Package ‘dTBM’

June 19, 2023

Title Multi-Way Spherical Clustering via Degree-Corrected Tensor Block
Models

Version 3.0
Date 2023-06-16
Maintainer Jiaxin Hu <jhu267@wisc.edu>

Description Implement weighted higher-order initialization and angle-based iteration for multi-
way spherical clustering under degree-corrected tensor block model. See reference Ji-
axin Hu and Miaoyan Wang (2023) <doi:10.1109/TIT.2023.3239521>.

Imports WeightedCluster, EnvStats, methods
License GPL (>=2)

Encoding UTF-8

LazyData true

NeedsCompilation no

Author Jiaxin Hu [aut, cre, cph],
Miaoyan Wang [aut, cph]

RoxygenNote 7.2.3

Depends R (>=3.5.0)

Repository CRAN

Date/Publication 2023-06-18 22:30:06 UTC

R topics documented:

angle_iteration L. e e e
ASAENMSOT . . v v v v v e e e e e e e e e e

HCP . . . e

PEIU . . e e e e e

https://doi.org/10.1109/TIT.2023.3239521

2 angle_iteration
SEIECT T . . o o e e 9
sim_dTBM e 10
Tensor-class L e 12
1 13
119 00 A 14
unfold-methods 15
WKMEANs e e e e e e 16

Index 17

angle_iteration Angle-based iteration

Description

Angle-based iteration for multiway spherical clustering under degree-corrected tensor block model.
This function takes the tensor/matrix observation, initial clustering assignment, and a logic variable
indicating the symmetry as input. Output is the refined clustering assignment.

Usage

angle_iteration(Y, z@, max_iter, alphal = 0.01, asymm)

Arguments

Y array/matrix, order-3 tensor/matrix observation

z0 a list of vectors, initial clustering assignment; see "details"

max_iter integer, max number of iterations if update does not converge

alphal number, substitution of degenerate core tensor; see "details"

asymm logic variable, if "TRUE", assume the clustering assignment differs in different
modes; if "FALSE", assume all the modes share the same clustering assignment

Details

z0@ should be a length 2 list for matrix and length 3 list for tensor observation; observations with
non-identical dimension on each mode are only applicable with asymm = T;

When the estimated core tensor has a degenerate slice, i.e., a slice with all zero elements, randomly
pick an entry in the degenerate slice with value alpha1l.

Value

a list containing the following:

z a list of vectors recording the estimated clustering assignment

s_deg logic variable, if "TRUE", degenerate estimated core tensor/matrix occurs during the itera-
tion; if "FALSE", otherwise

as.tensor 3

Examples

test_data = sim_dTBM(seed = 1, imat = FALSE, asymm = FALSE, p = ¢(50,50,50), r = c(3,3,3),

core_control = "control”, s_min = 0.05, s_max = 1,

dist = "normal”, sigma = 0.5,

theta_dist = "pareto”, alpha = 4, beta = 3/4)
initialization <- wkmeans(test_data$Y, r = c(3,3,3), asymm = FALSE)

iteration <- angle_iteration(test_data$yY, initialization$z@, max_iter = 20, asymm = FALSE)

as.tensor Tensor Conversion

Description

Create a Tensor-class object from an array, matrix, or vector.

Usage

as.tensor(x, drop = FALSE)

Arguments
X an instance of array, matrix, or vector
drop whether or not modes of 1 should be dropped
Value

a Tensor-class object

Examples

#From vector

vec <- runif(100); vecT <- as.tensor(vec); vecT
#From matrix

mat <- matrix(runif(1000),nrow=100,ncol=10)

matT <- as.tensor(mat); matT

#From array

indices <- ¢(10,20,30,40)

arr <- array(runif(prod(indices)), dim = indices)
arrT <- as.tensor(arr); arrT

4 dtbm

dim-methods Mode Getter for Tensor

Description

Return the vector of modes from a tensor

Usage
S4 method for signature 'Tensor'
dim(x)

Arguments

X the Tensor instance

Details

dim(x)

Value

an integer vector of the modes associated with x

Examples

tnsr <- rand_tensor()
dim(tnsr)

dtbm Multiway spherical clustering for degree-corrected tensor block model

Description

Multiway spherical clustering for degree-corrected tensor block model including weighted higher-
order initialization and angle-based iteration. Main function in the package. This function takes
the tensor/matrix observation, the cluster number, and a logic variable indicating the symmetry as
input. Output contains initial and refined clustering assignment.

