffusionvar_1"), burnin = 500)
# Plot "responseprob_1,1,1" for the class 1 response probability of item 3 in major group 2
plot(x = result_diet_1000iters, parameter_names = "responseprob_1,1,1", burnin = 500)
# Plot "classprob_1" for the probability of being assigned to class 1
plot(x = result_diet_1000iters, parameter_names = "classprob_1", burnin = 500)
# plot all class probabilities
plot(x = result_diet_1000iters, parameter_names = "classprob", burnin = 500)
# plot all diffusion variances
plot(x = result_diet_1000iters, "diffusionvar", burnin = 500)
```

plot.summary.ddt_lcm Plot the MAP tree and class profiles of summarized DDT-LCM results

Description

Plot the MAP tree and class profiles of summarized DDT-LCM results

Usage

Arguments

х	a "summary.ddt_lcm" object
log	Default argument passed to plot(). Not used.
plot_option	option to select which part of the plot to return. If "all", return the plot of MAP tree on the left and the plot of class profiles on the right. If "profile", only return the plot of class profiles. If "tree", only return the plot of MAP tree.
item_name_list	a named list of G elements, where the g-th element contains a vector of item names for items in item_membership_list[[g]]. The name of the g-th element is the name of the major item group.
color_palette	a vector of color names. Default is a color-blinded friendly palette.
	Further arguments passed to each method

Value

a ggplot2 object. If plot_option is "all", then a plot with maximum a posterior tree structure on the left and a bar plot of item response probabilities (with 95% credible intervals and class probabilities) on the right. If plot_option is "profile", then only a bar plot of item response probabilities. If plot_option is "tree", then only a plot of the tree structure.

Examples

```
data(result_diet_1000iters)
burnin <- 500
summarized_result <- summary(result_diet_1000iters, burnin, relabel = TRUE, be_quiet = TRUE)</pre>
plot(x = summarized_result, item_name_list = NULL, plot_option = "all")
```

plot_tree_with_barplot

Plot the MAP tree and class profiles (bar plot) of summarized DDT-LCM results

Description

Plot the MAP tree and class profiles (bar plot) of summarized DDT-LCM results

Usage

```
plot_tree_with_barplot(
  tree_with_parameter,
  response_prob,
  item_membership_list,
  item_name_list = NULL,
  class_probability = NULL,
  class_probability_lower = NULL,
  class_probability_higher = NULL,
 color_palette = c("#E69F00", "#56B4E9", "#009E73", "#000000", "#0072B2", "#D55E00",
    "#CC79A7", "#F0E442", "#999999"),
  return_separate_plots = FALSE
)
```

Arguments

tree_with_parameter		
	a "phylo4d" tree with node parameters	
response_prob	a K by J matrix, where the k,j-th element is the response probability of item j for individuals in class ${\bf k}$	
item_membership_list		
	a list of G elements, where the g-th element contains the column indices of the observed data matrix corresponding to items in major group g	

30

item_name_list a named list of G elements, where the g-th element contains a vector of item names for items in item_membership_list[[g]]. The name of the g-th element is the name of the major item group.

class_probability

a length K vector, where the k-th element is the probability of assigning an individual to class k. It does not have to sum up to 1

class_probability_lower

a length K vector, 2.5% quantile of posterior the distribution.

```
class_probability_higher
```

a length K vector, 97.5% quantile of posterior the distribution.

color_palette a vector of color names. Default is a color-blinded friendly palette.

return_separate_plots

If FALSE (default), print the combined plot of MAP tree and class profiles. If TRUE, return the tree plot, class profile plot, and data.table used to create the plots in a list, without printing the combined plot.

Value

a ggplot2 object. A bar plot of item response probabilities.

Examples

```
# load the MAP tree structure obtained from the real HCHS/SOL data
data(data_synthetic)
# extract elements into the global environment
list2env(setNames(data_synthetic, names(data_synthetic)), envir = globalenv())
plot_tree_with_barplot(tree_with_parameter, response_prob, item_membership_list)
```

plot_tree_with_heatmap

Plot the MAP tree and class profiles (heatmap) of summarized DDT-LCM results

Description

Plot the MAP tree and class profiles (heatmap) of summarized DDT-LCM results

Usage

