
Package ‘cvms’
July 8, 2025

Title Cross-Validation for Model Selection

Version 1.8.0

Description Cross-validate one or multiple regression and classification models
and get relevant evaluation metrics in a tidy format. Validate the
best model on a test set and compare it to a baseline evaluation.
Alternatively, evaluate predictions from an external model. Currently
supports regression and classification (binary and multiclass).
Described in chp. 5 of Jeyaraman, B. P., Olsen, L. R.,
& Wambugu M. (2019, ISBN: 9781838550134).

License MIT + file LICENSE

URL https://github.com/ludvigolsen/cvms

BugReports https://github.com/ludvigolsen/cvms/issues

Depends R (>= 3.5)

Imports checkmate (>= 2.0.0), data.table (>= 1.12), dplyr (>= 0.8.5),
ggplot2, groupdata2 (>= 2.0.5), lifecycle, lme4 (>= 1.1-23),
MuMIn (>= 1.43.17), parameters (>= 0.15.0), plyr, pROC (>=
1.16.0), purrr, rearrr (>= 0.3.4), recipes (>= 0.1.13), rlang
(>= 0.4.7), stats, stringr, tibble (>= 3.0.3), tidyr (>=
1.1.2), utils

Suggests AUC, covr (>= 3.3.1), e1071 (>= 1.7-2), furrr, ggimage (>=
0.3.3), ggnewscale (>= 0.5.0), knitr, merDeriv (>= 0.2-4), nnet
(>= 7.3-20), randomForest (>= 4.6-14), rmarkdown, rsvg,
testthat (>= 2.3.2), xpectr (>= 0.4.3)

VignetteBuilder knitr

RdMacros lifecycle

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

NeedsCompilation no

1

https://github.com/ludvigolsen/cvms
https://github.com/ludvigolsen/cvms/issues

2 Contents

Author Ludvig Renbo Olsen [aut, cre] (ORCID:
<https://orcid.org/0009-0006-6798-7454>),

Hugh Benjamin Zachariae [aut],
Indrajeet Patil [ctb] (ORCID: <https://orcid.org/0000-0003-1995-6531>),
Daniel Lüdecke [ctb] (ORCID: <https://orcid.org/0000-0002-8895-3206>)

Maintainer Ludvig Renbo Olsen <r-pkgs@ludvigolsen.dk>

Repository CRAN

Date/Publication 2025-07-08 02:20:02 UTC

Contents
cvms-package . 3
baseline . 3
baseline_binomial . 11
baseline_gaussian . 14
baseline_multinomial . 17
binomial_metrics . 21
combine_predictors . 24
compatible.formula.terms . 25
confusion_matrix . 26
cross_validate . 30
cross_validate_fn . 35
dynamic_font_color_settings . 46
evaluate . 47
evaluate_residuals . 55
font . 57
gaussian_metrics . 58
model_functions . 60
most_challenging . 61
multiclass_probability_tibble . 66
multinomial_metrics . 68
musicians . 71
participant.scores . 72
plot_confusion_matrix . 73
plot_metric_density . 80
precomputed.formulas . 82
predicted.musicians . 83
predict_functions . 84
preprocess_functions . 85
process_info_binomial . 87
reconstruct_formulas . 88
select_definitions . 89
select_metrics . 90
simplify_formula . 90
summarize_metrics . 91
sum_tile_settings . 92
update_hyperparameters . 95

https://orcid.org/0009-0006-6798-7454
https://orcid.org/0000-0003-1995-6531
https://orcid.org/0000-0002-8895-3206

cvms-package 3

validate . 96
validate_fn . 101
wines . 111

Index 112

cvms-package cvms: A package for cross-validating regression and classification
models

Description

Perform (repeated) cross-validation on a list of model formulas. Validate the best model on a val-
idation set. Perform baseline evaluations on your test set. Generate model formulas by combining
your fixed effects. Evaluate predictions from an external model.

Details

Returns results in a tibble for easy comparison, reporting and further analysis.

The main functions are: cross_validate(), cross_validate_fn(), validate(), validate_fn(),
baseline(), and evaluate().

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Useful links:

• https://github.com/ludvigolsen/cvms

• Report bugs at https://github.com/ludvigolsen/cvms/issues

baseline Create baseline evaluations

Description

[Maturing]
Create a baseline evaluation of a test set.

In modelling, a baseline is a result that is meaningful to compare the results from our models to.
For instance, in classification, we usually want our results to be better than random guessing. E.g. if
we have three classes, we can expect an accuracy of 33.33%, as for every observation we have 1/3
chance of guessing the correct class. So our model should achieve a higher accuracy than 33.33%
before it is more useful to us than guessing.

https://github.com/ludvigolsen/cvms
https://github.com/ludvigolsen/cvms/issues

4 baseline

While this expected value is often fairly straightforward to find analytically, it only represents what
we can expect on average. In reality, it’s possible to get far better results than that by guessing.
baseline() (binomial, multinomial) finds the range of likely values by evaluating multiple sets
of random predictions and summarizing them with a set of useful descriptors. If random guessing
frequently obtains an accuracy of 40%, perhaps our model should have better performance than this,
before we declare it better than guessing.

How:
When `family` is binomial: evaluates `n` sets of random predictions against the dependent
variable, along with a set of all 0 predictions and a set of all 1 predictions. See also baseline_binomial().
When `family` is multinomial: creates one-vs-all (binomial) baseline evaluations for `n` sets
of random predictions against the dependent variable, along with sets of "all class x,y,z,..." pre-
dictions. See also baseline_multinomial().
When `family` is gaussian: fits baseline models (y ~ 1) on `n` random subsets of `train_data`
and evaluates each model on `test_data`. Also evaluates a model fitted on all rows in `train_data`.
See also baseline_gaussian().

Wrapper functions:
Consider using one of the wrappers, as they are simpler to use and understand: baseline_gaussian(),
baseline_multinomial(), and baseline_binomial().

Usage

baseline(
test_data,
dependent_col,
family,
train_data = NULL,
n = 100,
metrics = list(),
positive = 2,
cutoff = 0.5,
random_generator_fn = runif,
random_effects = NULL,
min_training_rows = 5,
min_training_rows_left_out = 3,
REML = FALSE,
parallel = FALSE

)

Arguments

test_data data.frame.

dependent_col Name of dependent variable in the supplied test and training sets.

family Name of family. (Character)
Currently supports "gaussian", "binomial" and "multinomial".

train_data data.frame. Only used when `family` is "gaussian".

baseline 5

n Number of random samplings to perform. (Default is 100)
For gaussian: The number of random samplings of `train_data` to fit base-
line models on.
For binomial and multinomial: The number of sets of random predictions to
evaluate.

metrics list for enabling/disabling metrics.
E.g. list("RMSE" = FALSE) would remove RMSE from the regression results,
and list("Accuracy" = TRUE) would add the regular Accuracy metric to the
classification results. Default values (TRUE/FALSE) will be used for the remain-
ing available metrics.
You can enable/disable all metrics at once by including "all" = TRUE/FALSE in
the list. This is done prior to enabling/disabling individual metrics, why f.i.
list("all" = FALSE, "RMSE" = TRUE) would return only the RMSE metric.
The list can be created with gaussian_metrics(), binomial_metrics(), or
multinomial_metrics().
Also accepts the string "all".

positive Level from dependent variable to predict. Either as character (preferable) or
level index (1 or 2 - alphabetically).
E.g. if we have the levels "cat" and "dog" and we want "dog" to be the positive
class, we can either provide "dog" or 2, as alphabetically, "dog" comes after
"cat".
Note: For reproducibility, it’s preferable to specify the name directly, as dif-
ferent locales may sort the levels differently.
Used when calculating confusion matrix metrics and creating ROC curves.
N.B. Only affects evaluation metrics, not the returned predictions.
N.B. Binomial only. (Character or Integer)

cutoff Threshold for predicted classes. (Numeric)
N.B. Binomial only

random_generator_fn

Function for generating random numbers when type is "multinomial". The
softmax function is applied to the generated numbers to transform them to prob-
abilities.
The first argument must be the number of random numbers to generate, as no
other arguments are supplied.
To test the effect of using different functions, see multiclass_probability_tibble().
N.B. Multinomial only

random_effects Random effects structure for the Gaussian baseline model. (Character)
E.g. with "(1|ID)", the model becomes "y ~ 1 + (1|ID)".
N.B. Gaussian only

min_training_rows

Minimum number of rows in the random subsets of `train_data`.
Gaussian only. (Integer)

min_training_rows_left_out

Minimum number of rows left out of the random subsets of `train_data`.

6 baseline

I.e. a subset will maximally have the size:
max_rows_in_subset = nrow(`train_data`) - `min_training_rows_left_out`.
N.B. Gaussian only. (Integer)

REML Whether to use Restricted Maximum Likelihood. (Logical)
N.B. Gaussian only. (Integer)

parallel Whether to run the `n` evaluations in parallel. (Logical)
Remember to register a parallel backend first. E.g. with doParallel::registerDoParallel.

Details

Packages used:

Models:
Gaussian: stats::lm, lme4::lmer

Results: Gaussian:
r2m : MuMIn::r.squaredGLMM
r2c : MuMIn::r.squaredGLMM
AIC : stats::AIC
AICc : MuMIn::AICc
BIC : stats::BIC
Binomial and Multinomial:
ROC and related metrics:
Binomial: pROC::roc
Multinomial: pROC::multiclass.roc

Value

list containing:

1. a tibble with summarized results (called summarized_metrics)

2. a tibble with random evaluations (random_evaluations)

3. a tibble with the summarized class level results (summarized_class_level_results) (Multi-
nomial only)

—————————————————————-

Gaussian Results:
—————————————————————-
The Summarized Results tibble contains:
Average RMSE, MAE, NRMSE(IQR), RRSE, RAE, RMSLE.
See the additional metrics (disabled by default) at ?gaussian_metrics.
The Measure column indicates the statistical descriptor used on the evaluations. The row where
Measure == All_rows is the evaluation when the baseline model is trained on all rows in `train_data`.
The Training Rows column contains the aggregated number of rows used from `train_data`,
when fitting the baseline models.

baseline 7

..
The Random Evaluations tibble contains:
The non-aggregated metrics.
A nested tibble with the predictions and targets.
A nested tibble with the coefficients of the baseline models.
Number of training rows used when fitting the baseline model on the training set.
A nested Process information object with information about the evaluation.
Name of dependent variable.
Name of fixed effect (bias term only).
Random effects structure (if specified).

