Package ‘dcTensor’

May 11, 2024
Type Package

Title Discrete Matrix/Tensor Decomposition
Version 1.3.0

Depends R (>=3.4.0)

Imports methods, MASS, fields, rTensor, nnTensor
Suggests knitr, rmarkdown, testthat

Description Semi-Binary and Semi-Ternary Matrix Decomposition are performed based on Non-
negative Matrix Factorization (NMF) and Singular Value Decomposition (SVD). For the de-
tails of the methods, see the reference sec-
tion of GitHub README.md <https://github.com/rikenbit/dcTensor>.

License MIT + file LICENSE

URL https://github.com/rikenbit/dcTensor
VignetteBuilder knitr

NeedsCompilation no

Author Koki Tsuyuzaki [aut, cre]

Maintainer Koki Tsuyuzaki <k.t.the-answer@hotmail.co.jp>
Repository CRAN

Date/Publication 2024-05-11 13:53:33 UTC

R topics documented:

dSVD . . e

https://github.com/rikenbit/dcTensor
https://github.com/rikenbit/dcTensor

2 dcTensor-package

Index 20

dcTensor-package Discrete Matrix/Tensor Decomposition

Description

Semi-Binary and Semi-Ternary Matrix Decomposition are performed based on Non-negative Ma-
trix Factorization (NMF) and Singular Value Decomposition (SVD). For the details of the methods,
see the reference section of GitHub README.md <https://github.com/rikenbit/dcTensor>.

Details
The DESCRIPTION file:
Package: dcTensor
Type: Package
Title: Discrete Matrix/Tensor Decomposition
Version: 1.3.0
Authors@R: c(person("Koki", "Tsuyuzaki", role = c("aut", "cre"), email = "k.t.the-answer @hotmail.co.jp"))
Depends: R (>=3.4.0)
Imports: methods, MASS, fields, rTensor, nnTensor
Suggests: knitr, rmarkdown, testthat
Description: Semi-Binary and Semi-Ternary Matrix Decomposition are performed based on Non-negative Matrix Facto
License: MIT + file LICENSE
URL: https://github.com/rikenbit/dcTensor
VignetteBuilder: knitr
Author: Koki Tsuyuzaki [aut, cre]
Maintainer: Koki Tsuyuzaki <k.t.the-answer @hotmail.co.jp>

Index of help topics:

dNMF Discretized Non-negative Matrix Factorization
Algorithms (dNMF)

dNMTF Discretized Non-negative Matrix
Tri-Factorization Algorithms (dNMTF)

dNTD Discretized Non-negative Tucker Decomposition
Algorithms (dNTD)

dNTF Discretized Non-negative CP Decomposition
Algorithms (dNTF)

dPLS Discretized Partial Least Squares (dPLS)

dsvD Discretized Singular Value Decomposition (dSVD)

dcTensor-package Discrete Matrix/Tensor Decomposition

djNMF Discretized Joint Non-negative Matrix
Factorization Algorithms (djNMF)

dsiNMF Discretized Simultaneous Non-negative Matrix

Factorization Algorithms (dsiNMF)

diNMF 3

toyModel Toy model data for using dNMF, dSVD, dsiNMF,
djNMF, dPLS, dNTF, and dNTD

Author(s)

NA
Maintainer: NA

References

Z. Zhang, T. Li, C. Ding and X. Zhang, (2007). Binary Matrix Factorization with Applications,
Seventh IEEE International Conference on Data Mining (ICDM 2007), 391-400

See Also

toyModel,dNMF,dSVD

Examples

1s("package:dcTensor")

djNMF Discretized Joint Non-negative Matrix Factorization Algorithms
(diNMF)

Description

This function is the discretized version of nnTensor::;j)NMF. The input data objects are assumed
to be a list containing multiple non-negative matrices (X_1, X_2, ..., X_K), and decomposed to
multiple matrix products (W + V_1) H_1’, (W + V_2) H_2’, ..., (W + V_K) H_K’), where W is
common across all the data matrices but each V_k or H_k (k=1..K) is specific in each X_k. Unlike
regular JNMF, in djNMF, W, V_k, and H_k are estimated by adding binary regularization so that the
values are 0 or 1 as much as possible. Likewise, W, V_k, and H_k are estimated by adding ternary
regularization so that the values are 0, 1, or 2 as much as possible.

Usage

djNMF (X, M=NULL, pseudocount=.Machine$double.eps,

initW=NULL, initV=NULL, initH=NULL,

fixW=FALSE, fixV=FALSE, fixH=FALSE,
Bin_W=1e-10@, Bin_V=rep(1e-10, length=1length(X)), Bin_H=rep(l1e-10, length=length(X)),
Ter_W=1e-10, Ter_V=rep(l1e-10, length=length(X)), Ter_H=rep(l1e-10, length=length(X)),
L1_W=1e-10, L1_V=rep(le-10, length=length(X)), L1_H=rep(l1e-10, length=length(X)),
L2_W=1e-10, L2_V=rep(le-10, length=length(X)), L2_H=rep(1e-10, length=length(X)),

J = 3, w=NULL, algorithm = c("Frobenius”, "KL", "IS", "PLTF"), p=1,

thr = 1e-10, num.iter = 100,

viz = FALSE, figdir = NULL, verbose = FALSE)

Arguments

X
M

pseudocount

initW

initV

initH

fixW
fixV

fixH

Bin_W
Bin_V

Bin_H

Ter_W
Ter_V

Ter_H

L2_W
L2_v

L2_H

diNMF

A list containing input matrices (X_k, <N*Mk>, k=1..K).

