Package 'cyclotomic'

November 2, 2023

Type Package

Title The Field of Cyclotomic Numbers

Version 1.3.0

Maintainer Stéphane Laurent <laurent_step@outlook.fr>

Description The cyclotomic numbers are complex numbers that can be thought of as the rational numbers extended with the roots of unity. They are represented exactly, enabling exact computations. They contain the Gaussian rationals (complex numbers with rational real and imaginary parts) as well as the square roots of all rational numbers. They also contain the sine and cosine of all rational multiples of pi. The algorithms implemented in this package are taken from the 'Haskell' package 'cyclotomic', whose algorithms are adapted from code by Martin Schoenert and Thomas Breuer in the 'GAP' project (<https://www.gap-system.org/>). Cyclotomic numbers have applications in number theory, algebraic geometry, algebraic number theory, coding theory, and in the theory of graphs and combinatorics. They have connections to the theory of modular functions and modular curves.

License GPL-3

URL https://github.com/stla/cyclotomic

BugReports https://github.com/stla/cyclotomic/issues

Imports intmap, gmp, maybe, memoise, methods, numbers, VeryLargeIntegers

Encoding UTF-8

RoxygenNote 7.2.3

Collate 'Cyclotomic.R' 'arithmetic.R' 'conjugate.R' 'imports.R' 'is.R' 'maputils.R' 'mkCyclotomic.R' 'polar.R' 'rational.R' 'showCyclotomic.R' 'sqrt.R' 'trigonometry.R' 'zzz.R'

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation no

Author Stéphane Laurent [aut, cre],

```
Scott N. Walck [cph] (author of the Haskell library 'cyclotomic')
```

Repository CRAN

Date/Publication 2023-11-02 20:20:06 UTC

R topics documented:

as.cyclotomic	2
asComplex	3
conjugate	4
cyclotomic-imports	4
cyclotomic-unary	5
cycSqrt	5
imaginaryPart	6
isGaussianRational	6
isRational	7
isReal	7
maybeRational	8
polar	8
quadraticRoots	9
realPart	9
trigonometry	10
zeta	11
	12

Index

as.cyclotomic

Coercion to a 'cyclotomic' object

Description

Coercion to a 'cyclotomic' object

Usage

```
## S4 method for signature 'character'
as.cyclotomic(x)
## S4 method for signature 'cyclotomic'
as.cyclotomic(x)
## S4 method for signature 'numeric'
as.cyclotomic(x)
## S4 method for signature 'bigz'
as.cyclotomic(x)
```

asComplex

S4 method for signature 'bigq'
as.cyclotomic(x)

Arguments

х

a cyclotomic object or an object yielding a quoted integer or a quoted fraction after an application of as.character

Value

A cyclotomic object.

Examples

```
as.cyclotomic(2)
as.cyclotomic("1/3")
```

asComplex

Convert cyclotomic number to complex number

Description

Convert a cyclotomic number to a complex number.

Usage

```
asComplex(cyc)
```

Arguments

cyc a cyclotomic number

Value

A complex number (generally inexact).

Examples

asComplex(zeta(4))

conjugate

Description

Complex conjugate of a cyclotomic number.

Usage

conjugate(cyc)

Arguments

cyc a cyclotomic number

Value

A cyclotomic number, the complex conjugate of cyc.

Examples

```
conjugate(zeta(4)) # should be -zeta(4)
```

cyclotomic-imports Extract value from a 'Just' value

Description

The from_just function is imported from the **maybe** package. Follow the link to its documentation: from_just. It has been imported for convenient use of the maybeRational function, which possibly returns a 'Just' value. cyclotomic-unary Unary operators for cyclotomic objects

Description

Unary operators for cyclotomic objects.

Usage

S4 method for signature 'cyclotomic,missing'
e1 + e2
S4 method for signature 'cyclotomic,missing'
e1 - e2

Arguments

e1	object of class cyclotomic
e2	nothing

Value

A cyclotomic object.

cycSqrt

Square root as a cyclotomic number

Description

Square root of an integer or a rational number as a cyclotomic number. This is slow.

Usage

cycSqrt(x)

Arguments

Х

an integer, a **gmp** rational number (bigq object), or a fraction given as a string (e.g. "5/3")

Value

The square root of x as a cyclotomic number.

Examples

```
cycSqrt(2)
phi <- (1 + cycSqrt(5)) / 2 # the golden ratio
phi<sup>2</sup> - phi # should be 1
```

imaginaryPart Imaginary part of cyclotomic number.

Description

The imaginary part of a cyclotomic number.

Usage

imaginaryPart(cyc)

Arguments

cyc a cyclotomic number

Value

A cyclotomic number.