```
plot_tree_with_heatmap(
    tree_with_parameter,
    response_prob,
    item_membership_list
)
```

Arguments

tree_with_parameter	
	a "phylo4d" tree with node parameters
response_prob	a K by J matrix, where the k,j-th element is the response probability of item j for individuals in class k
item_membership_list	
	a list of G elements, where the g-th element contains the column indices of the observed data matrix corresponding to items in major group g

Value

a ggplot2 object. A plot with the tree structure on the left and a heatmap of item response probabilities on the right, with indication of item group memberships beneath the heatmap.

Examples

```
# load the MAP tree structure obtained from the real HCHS/SOL data
data(data_synthetic)
# extract elements into the global environment
list2env(setNames(data_synthetic, names(data_synthetic)), envir = globalenv())
plot_tree_with_heatmap(tree_with_parameter, response_prob, item_membership_list)
```

<pre>predict.ddt_lcm</pre>	Prediction of class memberships from posterior predictive distribu-
	tions

Description

Predict individual class memberships based on posterior predictive distributions. For each posterior sample, let the class memberships be modal assignments. Then aggregate over all posterior samples to obtain the most likely assigned classes.

Usage

```
## S3 method for class 'ddt_lcm'
predict(object, data, burnin = 3000, ...)
```

Arguments

object	a ddt_lcm object
data	an NxJ matrix of multivariate binary responses, where N is the number of indi- viduals, and J is the number of granular items
burnin	number of samples to discard from the posterior chain as burn-ins. Default is 3000.
	Further arguments passed to each method

32

Value

a list of the following named elements:

- class_assignments an integer vector of individual predicted class memberships taking values in $1,\,...,\,K$
- predictive_probs a N x K matrix of probabilities, where the (i,k)-th element is the probability that the i-th individual is predicted to belong to class k.

Examples

```
data(result_diet_1000iters)
burnin <- 500
predicted <- predict(result_diet_1000iters, result_diet_1000iters$data, burnin)</pre>
```

predict.summary.ddt_lcm

Prediction of class memberships from posterior summaries

Description

Predict individual class memberships based on posterior summary (point estimates of model parameters). The predicted class memberships are modal assignments.

Usage

```
## S3 method for class 'summary.ddt_lcm'
predict(object, data, ...)
```

Arguments

object	a "summary.ddt_lcm" object
data	an NxJ matrix of multivariate binary responses, where N is the number of indi- viduals, and J is the number of granular items
	Further arguments passed to each method

Value

a list of the following named elements:

- class_assignments an integer vector of individual predicted class memberships taking values in 1, ..., ${\rm K}$
- predictive_probs a N x K matrix of probabilities, where the (i,k)-th element is the probability that the i-th individual is predicted to belong to class k.

Examples

```
data(result_diet_1000iters)
burnin <- 500
summarized_result <- summary(result_diet_1000iters, burnin, relabel = TRUE, be_quiet = TRUE)
predicted <- predict(summarized_result, result_diet_1000iters$data)</pre>
```

print.ddt_lcm Print out setup of a ddt_lcm model

Description

Print out setup of a ddt_lcm model

Usage

```
## S3 method for class 'ddt_lcm'
print(x, ...)
```

Arguments

x	a "ddt_lcm" object
	Further arguments passed to each method

See Also

Other ddt_lcm results: print.summary.ddt_lcm(), summary.ddt_lcm()

Examples

```
data(result_diet_1000iters)
print(result_diet_1000iters)
```

print.summary.ddt_lcm Print out summary of a ddt_lcm model

Description

Print out summary of a ddt_lcm model

Usage

```
## S3 method for class 'summary.ddt_lcm'
print(x, digits = 3L, ...)
```

34

Arguments

х	a "summary.ddt_lcm" object
digits	integer indicating the number of decimal places (round) to be used.
	Further arguments passed to each method

See Also

Other ddt_lcm results: print.ddt_lcm(), summary.ddt_lcm()

Examples

```
data(result_diet_1000iters)
burnin <- 500
summarized_result <- summary(result_diet_1000iters, burnin, relabel = TRUE, be_quiet = TRUE)
print(summarized_result)</pre>
```

proposal_log_prob Calculate proposal likelihood

Description

Given an old tree, propose a new tree and calculate the original and proposal tree likelihood in the DDT process

Usage

```
proposal_log_prob(
    old_tree_phylo4,
    tree_kept,
    old_detach_pa_div_time,
    old_pa_detach_node_label,
    old_detach_node_label,
    new_div_time,
    new_attach_root,
    new_attach_to,
    c,
    c_order = 1
)
```

Arguments