A list containing the mask matrices (X_k, <N*Mk>, k=1..K). If the input matrix
has missing values, specify the element as 0 (otherwise 1).

The pseudo count to avoid zero division, when the element is zero (Default:
Machine Epsilon).

The initial values of factor matrix W, which has N-rows and J-columns (Default:
NULL).

A list containing the initial values of multiple factor matrices (V_k, <N*J>,
k=1..K, Default: NULL).

A list containing the initial values of multiple factor matrices (H_k, <Mk*J>,
k=1..K, Default: NULL).

Whether the factor matrix W is updated in each iteration step (Default: FALSE).

Whether the factor matrices Vk are updated in each iteration step (Default:
FALSE).

Whether the factor matrices Hk are updated in each iteration step (Default:
FALSE).

Paramter for binary (0,1) regularitation (Default: 1e-10).

A K-length vector containing the paramters for binary (0,1) regularitation (De-
fault: rep(le-10, length=Iength(dim(X)))).

A K-length vector containing the paramters for binary (0,1) regularitation (De-
fault: rep(le-10, length=length(dim(X)))).

Paramter for terary (0,1,2) regularitation (Default: le-10).

A K-length vector containing the paramters for terary (0,1,2) regularitation (De-
fault: rep(le-10, length=length(dim(X)))).

A K-length vector containing the paramters for terary (0,1,2) regularitation (De-
fault: rep(le-10, length=length(dim(X)))).

Paramter for L1 regularitation (Default: le-10). This also works as small posi-
tive constant to prevent division by zero, so should be set as 0.

A K-length vector containing the paramters for L1 regularitation (Default: rep(le-
10, length=length(dim(X)))). This also works as small positive constant to pre-
vent division by zero, so should be set as 0.

A K-length vector containing the paramters for L1 regularitation (Default: rep(le-
10, length=length(dim(X)))). This also works as small positive constant to pre-
vent division by zero, so should be set as 0.

Paramter for L2 regularitation (Default: 1e-10).

A K-length vector containing the paramters for L2 regularitation (Default: rep(1e-
10, length=length(dim(X)))).

A K-length vector containing the paramters for L2 regularitation (Default: rep(le-
10, length=length(dim(X)))).

Number of low-dimension (J < N, Mk).

diNMF 5

w Weight vector (Default: NULL)

algorithm Divergence between X and X_bar. "Frobenius", "KL", and "IS" are available
(Default: "KL").

p The parameter of Probabilistic Latent Tensor Factorization (p=0: Frobenius,
p=1L: KL, p=2: IS)

thr When error change rate is lower than thr, the iteration is terminated (Default:
1E-10).

num.iter The number of interation step (Default: 100).

viz If viz == TRUE, internal reconstructed matrix can be visualized.

figdir the directory for saving the figure, when viz == TRUE.

verbose If verbose == TRUE, Error change rate is generated in console windos.

Value

W : A matrix which has N-rows and J-columns (J < N, Mk). V : A list which has multiple elements
containing N-rows and J-columns (J < N, Mk). H : A list which has multiple elements containing
Mk-rows and J-columns matrix (J < N, Mk). RecError : The reconstruction error between data
matrix and reconstructed matrix from W and H. TrainRecError : The reconstruction error calculated
by training set (observed values specified by M). TestRecError : The reconstruction error calculated
by test set (missing values specified by M). RelChange : The relative change of the error.

Author(s)

Koki Tsuyuzaki

References

Liviu Badea, (2008) Extracting Gene Expression Profiles Common to Colon and Pancreatic Ade-
nocarcinoma using Simultaneous nonnegative matrix factorization. Pacific Symposium on Biocom-
puting 13:279-290

Shihua Zhang, et al. (2012) Discovery of multi-dimensional modules by integrative analysis of
cancer genomic data. Nucleic Acids Research 40(19), 9379-9391

Zi Yang, et al. (2016) A non-negative matrix factorization method for detecting modules in hetero-
geneous omics multi-modal data, Bioinformatics 32(1), 1-8

Y. Kenan Yilmaz et al., (2010) Probabilistic Latent Tensor Factorization, International Conference
on Latent Variable Analysis and Signal Separation 346-353

N. Fujita et al., (2018) Biomarker discovery by integrated joint non-negative matrix factorization
and pathway signature analyses, Scientific Report

Examples

matdata <- toyModel(model = "dsiNMF_Hard")
out <- djNMF(matdata, J=2, num.iter=2)

