
Package ‘cyclestreets’
December 4, 2024

Type Package

Title Cycle Routing and Data for Cycling Advocacy

Version 1.0.3

Description An interface to the cycle routing/data services provided by
'CycleStreets', a not-for-profit social enterprise and advocacy
organisation. The application programming interfaces (APIs) provided
by 'CycleStreets' are documented at
(<https://www.cyclestreets.net/api/>). The focus of this package is
the journey planning API, which aims to emulate the routes taken by a
knowledgeable cyclist. An innovative feature of the routing service
of its provision of fastest, quietest and balanced profiles. These
represent routes taken to minimise time, avoid traffic and compromise
between the two, respectively.

License GPL-3

URL https://rpackage.cyclestreets.net/,

https://github.com/cyclestreets/cyclestreets-r

BugReports https://github.com/cyclestreets/cyclestreets-r/issues

Depends R (>= 3.6.0)

Imports checkmate, curl, dplyr, data.table, geojsonsf, httr, jsonlite,
magrittr, progressr, RcppSimdJson, readr, sf, stringr, stringi

Suggests covr, od, stplanr

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

NeedsCompilation no

Author Robin Lovelace [aut, cre] (<https://orcid.org/0000-0001-5679-6536>),
Martin Lucas-Smith [aut],
Eric Krueger [ctb],
Joey Talbot [aut] (<https://orcid.org/0000-0002-6520-4560>),
Malcolm Morgan [ctb] (<https://orcid.org/0000-0002-9488-9183>),
Zhao Wang [ctb] (<https://orcid.org/0000-0002-4054-0533>)

1

https://www.cyclestreets.net/api/
https://rpackage.cyclestreets.net/
https://github.com/cyclestreets/cyclestreets-r
https://github.com/cyclestreets/cyclestreets-r/issues
https://orcid.org/0000-0001-5679-6536
https://orcid.org/0000-0002-6520-4560
https://orcid.org/0000-0002-9488-9183
https://orcid.org/0000-0002-4054-0533

2 batch

Maintainer Robin Lovelace <rob00x@gmail.com>

Repository CRAN

Date/Publication 2024-12-04 11:50:02 UTC

Contents
batch . 2
batch_multi . 4
cyclestreets_column_names . 5
journey . 6
journey2 . 8
json2sf_cs . 9
ltns . 11
smooth_with_cutoffs . 12
ways . 13

Index 15

batch Interface to CycleStreets Batch Routing API

Description

Note: set CYCLESTREETS_BATCH, CYCLESTREETS_PW and CYCLESTREETS_PW environment variables,
e.g. with usethis::edit_r_environ() before trying this.

Usage

batch(
desire_lines = NULL,
id = NULL,
directory = tempdir(),
wait = FALSE,
wait_time = NULL,
name = "Batch job",
serverId = 21,
strategies = "quietest",
bothDirections = 0,
minDistance = 50,
maxDistance = 5000,
filename = "test",
includeJsonOutput = 1,
emailOnCompletion = "you@example.com",
username = Sys.getenv("CYCLESTREETS_UN"),
password = Sys.getenv("CYCLESTREETS_PW"),
base_url = "https://api.cyclestreets.net/v2/batchroutes.createjob",

batch 3

pat = Sys.getenv("CYCLESTREETS_BATCH"),
silent = TRUE,
delete_job = TRUE,
cols_to_keep = c("id", "name", "provisionName", "distances", "time", "quietness",

"gradient_smooth"),
segments = TRUE

)

Arguments

desire_lines Geographic desire lines representing origin-destination data

id int Batch job ID, as returned from batchroutes.createjob. action string (start|pause|continue|terminate)
Action to take. Available actions are: start: Start (open) job pause: Pause job
continue: Continue (re-open) job terminate: Terminate job and delete data

directory Where to save the data? tempdir() by default

wait Should the process block your R session but return a route? FALSE by default.

wait_time How long to wait before getting the data in seconds? NULL by default, meaning
it will be calculated by the private function wait_s().

name The name of the batch routing job for CycleStreets

serverId The server ID to use (21 by default)

strategies Route plan types, e.g. "fastest"

bothDirections int (1|0) Whether to plan in both directions, i.e. A-B as well as B-A. 0, meaning
only one way routes, is the default in the R default.

minDistance Min Euclidean distance of routes to be calculated

maxDistance Maximum Euclidean distance of routes to be calculated

filename Character string
includeJsonOutput

int (1|0) Whether to include a column in the resulting CSV data giving the full
JSON output from the API, rather than just summary information like distance
and time.