—————————————————————-

Binomial Results:
—————————————————————-
Based on the generated test set predictions, a confusion matrix and ROC curve are used to get the
following:
ROC:
AUC, Lower CI, and Upper CI

Note, that the ROC curve is only computed when AUC is enabled.
Confusion Matrix:
Balanced Accuracy, Accuracy, F1, Sensitivity, Specificity, Positive Predictive Value,
Negative Predictive Value, Kappa, Detection Rate, Detection Prevalence, Prevalence,
and MCC (Matthews correlation coefficient).
..
The Summarized Results tibble contains:
The Measure column indicates the statistical descriptor used on the evaluations. The row where
Measure == All_0 is the evaluation when all predictions are 0. The row where Measure == All_1
is the evaluation when all predictions are 1.
The aggregated metrics.
..
The Random Evaluations tibble contains:
The non-aggregated metrics.
A nested tibble with the predictions and targets.
A list of ROC curve objects (if computed).
A nested tibble with the confusion matrix. The Pos_ columns tells you whether a row is a True
Positive (TP), True Negative (TN), False Positive (FP), or False Negative (FN), depending on which
level is the "positive" class. I.e. the level you wish to predict.
A nested Process information object with information about the evaluation.
Name of dependent variable.

—————————————————————-

8 baseline

Multinomial Results:
—————————————————————-
Based on the generated test set predictions, one-vs-all (binomial) evaluations are performed and
aggregated to get the same metrics as in the binomial results (excluding MCC, AUC, Lower CI
and Upper CI), with the addition of Overall Accuracy and multiclass MCC in the summarized
results. It is possible to enable multiclass AUC as well, which has been disabled by default as it
is slow to calculate when there’s a large set of classes.
Since we use macro-averaging, Balanced Accuracy is the macro-averaged metric, not the macro
sensitivity as sometimes used.
Note: we also refer to the one-vs-all evaluations as the class level results.
..
The Summarized Results tibble contains:
Summary of the random evaluations.
How: First, the one-vs-all binomial evaluations are aggregated by repetition, then, these aggrega-
tions are summarized. Besides the metrics from the binomial evaluations (see Binomial Results
above), it also includes Overall Accuracy and multiclass MCC.
The Measure column indicates the statistical descriptor used on the evaluations. The Mean, Me-
dian, SD, IQR, Max, Min, NAs, and INFs measures describe the Random Evaluations tibble,
while the CL_Max, CL_Min, CL_NAs, and CL_INFs describe the Class Level results.
The rows where Measure == All_<<class name>> are the evaluations when all the observations
are predicted to be in that class.
..
The Summarized Class Level Results tibble contains:
The (nested) summarized results for each class, with the same metrics and descriptors as the
Summarized Results tibble. Use tidyr::unnest on the tibble to inspect the results.
How: The one-vs-all evaluations are summarized by class.
The rows where Measure == All_0 are the evaluations when none of the observations are pre-
dicted to be in that class, while the rows where Measure == All_1 are the evaluations when all of
the observations are predicted to be in that class.
..
The Random Evaluations tibble contains:
The repetition results with the same metrics as the Summarized Results tibble.
How: The one-vs-all evaluations are aggregated by repetition. If a metric contains one or more
NAs in the one-vs-all evaluations, it will lead to an NA result for that repetition.
Also includes:
A nested tibble with the one-vs-all binomial evaluations (Class Level Results), including nested
Confusion Matrices and the Support column, which is a count of how many observations from
the class is in the test set.
A nested tibble with the predictions and targets.
A list of ROC curve objects.
A nested tibble with the multiclass confusion matrix.
A nested Process information object with information about the evaluation.
Name of dependent variable.

baseline 9

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other baseline functions: baseline_binomial(), baseline_gaussian(), baseline_multinomial()

Examples

Attach packages
library(cvms)
library(groupdata2) # partition()
library(dplyr) # %>% arrange()
library(tibble)

Data is part of cvms
data <- participant.scores

Set seed for reproducibility
set.seed(1)

Partition data
partitions <- partition(data, p = 0.7, list_out = TRUE)
train_set <- partitions[[1]]
test_set <- partitions[[2]]

Create baseline evaluations
Note: usually n=100 is a good setting

Gaussian
baseline(

test_data = test_set, train_data = train_set,
dependent_col = "score", random_effects = "(1|session)",
n = 2, family = "gaussian"

)

Binomial
baseline(

test_data = test_set, dependent_col = "diagnosis",
n = 2, family = "binomial"

)

Multinomial

Create some data with multiple classes
multiclass_data <- tibble(

"target" = rep(paste0("class_", 1:5), each = 10)
) %>%

dplyr::sample_n(35)

baseline(
test_data = multiclass_data,

10 baseline

dependent_col = "target",
n = 4, family = "multinomial"

)

Parallelize evaluations

Attach doParallel and register four cores
Uncomment:
library(doParallel)
registerDoParallel(4)

Binomial
baseline(

test_data = test_set, dependent_col = "diagnosis",
n = 4, family = "binomial"
#, parallel = TRUE # Uncomment

)

Gaussian
baseline(

test_data = test_set, train_data = train_set,
dependent_col = "score", random_effects = "(1|session)",
n = 4, family = "gaussian"
#, parallel = TRUE # Uncomment

)

Multinomial
(mb <- baseline(

test_data = multiclass_data,
dependent_col = "target",
n = 6, family = "multinomial"
#, parallel = TRUE # Uncomment

))

Inspect the summarized class level results
for class_2
mb$summarized_class_level_results %>%

dplyr::filter(Class == "class_2") %>%
tidyr::unnest(Results)

Multinomial with custom random generator function
that creates very "certain" predictions
(once softmax is applied)

rcertain <- function(n) {
(runif(n, min = 1, max = 100)^1.4) / 100

}

baseline(
test_data = multiclass_data,
dependent_col = "target",
n = 6, family = "multinomial",
random_generator_fn = rcertain

baseline_binomial 11

#, parallel = TRUE # Uncomment
)

baseline_binomial Create baseline evaluations for binary classification

Description

[Maturing]
Create a baseline evaluation of a test set.

In modelling, a baseline is a result that is meaningful to compare the results from our models to.
For instance, in classification, we usually want our results to be better than random guessing. E.g. if
we have three classes, we can expect an accuracy of 33.33%, as for every observation we have 1/3
chance of guessing the correct class. So our model should achieve a higher accuracy than 33.33%
before it is more useful to us than guessing.

While this expected value is often fairly straightforward to find analytically, it only represents what
we can expect on average. In reality, it’s possible to get far better results than that by guessing.
baseline_binomial() finds the range of likely values by evaluating multiple sets of random pre-
dictions and summarizing them with a set of useful descriptors. Additionally, it evaluates a set of
all 0 predictions and a set of all 1 predictions.

Usage

baseline_binomial(
test_data,
dependent_col,
n = 100,
metrics = list(),
positive = 2,
cutoff = 0.5,
parallel = FALSE

)

Arguments

test_data data.frame.

dependent_col Name of dependent variable in the supplied test and training sets.

n The number of sets of random predictions to evaluate. (Default is 100)

metrics list for enabling/disabling metrics.
E.g. list("F1" = FALSE) would remove F1 from the results, and list("Accuracy"
= TRUE) would add the regular Accuracy metric to the results. Default values
(TRUE/FALSE) will be used for the remaining available metrics.
You can enable/disable all metrics at once by including "all" = TRUE/FALSE in
the list. This is done prior to enabling/disabling individual metrics, why f.i.

12 baseline_binomial

list("all" = FALSE, "Accuracy" = TRUE) would return only the Accuracy
metric.
The list can be created with binomial_metrics().
Also accepts the string "all".

positive Level from dependent variable to predict. Either as character (preferable) or
level index (1 or 2 - alphabetically).
E.g. if we have the levels "cat" and "dog" and we want "dog" to be the positive
class, we can either provide "dog" or 2, as alphabetically, "dog" comes after
"cat".
Note: For reproducibility, it’s preferable to specify the name directly, as dif-
ferent locales may sort the levels differently.
Used when calculating confusion matrix metrics and creating ROC curves.
N.B. Only affects evaluation metrics, not the returned predictions.

cutoff Threshold for predicted classes. (Numeric)

parallel Whether to run the `n` evaluations in parallel. (Logical)
Remember to register a parallel backend first. E.g. with doParallel::registerDoParallel.

Details

Packages used:

ROC and AUC: pROC::roc

Value

list containing:

1. a tibble with summarized results (called summarized_metrics)

2. a tibble with random evaluations (random_evaluations)

..

Based on the generated test set predictions, a confusion matrix and ROC curve are used to get the
following:

ROC:

AUC, Lower CI, and Upper CI

Note, that the ROC curve is only computed when AUC is enabled.

Confusion Matrix:

Balanced Accuracy, Accuracy, F1, Sensitivity, Specificity, Positive Predictive Value,
Negative Predictive Value, Kappa, Detection Rate, Detection Prevalence, Prevalence, and
MCC (Matthews correlation coefficient).

..

The Summarized Results tibble contains:

The Measure column indicates the statistical descriptor used on the evaluations. The row where
Measure == All_0 is the evaluation when all predictions are 0. The row where Measure == All_1
is the evaluation when all predictions are 1.

baseline_binomial 13

The aggregated metrics.

..

The Random Evaluations tibble contains:

The non-aggregated metrics.

A nested tibble with the predictions and targets.

A list of ROC curve objects (if computed).

A nested tibble with the confusion matrix. The Pos_ columns tells you whether a row is a True
Positive (TP), True Negative (TN), False Positive (FP), or False Negative (FN), depending on which
level is the "positive" class. I.e. the level you wish to predict.

A nested Process information object with information about the evaluation.

Name of dependent variable.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other baseline functions: baseline(), baseline_gaussian(), baseline_multinomial()

Examples

Attach packages
library(cvms)
library(groupdata2) # partition()
library(dplyr) # %>% arrange()

Data is part of cvms
data <- participant.scores

Set seed for reproducibility
set.seed(1)

Partition data
partitions <- partition(data, p = 0.7, list_out = TRUE)
train_set <- partitions[[1]]
test_set <- partitions[[2]]

Create baseline evaluations
Note: usually n=100 is a good setting

baseline_binomial(
test_data = test_set,
dependent_col = "diagnosis",
n = 2

)

Parallelize evaluations

14 baseline_gaussian

Attach doParallel and register four cores
Uncomment:
library(doParallel)
registerDoParallel(4)

Make sure to uncomment the parallel argument
baseline_binomial(

test_data = test_set,
dependent_col = "diagnosis",
n = 4
#, parallel = TRUE # Uncomment

)

baseline_gaussian Create baseline evaluations for regression models

Description

[Maturing]
Create a baseline evaluation of a test set.

In modelling, a baseline is a result that is meaningful to compare the results from our models to. In
regression, we want our model to be better than a model without any predictors. If our model does
not perform better than such a simple model, it’s unlikely to be useful.

baseline_gaussian() fits the intercept-only model (y ~ 1) on `n` random subsets of `train_data`
and evaluates each model on `test_data`. Additionally, it evaluates a model fitted on all rows in
`train_data`.