6 dNMF
dNMF Discretized Non-negative Matrix Factorization Algorithms (ANMF)
Description
This function is the discretized version of nnTensor::NMF. The input data X is assumed to be a non-
negative matrix and decomposed to a matrix product U V’. Unlike regular NMF, in dANMF, U and
V are estimated by adding binary regularization so that the values are O or 1 as much as possible.
Likewise, U and V are estimated by adding ternary regularization so that the values are 0, 1, or 2 as
much as possible.
Usage
dNMF (X, M=NULL, pseudocount=.Machine$double.eps,
initU=NULL, initV=NULL, fixU=FALSE, fixV=FALSE,
Bin_U=1e-10, Bin_V=1e-10, Ter_U=1e-10, Ter_V=1e-10,
L1_U=1e-10, L1_V=le-10, L2_U=1e-10, L2_V=1e-10, J = 3,
algorithm = c("Frobenius”, "KL", "IS", "Beta"), Beta = 2,
thr = 1e-10, num.iter = 100,
viz = FALSE, figdir = NULL, verbose = FALSE)
Arguments
X The input matrix which has N-rows and M-columns.
M The mask matrix which has N-rows and M-columns. If the input matrix has
missing values, specify the element as O (otherwise 1).
pseudocount The pseudo count to avoid zero division, when the element is zero (Default:
Machine Epsilon).
initU The initial values of factor matrix U, which has N-rows and J-columns (Default:
NULL).
initVv The initial values of factor matrix V, which has M-rows and J-columns (Default:
NULL).
fixu Whether the factor matrix U is updated in each iteration step (Default: FALSE).
fixv Whether the factor matrix V is updated in each iteration step (Default: FALSE).
Bin_U Paramter for binary (0,1) regularitation (Default: 1e-10).
Bin_V Paramter for binary (0,1) regularitation (Default: 1e-10).
Ter_U Paramter for terary (0,1,2) regularitation (Default: le-10).
Ter_V Paramter for terary (0,1,2) regularitation (Default: le-10).
L1_U Paramter for L1 regularitation (Default: le-10). This also works as small posi-
tive constant to prevent division by zero, so should be set as O.
L1_v Paramter for L1 regularitation (Default: le-10). This also works as small posi-
tive constant to prevent division by zero, so should be set as 0.
L2_u Paramter for L2 regularitation (Default: 1e-10).

dNMTF

L2_V
J
algorithm

Beta
thr

num.iter
viz
figdir

verbose

Value

Paramter for L2 regularitation (Default: le-10).
The number of low-dimension (J < {N, M}, Default: 3)

dNMF algorithms. "Frobenius", "KL", "IS", and "Beta" are available (Default:
"Frobenius").

The parameter of Beta-divergence.

When error change rate is lower than thr, the iteration is terminated (Default:
1E-10).

The number of interation step (Default: 100).
If viz == TRUE, internal reconstructed matrix can be visualized.
The directory for saving the figure, when viz == TRUE.

If verbose == TRUE, Error change rate is generated in console window.

U : A matrix which has N-rows and J-columns (J < {N, M}). V : A matrix which has M-rows and
J-columns (J < {N, M}). RecError : The reconstruction error between data tensor and reconstructed
tensor from U and V. TrainRecError : The reconstruction error calculated by training set (observed
values specified by M). TestRecError : The reconstruction error calculated by test set (missing
values specified by M). RelChange : The relative change of the error.

Author(s)

Koki Tsuyuzaki

References

Z. Zhang, T. Li, C. Ding and X. Zhang, (2007). Binary Matrix Factorization with Applications,
Seventh IEEE International Conference on Data Mining (ICDM 2007), 391-400

Examples

Test data

matdata <- toyModel(model = "dNMF")

Simple usage

out <- dNMF(matdata, J=5)

dNMTF

Discretized Non-negative Matrix Tri-Factorization Algorithms (dN-
MTF)

Description

This function is the discretized version of nnTensor::NMTF. The input data is assumed to be non-
negative matrix. AINMTF decompose the matrix to three low-dimensional factor matices.