Usage

dtbm(Y, r, max_iter, alphal = 0.01, asymm)

dtbm 5

Arguments

Y array/matrix, order-3 tensor/matrix observation

r vector, the cluster number on each mode; see "details"

max_iter integer, max number of iterations if update does not converge

alphal number, substitution of degenerate core tensor; see "details"

asymm logic variable, if "TRUE", assume the clustering assignment differs in different

modes; if "FALSE", assume all the modes share the same clustering assignment

Details

r should be a length 2 vector for matrix and length 3 vector for tensor observation;

all the elements in r should be integer larger than 1;

symmetric case only allow r with the same cluster number on each mode;

observations with non-identical dimension on each mode are only applicable with asymm = T.

When the estimated core tensor has a degenerate slice during iteration, i.e., a slice with all zero
elements, randomly pick an entry in the degenerate slice with value alphal.

Value

a list containing the following:
z a list of vectors recording the refined clustering assignment with initialization z@

s_deg logic variable, if "TRUE", degenerate estimated core tensor/matrix occurs during the itera-
tion; if "FALSE", otherwise

z0 a list of vectors recording the initial clustering assignment

s@ a list of vectors recording the index of degenerate entities with random clustering assignment in
initialization

Examples

test_data = sim_dTBM(seed = 1, imat = FALSE, asymm = FALSE, p = c(50,50,50), r = c(3,3,3),
core_control = "control”, s_min = 0.05, s_max = 1,
dist = "normal”, sigma = 0.5,
theta_dist = "pareto”, alpha = 4, beta = 3/4)

result = dtbm(test_data$y, r = c(3,3,3), max_iter = 20, asymm = FALSE)

6 fold

fold General Folding of Matrix

Description

General folding of a matrix into a Tensor. This is designed to be the inverse function to unfold-methods,
with the same ordering of the indices. This amounts to following: if we were to unfold a Tensor
using a set of row_idx and col_idx, then we can fold the resulting matrix back into the original
Tensor using the same row_idx and col_idx.

Usage

fold(mat, row_idx = NULL, col_idx = NULL, modes = NULL)

Arguments
mat matrix to be folded into a Tensor
row_idx the indices of the modes that are mapped onto the row space
col_idx the indices of the modes that are mapped onto the column space
modes the modes of the output Tensor

Details

This function uses aperm as the primary workhorse.

Value

Tensor object with modes given by modes

References

T. Kolda, B. Bader, "Tensor decomposition and applications". SIAM Applied Mathematics and Ap-
plications 2009, Vol. 51, No. 3 (September 2009), pp. 455-500. URL: https://www.jstor.org/stable/25662308.

See Also

unfold-methods

Examples

tnsr <- new('Tensor',3L,c(3L,4L,5L),data=runif (60))
matT3<-unfold(tnsr,row_idx=2,col_idx=c(3,1))
identical (fold(matT3,row_idx=2,col_idx=c(3,1),modes=c(3,4,5)),tnsr)

HCP 7

HCP HCP data

Description

The HCP data is obtained by preprocessing the data from Human Connectome Project (HCP); see
https://wiki.humanconnectome.org/display/PublicData/.

Usage
data(HCP)

Format

A list. Includes a 68-68-136 binary array named "tensor" and a 136-573 data frame named "attr".

Details

The array "tensor" is a 68 x 68 x 136 binary tensor consisting of structural connectivity patterns
among 68 brain regions for 136 individuals. All the individual images were preprocessed following
a standard pipeline (Zhang et al., 2018), and the brain was parcellated to 68 regions-of-interest
following the Desikan atlas (Desikan et al., 2006). The tensor entries encode the presence or absence
of fiber connections between those 68 brain regions for each of the 136 individuals.

The data frame "attr" is a 136 x 573 matrix consisting of 573 personal features for 136 individuals.
The full list of covariates can be found at: https://wiki.humanconnectome.org/display/PublicData/

kronecker_list List Kronecker Product

Description
Returns the Kronecker product from a list of matrices or vectors. Commonly used for n-mode
products and various Tensor decompositions.

Usage

kronecker_list(L)

Arguments

L list of matrices or vectors

Value

matrix that is the Kronecker product

8 rand_tensor

Examples

smalllizt <- list('mat1' = matrix(runif(12),ncol=4),
'mat2' = matrix(runif(12),ncol=4),

'mat3' = matrix(runif(12),ncol=4))
dim(kronecker_list(smalllizt))

peru Peru Legislation data

Description

The Peru Legislation data is obtained by preprocessing the original data in Lee et al., 2017.

Usage

data(peru)

Format

A list. Includes a 116-2 data frame named "attr_data", a 5844-7 data frame named "laws_data", and
a 116-116-116 binary array named "network_data".