```
old_tree_phylo4
    the old "phylo4" object
tree_kept the remaining "phylo" tree after detachment
old_detach_pa_div_time
    a number in (0, 1) indicating the divergence time of the detached node on the
    old tree
```

old_pa_detach_n	ode_label a character label of the parent of the detached node on the old tree
old_detach_node_label	
	a character label of the detached node on the old tree
new_div_time	a number in $(0, 1)$ indicating the divergence time at which the detached subtree will be re-attached on the proposal tree
new_attach_root	, new_attach_to a character label of the starting and ending nodes of the branch on the proposal tree, which the detached subtree will be re-attached to
с	hyparameter of divergence function a(t)

equals 1 (default) or 2 to choose divergence function

Value

c_order

a list containing the following elements:

q_new a "phylo" tree detached from the input tree

q_old the remaining "phylo" tree after detachment

Suppress print from cat() quiet

Description

Suppress print from cat()

Usage

quiet(x, be_quiet = TRUE)

Arguments

Х	evaluation of a statement that may explicitly or implicitly involve cat()
be_quiet	logical. TRUE to suppress print from cat(); FALSE to continue printing

quiet
random_detach_subtree Metropolis-Hasting algorithm for sampling tree topology and branch lengths from the DDT branching process.

Description

Randomly detach a subtree from a given tree

Usage

random_detach_subtree(tree_phylo4)

Arguments

tree_phylo4 a "phylo4" object

Value

a list containing the following elements:

tree_detached a "phylo" tree detached from the input tree

tree_kept the remaining "phylo" tree after detachment

pa_detach_node_label a character label of the parent of the node from which the detachment happens

pa_div_time a number in (0, 1) indicating the divergence time of the parent of the detached node

detach_div_time a number in (0, 1) indicating the divergence time of the detached node

detach_node_label a character label of the parent of the detached node

See Also

Other sample trees: attach_subtree(), reattach_point()

Examples

```
library(phylobase)
# load the MAP tree structure obtained from the real HCHS/SOL data
data(data_synthetic)
# extract elements into the global environment
list2env(setNames(data_synthetic, names(data_synthetic)), envir = globalenv())
detachment <- random_detach_subtree(extractTree(tree_with_parameter))</pre>
```

reattach_point

Description

Attach a subtree to a given DDT at a randomly selected location

Usage

```
reattach_point(tree_kept, c, c_order = 1, theta = 0, alpha = 0)
```

Arguments

tree_kept	the tree to be attached to
с	hyparameter of divergence function a(t)
c_order	equals 1 (default) or 2 to choose divergence function $a(t) = c/(1-t)orc/(1-t)^2$.
alpha, theta	hyparameter of branching probability $a(t)$ Gamma(m-alpha) / Gamma(m+1+theta) For DDT, alpha = theta = 0. For general multifurcating tree from a Pitman-Yor process, specify positive values to alpha and theta. It is, however, recommended using alpha = theta = 0 in inference because multifurcating trees have not been tested rigorously.

Value

a list of the following objects:

- div_time a numeric value of newly sampled divergence time. Between 0 and 1.
- root_node a character. Label of the root node of tree_kept.
- root_child a character. Label of the child node of the root of tree_kept.
- div_dist_to_root_child a N-vector with integer entries from 1, ..., K. The initial values for individual class assignments.

See Also

Other sample trees: attach_subtree(), random_detach_subtree()

result_diet_1000iters Result of fitting DDT-LCM to a semi-synthetic data example

Description

This is a "ddtlcm" object obtained from running ddtlcm_fit to a semi-synthetic dataset with 1000 posterior samples (for the sake of time). See ddtlcm_fit for description of the object.

Usage

```
data(result_diet_1000iters)
```

Format

A list with 8 elements

sample_class_assignment

Sample individual class assignments Z_i , i = 1, ..., N

Description

Sample individual class assignments Z_i, i = 1, ..., N

Usage