8 dNMTF
Usage
dNMTF (X, M=NULL, pseudocount=.Machine$double.eps,
initU=NULL, initS=NULL, initV=NULL,
fixU=FALSE, fixS=FALSE, fixV=FALSE,
Bin_U=1e-10, Bin_S=1e-10, Bin_V=1e-10,
Ter_U=1e-10, Ter_S=1e-10, Ter_V=1e-10,
L1_U=1e-10, L1_S=1e-10, L1_V=1e-10,
L2_U=1e-10, L2_S=1e-10, L2_V=1e-10,
rank = c(3, 4),
algorithm = c("Frobenius”, "KL", "IS", "Beta"),
Beta = 2, root = FALSE, thr = 1e-10, num.iter = 100,
viz = FALSE, figdir = NULL, verbose = FALSE)
Arguments
X The input matrix which has N-rows and M-columns.
M The mask matrix which has N-rows and M-columns. If the input matrix has
missing values, specify the elements as O (otherwise 1).
pseudocount The pseudo count to avoid zero division, when the element is zero (Default:
Machine Epsilon).
initU The initial values of factor matrix U, which has N-rows and J1-columns (De-
fault: NULL).
initS The initial values of factor matrix S, which has J1-rows and J2-columns (De-
fault: NULL).
initVv The initial values of factor matrix V, which has M-rows and J2-columns (De-
fault: NULL).
fixu Whether the factor matrix U is updated in each iteration step (Default: FALSE).
fixS Whether the factor matrix S is updated in each iteration step (Default: FALSE).
fixv Whether the factor matrix V is updated in each iteration step (Default: FALSE).
Bin_U Paramter for binary (0,1) regularitation (Default: 1e-10).
Bin_S Paramter for binary (0,1) regularitation (Default: 1e-10).
Bin_V Paramter for binary (0,1) regularitation (Default: le-10).
Ter_U Paramter for terary (0,1,2) regularitation (Default: le-10).
Ter_S Paramter for terary (0,1,2) regularitation (Default: le-10).
Ter_V Paramter for terary (0,1,2) regularitation (Default: le-10).
L1_U Paramter for L1 regularitation (Default: 1e-10).
L1_S Paramter for L1 regularitation (Default: 1e-10).
L1_V Paramter for L1 regularitation (Default: 1e-10).
L2_U Paramter for L2 regularitation (Default: 1e-10).
L2_S Paramter for L2 regularitation (Default: 1e-10).
L2_v Paramter for L2 regularitation (Default: 1e-10).
rank The number of low-dimension (J1 (< N) and J2 (< M)) (Default: c(3,4)).

dNMTF

algorithm

Beta
root

thr
num.iter
viz
figdir

verbose

Value

dNMTF algorithms. "Frobenius", "KL", "IS", and "Beta" are available (Default:
"Frobenius").

The parameter of Beta-divergence (Default: 2, which means "Frobenius").
Whether square root is calculed in each iteration (Default: FALSE).

When error change rate is lower than thr, the iteration is terminated (Default:
1E-10).

The number of interation step (Default: 100).
If viz == TRUE, internal reconstructed matrix can be visualized.
The directory for saving the figure, when viz == TRUE.

If verbose == TRUE, Error change rate is generated in console window.

U : A matrix which has N-rows and J1-columns (JI < N). S : A matrix which has J1-rows and
J2-columns. V : A matrix which has M-rows and J2-columns (J2 < M). rank : The number of low-
dimension (J1 (< N) and J2 (< M)). RecError : The reconstruction error between data tensor and
reconstructed tensor from U and V. TrainRecError : The reconstruction error calculated by training
set (observed values specified by M). TestRecError : The reconstruction error calculated by test set
(missing values specified by M). RelChange : The relative change of the error. algorithm: algorithm

specified.

Author(s)

Koki Tsuyuzaki

References

Fast Optimization of Non-Negative Matrix Tri-Factorization: Supporting Information, Andrej Co-
par, et. al., PLOS ONE, 14(6), €0217994, 2019

Co-clustering by Block Value Decomposition, Bo Long et al., SIGKDD’05, 2005

Orthogonal Nonnegative Matrix Tri-Factorizations for Clustering, Chris Ding et. al., 12th ACM

SIGKDD, 2006

Examples

if(interactive()){

Test data

matdata <- toyModel(model = "dNMF")

Simple usage
out <- dNMTF(matdata, rank=c(4,4))

3

10 dNTD

dNTD Discretized Non-negative Tucker Decomposition Algorithms (ANTD)

Description

This function is the discretized version of nnTensor::NTD. The input data X is assumed to be a non-
negative tensor and decomposed to a product of a dense core tensor (S) and low-dimensional factor
matrices (A_k, k=1..K). Unlike regular NTD, in dNTD, each A_k is estimated by adding binary
regularization so that the values are O or 1 as much as possible. Likewise, each A_k are estimated
by adding ternary regularization so that the values are 0, 1, or 2 as much as possible.

Usage

dNTD(X, M=NULL, pseudocount=.Machine$double.eps,
initS=NULL, initA=NULL, fixS=FALSE, fixA=FALSE,
Bin_A=rep(le-10, length=length(dim(X))),
Ter_A=rep(l1e-10, length=length(dim(X))),
L1_A=rep(1e-10, length=length(dim(X))),
L2_A=rep(1e-10, length=length(dim(X))),
rank = rep(3, length=length(dim(X))),
modes = seq_along(dim(X)),
algorithm = c("Frobenius”, "KL", "IS", "Beta"),
init = c("dNMF”, "Random"),
Beta = 2, thr = 1e-10, num.iter = 100,
viz = FALSE,
figdir = NULL, verbose = FALSE)

Arguments

X K-order input tensor which has I_1, I_2, ..., and I_K dimensions.