Details

The data frame "attr_data" is a 116 x 2 matrix consisting the name and party affiliation of 116
legislators in the top five parties. The legislators IDs are recorded in the row names of the matrix.

The data frame "laws_data" is a 5844 x 7 matrix recording the co-sponsorship of 116 legislators of
802 bills during the first half of 2006-2007 year.

The array "network_data" is a 116 x 116 x 116 binary tensor recording the presence of order-3
co-sponsorship among legislators based on "laws_data". Specfically, the entry (i,j,k) is 1 if the
legislators (i,j,k) have sponsored the same bill, and the entry (i,j,k) is 0 otherwise.

rand_tensor Tensor with Random Entries

Description

Generate a Tensor with specified modes with iid normal(0, 1) entries.

Usage

rand_tensor(modes = c(3, 4, 5), drop = FALSE)

select_r 9

Arguments

modes the modes of the output Tensor

drop whether or not modes equal to 1 should be dropped
Value

a Tensor object with modes given by modes

Note

Default rand_tensor () generates a 3-Tensor with modes c(3,4,5).

Examples

rand_tensor()
rand_tensor(c(4,4,4))
rand_tensor(c(10,2,1),TRUE)

select_r Cluster number selection

Description

Estimate the cluster number in the degree-corrected tensor block model based on BIC criterion. The
choice of BIC aims to balance between the goodness-of-fit for the data and the degree of freedom
in the population model. This function is restricted for the Gaussian observation.

Usage

select_r(Y, r_range, asymm = FALSE)

Arguments
Y array/matrix, order-3 Gaussian tensor/matrix observation
r_range matrix, candidates for the cluster number on each row; see "details"
asymm logic variable, if "TRUE", clustering assignment differs in different modes; if
"FALSE", all the modes share the same clustering assignment
Details

r_range should be a two-column matrix for matrix and three-column matrix for tensor observation;
all the elements in r_range should be integer larger than 1;
symmetric case only allow candidates with the same cluster number on each mode;

observations with non-identical dimension on each mode are only applicable with asymm = TRUE.

10 sim_dTBM

Value

a list containing the following:
r vector, the cluster number among the candidates with minimal BIC value

bic vector, the BIC value for each candidiate

Examples

test_data = sim_dTBM(seed = 1, imat = FALSE, asymm = FALSE, p = c(50,50,50), r = c(3,3,3),
core_control = "control”, s_min = 0.05, s_max = 1,
dist = "normal”, sigma = 0.5,
theta_dist = "pareto”, alpha = 4, beta = 3/4)

r_range = rbind(c(2,2,2), c(3,3,3),c(4,4,4),c(5,5,5))
selection <- select_r(test_data$Y, r_range, asymm = FALSE)

sim_dTBM Simulation of degree-corrected tensor block models

Description

Generate order-3 tensor/matrix observations with degree heterogeneity under degree-corrected ten-
sor block models.

Usage
sim_dTBM(
seed = NA,
imat = FALSE,
asymm = FALSE,
P,
r,
core_control = c("random”, "control”),
delta = NULL,
s_min = NULL,
s_max = NULL,
dist = c("normal”, "binary"),
sigma = 1,
theta_dist = c("abs_normal”, "pareto”, "non"),
alpha = NULL,
beta = NULL

sim_dTBM 11

Arguments

seed number, random seed for generating data

imat logic variable, if "TRUE", generate matrix data; if "FALSE", generate order-3
tensor data

asymm logic variable, if "TRUE", clustering assignment differs in different modes; if
"FALSE", all the modes share the same clustering assignment

p vector, dimension of the tensor/matrix observation

r vector, cluster number on each mode

core_control character, the way to control the generation of core tensor/matrix; see "details"

delta number, Frobenius norm of the slices in core tensor if core_control = "control”

s_min number, value of off-diagonal elements in original core tensor/matrix if core_control
="control”

s_max number, value of diagonal elements in original core tensor/matrix if core_control
= "control”

dist character, distribution of tensor/matrix observation; see "details"

sigma number, standard deviation of Gaussian noise if dist = "normal”

theta_dist character, distribution of degree heterogeneity; see "details"

alpha number, shape parameter in pareto distribution if theta_dist = "pareto”

beta number, scale parameter in pareto distribution if theta_dist = "pareto”

Details

The general tensor observation is generated as
Y =S x1 Thetal M1 x2 Theta2 M2 x3 Theta3 M3 + E,

where S is the core tensor, Thetak is a diagonal matrix with elements in the k-th vector of theta,
Mk is the membership matrix based on the clustering assignment in the k-th vector of z with r[k]
clusters, E is the mean-zero noise tensor, and xk refers to the matrix-by-tensor product on the k-th
mode, fork =1,2,3.