```
sample_class_assignment(
   data,
   leaf_data,
   a_pg,
   auxiliary_mat,
   class_probability
)
```

data	a N by J binary matrix, where the i,j-th element is the response of item j for individual i	
leaf_data	a K by J matrix of $logit(theta_{kj})$	
a_pg	a N by J matrix of hyperparameters of the generalized logistic distribution	
auxiliary_mat	a N by J matrix of truncated normal variables from previous iteration	
class_probability		
	a length K vector, where the k-th element is the probability of assigning an individual to class k. It does not have to sum up to 1	

a vector of length N, where the i-th element is the class assignment of individual i

<pre>sample_c_one</pre>	Sample divergence function parameter c for $a(t) = c / (1-t)$ through
	Gibbs sampler

Description

Sample divergence function parameter c for a(t) = c / (1-t) through Gibbs sampler

Usage

sample_c_one(shape0, rate0, tree_structure)

Arguments

shape0	shape of the Inverse-Gamma prior
rate0	rate of the Inverse-Gamma prior
tree_structure	a data.frame containing the divergence times and number of data points to the left and right branches of internal nodes on the tree

Value

a numeric value of the newly sampled c

<pre>sample_c_two</pre>	Sample divergence function parameter c for $a(t) = c / (1-t)^2$ through
	Gibbs sampler

Description

Sample divergence function parameter c for $a(t) = c / (1-t)^2$ through Gibbs sampler

Usage

```
sample_c_two(shape0, rate0, tree_structure)
```

shape0	shape of the Inverse-Gamma prior
rate0	rate of the Inverse-Gamma prior
tree_structure	a data.frame containing the divergence times and number of data points to the
	left and right branches of internal nodes on the tree

a numeric value of the newly sampled c

```
sample_leaf_locations_pg
```

Sample the leaf locations and Polya-Gamma auxilliary variables

Description

Sample the leaf locations and Polya-Gamma auxilliary variables

Usage

```
sample_leaf_locations_pg(
    item_membership_list,
    dist_mat_old,
    Sigma_by_group,
    pg_mat,
    a_pg,
    auxiliary_mat,
    auxiliary_mat_range,
    class_assignments
)
```

Arguments

item_membership_list

	a vector of G elements, each indicating the number of items in this group	
dist_mat_old	a list of leaf covariance matrix from the previous iteration. The list has length	
	G, the number of item groups	
Sigma_by_group	a vector of length G, each denoting the variance of the brownian motion	
pg_mat	a K by J matrix of PG variables from the previous iteration	
a_pg	a N by J matrix of hyperparameters of the generalized logistic distribution	
auxiliary_mat	a N by J matrix of truncated normal variables from previous iteration	
auxiliary_mat_range		
	a list of two named elements: lb and ub. Each is an N by J matrix of the	
	lower/upper bounds of the truncated normal variables.	
class_assignments		
	an integer vector of length N for the individual class assignments. Each element	
	takes value in 1,, K.	

Value

a named list of three matrices: the newly sampled leaf parameters, the Polya-gamma random variables, and the auxiliary truncated normal variables

sample_sigmasq

Description

Sample item group-specific variances through Gibbs sampler

Usage

```
sample_sigmasq(shape0, rate0, dist_mat, item_membership_list, locations)
```

Arguments

shape0	a vector of G elements, each being the shape of the Inverse-Gamma prior of group g	
rate0	a vector of G elements, each being the rate of the Inverse-Gamma prior of group g	
dist_mat	a list, containing the KxK tree-structured matrix of leaf nodes, where K is the number of leaves / latent classes, and SVD components	
item_membership_list		
	a vector of G elements, each indicating the number of items in this group	
locations	a KxJ matrix of leaf parameters	

Value

a numeric vector of G elements, each being the newly sampled variance of the latent location of this group

<pre>sample_tree_topology</pre>	Sample a new tree topology using Metropolis-Hastings through ran-
	domly detaching and re-attaching subtrees

Description

Sample a new tree topology using Metropolis-Hastings through randomly detaching and re-attaching subtrees

simulate_DDT_tree

Usage

```
sample_tree_topology(
   tree_phylo4d_old,
   Sigma_by_group,
   item_membership_list,
   c,
   c_order = 1,
   tree_structure_old = NULL,
   dist_mat_old = NULL
)
```

Arguments