M K-order mask tensor which has I_1, I_2, ..., and I_K dimensions. If the mask
tensor has missing values, specify the element as 0 (otherwise 1).

pseudocount The pseudo count to avoid zero division, when the element is zero (Default:
Machine Epsilon).

initS The initial values of core tensor which has I 1, I 2, ..., and I_K dimensions
(Default: NULL).

initA A list containing the initial values of K factor matrices (A_k, <Ik*Jk>, k=1..K,
Default: NULL).

fixS Whether the core tensor S is updated in each iteration step (Default: FALSE).

fixA Whether the factor matrices Ak are updated in each iteration step (Default:
FALSE).

Bin_A A K-length vector containing the paramters for binary (0,1) regularitation (De-
fault: rep(le-10, length=length(dim(X)))).

Ter_A A K-length vector containing the paramters for terary (0,1,2) regularitation (De-

fault: rep(le-10, length=length(dim(X)))).

dNTD 11

L1_A A K-length vector containing the paramters for L1 regularitation (Default: rep(le-
10, length=length(dim(X)))). This also works as small positive constant to pre-
vent division by zero, so should be set as 0.

L2_A A K-length vector containing the paramters for L2 regularitation (Default: rep(le-
10, length=length(dim(X)))).

rank The number of low-dimension in each mode (Default: 3 for each mode).

modes The vector of the modes on which to perform the decomposition (Default: 1:K
<all modes>).

algorithm dNTD algorithms. "Frobenius", "KL", "IS", and "Beta" are available (Default:
"Frobenius").

init The initialization algorithms. "NMF", "ALS", and "Random" are available (De-
fault: "NMF").

Beta The parameter of Beta-divergence.

thr When error change rate is lower than thrl, the iteration is terminated (Default:
1E-10).

num.iter The number of interation step (Default: 100).

viz If viz == TRUE, internal reconstructed tensor can be visualized.

figdir the directory for saving the figure, when viz == TRUE (Default: NULL).

verbose If verbose == TRUE, Error change rate is generated in console windos.

Value

S : K-order tensor object, which is defined as S4 class of rTensor package. A : A list containing K
factor matrices. RecError : The reconstruction error between data tensor and reconstructed tensor
from S and A. TrainRecError : The reconstruction error calculated by training set (observed values
specified by M). TestRecError : The reconstruction error calculated by test set (missing values
specified by M). RelChange : The relative change of the error.

Author(s)
Koki Tsuyuzaki

References
Yong-Deok Kim et. al., (2007). Nonnegative Tucker Decomposition. IEEE Conference on Com-
puter Vision and Pattern Recognition

Yong-Deok Kim et. al., (2008). Nonneegative Tucker Decomposition With Alpha-Divergence.
IEEE International Conference on Acoustics, Speech and Signal Processing

Anh Huy Phan, (2008). Fast and efficient algorithms for nonnegative Tucker decomposition. Ad-
vances in Neural Networks - ISNN2008

Anh Hyu Phan et. al. (2011). Extended HALS algorithm for nonnegative Tucker decomposition
and its applications for multiway analysis and classification. Neurocomputing

See Also

plotTensor3D

12

Examples

dNTF

tensordata <- toyModel(model = "dNTD")
out <- dNTD(tensordata, rank=c(2,2,2), algorithm="Frobenius”,
init="Random”, num.iter=2)

dNTF

Discretized Non-negative CP Decomposition Algorithms (ANTF)

Description

This function is the discretized version of nnTensor::NTF. The input data X is assumed to be a non-
negative tensor and decomposed to a product of a diagonal core tensor (S) and low-dimensional
factor matrices (A_k, k=1..K). Unlike regular NTF, in dNTF, each A_k is estimated by adding
binary regularization so that the values are O or 1 as much as possible. Likewise, each A_k are
estimated by adding ternary regularization so that the values are 0, 1, or 2 as much as possible.

Usage

dNTF (X, M=NULL, pseudocount=.Machine$double.eps,
initA=NULL, fixA=FALSE,
Bin_A=rep(1e-10, length=length(dim(X))),
Ter_A=rep(l1e-10, length=length(dim(X))),
L1_A=rep(1e-10, length=length(dim(X))),
L2_A=rep(1e-10@, length=length(dim(X))),

rank = 3,
algorithm

c("Frobenius”, "KL", "IS", "Beta"),

init = c("dNMF", "Random"),
Beta = 2, thr = 1e-10, num.iter = 100, viz = FALSE, figdir = NULL,

verbose

Arguments

X
M

pseudocount

initA

fixA

Bin_A

Ter_A

FALSE)

K-order input tensor which has I_1, I_2, ..., and I_K dimensions.

K-order mask tensor which has I_1, I_2, ..., and I_K dimensions. If the mask
tensor has missing values, specify the element as 0 (otherwise 1).

The pseudo count to avoid zero division, when the element is zero (Default:
Machine Epsilon).

A list containing the initial values of K factor matrices (A_k, <Ik*Jk>, k=1..K,
Default: NULL).

Whether the factor matrices Ak are updated in each iteration step (Default:
FALSE).