If imat = TRUE, Y, S, E degenerate to matrix and Y = Thetal M1 SM2*T Theta2*T +E.

If asymm = FALSE, Thetak = Thetaand Mk =Mforallk =1,2, 3.

core_control specifies the way to generate S:

If core_control = "control”, first generate S as a diagonal tensor/matrix with diagonal elements
s_max and off-diagonal elements s_min; then scale the original core such that Frobenius norm of
the slices equal to delta, i.e, delta =sqrt(sum(S[1,,]1*2)) or delta =sqrt(sum(S[1,]12));
ignore the scaling if delta = NULL; option "control” is only applicable for symmetric case asymm
= FALSE.

If core_control = "random”, generate S with random entries following uniform distribution U(0,1).
dist specifies the distribution of E: "normal” for Gaussian and "binary” for Bernoulli distribution;
sigma specifices the standard deviation if dist = "normal”.

theta_dist firstly specifies the distribution of theta: "non” for constant 1, "abs_normal” for
absoulte normal distribution, "pareto” for pareto distribution; alpha, beta specify the shape and
scale parameter if theta_dist = "pareto”; then scale theta to have mean equal to one in each
cluster.

12 Tensor-class

Value

a list containing the following:

Y array (if imat = FALSE)/matrix (if imat = TRUE), simulated tensor/matrix observations with
dimension p

X array (if imat = FALSE)/matrix (if imat = TRUE), mean tensor/matrix of the observation, i.e., the
expectation of Y

S array (if imat = FALSE)/matrix (if imat = TRUE), core tensor/matrix recording the block effects
with dimension r

theta a list of vectors, degree heterogeneity on each mode

z a list of vectors, clustering assignment on each mode

Examples

test_data = sim_dTBM(seed = 1, imat = FALSE, asymm = FALSE, p = ¢(50,50,50), r = c(3,3,3),
core_control = "control”, s_min = 0.05, s_max = 1,
dist = "normal”, sigma = 0.5,
theta_dist = "pareto”, alpha = 4, beta = 3/4)

Tensor-class S4 Class for a Tensor

Description

An S4 class for a tensor with arbitrary number of modes. The Tensor class extends the base "array"
class to include additional tensor manipulation (folding, unfolding, reshaping, subsetting) as well
as a formal class definition that enables more explicit tensor algebra.

Slots

num_modes number of modes (integer)
modes vector of modes (integer), aka sizes/extents/dimensions

data actual data of the tensor, which can be "array’ or ’vector’

Note

All of the decompositions and regression models in this package require a Tensor input.

Author(s)

James Li <jamesyili@gmail.com>

References

James Li, Jacob Bien, Martin T. Wells (2018). rTensor: An R Package for Multidimensional Array
(Tensor) Unfolding, Multiplication, and Decomposition. Journal of Statistical Software, Vol. 87,
No. 10, 1-31. URL: http://www.]statsoft.org/v087/i10/.

ttl 13

See Also

as.tensor

ttl Tensor Times List

Description
Contracted (m-Mode) product between a Tensor of arbitrary number of modes and a list of matrices.
The result is folded back into Tensor.

Usage

ttl(tnsr, list_mat, ms = NULL)

Arguments

tnsr Tensor object with K modes

list_mat a list of matrices

ms a vector of modes to contract on (order should match the order of 1ist_mat)
Details

Performs ttm repeated for a single Tensor and a list of matrices on multiple modes. For instance,
suppose we want to do multiply a Tensor object tnsr with three matrices mat1, mat2, mat3 on
modes 1, 2, and 3. We could do ttm(ttm(ttm(tnsr,matl1,1),mat2,2),3), or we could do
ttl(tnsr,list(mat1,mat2,mat3),c(1,2,3)). The order of the matrices in the list should obvi-
ously match the order of the modes. This is a common operation for various Tensor decompositions
such as CP and Tucker. For the math on the m-Mode Product, see Kolda and Bader (2009).

Value

Tensor object with K modes

Note

The returned Tensor does not drop any modes equal to 1.

References
T. Kolda, B. Bader, "Tensor decomposition and applications". SIAM Applied Mathematics and Ap-
plications 2009, Vol. 51, No. 3 (September 2009), pp. 455-500. URL: https://www.jstor.org/stable/25662308
See Also

ttm

14 ttm

Examples

tnsr <- new('Tensor',3L,c(3L,4L,5L),data=runif (60))
lizt <- list('mat1' = matrix(runif(30),ncol=3),
'mat2' = matrix(runif(40),ncol=4),

'mat3' = matrix(runif(50),ncol=5))
ttl(tnsr,lizt,ms=c(1,2,3))

ttm Tensor Matrix Product (m-Mode Product)

Description

Contracted (m-Mode) product between a Tensor of arbitrary number of modes and a matrix. The
result is folded back into Tensor.