emailOnCompletion

Email on completion?

username string Your CycleStreets account username. In due course this will be replaced
with an OAuth token.

password string Your CycleStreets account password. You can set it with Sys.setenv(CYCLESTREETS_PW="xxxxxx")

base_url The base url from which to construct API requests (with default set to main
server)

pat The API key used. By default this uses Sys.getenv("CYCLESTREETS").

silent Logical (default is FALSE). TRUE hides request sent.

delete_job Delete the job? TRUE by default to avoid clogged servers

cols_to_keep Columns to return in output sf object

segments logical, return segments TRUE/FALSE/"both"

4 batch_multi

Details

See https://www.cyclestreets.net/journey/batch/ for web UI.

Recommneded max batch size: 300k routes

Examples

if(FALSE) {
library(sf)
desire_lines = od::od_to_sf(od::od_data_df, od::od_data_zones)[4:5, 1:3]
u = paste0("https://github.com/cyclestreets/cyclestreets-r/",

"releases/download/v0.5.3/od-longford-10-test.Rds")
desire_lines = readRDS(url(u))
routes_id = batch(desire_lines, username = "robinlovelace", wait = FALSE)
Wait for some time, around a minute or 2
routes_wait = batch(id = routes_id, username = "robinlovelace", wait = TRUE, delete_job = FALSE)
names(routes_wait)
plot(routes_wait)
plot(desire_lines$geometry[4])
plot(routes_wait$geometry[routes_wait$route_number == "4"], add = TRUE)
head(routes_wait$route_number)
unique(routes_wait$route_number)
Job is deleted after this command:
routes_attrib = batch(desire_lines, id = routes_id, username = "robinlovelace", wait = TRUE)
names(routes_attrib)
unique(routes_attrib$route_number)
desire_lines_huge = desire_lines[sample(nrow(desire_lines), 250000, replace = TRUE),]
routes_id = batch(desire_lines_huge, username = "robinlovelace", wait = FALSE)
names(routes)
plot(routes$geometry)
plot(desire_lines$geometry, add = TRUE, col = "red")
routes = batch(desire_lines, username = "robinlovelace", wait_time = 5)
profvis::profvis(batch_read("test-data.csv.gz"))
}

batch_multi Batch routing for multiple plans and large datasets

Description

Batch routing for multiple plans and large datasets

Usage

batch_multi(
desire_lines,
plans = c("fastest", "balanced"),
nrow_batch = 10000,
temp_folder = tempdir(),

cyclestreets_column_names 5

batch_ids = NULL,
...

)

Arguments

desire_lines Input desire lines

plans Plans, e.g. fastest

nrow_batch How many rows per batch?

temp_folder path to folder

batch_ids NULL?

... Arguments passed to batch

Value

A list of routes.

Examples

if(FALSE) {
od_df = readr::read_csv("https://github.com/nptscot/npt/raw/main/data-raw/od_subset.csv")
zones = sf::read_sf("https://github.com/nptscot/npt/raw/main/data-raw/zones_edinburgh.geojson")
desire_lines = od::od_to_sf(od_df, zones)
desire_lines = desire_lines[1:100,]
p = c("fastest", "quietest")
routes_multi = batch_multi(desire_lines, plans = p, nrow_batch = 26, delete_job = FALSE)
names(routes_multi)
plot(routes_multi$fastest$geometry)
plot(routes_multi$quietest$geometry)
ids = list(

fastest = 4059:(4059+3),
quietest = 4063:(4063+3)

)
r_ids = batch_multi(desire_lines, plans = p, nrow_batch = 26, delete_job = FALSE, batch_ids = ids)
}

cyclestreets_column_names

Prices of 50,000 round cut diamonds.

Description

Variables provided by CycleStreets in their journey data

Usage

cyclestreets_column_names

6 journey

Format

An object of class character of length 44.

Source

https://www.cyclestreets.net/

journey Plan a journey with CycleStreets.net

Description

R interface to the CycleStreets.net journey planning API, a route planner made by cyclists for cy-
clists. See cyclestreets.net/api for details.

Usage

journey(
from,
to,
plan = "fastest",
silent = TRUE,
pat = NULL,
base_url = "https://www.cyclestreets.net",
reporterrors = TRUE,
save_raw = "FALSE",
...