A K-length vector containing the paramters for binary (0,1) regularitation (De-
fault: rep(le-10, length=length(dim(X)))).

A K-length vector containing the paramters for terary (0,1,2) regularitation (De-
fault: rep(le-10, length=length(dim(X)))).

dNTF 13

L1_A A K-length vector containing the paramters for L1 regularitation (Default: rep(le-
10, length=length(dim(X)))). This also works as small positive constant to pre-
vent division by zero, so should be set as 0.

L2_A A K-length vector containing the paramters for L2 regularitation (Default: rep(le-
10, length=length(dim(X)))).

rank The number of low-dimension in each mode (Default: 3).

algorithm dNTF algorithms. "Frobenius", "KL", "IS", and "Beta" are available (Default:
"Frobenius").

init The initialization algorithms. "dNMF", and "Random" are available (Default:
"dNMF").

Beta The parameter of Beta-divergence.

thr When error change rate is lower than thrl, the iteration is terminated (Default:
1E-10).

num.iter The number of interation step (Default: 100).

viz If viz == TRUE, internal reconstructed tensor can be visualized.

figdir the directory for saving the figure, when viz == TRUE (Default: NULL).

verbose If verbose == TRUE, Error change rate is generated in console windos.

Value

S : K-order tensor object, which is defined as S4 class of rTensor package. A : A list containing K
factor matrices. RecError : The reconstruction error between data tensor and reconstructed tensor
from S and A. TrainRecError : The reconstruction error calculated by training set (observed values
specified by M). TestRecError : The reconstruction error calculated by test set (missing values
specified by M). RelChange : The relative change of the error.

Author(s)

Koki Tsuyuzaki

References

Andrzej CICHOCKI et. al., (2007). Non-negative Tensor Factorization using Alpha and Beta
Divergence. IEEE ICASSP 2007

Anh Huy PHAN et. al., (2008). Multi-way Nonnegative Tensor Factorization Using Fast Hierarchi-
cal Alternating Least Squares Algorithm (HALS). NOLTA2008

Andrzej CICHOCKI et. al., (2008). Fast Local Algorithms for Large Scale Nonnegative Matrix and
Tensor Factorizations. IEICE Transactions on Fundamentals of Electronics, Communications and
Computer Sciences

See Also

plotTensor3D

14

Examples

dPLS

tensordata <- toyModel(model = "dNTF")
out <- dNTF(tensordata, rank=3, num.iter=2)

dPLS

Discretized Partial Least Squares (dPLS)

Description

This function is the discretized version of PLS. The input data objects are assumed to be a list
containing multiple matrices (X_1, X_2, ..., X_K), and decomposed to multiple matrix products
u_1v_r,u2v_2,..,U_KV_K’), where each U_k and V_k (k=1..K) is specific in each X_k.
Unlike regular PLS, in dPLS, U_k and V_k are estimated by adding ternary regularization so that
the values are -1, 0, or 1 as much as possible.

Usage

dPLS(X, M=NULL, pseudocount=.Machine$double.eps,
initV=NULL, fixV=FALSE, Ter_V=1e-10,
L1_V=1e-10, L2_V=1e-10, eta=le+10, J = 3,

thr
viz
Arguments

X
M

pseudocount

initV

fixV
Ter_V
L1_V

L2_V
eta
J
thr

num.iter
viz
figdir
verbose

1e-10, num.iter = 100,
FALSE, figdir = NULL, verbose = FALSE)

The input matrix which has N-rows and M-columns.

The mask matrix which has N-rows and M-columns. If the input matrix has
missing values, specify the element as O (otherwise 1).

The pseudo count to avoid zero division, when the element is zero (Default:
Machine Epsilon).

The initial values of factor matrix V, which has M-rows and J-columns (Default:
NULL).

Whether the factor matrix V is updated in each iteration step (Default: FALSE).
Paramter for terary (-1,0,1) regularitation (Default: 1e-10).

Paramter for L1 regularitation (Default: le-10). This also works as small posi-
tive constant to prevent division by zero, so should be set as O.

Paramter for L2 regularitation (Default: 1e-10).

Stepsize of gradient descent algorithm (Default: 1e+10).

The number of low-dimension (J < {N, M}, Default: 3)

When error change rate is lower than thr, the iteration is terminated (Default:
1E-10).

The number of interation step (Default: 100).

If viz == TRUE, internal reconstructed matrix can be visualized.

The directory for saving the figure, when viz == TRUE.

If verbose == TRUE, Error change rate is generated in console window.

dsiNMF 15

Value

U : A matrix which has N-rows and J-columns (J < {N, M}). V : A matrix which has M-rows and
J-columns (J < {N, M}). RecError : The reconstruction error between data tensor and reconstructed
tensor from U and V. TrainRecError : The reconstruction error calculated by training set (observed
values specified by M). TestRecError : The reconstruction error calculated by test set (missing
values specified by M). RelChange : The relative change of the error.