Usage

baseline_gaussian(
test_data,
train_data,
dependent_col,
n = 100,
metrics = list(),
random_effects = NULL,
min_training_rows = 5,
min_training_rows_left_out = 3,
REML = FALSE,
parallel = FALSE

)

Arguments

test_data data.frame.

train_data data.frame.

baseline_gaussian 15

dependent_col Name of dependent variable in the supplied test and training sets.

n The number of random samplings of `train_data` to fit baseline models on.
(Default is 100)

metrics list for enabling/disabling metrics.
E.g. list("RMSE" = FALSE) would remove RMSE from the results, and list("TAE"
= TRUE) would add the Total Absolute Error metric to the results. Default
values (TRUE/FALSE) will be used for the remaining available metrics.
You can enable/disable all metrics at once by including "all" = TRUE/FALSE in
the list. This is done prior to enabling/disabling individual metrics, why f.i.
list("all" = FALSE, "RMSE" = TRUE) would return only the RMSE metric.
The list can be created with gaussian_metrics().
Also accepts the string "all".

random_effects Random effects structure for the baseline model. (Character)
E.g. with "(1|ID)", the model becomes "y ~ 1 + (1|ID)".

min_training_rows

Minimum number of rows in the random subsets of `train_data`.
min_training_rows_left_out

Minimum number of rows left out of the random subsets of `train_data`.
I.e. a subset will maximally have the size:
max_rows_in_subset = nrow(`train_data`) - `min_training_rows_left_out`.

REML Whether to use Restricted Maximum Likelihood. (Logical)

parallel Whether to run the `n` evaluations in parallel. (Logical)
Remember to register a parallel backend first. E.g. with doParallel::registerDoParallel.

Details

Packages used:

Models:
stats::lm, lme4::lmer

Results:
r2m : MuMIn::r.squaredGLMM
r2c : MuMIn::r.squaredGLMM
AIC : stats::AIC
AICc : MuMIn::AICc
BIC : stats::BIC

Value

list containing:

1. a tibble with summarized results (called summarized_metrics)

2. a tibble with random evaluations (random_evaluations)

16 baseline_gaussian

..

The Summarized Results tibble contains:

Average RMSE, MAE, NRMSE(IQR), RRSE, RAE, RMSLE.

See the additional metrics (disabled by default) at ?gaussian_metrics.

The Measure column indicates the statistical descriptor used on the evaluations. The row where
Measure == All_rows is the evaluation when the baseline model is trained on all rows in `train_data`.

The Training Rows column contains the aggregated number of rows used from `train_data`,
when fitting the baseline models.

..

The Random Evaluations tibble contains:

The non-aggregated metrics.

A nested tibble with the predictions and targets.

A nested tibble with the coefficients of the baseline models.

Number of training rows used when fitting the baseline model on the training set.

A nested Process information object with information about the evaluation.

Name of dependent variable.

Name of fixed effect (bias term only).

Random effects structure (if specified).

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other baseline functions: baseline(), baseline_binomial(), baseline_multinomial()

Examples

Attach packages
library(cvms)
library(groupdata2) # partition()
library(dplyr) # %>% arrange()

Data is part of cvms
data <- participant.scores

Set seed for reproducibility
set.seed(1)

Partition data
partitions <- partition(data, p = 0.7, list_out = TRUE)
train_set <- partitions[[1]]
test_set <- partitions[[2]]

Create baseline evaluations

baseline_multinomial 17

Note: usually n=100 is a good setting

baseline_gaussian(
test_data = test_set,
train_data = train_set,
dependent_col = "score",
random_effects = "(1|session)",
n = 2

)

Parallelize evaluations

Attach doParallel and register four cores
Uncomment:
library(doParallel)
registerDoParallel(4)

Make sure to uncomment the parallel argument
baseline_gaussian(

test_data = test_set,
train_data = train_set,
dependent_col = "score",
random_effects = "(1|session)",
n = 4
#, parallel = TRUE # Uncomment

)

baseline_multinomial Create baseline evaluations

Description

[Maturing]

Create a baseline evaluation of a test set.

In modelling, a baseline is a result that is meaningful to compare the results from our models to.
For instance, in classification, we usually want our results to be better than random guessing. E.g. if
we have three classes, we can expect an accuracy of 33.33%, as for every observation we have 1/3
chance of guessing the correct class. So our model should achieve a higher accuracy than 33.33%
before it is more useful to us than guessing.

While this expected value is often fairly straightforward to find analytically, it only represents what
we can expect on average. In reality, it’s possible to get far better results than that by guessing.
baseline_multinomial() finds the range of likely values by evaluating multiple sets of random
predictions and summarizing them with a set of useful descriptors.

Technically, it creates one-vs-all (binomial) baseline evaluations for the `n` sets of random predic-
tions and summarizes them. Additionally, sets of "all class x,y,z,..." predictions are evaluated.

18 baseline_multinomial

Usage

baseline_multinomial(
test_data,
dependent_col,
n = 100,
metrics = list(),
random_generator_fn = runif,
parallel = FALSE

)

Arguments

test_data data.frame.

dependent_col Name of dependent variable in the supplied test and training sets.

n The number of sets of random predictions to evaluate. (Default is 100)

metrics list for enabling/disabling metrics.
E.g. list("F1" = FALSE) would remove F1 from the results, and list("Accuracy"
= TRUE) would add the regular Accuracy metric to the results. Default values
(TRUE/FALSE) will be used for the remaining available metrics.
You can enable/disable all metrics at once by including "all" = TRUE/FALSE in
the list. This is done prior to enabling/disabling individual metrics, why f.i.
list("all" = FALSE, "Accuracy" = TRUE) would return only the Accuracy
metric.
The list can be created with multinomial_metrics().
Also accepts the string "all".

random_generator_fn

Function for generating random numbers. The softmax function is applied to
the generated numbers to transform them to probabilities.
The first argument must be the number of random numbers to generate, as no
other arguments are supplied.
To test the effect of using different functions, see multiclass_probability_tibble().

parallel Whether to run the `n` evaluations in parallel. (Logical)
Remember to register a parallel backend first. E.g. with doParallel::registerDoParallel.

Details

Packages used:

Multiclass ROC curve and AUC: pROC::multiclass.roc

Value

list containing:

1. a tibble with summarized results (called summarized_metrics)

2. a tibble with random evaluations (random_evaluations)

baseline_multinomial 19

3. a tibble with the summarized class level results (summarized_class_level_results)

..

Macro metrics:
Based on the generated predictions, one-vs-all (binomial) evaluations are performed and aggre-
gated to get the following macro metrics:
Balanced Accuracy, F1, Sensitivity, Specificity, Positive Predictive Value, Negative
Predictive Value, Kappa, Detection Rate, Detection Prevalence, and Prevalence.
In general, the metrics mentioned in binomial_metrics() can be enabled as macro metrics (ex-
cluding MCC, AUC, Lower CI, Upper CI, and the AIC/AICc/BIC metrics). These metrics also has a
weighted average version.
N.B. we also refer to the one-vs-all evaluations as the class level results.

Multiclass metrics:
In addition, the Overall Accuracy and multiclass MCC metrics are computed. Multiclass AUC can
be enabled but is slow to calculate with many classes.

..

The Summarized Results tibble contains:

Summary of the random evaluations.

How: The one-vs-all binomial evaluations are aggregated by repetition and summarized. Besides
the metrics from the binomial evaluations, it also includes Overall Accuracy and multiclass MCC.

The Measure column indicates the statistical descriptor used on the evaluations. The Mean, Me-
dian, SD, IQR, Max, Min, NAs, and INFs measures describe the Random Evaluations tibble,
while the CL_Max, CL_Min, CL_NAs, and CL_INFs describe the Class Level results.

The rows where Measure == All_<<class name>> are the evaluations when all the observations
are predicted to be in that class.

..

The Summarized Class Level Results tibble contains:

The (nested) summarized results for each class, with the same metrics and descriptors as the Sum-
marized Results tibble. Use tidyr::unnest on the tibble to inspect the results.

How: The one-vs-all evaluations are summarized by class.

The rows where Measure == All_0 are the evaluations when none of the observations are predicted
to be in that class, while the rows where Measure == All_1 are the evaluations when all of the
observations are predicted to be in that class.

..

The Random Evaluations tibble contains:

The repetition results with the same metrics as the Summarized Results tibble.

How: The one-vs-all evaluations are aggregated by repetition. If a metric contains one or more NAs
in the one-vs-all evaluations, it will lead to an NA result for that repetition.

Also includes:

20 baseline_multinomial

A nested tibble with the one-vs-all binomial evaluations (Class Level Results), including nested
Confusion Matrices and the Support column, which is a count of how many observations from
the class is in the test set.

A nested tibble with the predictions and targets.

A list of ROC curve objects.

A nested tibble with the multiclass confusion matrix.

A nested Process information object with information about the evaluation.

Name of dependent variable.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other baseline functions: baseline(), baseline_binomial(), baseline_gaussian()

Examples

Attach packages
library(cvms)
library(groupdata2) # partition()
library(dplyr) # %>% arrange()
library(tibble)

Data is part of cvms
data <- participant.scores

Set seed for reproducibility
set.seed(1)

Partition data
partitions <- partition(data, p = 0.7, list_out = TRUE)
train_set <- partitions[[1]]
test_set <- partitions[[2]]

Create baseline evaluations
Note: usually n=100 is a good setting

Create some data with multiple classes
multiclass_data <- tibble(

"target" = rep(paste0("class_", 1:5), each = 10)
) %>%

dplyr::sample_n(35)

baseline_multinomial(
test_data = multiclass_data,
dependent_col = "target",
n = 4

)

binomial_metrics 21

Parallelize evaluations

Attach doParallel and register four cores
Uncomment:
library(doParallel)
registerDoParallel(4)

Make sure to uncomment the parallel argument
(mb <- baseline_multinomial(

test_data = multiclass_data,
dependent_col = "target",
n = 6
#, parallel = TRUE # Uncomment

))

Inspect the summarized class level results
for class_2
mb$summarized_class_level_results %>%

dplyr::filter(Class == "class_2") %>%
tidyr::unnest(Results)

Multinomial with custom random generator function
that creates very "certain" predictions
(once softmax is applied)

rcertain <- function(n) {
(runif(n, min = 1, max = 100)^1.4) / 100

}

Make sure to uncomment the parallel argument
baseline_multinomial(

test_data = multiclass_data,
dependent_col = "target",
n = 6,
random_generator_fn = rcertain
#, parallel = TRUE # Uncomment

)

binomial_metrics Select metrics for binomial evaluation

Description

[Experimental]

Enable/disable metrics for binomial evaluation. Can be supplied to the `metrics` argument in
many of the cvms functions.