```
tree_phylo4d_old
                  a phylo4d object of tree from the previous iteration
Sigma_by_group a vector of diffusion variances of G groups from the previous iteration
item_membership_list
                  a vector of G elements, each indicating the number of items in this group
                  hyparameter of divergence function a(t)
с
c order
                  equals 1 (default) or 2 to choose divergence function
tree_structure_old
                  a data.frame of tree structure from the previous iteration. Each row contains
                  information of an internal node, including divergence times, number of data
                  points traveling through the left and right branches
                  a list of leaf covariance matrix from the previous iteration. The list has length
dist_mat_old
                  G, the number of item groups
```

Value

a numeric vector of G elements, each being the newly sampled variance of the latent location of this group

<pre>simulate_DDT_tree</pre>	Simulate a tree from a DDT process.	Only the tree topology and
	branch lengths are simulated, without n	ode parameters.

Description

Simulate a tree from a DDT process. Only the tree topology and branch lengths are simulated, without node parameters.

Usage

```
simulate_DDT_tree(K, c, c_order = 1, alpha = 0, theta = 0)
```

Arguments

К	number of leaves (classes) on the tree
С	hyparameter of divergence function a(t)
c_order	equals 1 (default) or 2 to choose divergence function $a(t) = c/(1-t)$ or $c/(1-t)^2$.
alpha, theta	hyparameter of branching probability $a(t)$ Gamma(m-alpha) / Gamma(m+1+theta) For DDT, alpha = theta = 0. For general multifurcating tree from a Pitman-Yor process, specify positive values to alpha and theta. It is, however, recommended using alpha = theta = 0 in inference because multifurcating trees have not been tested rigorously.

Value

A class "phylo" tree with K leaves. The leaf nodes are labeled "v1", ..., "vK", root node "u1", and internal nodes "u2", ..., "uK". Note that this tree does not contain any node parameters.

References

Knowles, D. A., & Ghahramani, Z. (2014). Pitman yor diffusion trees for bayesian hierarchical clustering. IEEE transactions on pattern analysis and machine intelligence, 37(2), 271-289.

See Also

Other simulate DDT-LCM data: simulate_lcm_given_tree(), simulate_lcm_response(), simulate_parameter_on_tr

Examples

```
K <- 6
c <- 5
c_order <- 1
tree1 <- simulate_DDT_tree(K, c, c_order)
tree2 <- simulate_DDT_tree(K, c, c_order, alpha = 0.4, theta = 0.1)
tree3 <- simulate_DDT_tree(K, c, c_order, alpha = 0.8, theta = 0.1)</pre>
```

simulate_lcm_given_tree

Simulate multivariate binary responses from a latent class model given a tree

Description

Generate multivariate binary responses from the following process: For individual i = 1, ..., N, $Z_i Categorical_K(prior_class_probability)$ For item j = 1, ..., J, $Y_{ij}|Z_i = k Binomial(class_item_probability_{kj})$

Usage

```
simulate_lcm_given_tree(
  tree_phylo,
  N,
  class_probability = 1,
  item_membership_list,
  Sigma_by_group = NULL,
  root_node_location = 0,
  seed_parameter = 1,
  seed_response = 1
)
```

Arguments

tree_phylo	a "phylo" tree with K leaves	
Ν	number of individuals	
class_probability		
	a length K vector, where the k-th element is the probability of assigning an individual to class k. It does not have to sum up to 1	
item_membership_list		
	a list of G elements, where the g-th element contains the column indices of the observed data matrix corresponding to items in major group g	
Sigma_by_group	a length-G vector for the posterior mean group-specific diffusion variances.	
root_node_location		
	the coordinate of the root node parameter. By default, the node parameter initi- ates at the origin so takes value 0. If a value, then the value will be repeated into a length J vector. If a vector, it must be of length J.	
seed_parameter	an integer random seed to generate parameters given the tree	
seed_response	an integer random seed to generate multivariate binary observations from LCM	

Value

a named list of the following elements:

tree_with_parameter a "phylo4d" tree with K leaves.

- response_prob a K by J matrix, where the k,j-th element is the response probability of item j for individuals in class k
- response_matrix a K by J matrix with entries between 0 and 1 for the item response probabilities.
- class_probability a K-vector with entries between 0 and 1 for the class probabilities. Entries should be nonzero and sum up to 1, or otherwise will be normalized
- class_assignments a N-vector with integer entries from 1, ..., K. The initial values for individual class assignments.
- Sigma_by_group a G-vector greater than 0. The initial values for the group-specific diffusion variances.
- c a value greater than 0. The initial values for the group-specific diffusion variances.

item_membership_list same as input

See Also

Other simulate DDT-LCM data: simulate_DDT_tree(), simulate_lcm_response(), simulate_parameter_on_tree()

Examples

simulate_lcm_response Simulate multivariate binary responses from a latent class model

Description

Generate multivariate binary responses from the following process: For individual i = 1, ..., N, draw Z_i from Categorical distribution with prior class probability (length K). For item j = 1, ..., J, given $Z_i = k$, draw Y_{ij} from Binomial with class-item probability

Usage