Author(s)

Koki Tsuyuzaki

Examples

Test data
matdata <- toyModel(model = "dPLS_Easy")

Simple usage
out <- dPLS(matdata, J=2, num.iter=2)

dsiNMF Discretized Simultaneous Non-negative Matrix Factorization Algo-
rithms (dsiNMF)

Description

This function is the discretized version of nnTensor::siNMF. The input data objects are assumed
to be a list containing multiple non-negative matrices (X_1, X_2, ..., X_K), and decomposed to
multiple matrix products (W H_1’, W H_2’, ..., W H_K’), where W is common across all the data
matrices but each H_k (k=1..K) is specific in each X_k. Unlike regular siNMF, in dsiNMF, W and
H_k are estimated by adding binary regularization so that the values are 0 or 1 as much as possible.
Likewise, W and H_k are estimated by adding ternary regularization so that the values are O, 1, or
2 as much as possible.

Usage

dsiNMF (X, M=NULL, pseudocount=.Machine$double.eps,
initW=NULL, initH=NULL,
fixW=FALSE, fixH=FALSE,
Bin_W=1e-10, Bin_H=rep(le-10, length=length(X)),
Ter_W=1e-10, Ter_H=rep(le-10, length=length(X)),
L1_W=1e-10, L1_H=rep(1e-10, length=length(X)),
L2_W=1e-10, L2_H=rep(1e-10, length=length(X)),
J = 3, w=NULL, algorithm = c("Frobenius”, "KL", "IS", "PLTF"), p=1,
thr = 1e-10, num.iter = 100,
viz = FALSE, figdir = NULL, verbose = FALSE)

16

Arguments

X
M

pseudocount

initW

initH

fixW
fixH

Bin_W
Bin_H

Ter_W
Ter_H

L2_W
L2_H

J
w

algorithm

thr

num.iter
viz
figdir

verbose

dsiNMF

A list containing the input matrices (X_k, <N*Mk>, k=1..K).

A list containing the mask matrices (X_k, <N*Mk>, k=1..K). If the input matrix
has missing values, specify the element as 0 (otherwise 1).

The pseudo count to avoid zero division, when the element is zero (Default:
Machine Epsilon).

The initial values of factor matrix W, which has N-rows and J-columns (Default:
NULL).

A list containing the initial values of multiple factor matrices (H_k, <Mk*J>,
k=1..K, Default: NULL).

Whether the factor matrix W is updated in each iteration step (Default: FALSE).

Whether the factor matrices Hk are updated in each iteration step (Default:
FALSE).

Paramter for binary (0,1) regularitation (Default: 1e-10).

A K-length vector containing the paramters for binary (0,1) regularitation (De-
fault: rep(le-10, length=length(dim(X)))).

Paramter for terary (0,1,2) regularitation (Default: le-10).

A K-length vector containing the paramters for terary (0,1,2) regularitation (De-
fault: rep(le-10, length=length(dim(X)))).

Paramter for L1 regularitation (Default: le-10). This also works as small posi-
tive constant to prevent division by zero, so should be set as 0.

A K-length vector containing the paramters for L1 regularitation (Default: rep(le-
10, length=length(dim(X)))). This also works as small positive constant to pre-
vent division by zero, so should be set as 0.

Paramter for L2 regularitation (Default: 1e-10).

A K-length vector containing the paramters for L2 regularitation (Default: rep(le-
10, length=length(dim(X)))).

Number of low-dimension (J < N, Mk).
Weight vector (Default: NULL)

Divergence between X and X_bar. "Frobenius", "KL", and "IS" are available
(Default: "KL").

The parameter of Probabilistic Latent Tensor Factorization (p=0: Frobenius,
p=1: KL, p=2: IS)

When error change rate is lower than thr, the iteration is terminated (Default:
1E-10).

The number of interation step (Default: 100).
If viz == TRUE, internal reconstructed matrix can be visualized.
the directory for saving the figure, when viz == TRUE.

If verbose == TRUE, Error change rate is generated in console windos.

dSvVD 17

Value

W : A matrix which has N-rows and J-columns (J < N, Mk). H : A list which has multiple ele-
ments containing Mk-rows and J-columns matrix (J < N, Mk). RecError : The reconstruction error
between data matrix and reconstructed matrix from W and H. TrainRecError : The reconstruction
error calculated by training set (observed values specified by M). TestRecError : The reconstruction
error calculated by test set (missing values specified by M). RelChange : The relative change of the
error.