Note: Some functions may have slightly different defaults than the ones supplied here.

22 binomial_metrics

Usage

binomial_metrics(
all = NULL,
balanced_accuracy = NULL,
accuracy = NULL,
f1 = NULL,
sensitivity = NULL,
specificity = NULL,
pos_pred_value = NULL,
neg_pred_value = NULL,
auc = NULL,
lower_ci = NULL,
upper_ci = NULL,
kappa = NULL,
mcc = NULL,
detection_rate = NULL,
detection_prevalence = NULL,
prevalence = NULL,
false_neg_rate = NULL,
false_pos_rate = NULL,
false_discovery_rate = NULL,
false_omission_rate = NULL,
threat_score = NULL,
aic = NULL,
aicc = NULL,
bic = NULL

)

Arguments

all Enable/disable all arguments at once. (Logical)
Specifying other metrics will overwrite this, why you can use (all = FALSE,
accuracy = TRUE) to get only the Accuracy metric.

balanced_accuracy

Balanced Accuracy (Default: TRUE)

accuracy Accuracy (Default: FALSE)

f1 F1 (Default: TRUE)

sensitivity Sensitivity (Default: TRUE)

specificity Specificity (Default: TRUE)

pos_pred_value Pos Pred Value (Default: TRUE)

neg_pred_value Neg Pred Value (Default: TRUE)

auc AUC (Default: TRUE)

lower_ci Lower CI (Default: TRUE)

upper_ci Upper CI (Default: TRUE)

kappa Kappa (Default: TRUE)

binomial_metrics 23

mcc MCC (Default: TRUE)

detection_rate Detection Rate (Default: TRUE)

detection_prevalence

Detection Prevalence (Default: TRUE)

prevalence Prevalence (Default: TRUE)

false_neg_rate False Neg Rate (Default: FALSE)

false_pos_rate False Pos Rate (Default: FALSE)

false_discovery_rate

False Discovery Rate (Default: FALSE)

false_omission_rate

False Omission Rate (Default: FALSE)

threat_score Threat Score (Default: FALSE)

aic AIC. (Default: FALSE)

aicc AICc. (Default: FALSE)

bic BIC. (Default: FALSE)

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other evaluation functions: confusion_matrix(), evaluate(), evaluate_residuals(), gaussian_metrics(),
multinomial_metrics()

Examples

Attach packages
library(cvms)

Enable only Balanced Accuracy
binomial_metrics(all = FALSE, balanced_accuracy = TRUE)

Enable all but Balanced Accuracy
binomial_metrics(all = TRUE, balanced_accuracy = FALSE)

Disable Balanced Accuracy
binomial_metrics(balanced_accuracy = FALSE)

24 combine_predictors

combine_predictors Generate model formulas by combining predictors

Description

[Maturing]
Create model formulas with every combination of your fixed effects, along with the dependent
variable and random effects. 259,358 formulas have been precomputed with two- and three-way
interactions for up to 8 fixed effects, with up to 5 included effects per formula. Uses the + and *
operators, so lower order interactions are automatically included.

Usage

combine_predictors(
dependent,
fixed_effects,
random_effects = NULL,
max_fixed_effects = 5,
max_interaction_size = 3,
max_effect_frequency = NULL

)

Arguments

dependent Name of dependent variable. (Character)
fixed_effects list of fixed effects. (Character)

Max. limit of 8 effects when interactions are included!
A fixed effect name cannot contain: white spaces, "*" or "+".
Effects in sublists will be interchanged. This can be useful, when we have mul-
tiple versions of a predictor (e.g. x1 and log(x1)) that we do not wish to have
in the same formula.
Example of interchangeable effects:
list(list("x1", "log_x1"), "x2", "x3")

random_effects The random effects structure. (Character)
Is appended to the model formulas.

max_fixed_effects

Maximum number of fixed effects in a model formula. (Integer)
Max. limit of 5 when interactions are included!

max_interaction_size

Maximum number of effects in an interaction. (Integer)
Max. limit of 3.
Use this to limit the n-way interactions allowed. 0 or 1 excludes interactions all
together.
A model formula can contain multiple interactions.

max_effect_frequency

Maximum number of times an effect is included in a formula string.

compatible.formula.terms 25

Value

list of model formulas.

E.g.:

c("y ~ x1 + (1|z)", "y ~ x2 + (1|z)", "y ~ x1 + x2 + (1|z)", "y ~ x1 * x2 + (1|z)").

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

Examples

Attach packages
library(cvms)

Create effect names
dependent <- "y"
fixed_effects <- c("a", "b", "c")
random_effects <- "(1|e)"

Create model formulas
combine_predictors(

dependent, fixed_effects,
random_effects

)

Create effect names with interchangeable effects in sublists
fixed_effects <- list("a", list("b", "log_b"), "c")

Create model formulas
combine_predictors(

dependent, fixed_effects,
random_effects

)

compatible.formula.terms

Compatible formula terms

Description

162,660 pairs of compatible terms for building model formulas with up to 15 fixed effects.

Format

A data.frame with 162,660 rows and 5 variables:

left term, fixed effect or interaction, with fixed effects separated by "*"

26 confusion_matrix

right term, fixed effect or interaction, with fixed effects separated by "*"
max_interaction_size maximum interaction size in the two terms, up to 3

num_effects number of unique fixed effects in the two terms, up to 5

min_num_fixed_effects minimum number of fixed effects required to use a formula with the two
terms, i.e. the index in the alphabet of the last of the alphabetically ordered effects (letters) in
the two terms, so 4 if left == "A" and right == "D"

Details

A term is either a fixed effect or an interaction between fixed effects (up to three-way), where the
effects are separated by the "*" operator.

Two terms are compatible if they are not redundant, meaning that both add a fixed effect to the
formula. E.g. as the interaction "x1 * x2 * x3" expands to "x1 + x2 + x3 + x1 * x2 + x1 * x3 + x2
* x3 + x1 * x2 * x3", the higher order interaction makes these "sub terms" redundant. Note: All
terms are compatible with NA.

Effects are represented by the first fifteen capital letters.

Used to generate the model formulas for combine_predictors.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

confusion_matrix Create a confusion matrix

Description

[Experimental]
Creates a confusion matrix from targets and predictions. Calculates associated metrics.

Multiclass results are based on one-vs-all evaluations. Both regular averaging and weighted aver-
aging are available. Also calculates the Overall Accuracy.

Note: In most cases you should use evaluate() instead. It has additional metrics and works in
magrittr pipes (e.g. %>%) and with dplyr::group_by(). confusion_matrix() is more lightweight
and may be preferred in programming when you don’t need the extra stuff in evaluate().

Usage

confusion_matrix(
targets,
predictions,
metrics = list(),
positive = 2,
c_levels = NULL,
do_one_vs_all = TRUE,
parallel = FALSE

)

confusion_matrix 27

Arguments

targets vector with true classes. Either numeric or character.

predictions vector with predicted classes. Either numeric or character.

metrics list for enabling/disabling metrics.
E.g. list("Accuracy" = TRUE) would add the regular accuracy metric, whie
list("F1" = FALSE) would remove the F1 metric. Default values (TRUE/FALSE)
will be used for the remaining available metrics.
You can enable/disable all metrics at once by including "all" = TRUE/FALSE
in the list. This is done prior to enabling/disabling individual metrics, why
for instance list("all" = FALSE, "Accuracy" = TRUE) would return only the
Accuracy metric.
The list can be created with binomial_metrics() or multinomial_metrics().
Also accepts the string "all".

positive Level from `targets` to predict. Either as character (preferable) or level index
(1 or 2 - alphabetically). (Two-class only)
E.g. if we have the levels "cat" and "dog" and we want "dog" to be the positive
class, we can either provide "dog" or 2, as alphabetically, "dog" comes after
"cat".
Note: For reproducibility, it’s preferable to specify the name directly, as dif-
ferent locales may sort the levels differently.

c_levels vector with categorical levels in the targets. Should have same type as `targets`.
If NULL, they are inferred from `targets`.
N.B. the levels are sorted alphabetically. When `positive` is numeric (i.e. an
index), it therefore still refers to the index of the alphabetically sorted levels.

do_one_vs_all Whether to perform one-vs-all evaluations when working with more than 2
classes (multiclass).
If you are only interested in the confusion matrix, this allows you to skip most
of the metric calculations.

parallel Whether to perform the one-vs-all evaluations in parallel. (Logical)
N.B. This only makes sense when you have a lot of classes or a very large
dataset.
Remember to register a parallel backend first. E.g. with doParallel::registerDoParallel.

Details

The following formulas are used for calculating the metrics:

Sensitivity = TP / (TP + FN)

Specificity = TN / (TN + FP)

Pos Pred Value = TP / (TP + FP)

Neg Pred Value = TN / (TN + FN)

Balanced Accuracy = (Sensitivity + Specificity) / 2

Accuracy = (TP + TN) / (TP + TN + FP + FN)

Overall Accuracy = Correct / (Correct + Incorrect)

28 confusion_matrix

F1 = 2 * Pos Pred Value * Sensitivity / (Pos Pred Value + Sensitivity)

MCC = ((TP * TN) - (FP * FN)) / sqrt((TP + FP) * (TP + FN) * (TN + FP) * (TN + FN))

Note for MCC: Formula is for the binary case. When the denominator is 0, we set it to 1 to avoid
NaN. See the metrics vignette for the multiclass version.

Detection Rate = TP / (TP + FN + TN + FP)

Detection Prevalence = (TP + FP) / (TP + FN + TN + FP)

Threat Score = TP / (TP + FN + FP)

False Neg Rate = 1 - Sensitivity

False Pos Rate = 1 - Specificity

False Discovery Rate = 1 - Pos Pred Value

False Omission Rate = 1 - Neg Pred Value

For Kappa the counts (TP, TN, FP, FN) are normalized to percentages (summing to 1). Then the
following is calculated:

p_observed = TP + TN

p_expected = (TN + FP) * (TN + FN) + (FN + TP) * (FP + TP)

Kappa = (p_observed - p_expected) / (1 - p_expected)

Value

tibble with:

Nested confusion matrix (tidied version)

Nested confusion matrix (table)

The Positive Class.

Multiclass only: Nested Class Level Results with the two-class metrics, the nested confusion ma-
trices, and the Support metric, which is a count of the class in the target column and is used for the
weighted average metrics.