```
simulate_lcm_response(N, response_prob, class_probability)
```

Arguments

Ν	number of individuals	
response_prob	a K by J matrix, where the k,j-th element is the response probability of item j for individuals in class k	
class_probability		
	a length K vector, where the k-th element is the probability of assigning an individual to class k. It does not have to sum up to 1	

Value

a named list of the following elements:

response_matrix a K by J matrix with entries between 0 and 1 for the item response probabilities.

class_probability a K-vector with entries between 0 and 1 for the class probabilities. Entries should be nonzero and sum up to 1, or otherwise will be normalized

See Also

Other simulate DDT-LCM data: simulate_DDT_tree(), simulate_lcm_given_tree(), simulate_parameter_on_tree()

Examples

```
# number of latent classes
K <- 6
# number of items
J <- 78
response_prob <- matrix(runif(K*J), nrow = K)
class_probability <- rep(1/K, K)
# number of individuals
N <- 100
response_matrix <- simulate_lcm_response(N, response_prob, class_probability)</pre>
```

simulate_parameter_on_tree

Simulate node parameters along a given tree.

Description

Simulate node parameters along a given tree.

Usage

```
simulate_parameter_on_tree(
  tree_phylo,
  Sigma_by_group,
  item_membership_list,
  root_node_location = 0
)
```

tree_phylo	a "phylo" object containing the tree topology and branch lengths	
Sigma_by_group	a G-vector greater than 0. The initial values for the group-specific diffusion variances	
item_membership_list		
	a list of G elements, where the g-th element contains the indices of items in	
	major group g	
root_node_location		
	the coordinate of the root node parameter. By default, the node parameter initi-	
	ates at the origin so takes value 0. If a value, then the value will be repeated into	
	a length J vector. If a vector, it must be of length J.	

A class "phylo4d" tree with K leaves with node parameters. The leaf nodes are labeled "v1", ..., "vK", root node "u1", and internal nodes "u2", ..., "uK".

See Also

Other simulate DDT-LCM data: simulate_DDT_tree(), simulate_lcm_given_tree(), simulate_lcm_response()

Examples

```
library(ape)
tr_txt <- "(((v1:0.25, v2:0.25):0.65, v3:0.9):0.1);"
tree <- read.tree(text = tr_txt)</pre>
tree$node.label <- paste0("u", 1:Nnode(tree))</pre>
plot(tree, show.node.label = TRUE)
# create a list of item membership indices of 7 major groups
item_membership_list <- list()</pre>
num_items_per_group <- c(rep(10, 5), 15, 15)</pre>
G <- length(num_items_per_group)</pre>
j <- 0
for (g in 1:G) {
  item_membership_list[[g]] <- (j+1):(j+num_items_per_group[g])</pre>
  j <- j+num_items_per_group[g]</pre>
}
# variance of logit response probabilities of items in each group
Sigma_by_group <- c(rep(0.6**2, 5), rep(2**2, 2)) #rep(1**2, G)
set.seed(50)
tree_with_parameter <- simulate_parameter_on_tree(tree, Sigma_by_group, item_membership_list)</pre>
```

summary.ddt_lcm Summarize the output of a ddt_lcm model

Description

Summarize the output of a ddt_lcm model

Usage