Examples

```
imaginaryPart(zeta(9))
```

isGaussianRational Is the cyclotomic a Gaussian rational?

Description

Checks whether a cyclotomic number is a Gaussian rational number.

Usage

```
isGaussianRational(cyc)
```

Arguments

cyc a cyclotomic number

Value

A Boolean value.

6

isRational

Description

Checks whether a cyclotomic number is a rational number.

Usage

isRational(cyc)

Arguments

cyc a cyclotomic number

Value

A Boolean value.

See Also

maybeRational

isReal

Is the cyclotomic a real number?

Description

Checks whether a cyclotomic number is a real number.

Usage

isReal(cyc)

Arguments

cyc a cyclotomic number

Value

A Boolean value.

maybeRational

Description

Cyclotomic number as exact rational number if possible.

Usage

```
maybeRational(cyc)
```

Arguments

cyc a cyclotomic number

Value

A maybe value, just a rational number if cyc is a rational number, nothing otherwise.

See Also

isRational

Examples

```
maybeRational(zeta(4))
maybeRational(cosDeg(60)) # use `from_just` to get the value
```

polar

Polar complex number with rational magnitude and angle

Description

Complex number in polar form with rational magnitude and rational angle as a cyclotomic number.

Usage

```
polarDeg(r, theta)
```

```
polarRev(r, theta)
```

Arguments

r	magnitude, an integer number, a gmp rational number, or a fraction given as a character string (e.g. "2/7")
theta	angle, an integer number, a gmp rational number, or a fraction given as a character string (e.g. "2/7"); for polarDeg the angle is given in degrees and for polarRev it is given in revolutions

quadraticRoots

Value

A cyclotomic number.

Examples

```
polarDeg(1, 90) # should be zeta(4)
polarRev(1, "1/4") # should be zeta(4) as well
```

quadraticRoots Roots of quadratic polynomial

Description

Roots of a polynomial of degree 2 as cyclotomic numbers.

Usage

quadraticRoots(a, b, c)

Arguments

a, b, c the coefficients of the polynomial

Value

A list of two cyclotomic numbers, the roots of the polynomial $ax^2 + bx + c$.

Examples

library(cyclotomic)
quadraticRoots(a = 1, b = 2, c = -1)

realPart

Real part of cyclotomic number.

Description

The real part of a cyclotomic number.

Usage

realPart(cyc)

Arguments

cyc a cyclotomic number

Value

A cyclotomic number.

Examples

realPart(zeta(9))

trigonometry Cosine and sine of a rational number

Description

Cosine and sine of a rational angle as a cyclotomic number.

Usage

cosDeg(theta)

sinDeg(theta)

cosRev(theta)

sinRev(theta)

Arguments

theta

an integer number, a **gmp** rational number, or a fraction given as a character string (e.g. "2/7")

Details

The function cosDeg, resp. sinDeg, returns the cosine, resp. the sine, of its argument assumed to be given in degrees. The function cosRev, resp. sinRev, returns the cosine, resp. the sine, of its argument assumed to be given in revolutions.

Value

A cyclotomic number.

Examples

```
cosDeg(60)
cosDeg("2/3")^2 + sinDeg("2/3")^2 == 1
```

10

Description

For example, 'zeta(4) = i' is the primitive 4th root of unity, and 'zeta(5) = exp(2*pi*i/5)' is the primitive 5th root of unity. In general, 'zeta(n) = exp(2*pi*i/n)'.

Usage

zeta(n)

Arguments

n

a positive integer

Value

A cyclotomic number.

Examples

zeta(4)

Index

+,cyclotomic,missing-method (cyclotomic-unary), 5 -,cyclotomic,missing-method (cyclotomic-unary), 5 as.cyclotomic, 2 as.cyclotomic, bigq-method (as.cyclotomic), 2 as.cyclotomic, bigz-method (as.cyclotomic), 2 as.cyclotomic, character-method (as.cyclotomic), 2 as.cyclotomic, cyclotomic-method (as.cyclotomic), 2

as.cyclotomic,numeric-method
 (as.cyclotomic), 2
asComplex, 3

```
conjugate, 4
cosDeg (trigonometry), 10
cosRev (trigonometry), 10
cyclotomic-imports, 4
cyclotomic-unary, 5
cycSqrt, 5
```

from_just, 4
from_just (cyclotomic-imports), 4

imaginaryPart, 6
isGaussianRational, 6
isRational, 7, 8
isReal, 7

maybeRational, 4, 7, 8

polar, 8 polarDeg (polar), 8 polarRev (polar), 8

quadraticRoots,9

realPart, 9

sinDeg(trigonometry), 10
sinRev(trigonometry), 10

trigonometry, 10

zeta, 11