The following metrics are available (see `metrics`):

Two classes or more:

Metric Name Default
Balanced Accuracy "Balanced Accuracy" Enabled

Accuracy "Accuracy" Disabled
F1 "F1" Enabled

Sensitivity "Sensitivity" Enabled
Specificity "Specificity" Enabled

Positive Predictive Value "Pos Pred Value" Enabled
Negative Predictive Value "Neg Pred Value" Enabled

Kappa "Kappa" Enabled
Matthews Correlation Coefficient "MCC" Enabled

Detection Rate "Detection Rate" Enabled
Detection Prevalence "Detection Prevalence" Enabled

Prevalence "Prevalence" Enabled

confusion_matrix 29

False Negative Rate "False Neg Rate" Disabled
False Positive Rate "False Pos Rate" Disabled

False Discovery Rate "False Discovery Rate" Disabled
False Omission Rate "False Omission Rate" Disabled

Threat Score "Threat Score" Disabled

The Name column refers to the name used in the package. This is the name in the output and
when enabling/disabling in `metrics`.

Three classes or more:
The metrics mentioned above (excluding MCC) has a weighted average version (disabled by de-
fault; weighted by the Support).
In order to enable a weighted metric, prefix the metric name with "Weighted " when specifying
`metrics`.
E.g. metrics = list("Weighted Accuracy" = TRUE).

Metric Name Default
Overall Accuracy "Overall Accuracy" Enabled

Weighted * "Weighted *" Disabled
Multiclass MCC "MCC" Enabled

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other evaluation functions: binomial_metrics(), evaluate(), evaluate_residuals(), gaussian_metrics(),
multinomial_metrics()

Examples

Attach cvms
library(cvms)

Two classes

Create targets and predictions
targets <- c(0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1)
predictions <- c(1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0)

Create confusion matrix with default metrics
cm <- confusion_matrix(targets, predictions)
cm
cm[["Confusion Matrix"]]
cm[["Table"]]

Three classes

30 cross_validate

Create targets and predictions
targets <- c(0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0)
predictions <- c(2, 1, 0, 2, 0, 1, 1, 2, 0, 1, 2, 0, 2)

Create confusion matrix with default metrics
cm <- confusion_matrix(targets, predictions)
cm
cm[["Confusion Matrix"]]
cm[["Table"]]

Enabling weighted accuracy

Create confusion matrix with Weighted Accuracy enabled
cm <- confusion_matrix(targets, predictions,

metrics = list("Weighted Accuracy" = TRUE)
)
cm

cross_validate Cross-validate regression models for model selection

Description

[Stable]
Cross-validate one or multiple linear or logistic regression models at once. Perform repeated cross-
validation. Returns results in a tibble for easy comparison, reporting and further analysis.

See cross_validate_fn() for use with custom model functions.

Usage

cross_validate(
data,
formulas,
family,
fold_cols = ".folds",
control = NULL,
REML = FALSE,
cutoff = 0.5,
positive = 2,
metrics = list(),
preprocessing = NULL,
rm_nc = FALSE,
parallel = FALSE,
verbose = FALSE,
link = deprecated(),
models = deprecated(),

cross_validate 31

model_verbose = deprecated()
)

Arguments

data data.frame.
Must include one or more grouping factors for identifying folds - as made with
groupdata2::fold().

formulas Model formulas as strings. (Character)
E.g. c("y~x", "y~z").
Can contain random effects.
E.g. c("y~x+(1|r)", "y~z+(1|r)").

family Name of the family. (Character)
Currently supports "gaussian" for linear regression with lm() / lme4::lmer()
and "binomial" for binary classification with glm() / lme4::glmer().
See cross_validate_fn() for use with other model functions.

fold_cols Name(s) of grouping factor(s) for identifying folds. (Character)
Include names of multiple grouping factors for repeated cross-validation.

control Construct control structures for mixed model fitting (with lme4::lmer() or
lme4::glmer()). See lme4::lmerControl and lme4::glmerControl.
N.B. Ignored if fitting lm() or glm() models.

REML Restricted Maximum Likelihood. (Logical)
cutoff Threshold for predicted classes. (Numeric)

N.B. Binomial models only
positive Level from dependent variable to predict. Either as character (preferable) or

level index (1 or 2 - alphabetically).
E.g. if we have the levels "cat" and "dog" and we want "dog" to be the positive
class, we can either provide "dog" or 2, as alphabetically, "dog" comes after
"cat".
Note: For reproducibility, it’s preferable to specify the name directly, as dif-
ferent locales may sort the levels differently.
Used when calculating confusion matrix metrics and creating ROC curves.
The Process column in the output can be used to verify this setting.
N.B. Only affects evaluation metrics, not the model training or returned predic-
tions.
N.B. Binomial models only.

metrics list for enabling/disabling metrics.
E.g. list("RMSE" = FALSE) would remove RMSE from the results, and list("Accuracy"
= TRUE) would add the regular Accuracy metric to the classification results. De-
fault values (TRUE/FALSE) will be used for the remaining available metrics.
You can enable/disable all metrics at once by including "all" = TRUE/FALSE
in the list. This is done prior to enabling/disabling individual metrics, why
list("all" = FALSE, "RMSE" = TRUE) would return only the RMSE metric.
The list can be created with gaussian_metrics() or binomial_metrics().
Also accepts the string "all".

32 cross_validate

preprocessing Name of preprocessing to apply.

Available preprocessings are:

Name Description
"standardize" Centers and scales the numeric predictors.

"range" Normalizes the numeric predictors to the 0-1 range. Values outside the min/max range in the test fold are truncated to 0/1.
"scale" Scales the numeric predictors to have a standard deviation of one.

"center" Centers the numeric predictors to have a mean of zero.

The preprocessing parameters (mean, SD, etc.) are extracted from the training
folds and applied to both the training folds and the test fold. They are returned
in the Preprocess column for inspection.

N.B. The preprocessings should not affect the results to a noticeable degree,
although "range" might due to the truncation.

rm_nc Remove non-converged models from output. (Logical)

parallel Whether to cross-validate the list of models in parallel. (Logical)

Remember to register a parallel backend first. E.g. with doParallel::registerDoParallel.

verbose Whether to message process information like the number of model instances to
fit and which model function was applied. (Logical)

link, models, model_verbose
Deprecated.

Details

Packages used:

Models:
Gaussian: stats::lm, lme4::lmer

Binomial: stats::glm, lme4::glmer

Results:

Shared:
AIC : stats::AIC
AICc : MuMIn::AICc
BIC : stats::BIC

Gaussian:
r2m : MuMIn::r.squaredGLMM
r2c : MuMIn::r.squaredGLMM

Binomial:
ROC and AUC: pROC::roc

cross_validate 33

Value

tibble with results for each model.

Shared across families: A nested tibble with coefficients of the models from all iterations.
Number of total folds.
Number of fold columns.
Count of convergence warnings. Consider discarding models that did not converge on all itera-
tions. Note: you might still see results, but these should be taken with a grain of salt!
Count of other warnings. These are warnings without keywords such as "convergence".
Count of Singular Fit messages. See lme4::isSingular for more information.
Nested tibble with the warnings and messages caught for each model.
A nested Process information object with information about the evaluation.
Name of dependent variable.
Names of fixed effects.
Names of random effects, if any.
Nested tibble with preprocessing parameters, if any.

—————————————————————-

Gaussian Results:
—————————————————————-
Average RMSE, MAE, NRMSE(IQR), RRSE, RAE, RMSLE, AIC, AICc, and BIC of all the iterations*,
omitting potential NAs from non-converged iterations. Note that the Information Criterion met-
rics (AIC, AICc, and BIC) are also averages.
See the additional metrics (disabled by default) at ?gaussian_metrics.
A nested tibble with the predictions and targets.
A nested tibble with the non-averaged results from all iterations.
* In repeated cross-validation, the metrics are first averaged for each fold column (repetition) and
then averaged again.

—————————————————————-

Binomial Results:
—————————————————————-
Based on the collected predictions from the test folds*, a confusion matrix and a ROC curve are
created to get the following:
ROC:
AUC, Lower CI, and Upper CI

Confusion Matrix:
Balanced Accuracy, F1, Sensitivity, Specificity, Positive Predictive Value, Negative
Predictive Value, Kappa, Detection Rate, Detection Prevalence, Prevalence, and MCC
(Matthews correlation coefficient).
See the additional metrics (disabled by default) at ?binomial_metrics.
Also includes:

34 cross_validate

A nested tibble with predictions, predicted classes (depends on cutoff), and the targets. Note,
that the predictions are not necessarily of the specified positive class, but of the model’s positive
class (second level of dependent variable, alphabetically).
The pROC::roc ROC curve object(s).
A nested tibble with the confusion matrix/matrices. The Pos_ columns tells you whether a row
is a True Positive (TP), True Negative (TN), False Positive (FP), or False Negative (FN), depending
on which level is the "positive" class. I.e. the level you wish to predict.
A nested tibble with the results from all fold columns.
The name of the Positive Class.
* In repeated cross-validation, an evaluation is made per fold column (repetition) and averaged.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

Benjamin Hugh Zachariae

See Also

Other validation functions: cross_validate_fn(), validate(), validate_fn()

Examples

Attach packages
library(cvms)
library(groupdata2) # fold()
library(dplyr) # %>% arrange()

Data is part of cvms
data <- participant.scores

Set seed for reproducibility
set.seed(7)

Fold data
data <- fold(

data,
k = 4,
cat_col = "diagnosis",
id_col = "participant"

) %>%
arrange(.folds)

#
Cross-validate a single model
#

Gaussian
cross_validate(

data,
formulas = "score~diagnosis",

cross_validate_fn 35

family = "gaussian",
REML = FALSE

)

Binomial
cross_validate(

data,
formulas = "diagnosis~score",
family = "binomial"

)

#
Cross-validate multiple models
#

formulas <- c(
"score~diagnosis+(1|session)",
"score~age+(1|session)"

)

cross_validate(
data,
formulas = formulas,
family = "gaussian",
REML = FALSE

)

#
Use parallelization
#

Attach doParallel and register four cores
Uncomment:
library(doParallel)
registerDoParallel(4)

Cross-validate a list of model formulas in parallel
Make sure to uncomment the parallel argument
cross_validate(

data,
formulas = formulas,
family = "gaussian"
#, parallel = TRUE # Uncomment

)

cross_validate_fn Cross-validate custom model functions for model selection

36 cross_validate_fn

Description

[Experimental]
Cross-validate your model function with one or multiple model formulas at once. Perform repeated
cross-validation. Preprocess the train/test split within the cross-validation. Perform hyperparameter
tuning with grid search. Returns results in a tibble for easy comparison, reporting and further
analysis.

Compared to cross_validate(), this function allows you supply a custom model function, a pre-
dict function, a preprocess function and the hyperparameter values to cross-validate.

Supports regression and classification (binary and multiclass). See `type`.

Note that some metrics may not be computable for some types of model objects.