)

Arguments

from Longitude/Latitude pair, e.g. c(-1.55, 53.80)

to Longitude/Latitude pair, e.g. c(-1.55, 53.80)

plan Text strong of either "fastest" (default), "quietest" or "balanced"

silent Logical (default is FALSE). TRUE hides request sent.

pat The API key used. By default this uses Sys.getenv("CYCLESTREETS").

base_url The base url from which to construct API requests (with default set to main
server)

reporterrors Boolean value (TRUE/FALSE) indicating if cyclestreets (TRUE by default).
should report errors (FALSE by default).

save_raw Boolean value which returns raw list from the json if TRUE (FALSE by default).

... Arguments passed to json2sf_cs

https://www.cyclestreets.net/
https://www.cyclestreets.net/api/

journey 7

Details

Requires the internet and a CycleStreets.net API key. CycleStreets.net does not yet work worldwide.

You need to have an api key for this code to run. By default it uses the CYCLESTREETS envi-
ronment variable. A quick way to set this is to install the usethis package and then executing the
following command:

usethis::edit_r_environ()

That should open up a new file in your text editor where you can add the environment variable as
follows (replace 1a... with your key for this to work):

CYCLESTREETS=1a43ed677e5e6fe9

After setting the environment variable, as outlined above, you need to restart your R session before
the journey function will work.

See www.cyclestreets.net/help/journey/howitworks/ for details on how these are calculated.

CycleStreets can give you lots of info at route and segment level. Commonly useful columns in-
clude:

cols = c("name", "provisionName", "time", "quietness", "edition", "gradient_smooth")

See json2sf_cs() for details.

See Also

json2sf_cs

Examples

Not run:
from = c(-1.55, 53.80) # geo_code("leeds")
to = c(-1.76, 53.80) # geo_code("bradford uk")
r1 = journey(from, to)
names(r1)
cols = c("name", "provisionName", "distances", "time", "quietness", "edition", "gradient_smooth")
r2 = journey(from, to, cols_to_keep = cols)
names(r2)
r2
r1[1:2,]
r1$grammesCO2saved
r1$calories
plot(r1[1:4])
plot(r1[10:ncol(r1)])
to = c(-2, 53.5) # towards Manchester
r1 = journey(from, to)
names(r1)
r2 = journey(from, to, plan = "balanced")
plot(r1["quietness"], reset = FALSE)
plot(r2["quietness"], add = TRUE)
r3 = journey(from, to, silent = FALSE)
r4 = journey(from, to, save_raw = TRUE)
r5 = journey(c(-1.524, 53.819), c(-1.556, 53.806))

https://www.cyclestreets.net/help/journey/howitworks/

8 journey2

plot(r5["gradient_segment"])
plot(r5["gradient_smooth"])

u = paste0("https://github.com/cyclestreets/cyclestreets-r/",
"releases/download/v0.4.0/line_with_single_segment.geojson")

desire_line = sf::read_sf(u)
r = stplanr::route(l = desire_line, route_fun = journey)
r

End(Not run)

journey2 Plan a journey with CycleStreets.net

Description

R interface to the CycleStreets.net journey planning API, a route planner made by cyclists for cy-
clists. See cyclestreets.net/api for details.

Usage

journey2(
fromPlace = NA,
toPlace = NA,
id = NULL,
plan = "fastest",
pat = NULL,
base_url = "https://www.cyclestreets.net",
host_con = 1,
reporterrors = TRUE,
segments = FALSE

)

Arguments

fromPlace sf points, matrix, or vector of lng/lat coordinates

toPlace sf points, matrix, or vector of lng/lat coordinates

id a character ID value to be attached to the results

plan Text strong of either "fastest" (default), "quietest" or "balanced"

pat The API key used. By default this uses Sys.getenv("CYCLESTREETS").

base_url The base url from which to construct API requests (with default set to main
server)

host_con number of threads to use passed to curl::new_pool

reporterrors Boolean value (TRUE/FALSE) indicating if cyclestreets (TRUE by default).
should report errors (FALSE by default).

segments Logical, if true route segments returned otherwise whole routes

https://www.cyclestreets.net/api/

json2sf_cs 9

Details

Requires the internet and a CycleStreets.net API key. CycleStreets.net does not yet work worldwide.

You need to have an api key for this code to run. By default it uses the CYCLESTREETS envi-
ronment variable. A quick way to set this is to install the usethis package and then executing the
following command:

usethis::edit_r_environ()

That should open up a new file in your text editor where you can add the environment variable as
follows (replace 1a... with your key for this to work):

CYCLESTREETS=1a43ed677e5e6fe9

After setting the environment variable, as outlined above, you need to restart your R session before
the journey function will work.