Usage

ttm(tnsr, mat, m = NULL)

Arguments
tnsr Tensor object with K modes
mat input matrix with same number columns as the mth mode of tnsr
m the mode to contract on

Details

By definition, the number of columns in mat must match the mth mode of tnsr. For the math on the
m-Mode Product, see Kolda and Bader (2009).

Value

a Tensor object with K modes

Note

The mth mode of tnsr must match the number of columns in mat. By default, the returned Tensor
does not drop any modes equal to 1.

References

T. Kolda, B. Bader, "Tensor decomposition and applications". SIAM Applied Mathematics and Ap-
plications 2009, Vol. 51, No. 3 (September 2009), pp. 455-500. URL: https://www.jstor.org/stable/25662308

See Also

ttl

unfold-methods 15

Examples

tnsr <- new('Tensor',3L,c(3L,4L,5L),data=runif (60))
mat <- matrix(runif(50),ncol=5)
ttm(tnsr,mat,m=3)

unfold-methods Tensor Unfolding

Description

Unfolds the tensor into a matrix, with the modes in rs onto the rows and modes in cs onto the
columns. Note that c(rs,cs) must have the same elements (order doesn’t matter) as x@modes.
Within the rows and columns, the order of the unfolding is determined by the order of the modes.
This convention is consistent with Kolda and Bader (2009).

Usage

unfold(tnsr, row_idx, col_idx)

Arguments
tnsr the Tensor instance
row_idx the indices of the modes to map onto the row space
col_idx the indices of the modes to map onto the column space
Details

unfold(tnsr,row_idx=NULL,col_idx=NULL)

Value

matrix with prod(row_idx) rows and prod(col_idx) columns

References

T. Kolda, B. Bader, "Tensor decomposition and applications". SIAM Applied Mathematics and Ap-
plications 2009, Vol. 51, No. 3 (September 2009), pp. 455-500. URL: https://www.jstor.org/stable/25662308.

Examples

tnsr <- rand_tensor()
matT3<-unfold(tnsr,row_idx=2,col_idx=c(3,1))

16 wkmeans

wkmeans Weighted higher-order initialization

Description

Weighted higher-order initialization for multiway spherical clustering under degree-corrected tensor
block model. This function takes the tensor/matrix observation, the cluster number, and a logic
variable indicating the symmetry as input. Output is the estimated clustering assignment.

Usage

wkmeans(Y, r, asymm)

Arguments
Y array/matrix, order-3 tensor/matrix observation
r vector, the cluster number on each mode; see "details"
asymm logic variable, if "TRUE", assume the clustering assignment differs in different
modes; if "FALSE", assume all the modes share the same clustering assignment
Details

r should be a length 2 vector for matrix and length 3 vector for tensor observation;
all the elements in r should be integer larger than 1;
symmetric case only allow r with the same cluster number on each mode;

observations with non-identical dimension on each mode are only applicable with asymm = T.

Value

a list containing the following:
z0 a list of vectors recording the estimated clustering assignment

s0 a list of vectors recording the index of degenerate entities with random clustering assignment
Examples

test_data = sim_dTBM(seed = 1, imat = FALSE, asymm = FALSE, p = ¢(50,50,50), r = c(3,3,3),

core_control = "control”, s_min = 0.05, s_max = 1,

dist = "normal”, sigma = 0.5,

theta_dist = "pareto”, alpha = 4, beta = 3/4)
initialization <- wkmeans(test_data$Y, r = c(3,3,3), asymm = FALSE)

Index

x datasets
HCP, 7
peru, 8

angle_iteration, 2
as.tensor, 3, I3

dim, Tensor-method (dim-methods), 4
dim-methods, 4
dtbm, 4

fold, 6

HCP, 7
kronecker_list, 7
peru, 8
rand_tensor, 8

select_r,9
sim_dTBM, 10

Tensor (Tensor-class), 12
Tensor-class, 12

ttl, 13, 14

ttm, 13, 14

unfold (unfold-methods), 15

unfold, Tensor-method (unfold-methods),
15

unfold-methods, 15

wkmeans, 16

17

	angle_iteration
	as.tensor
	dim-methods
	dtbm
	fold
	HCP
	kronecker_list
	peru
	rand_tensor
	select_r
	sim_dTBM
	Tensor-class
	ttl
	ttm
	unfold-methods
	wkmeans
	Index