Usage

cross_validate_fn(
data,
formulas,
type,
model_fn,
predict_fn,
preprocess_fn = NULL,
preprocess_once = FALSE,
hyperparameters = NULL,
fold_cols = ".folds",
cutoff = 0.5,
positive = 2,
metrics = list(),
rm_nc = FALSE,
parallel = FALSE,
verbose = TRUE

)

Arguments

data data.frame.
Must include one or more grouping factors for identifying folds - as made with
groupdata2::fold().

formulas Model formulas as strings. (Character)
Will be converted to formula objects before being passed to `model_fn`.
E.g. c("y~x", "y~z").
Can contain random effects.
E.g. c("y~x+(1|r)", "y~z+(1|r)").

type Type of evaluation to perform:
"gaussian" for regression (like linear regression).
"binomial" for binary classification.
"multinomial" for multiclass classification.

cross_validate_fn 37

model_fn Model function that returns a fitted model object. Will usually wrap an existing
model function like e1071::svm or nnet::multinom.
Must have the following function arguments:
function(train_data, formula,

hyperparameters)

predict_fn Function for predicting the targets in the test folds/sets using the fitted model
object. Will usually wrap stats::predict(), but doesn’t have to.
Must have the following function arguments:
function(test_data, model, formula,

hyperparameters, train_data)

Must return predictions in the following formats, depending on `type`:

Binomial: vector or one-column matrix / data.frame with probabilities
(0-1) of the second class, alphabetically. E.g.:
c(0.3, 0.5, 0.1, 0.5)
N.B. When unsure whether a model type produces probabilities based off the
alphabetic order of your classes, using 0 and 1 as classes in the dependent
variable instead of the class names should increase the chance of getting prob-
abilities of the right class.

Gaussian: vector or one-column matrix / data.frame with the predicted
value. E.g.:
c(3.7, 0.9, 1.2, 7.3)

Multinomial: data.frame with one column per class containing probabili-
ties of the class. Column names should be identical to how the class names are
written in the target column. E.g.:

class_1 class_2 class_3
0.269 0.528 0.203
0.368 0.322 0.310
0.375 0.371 0.254

...

preprocess_fn Function for preprocessing the training and test sets.
Can, for instance, be used to standardize both the training and test sets with the
scaling and centering parameters from the training set.
Must have the following function arguments:
function(train_data, test_data,

formula, hyperparameters)

Must return a list with the preprocessed `train_data` and `test_data`. It
may also contain a tibble with the parameters used in preprocessing:
list("train" = train_data,

"test" = test_data,
"parameters" = preprocess_parameters)

Additional elements in the returned list will be ignored.
The optional parameters tibble will be included in the output. It could have
the following format:

38 cross_validate_fn

Measure var_1 var_2
Mean 37.921 88.231

SD 12.4 5.986
...

N.B. When `preprocess_once` is FALSE, the current formula and hyperpa-
rameters will be provided. Otherwise, these arguments will be NULL.

preprocess_once

Whether to apply the preprocessing once (ignoring the formula and hyperpa-
rameters arguments in `preprocess_fn`) or for every model separately. (Log-
ical)
When preprocessing does not depend on the current formula or hyperparame-
ters, we can do the preprocessing of each train/test split once, to save time. This
may require holding a lot more data in memory though, why it is not the
default setting.

hyperparameters

Either a named list with hyperparameter values to combine in a grid or a
data.frame with one row per hyperparameter combination.

Named list for grid search: Add ".n" to sample the combinations. Can be
the number of combinations to use, or a percentage between 0 and 1.
E.g.
list(".n" = 10, # sample 10 combinations

"lrn_rate" = c(0.1, 0.01, 0.001),
"h_layers" = c(10, 100, 1000),
"drop_out" = runif(5, 0.3, 0.7))

data.frame with specific hyperparameter combinations: One row per
combination to test.
E.g.

lrn_rate h_layers drop_out
0.1 10 0.65
0.1 1000 0.65

0.01 1000 0.63
...

fold_cols Name(s) of grouping factor(s) for identifying folds. (Character)
Include names of multiple grouping factors for repeated cross-validation.

cutoff Threshold for predicted classes. (Numeric)
N.B. Binomial models only

positive Level from dependent variable to predict. Either as character (preferable) or
level index (1 or 2 - alphabetically).
E.g. if we have the levels "cat" and "dog" and we want "dog" to be the positive
class, we can either provide "dog" or 2, as alphabetically, "dog" comes after
"cat".
Note: For reproducibility, it’s preferable to specify the name directly, as dif-
ferent locales may sort the levels differently.

cross_validate_fn 39

Used when calculating confusion matrix metrics and creating ROC curves.
The Process column in the output can be used to verify this setting.
N.B. Only affects evaluation metrics, not the model training or returned predic-
tions.
N.B. Binomial models only.

metrics list for enabling/disabling metrics.
E.g. list("RMSE" = FALSE) would remove RMSE from the regression results,
and list("Accuracy" = TRUE) would add the regular Accuracy metric to the
classification results. Default values (TRUE/FALSE) will be used for the remain-
ing available metrics.
You can enable/disable all metrics at once by including "all" = TRUE/FALSE in
the list. This is done prior to enabling/disabling individual metrics, why f.i.
list("all" = FALSE, "RMSE" = TRUE) would return only the RMSE metric.
The list can be created with gaussian_metrics(), binomial_metrics(), or
multinomial_metrics().
Also accepts the string "all".

rm_nc Remove non-converged models from output. (Logical)

parallel Whether to cross-validate the list of models in parallel. (Logical)
Remember to register a parallel backend first. E.g. with doParallel::registerDoParallel.

verbose Whether to message process information like the number of model instances to
fit. (Logical)

Details

Packages used:

Results:

Shared:
AIC : stats::AIC
AICc : MuMIn::AICc
BIC : stats::BIC

Gaussian:
r2m : MuMIn::r.squaredGLMM
r2c : MuMIn::r.squaredGLMM

Binomial and Multinomial:
ROC and related metrics:
Binomial: pROC::roc
Multinomial: pROC::multiclass.roc

Value

tibble with results for each model.

N.B. The Fold column in the nested tibbles contains the test fold in that train/test split.

40 cross_validate_fn

Shared across families:
A nested tibble with coefficients of the models from all iterations. The coefficients are ex-
tracted from the model object with parameters::model_parameters() or coef() (with some
restrictions on the output). If these attempts fail, a default coefficients tibble filled with NAs is
returned.
Nested tibble with the used preprocessing parameters, if a passed preprocess_fn returns the
parameters in a tibble.
Number of total folds.
Number of fold columns.
Count of convergence warnings, using a limited set of keywords (e.g. "convergence"). If a con-
vergence warning does not contain one of these keywords, it will be counted with other warnings.
Consider discarding models that did not converge on all iterations. Note: you might still see re-
sults, but these should be taken with a grain of salt!
Nested tibble with the warnings and messages caught for each model.
A nested Process information object with information about the evaluation.
Name of dependent variable.
Names of fixed effects.
Names of random effects, if any.

—————————————————————-

Gaussian Results:
—————————————————————-
Average RMSE, MAE, NRMSE(IQR), RRSE, RAE, RMSLE of all the iterations*, omitting potential NAs
from non-converged iterations.
See the additional metrics (disabled by default) at ?gaussian_metrics.
A nested tibble with the predictions and targets.
A nested tibble with the non-averaged results from all iterations.
* In repeated cross-validation, the metrics are first averaged for each fold column (repetition) and
then averaged again.

—————————————————————-

Binomial Results:
—————————————————————-
Based on the collected predictions from the test folds*, a confusion matrix and a ROC curve are
created to get the following:
ROC:
AUC, Lower CI, and Upper CI

Confusion Matrix:
Balanced Accuracy, F1, Sensitivity, Specificity, Positive Predictive Value, Negative
Predictive Value, Kappa, Detection Rate, Detection Prevalence, Prevalence, and MCC
(Matthews correlation coefficient).
See the additional metrics (disabled by default) at ?binomial_metrics.
Also includes:

cross_validate_fn 41

A nested tibble with predictions, predicted classes (depends on cutoff), and the targets. Note,
that the predictions are not necessarily of the specified positive class, but of the model’s positive
class (second level of dependent variable, alphabetically).
The pROC::roc ROC curve object(s).
A nested tibble with the confusion matrix/matrices. The Pos_ columns tells you whether a row
is a True Positive (TP), True Negative (TN), False Positive (FP), or False Negative (FN), depending
on which level is the "positive" class. I.e. the level you wish to predict.
A nested tibble with the results from all fold columns.
The name of the Positive Class.
* In repeated cross-validation, an evaluation is made per fold column (repetition) and averaged.

—————————————————————-

Multinomial Results:
—————————————————————-
For each class, a one-vs-all binomial evaluation is performed. This creates a Class Level Results
tibble containing the same metrics as the binomial results described above (excluding MCC, AUC,
Lower CI and Upper CI), along with a count of the class in the target column (Support). These
metrics are used to calculate the macro-averaged metrics. The nested class level results tibble
is also included in the output tibble, and could be reported along with the macro and overall
metrics.
The output tibble contains the macro and overall metrics. The metrics that share their name with
the metrics in the nested class level results tibble are averages of those metrics (note: does not
remove NAs before averaging). In addition to these, it also includes the Overall Accuracy and
the multiclass MCC.
Note: Balanced Accuracy is the macro-averaged metric, not the macro sensitivity as sometimes
used!
Other available metrics (disabled by default, see metrics): Accuracy, multiclass AUC, Weighted
Balanced Accuracy, Weighted Accuracy, Weighted F1, Weighted Sensitivity, Weighted Sensitivity,
Weighted Specificity, Weighted Pos Pred Value, Weighted Neg Pred Value, Weighted Kappa,
Weighted Detection Rate, Weighted Detection Prevalence, and Weighted Prevalence.
Note that the "Weighted" average metrics are weighted by the Support.
Also includes:
A nested tibble with the predictions, predicted classes, and targets.
A list of ROC curve objects when AUC is enabled.
A nested tibble with the multiclass Confusion Matrix.
Class Level Results
Besides the binomial evaluation metrics and the Support, the nested class level results tibble
also contains a nested tibble with the Confusion Matrix from the one-vs-all evaluation. The
Pos_ columns tells you whether a row is a True Positive (TP), True Negative (TN), False Positive
(FP), or False Negative (FN), depending on which level is the "positive" class. In our case, 1 is the
current class and 0 represents all the other classes together.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

42 cross_validate_fn

See Also

Other validation functions: cross_validate(), validate(), validate_fn()

Examples

Attach packages
library(cvms)
library(groupdata2) # fold()
library(dplyr) # %>% arrange() mutate()

Note: More examples of custom functions can be found at:
model_fn: model_functions()
predict_fn: predict_functions()
preprocess_fn: preprocess_functions()

Data is part of cvms
data <- participant.scores

Set seed for reproducibility
set.seed(7)

Fold data
data <- fold(

data,
k = 4,
cat_col = "diagnosis",
id_col = "participant"