Author(s)
Koki Tsuyuzaki

References

Liviu Badea, (2008) Extracting Gene Expression Profiles Common to Colon and Pancreatic Ade-
nocarcinoma using Simultaneous nonnegative matrix factorization. Pacific Symposium on Biocom-
puting 13:279-290

Shihua Zhang, et al. (2012) Discovery of multi-dimensional modules by integrative analysis of
cancer genomic data. Nucleic Acids Research 40(19), 9379-9391

Zi Yang, et al. (2016) A non-negative matrix factorization method for detecting modules in hetero-
geneous omics multi-modal data, Bioinformatics 32(1), 1-8

Y. Kenan Yilmaz et al., (2010) Probabilistic Latent Tensor Factorization, International Conference
on Latent Variable Analysis and Signal Separation 346-353

N. Fujita et al., (2018) Biomarker discovery by integrated joint non-negative matrix factorization
and pathway signature analyses, Scientific Report

Examples

matdata <- toyModel(model = "dsiNMF_Easy")
out <- dsiNMF(matdata, J=2, num.iter=2)

dsvD Discretized Singular Value Decomposition (dSVD)

Description

This function is the discretized version of SVD. The input data X is decomposed to a matrix product
U V’. Unlike regular SVD, in dSVD, U and V are estimated by adding binary regularization so that
the values are 0 or 1 as much as possible. Likewise, U and V are estimated by adding ternary
regularization so that the values are -1, 0, or 1 as much as possible.

Usage

dSVD(X, M=NULL, pseudocount=.Machine$double.eps,
initU=NULL, initV=NULL, fixU=FALSE, fixV=FALSE,
Ter_U=1e-10, L1_U=1e-10, L2_U=1e-10, eta=le+10, J = 3,
thr = 1e-10, num.iter = 100,
viz = FALSE, figdir = NULL, verbose = FALSE)

Arguments

X
M

pseudocount

initU

initV

fixU
fixv
Ter_U
L1_U

L2_U
eta
J
thr

num.iter
viz
figdir

verbose

Value

dSvD

The input matrix which has N-rows and M-columns.

The mask matrix which has N-rows and M-columns. If the input matrix has
missing values, specify the element as O (otherwise 1).

The pseudo count to avoid zero division, when the element is zero (Default:
Machine Epsilon).

The initial values of factor matrix U, which has N-rows and J-columns (Default:
NULL).

The initial values of factor matrix V, which has M-rows and J-columns (Default:
NULL).

Whether the factor matrix U is updated in each iteration step (Default: FALSE).
Whether the factor matrix V is updated in each iteration step (Default: FALSE).
Paramter for terary (-1,0,1) regularitation (Default: 1e-10).

Paramter for L1 regularitation (Default: le-10). This also works as small posi-
tive constant to prevent division by zero, so should be set as 0.

Paramter for L2 regularitation (Default: 1e-10).
Stepsize of gradient descent algorithm (Default: 1e+10).
The number of low-dimension (J < {N, M}, Default: 3)

When error change rate is lower than thr, the iteration is terminated (Default:
1E-10).

The number of interation step (Default: 100).
If viz == TRUE, internal reconstructed matrix can be visualized.
The directory for saving the figure, when viz == TRUE.

If verbose == TRUE, Error change rate is generated in console window.

U : A matrix which has N-rows and J-columns (J < {N, M}). V : A matrix which has M-rows and
J-columns (J < {N, M}). RecError : The reconstruction error between data tensor and reconstructed
tensor from U and V. TrainRecError : The reconstruction error calculated by training set (observed

values specified by M). TestRecError :

The reconstruction error calculated by test set (missing

values specified by M). RelChange : The relative change of the error.

Author(s)

Koki Tsuyuzaki

Examples

Test data
matdata <- toyModel(model = "dSVD")

Simple usage
out <- dSVD(matdata, J=2, num.iter=2)

toyModel 19

toyModel Toy model data for using ANMF, dSVD, dsiNMF, diNMF, dPLS, dNTF,
and dNTD

Description

The data is used to confirm that the algorithm are properly working.

Usage
toyModel (model = "dNMF", seeds=123)

Arguments
model Single character string is specified. "dNMF", "dSVD", "dsiNMF_Easy", "dsiNMF_Hard",
"dPLS_Easy", "dPLS_Hard", "dNTF", and "dNTD" are available (Default: "dNMF").
seeds Random number for setting set.seeds in the function (Default: 123).
Value

If model is specified as "dNMF" or "dSVD" a matrix is generated. If model is specified as "dsiNMF_Easy",
"dsiNMF_Hard", "dPLS_Easy", or "dPLS_Hard" three matrices are generated. Otherwise, a tensor
is generated.

Author(s)
Koki Tsuyuzaki

See Also
dNMF,dSVD

Examples

matdata <- toyModel(model = "dNMF", seeds=123)

Index

+ methods
djNMF, 3
dNMF, 6
dNMTF, 7
dNTD, 10
dNTF, 12
dPLS, 14
dsiNMF, 15
dsvp, 17
toyModel, 19

* package
dcTensor-package, 2

dcTensor (dcTensor-package), 2
dcTensor-package, 2

djNMF, 3

dNMF, 3, 6, 19

dNMTF, 7

dNTD, 10

dNTF, 12

dPLS, 14

dsiNMF, 15

dsvp, 3,17, 19

plotTensor3D, /1, 13

toyModel, 3, 19

20

	dcTensor-package
	djNMF
	dNMF
	dNMTF
	dNTD
	dNTF
	dPLS
	dsiNMF
	dSVD
	toyModel
	Index