See www.cyclestreets.net/help/journey/howitworks/ for details on how these are calculated.

See Also

json2sf_cs

Examples

Not run:
from = c(-1.55, 53.80) # geo_code("leeds")
to = c(-1.76, 53.80) # geo_code("bradford uk")
r1 = journey(from, to)
r2 = journey2(from, to, segments = TRUE)
waldo::compare(r1, r2) # see differences
sum(sf::st_length(r1))
sum(sf::st_length(r2))
waldo::compare(sum(sf::st_length(r1)), sum(sf::st_length(r2)))
waldo::compare(names(r1), names(r2))
waldo::compare(r1[1,], r2[1,])
r1[1:2,]
r2[1:2,]
r1$grammesCO2saved
r1$calories

End(Not run)

json2sf_cs Quickly convert output from CycleStreets.net into sf object

Description

Available fields from CycleStreets include:

https://www.cyclestreets.net/help/journey/howitworks/

10 json2sf_cs

Usage

json2sf_cs(
results_raw,
id = 1,
segments = TRUE,
route_variables = c("start", "finish", "start_longitude", "start_latitude",
"finish_longitude", "finish_latitude", "crow_fly_distance", "event", "whence",
"speed", "itinerary", "plan", "note", "length", "west", "south", "east", "north",
"leaving", "arriving", "grammesCO2saved", "calories", "edition"),

cols_to_keep = c("id", "time", "busynance", "quietness", "signalledJunctions",
"signalledCrossings", "name", "walk", "elevations", "distances", "type", "legNumber",
"distance", "turn", "startBearing", "color", "provisionName", "start", "finish",
"start_longitude", "start_latitude", "finish_longitude", "finish_latitude",
"crow_fly_distance", "event", "whence", "speed", "itinerary", "plan", "note",
"length", "west", "south", "east", "north", "leaving", "arriving", "grammesCO2saved",
"calories", "edition", "gradient_segment",
"elevation_change",
"gradient_smooth")

)

Arguments

results_raw Raw result from CycleStreets.net read-in with readLines or similar

id id of the result

segments Return segment level data? TRUE by default.
route_variables

Route level variables

cols_to_keep Columns to return in output sf object

Details

c("id", "time", "busynance", "quietness", "signalledJunctions",
"signalledCrossings", "name", "walk", "elevations", "distances",
"type", "legNumber", "distance", "turn", "startBearing", "color",
"provisionName", "start", "finish", "start_longitude", "start_latitude",
"finish_longitude", "finish_latitude", "crow_fly_distance", "event",
"whence", "speed", "itinerary", "plan", "note", "length", "west",
"south", "east", "north", "leaving", "arriving", "grammesCO2saved",
"calories", "edition", "gradient_segment", "elevation_change",
"gradient_smooth", "geometry")

Examples

from = "Leeds Rail Station"
to = "University of Leeds"
from_point = tmaptools::geocode_OSM(from)
to_point = tmaptools::geocode_OSM(to)
from_point = c(-1.54408, 53.79360)

ltns 11

to_point = c(-1.54802, 53.79618)
save result from the API call to journey.json
res_json = journey(from_point, to_point, silent = FALSE, save_raw = TRUE)
jsonlite::write_json(res_json, "inst/extdata/journey.json")
f = "inst/extdata/journey.json"
f = system.file(package = "cyclestreets", "extdata/journey.json")
rsf = json2sf_cs(readLines(f), id = 1, segments = TRUE)
names(rsf)
json2sf_cs(readLines(f), id = 1, segments = TRUE, cols_to_keep = "quietness")
save result from the API call to journey.json
res_json = journey(from_point, to_point, silent = FALSE, save_raw = TRUE)
jsonlite::write_json(res_json, "inst/extdata/journey_short.json")
f = "inst/extdata/journey_short.json"
f = system.file(package = "cyclestreets", "extdata/journey_short.json")
obj = jsonlite::read_json(f, simplifyVector = TRUE)
Inclusion of "start_longitude" leads to the additional ProvisionName1 colum:
cols = c("name", "distances", "provisionName")
json2sf_cs(readLines(f), id = 1, segments = TRUE, cols_to_keep = cols)

ltns Download data on ’Low Traffic Neighbourhoods’ or ’rat runs’ from
CycleStreets

Description

R interface to the CycleStreets.net LTN. See ltn API docs and an article on the methods for further
details: https://www.cyclestreets.org/news/2021/07/25/mapping-ltns/

Usage

ltns(bb, pat = Sys.getenv("CYCLESTREETS"))

Arguments

bb An sf or ’bounding box’ like object

pat The API key used. By default this uses Sys.getenv("CYCLESTREETS").