) %>%
mutate(diagnosis = as.factor(diagnosis)) %>%
arrange(.folds)

Cross-validate multiple formulas

formulas_gaussian <- c(
"score ~ diagnosis",
"score ~ age"

)
formulas_binomial <- c(

"diagnosis ~ score",
"diagnosis ~ age"

)

#
Gaussian
#

Create model function that returns a fitted model object
lm_model_fn <- function(train_data, formula, hyperparameters) {

lm(formula = formula, data = train_data)
}

Create predict function that returns the predictions

cross_validate_fn 43

lm_predict_fn <- function(test_data, model, formula,
hyperparameters, train_data) {

stats::predict(
object = model,
newdata = test_data,
type = "response",
allow.new.levels = TRUE

)
}

Cross-validate the model function
cross_validate_fn(

data,
formulas = formulas_gaussian,
type = "gaussian",
model_fn = lm_model_fn,
predict_fn = lm_predict_fn,
fold_cols = ".folds"

)

#
Binomial
#

Create model function that returns a fitted model object
glm_model_fn <- function(train_data, formula, hyperparameters) {

glm(formula = formula, data = train_data, family = "binomial")
}

Create predict function that returns the predictions
glm_predict_fn <- function(test_data, model, formula,

hyperparameters, train_data) {
stats::predict(
object = model,
newdata = test_data,
type = "response",
allow.new.levels = TRUE

)
}

Cross-validate the model function
cross_validate_fn(

data,
formulas = formulas_binomial,
type = "binomial",
model_fn = glm_model_fn,
predict_fn = glm_predict_fn,
fold_cols = ".folds"

)

#
Support Vector Machine (svm)
with hyperparameter tuning

44 cross_validate_fn

#

Only run if the `e1071` package is installed
if (requireNamespace("e1071", quietly = TRUE)){

Create model function that returns a fitted model object
We use the hyperparameters arg to pass in the kernel and cost values
svm_model_fn <- function(train_data, formula, hyperparameters) {

Expected hyperparameters:
- kernel
- cost
if (!"kernel" %in% names(hyperparameters))
stop("'hyperparameters' must include 'kernel'")

if (!"cost" %in% names(hyperparameters))
stop("'hyperparameters' must include 'cost'")

e1071::svm(
formula = formula,
data = train_data,
kernel = hyperparameters[["kernel"]],
cost = hyperparameters[["cost"]],
scale = FALSE,
type = "C-classification",
probability = TRUE

)
}

Create predict function that returns the predictions
svm_predict_fn <- function(test_data, model, formula,

hyperparameters, train_data) {
predictions <- stats::predict(
object = model,
newdata = test_data,
allow.new.levels = TRUE,
probability = TRUE

)

Extract probabilities
probabilities <- dplyr::as_tibble(

attr(predictions, "probabilities")
)

Return second column
probabilities[[2]]

}

Specify hyperparameters to try
The optional ".n" samples 4 combinations
svm_hparams <- list(

".n" = 4,
"kernel" = c("linear", "radial"),
"cost" = c(1, 5, 10)

cross_validate_fn 45

)

Cross-validate the model function
cv <- cross_validate_fn(

data,
formulas = formulas_binomial,
type = "binomial",
model_fn = svm_model_fn,
predict_fn = svm_predict_fn,
hyperparameters = svm_hparams,
fold_cols = ".folds"

)

cv

The `HParams` column has the nested hyperparameter values
cv %>%

select(Dependent, Fixed, HParams, `Balanced Accuracy`, F1, AUC, MCC) %>%
tidyr::unnest(cols = "HParams") %>%
arrange(desc(`Balanced Accuracy`), desc(F1))

#
Use parallelization
The below examples show the speed gains when running in parallel
#

Attach doParallel and register four cores
Uncomment:
library(doParallel)
registerDoParallel(4)

Specify hyperparameters such that we will
cross-validate 20 models
hparams <- list(

"kernel" = c("linear", "radial"),
"cost" = 1:5

)

Cross-validate a list of 20 models in parallel
Make sure to uncomment the parallel argument
system.time({

cross_validate_fn(
data,
formulas = formulas_gaussian,
type = "gaussian",
model_fn = svm_model_fn,
predict_fn = svm_predict_fn,
hyperparameters = hparams,
fold_cols = ".folds"
#, parallel = TRUE # Uncomment

)
})

46 dynamic_font_color_settings

Cross-validate a list of 20 models sequentially
system.time({

cross_validate_fn(
data,
formulas = formulas_gaussian,
type = "gaussian",
model_fn = svm_model_fn,
predict_fn = svm_predict_fn,
hyperparameters = hparams,
fold_cols = ".folds"
#, parallel = TRUE # Uncomment

)
})

} # closes `e1071` package check

dynamic_font_color_settings

Create a list of dynamic font color settings for plots

Description

[Experimental]
Creates a list of dynamic font color settings for plotting with cvms plotting functions.

Specify separate colors below and above a given value threshold.

NOTE: This is experimental and will likely change.

Usage

dynamic_font_color_settings(
threshold = NULL,
by = "counts",
all = NULL,
counts = NULL,
normalized = NULL,
row_percentages = NULL,
col_percentages = NULL,
invert_arrows = NULL

)

Arguments

threshold The threshold at which the color changes.

by The value to check against `threshold`. One of {`counts`, `normalized`}.

all Set same color settings for all fonts at once. Takes a character vector with two
hex code strings (low, high). Example: ‘c(’#000’, ’#fff’)‘.

evaluate 47

counts, normalized, row_percentages, col_percentages
Set color settings for the individual font. Takes a character vector with two hex
code strings (low, high). Example: ‘c(’#000’, ’#fff’)‘.
Specifying colors for specific fonts overrides the settings specified in `all` (for
those fonts only).

invert_arrows String specifying when to invert the color of the arrow icons based on the thresh-
old. One of {`below`, `at_and_above`} (or NULL for no dynamical arrow
colors).

Value

List of settings.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other plotting functions: font(), plot_confusion_matrix(), plot_metric_density(), plot_probabilities(),
plot_probabilities_ecdf(), sum_tile_settings()

evaluate Evaluate your model’s performance

Description

[Maturing]
Evaluate your model’s predictions on a set of evaluation metrics.

Create ID-aggregated evaluations by multiple methods.

Currently supports regression and classification (binary and multiclass). See `type`.

Usage

evaluate(
data,
target_col,
prediction_cols,
type,
id_col = NULL,
id_method = "mean",
apply_softmax = FALSE,
cutoff = 0.5,
positive = 2,
metrics = list(),
include_predictions = TRUE,

48 evaluate

parallel = FALSE,
models = deprecated()

)

Arguments

data data.frame with predictions, targets and (optionally) an ID column. Can be
grouped with group_by.

Multinomial: When `type` is "multinomial", the predictions can be passed
in one of two formats.

Probabilities (Preferable):
One column per class with the probability of that class. The columns should
have the name of their class, as they are named in the target column. E.g.:

class_1 class_2 class_3 target
0.269 0.528 0.203 class_2
0.368 0.322 0.310 class_3
0.375 0.371 0.254 class_2

...

Classes:
A single column of type character with the predicted classes. E.g.:

prediction target
class_2 class_2
class_1 class_3
class_1 class_2

... ...

Binomial: When `type` is "binomial", the predictions can be passed in
one of two formats.

Probabilities (Preferable): One column with the probability of class being
the second class alphabetically (1 if classes are 0 and 1). E.g.:

prediction target
0.769 1
0.368 1
0.375 0

... ...

Note: At the alphabetical ordering of the class labels, they are of type character,
why e.g. 100 would come before 7.

Classes:
A single column of type character with the predicted classes. E.g.:

prediction target
class_0 class_1
class_1 class_1

evaluate 49

class_1 class_0
... ...

Note: The prediction column will be converted to the probability 0.0 for the
first class alphabetically and 1.0 for the second class alphabetically.

Gaussian: When `type` is "gaussian", the predictions should be passed as
one column with the predicted values. E.g.:

prediction target
28.9 30.2
33.2 27.1
23.4 21.3

... ...

target_col Name of the column with the true classes/values in `data`.
When `type` is "multinomial", this column should contain the class names,
not their indices.

prediction_cols

Name(s) of column(s) with the predictions.
Columns can be either numeric or character depending on which format is cho-
sen. See `data` for the possible formats.

type Type of evaluation to perform:
"gaussian" for regression (like linear regression).
"binomial" for binary classification.
"multinomial" for multiclass classification.

id_col Name of ID column to aggregate predictions by.
N.B. Current methods assume that the target class/value is constant within the
IDs.
N.B. When aggregating by ID, some metrics may be disabled.

id_method Method to use when aggregating predictions by ID. Either "mean" or "majority".
When `type` is gaussian, only the "mean" method is available.

mean: The average prediction (value or probability) is calculated per ID and
evaluated. This method assumes that the target class/value is constant within
the IDs.

majority: The most predicted class per ID is found and evaluated. In case
of a tie, the winning classes share the probability (e.g. P = 0.5 each when two
majority classes). This method assumes that the target class/value is constant
within the IDs.

apply_softmax Whether to apply the softmax function to the prediction columns when `type`
is "multinomial".
N.B. Multinomial models only.

cutoff Threshold for predicted classes. (Numeric)
N.B. Binomial models only.

50 evaluate

positive Level from dependent variable to predict. Either as character (preferable) or
level index (1 or 2 - alphabetically).
E.g. if we have the levels "cat" and "dog" and we want "dog" to be the positive
class, we can either provide "dog" or 2, as alphabetically, "dog" comes after
"cat".
Note: For reproducibility, it’s preferable to specify the name directly, as dif-
ferent locales may sort the levels differently.
Used when calculating confusion matrix metrics and creating ROC curves.
The Process column in the output can be used to verify this setting.
N.B. Only affects the evaluation metrics. Does NOT affect what the probabil-
ities are of (always the second class alphabetically).
N.B. Binomial models only.

metrics list for enabling/disabling metrics.
E.g. list("RMSE" = FALSE) would remove RMSE from the regression results,
and list("Accuracy" = TRUE) would add the regular Accuracy metric to the
classification results. Default values (TRUE/FALSE) will be used for the remain-
ing available metrics.
You can enable/disable all metrics at once by including "all" = TRUE/FALSE in
the list. This is done prior to enabling/disabling individual metrics, why f.i.
list("all" = FALSE, "RMSE" = TRUE) would return only the RMSE metric.
The list can be created with gaussian_metrics(), binomial_metrics(), or
multinomial_metrics().
Also accepts the string "all".

include_predictions

Whether to include the predictions in the output as a nested tibble. (Logical)

parallel Whether to run evaluations in parallel, when `data` is grouped with group_by.

models Deprecated.