```
## S3 method for class 'ddt_lcm'
summary(object, burnin = 3000, relabel = TRUE, be_quiet = FALSE, ...)
```

object	a "ddt_lcm" object
burnin	number of samples to discard from the posterior chain as burn-ins. Default is 3000.
relabel	If TRUE, perform post-hoc label switching using the Equivalence Classes Representatives (ECR) method to solve non-identifiability issue in mixture models. If FALSE, no label switching algorithm will be performed.

be_quiet	If TRUE, do not print information during summarization. If FALSE, print label switching information and model summary.
	Further arguments passed to each method

an object of class "summary.ddt_lcm"; a list containing the following elements:

tree_map the MAP tree of "phylo4d" class

tree_Sigma the tree-structured covariance matrix associated with tree_map

response_probs_summary, class_probs_summary, Sigma_summary, c_summary each is a matrix with 7 columns of summary statistics of posterior chains, including means, standard deviation, and five quantiles. In particular, for the summary of item response probabilities, each row name theta_k,g,j represents the response probability of a person in class k to consume item j in group g

max_llk_full a numeric value of the maximum log-likelihood of the full model (tree and LCM)

max_llk_lcm a numeric value of the maximum log-likelihood of the LCM only

Z_samples a N x total_iters integer matrix of posterior samples of individual class assignments

Sigma_by_group_samples a G x total_iters matrix of posterior samples of diffusion variances

c_samples a total_iters vector of posterior samples of divergence function hyperparameter

loglikelihood a total_iters vector of log-likelihoods of the full model

loglikelihood_lcm a total_iters vector of log-likelihoods of the LCM model only

setting a list of model setup information. See ddtlcm_fit

controls a list of model controls. See ddtlcm_fit

data the input data matrix

See Also

Other ddt_lcm results: print.ddt_lcm(), print.summary.ddt_lcm()

Examples

load the result of fitting semi-synthetic data with 1000 (for the sake of time) posterior samples
data(result_diet_1000iters)
summarized_result <- summary(result_diet_1000iters, burnin = 500, relabel = TRUE, be_quiet = TRUE)</pre>

WAIC

Description

Compute the Widely Applicable Information Criterion (WAIC), also known as the Widely Available Information Criterion or the Watanable-Akaike, of Watanabe (2010).

Usage

WAIC(llk_matrix)

Arguments

11k_matrix a N x S matrix, where N is the number of individuals and S is the number of posterior samples

Value

a named list

Index

* datasets data_synthetic, 10 parameter_diet, 27 result_diet_1000iters, 39 * ddt lcm results print.ddt_lcm, 34 print.summary.ddt_lcm, 34 summary.ddt_lcm, 48 * divergence functions a_t_one, 7 a_t_two.8 * initialization functions initialize, 16 initialize_hclust, 18 initialize_poLCA, 19 * likelihood functions logllk_ddt, 21 logllk_ddt_lcm, 22 logllk_div_time_one, 23 logllk_div_time_two, 24 logllk_lcm, 24 logllk_location, 25 logllk_tree_topology, 26 * sample trees attach_subtree, 6 random_detach_subtree, 37 reattach_point, 38 * simulate DDT-LCM data simulate_DDT_tree, 43 simulate_lcm_given_tree, 44 simulate_lcm_response, 46 simulate_parameter_on_tree, 47 A_t_inv_one (a_t_one), 7 A_t_inv_two (a_t_two), 8 a_t_one, 7, 8 a_t_one_cum (a_t_one), 7 a_t_two, 7, 8 a_t_two_cum (a_t_two), 8 add_leaf_branch, 3

add_multichotomous_tip, 4 add_one_sample, 4 add_root, 5 attach_subtree, 6, 37, 38 compute_IC, 9 create_leaf_cor_matrix, 9 data_synthetic, 10 ddtlcm_fit, 11, 39, 49 ddtlcm_fit(), 17 div_time, 13 draw_mnorm, 14 exp_normalize, 15 expit, 14 H_n, 15 initialize. 16. 19 initialize_hclust, 17, 18, 19 initialize_poLCA, *17*, *19*, 19 initialize_randomLCM, 19 J_n, 20 log_expit, 27 logit, 20 logllk_ddt, 21, 23-26 logllk_ddt_lcm, 22, 22, 23-26 logllk_div_time_one, 22, 23, 23, 24-26 logllk_div_time_two, 22, 23, 24, 25, 26 logllk_lcm, 22-24, 24, 26 logllk_location, 22-25, 25, 26 logllk_tree_topology, 22-26, 26 parameter_diet, 27 plot.ddt_lcm, 28 plot.summary.ddt_lcm, 29 plot_tree_with_barplot, 30

plot_tree_with_heatmap, 31

INDEX

predict.ddt_lcm, 32
predict.summary.ddt_lcm, 33
print.ddt_lcm, 34, 35, 49
print.summary.ddt_lcm, 34, 34, 49
proposal_log_prob, 35

quiet, 36

random_detach_subtree, 6, 37, 38
reattach_point, 6, 37, 38
result_diet_1000iters, 39

WAIC, 50

52