Examples

Not run:
bb = "0.101131,52.195807,0.170288,52.209719"
ltn_data = ltns(bb)
plot(ltn_data)
bb = stplanr::routes_fast_sf
ltn_data = ltns(bb)
plot(ltn_data)

End(Not run)

https://www.cyclestreets.net/api/v2/advocacydata.ltns/

12 smooth_with_cutoffs

smooth_with_cutoffs Identify and smooth-out anomalous gradient values

Description

When distance_cutoff and gradient_cutoff thresholds are both broken for route segments,
this function treats them as anomalous and sets the offending gradient values to the mean of the n
segments closest to (in front of and behind) the offending segment.

Usage

smooth_with_cutoffs(
gradient_segment,
elevation_change,
distances,
distance_cutoff = 50,
gradient_cutoff = 0.1,
n = 3,
warnNA = FALSE

)

Arguments

gradient_segment

The gradient for each segment from CycleStreets.net
elevation_change

The difference between the maximum and minimum elevations within each seg-
ment

distances The distance of each segment
distance_cutoff

Distance (m) used to identify anomalous gradients
gradient_cutoff

Gradient (%, e.g. 0.1 being 10%) used to identify anomalous gradients
n The number of segments to use to smooth anomalous gradents.
warnNA Logical should NA warning be given? The default is 3, meaning segments di-

rectly before, after and including the offending segment.

Examples

f = system.file(package = "cyclestreets", "extdata/journey.json")
rsf = json2sf_cs(readLines(f))
rsf$gradient_segment
rsf$elevation_change
rsf$distances
smooth_with_cutoffs(rsf$gradient_segment, rsf$elevation_change, rsf$distances)
smooth_with_cutoffs(rsf$gradient_segment, rsf$elevation_change, rsf$distances, 20, 0.05)
smooth_with_cutoffs(rsf$gradient_segment, rsf$elevation_change, rsf$distances, 200, 0.02)
smooth_with_cutoffs(rsf$gradient_segment, rsf$elevation_change, rsf$distances, 200, 0.02, n = 5)

ways 13

ways Download data on ’Ways’ with cyclability (quietness) ratings

Description

R interface to the CycleStreets.net LTN. See API docs.

Usage

ways(
bb,
pat = Sys.getenv("CYCLESTREETS"),
base_url = "https://api.cyclestreets.net/v2/mapdata?",
limit = 400,
types = "way",
wayFields =
"name,ridingSurface,id,cyclableText,quietness,speedMph,speedKmph,pause,color",
zoom = 16

)

Arguments

bb An sf or ’bounding box’ like object

pat The API key used. By default this uses Sys.getenv("CYCLESTREETS").

base_url The base url from which to construct API requests (with default set to main
server)

limit Maximum number of features to return

types The type of way to get. Default: "way".

wayFields Which attributes of the ways to return?

zoom Zoom level

Examples

Not run:

u_test = paste0("https://api.cyclestreets.net/v2/mapdata?key=c047ed46f7b50b1x",
"&limit=400&types=way&wayFields=name,ridingSurface,id,cyclableText,",
"quietness,speedMph,speedKmph,pause,color&zoom=16&",
"bbox=-9.160863,38.754642,-9.150128,38.75764")

ways_test = sf::read_sf(u_test)
bb = "0.101131,52.195807,0.170288,52.209719"
bb = "-9.160863,38.754642,-9.150128,38.75764"
way_data = ways(bb)
plot(way_data)
bb = stplanr::routes_fast_sf
way_data = ways(bb)

https://www.cyclestreets.net/api/v2/

14 ways

plot(way_data)

End(Not run)

Index

∗ datasets
cyclestreets_column_names, 5

batch, 2
batch_multi, 4

cyclestreets_column_names, 5

journey, 6
journey2, 8
json2sf_cs, 9
json2sf_cs(), 7

ltns, 11

smooth_with_cutoffs, 12

ways, 13

15

	batch
	batch_multi
	cyclestreets_column_names
	journey
	journey2
	json2sf_cs
	ltns
	smooth_with_cutoffs
	ways
	Index