Details

Packages used:

Binomial and Multinomial:
ROC and AUC:

Binomial: pROC::roc

Multinomial: pROC::multiclass.roc

Value

—————————————————————-

Gaussian Results:
—————————————————————-
tibble containing the following metrics by default:
Average RMSE, MAE, NRMSE(IQR), RRSE, RAE, RMSLE.
See the additional metrics (disabled by default) at ?gaussian_metrics.

evaluate 51

Also includes:
A nested tibble with the Predictions and targets.
A nested Process information object with information about the evaluation.

—————————————————————-

Binomial Results:
—————————————————————-
tibble with the following evaluation metrics, based on a confusion matrix and a ROC curve
fitted to the predictions:
Confusion Matrix:
Balanced Accuracy, Accuracy, F1, Sensitivity, Specificity, Positive Predictive Value,
Negative Predictive Value, Kappa, Detection Rate, Detection Prevalence, Prevalence,
and MCC (Matthews correlation coefficient).
ROC:
AUC, Lower CI, and Upper CI

Note, that the ROC curve is only computed if AUC is enabled. See metrics.
Also includes:
A nested tibble with the predictions and targets.
A list of ROC curve objects (if computed).
A nested tibble with the confusion matrix. The Pos_ columns tells you whether a row is a True
Positive (TP), True Negative (TN), False Positive (FP), or False Negative (FN), depending on which
level is the "positive" class. I.e. the level you wish to predict.
A nested Process information object with information about the evaluation.

—————————————————————-

Multinomial Results:
—————————————————————-
For each class, a one-vs-all binomial evaluation is performed. This creates a Class Level Results
tibble containing the same metrics as the binomial results described above (excluding Accuracy,
MCC, AUC, Lower CI and Upper CI), along with a count of the class in the target column (Support).
These metrics are used to calculate the macro-averaged metrics. The nested class level results
tibble is also included in the output tibble, and could be reported along with the macro and
overall metrics.
The output tibble contains the macro and overall metrics. The metrics that share their name with
the metrics in the nested class level results tibble are averages of those metrics (note: does not
remove NAs before averaging). In addition to these, it also includes the Overall Accuracy and
the multiclass MCC.
Note: Balanced Accuracy is the macro-averaged metric, not the macro sensitivity as sometimes
used!
Other available metrics (disabled by default, see metrics): Accuracy, multiclass AUC, Weighted
Balanced Accuracy, Weighted Accuracy, Weighted F1, Weighted Sensitivity, Weighted Sensitivity,
Weighted Specificity, Weighted Pos Pred Value, Weighted Neg Pred Value, Weighted Kappa,
Weighted Detection Rate, Weighted Detection Prevalence, and Weighted Prevalence.
Note that the "Weighted" average metrics are weighted by the Support.

52 evaluate

When having a large set of classes, consider keeping AUC disabled.
Also includes:
A nested tibble with the Predictions and targets.
A list of ROC curve objects when AUC is enabled.
A nested tibble with the multiclass Confusion Matrix.
A nested Process information object with information about the evaluation.

Class Level Results:
Besides the binomial evaluation metrics and the Support, the nested class level results tibble
also contains a nested tibble with the Confusion Matrix from the one-vs-all evaluation. The
Pos_ columns tells you whether a row is a True Positive (TP), True Negative (TN), False Positive
(FP), or False Negative (FN), depending on which level is the "positive" class. In our case, 1 is
the current class and 0 represents all the other classes together.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other evaluation functions: binomial_metrics(), confusion_matrix(), evaluate_residuals(),
gaussian_metrics(), multinomial_metrics()

Examples

Attach packages
library(cvms)
library(dplyr)

Load data
data <- participant.scores

Fit models
gaussian_model <- lm(age ~ diagnosis, data = data)
binomial_model <- glm(diagnosis ~ score, data = data)

Add predictions
data[["gaussian_predictions"]] <- predict(gaussian_model, data,

type = "response",
allow.new.levels = TRUE

)
data[["binomial_predictions"]] <- predict(binomial_model, data,

allow.new.levels = TRUE
)

Gaussian evaluation
evaluate(

data = data, target_col = "age",
prediction_cols = "gaussian_predictions",
type = "gaussian"

)

evaluate 53

Binomial evaluation
evaluate(

data = data, target_col = "diagnosis",
prediction_cols = "binomial_predictions",
type = "binomial"

)

#
Multinomial
#

Create a tibble with predicted probabilities and targets
data_mc <- multiclass_probability_tibble(

num_classes = 3, num_observations = 45,
apply_softmax = TRUE, FUN = runif,
class_name = "class_",
add_targets = TRUE

)

class_names <- paste0("class_", 1:3)

Multinomial evaluation
evaluate(

data = data_mc, target_col = "Target",
prediction_cols = class_names,
type = "multinomial"

)

#
ID evaluation
#

Gaussian ID evaluation
Note that 'age' is the same for all observations
of a participant
evaluate(

data = data, target_col = "age",
prediction_cols = "gaussian_predictions",
id_col = "participant",
type = "gaussian"

)

Binomial ID evaluation
evaluate(

data = data, target_col = "diagnosis",
prediction_cols = "binomial_predictions",
id_col = "participant",
id_method = "mean", # alternatively: "majority"
type = "binomial"

)

Multinomial ID evaluation

54 evaluate

Add IDs and new targets (must be constant within IDs)
data_mc[["Target"]] <- NULL
data_mc[["ID"]] <- rep(1:9, each = 5)
id_classes <- tibble::tibble(

"ID" = 1:9,
"Target" = sample(x = class_names, size = 9, replace = TRUE)

)
data_mc <- data_mc %>%

dplyr::left_join(id_classes, by = "ID")

Perform ID evaluation
evaluate(

data = data_mc, target_col = "Target",
prediction_cols = class_names,
id_col = "ID",
id_method = "mean", # alternatively: "majority"
type = "multinomial"

)

#
Training and evaluating a multinomial model with nnet
#

Only run if `nnet` is installed
if (requireNamespace("nnet", quietly = TRUE)){

Create a data frame with some predictors and a target column
class_names <- paste0("class_", 1:4)
data_for_nnet <- multiclass_probability_tibble(

num_classes = 3, # Here, number of predictors
num_observations = 30,
apply_softmax = FALSE,
FUN = rnorm,
class_name = "predictor_"

) %>%
dplyr::mutate(Target = sample(
class_names,
size = 30,
replace = TRUE

))

Train multinomial model using the nnet package
mn_model <- nnet::multinom(

"Target ~ predictor_1 + predictor_2 + predictor_3",
data = data_for_nnet

)

Predict the targets in the dataset
(we would usually use a test set instead)
predictions <- predict(

mn_model,
data_for_nnet,

evaluate_residuals 55

type = "probs"
) %>%

dplyr::as_tibble()

Add the targets
predictions[["Target"]] <- data_for_nnet[["Target"]]

Evaluate predictions
evaluate(

data = predictions,
target_col = "Target",
prediction_cols = class_names,
type = "multinomial"

)
}

evaluate_residuals Evaluate residuals from a regression task

Description

[Experimental]
Calculates a large set of error metrics from regression residuals.

Note: In most cases you should use evaluate() instead. It works in magrittr pipes (e.g. %>%)
and with dplyr::group_by(). evaluate_residuals() is more lightweight and may be preferred
in programming when you don’t need the extra stuff in evaluate().

Usage

evaluate_residuals(data, target_col, prediction_col, metrics = list())

Arguments

data data.frame with predictions and targets.

target_col Name of the column with the true values in `data`.

prediction_col Name of column with the predicted values in `data`.

metrics list for enabling/disabling metrics.
E.g. list("RMSE" = FALSE) would disable RMSE. Default values (TRUE/FALSE)
will be used for the remaining available metrics.
You can enable/disable all metrics at once by including "all" = TRUE/FALSE
in the list. This is done prior to enabling/disabling individual metrics, why
for instance list("all" = FALSE, "RMSE" = TRUE) would return only the RMSE
metric.
The list can be created with gaussian_metrics().
Also accepts the string "all".

56 evaluate_residuals

Details

The metric formulas are listed in ‘The Available Metrics‘ vignette.

Value

tibble data.frame with the calculated metrics.

The following metrics are available (see `metrics`):

Metric Name Default
Mean Absolute Error "MAE" Enabled

Root Mean Square Error "RMSE" Enabled
Normalized RMSE (by target range) "NRMSE(RNG)" Disabled
Normalized RMSE (by target IQR) "NRMSE(IQR)" Enabled
Normalized RMSE (by target STD) "NRMSE(STD)" Disabled

Normalized RMSE (by target mean) "NRMSE(AVG)" Disabled
Relative Squared Error "RSE" Disabled

Root Relative Squared Error "RRSE" Enabled
Relative Absolute Error "RAE" Enabled

Root Mean Squared Log Error "RMSLE" Enabled
Mean Absolute Log Error "MALE" Disabled

Mean Absolute Percentage Error "MAPE" Disabled
Mean Squared Error "MSE" Disabled
Total Absolute Error "TAE" Disabled
Total Squared Error "TSE" Disabled

The Name column refers to the name used in the package. This is the name in the output and when
enabling/disabling in `metrics`.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other evaluation functions: binomial_metrics(), confusion_matrix(), evaluate(), gaussian_metrics(),
multinomial_metrics()

Examples

Attach packages
library(cvms)

data <- data.frame(
"targets" = rnorm(100, 14.7, 3.6),
"predictions" = rnorm(100, 13.2, 4.6)

)

evaluate_residuals(

font 57

data = data,
target_col = "targets",
prediction_col = "predictions"

)

font Create a list of font settings for plots

Description

[Experimental]
Creates a list of font settings for plotting with cvms plotting functions.

Some arguments can take either the value to use directly OR a function that takes one argument
(vector with the values to set a font for; e.g., the counts, percentages, etc.) and returns the value(s)
to use for each element. Such a function could for instance specify different font colors for different
background intensities.

NOTE: This is experimental and could change.

Usage

font(
size = NULL,
color = NULL,
alpha = NULL,
nudge_x = NULL,
nudge_y = NULL,
angle = NULL,
family = NULL,
fontface = NULL,
hjust = NULL,
vjust = NULL,
lineheight = NULL,
digits = NULL,
prefix = NULL,
suffix = NULL

)

Arguments

size, color, alpha, nudge_x, nudge_y, angle, family, fontface, hjust, vjust,
lineheight

Either the value to pass directly to ggplot2::geom_text or a function that takes
in the values (e.g., counts, percentages, etc.) and returns a vector of values to
pass to ggplot2::geom_text.

digits Number of digits to round to. If negative, no rounding will take place.
prefix A string prefix.
suffix A string suffix.

58 gaussian_metrics

Value

List of settings.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other plotting functions: dynamic_font_color_settings(), plot_confusion_matrix(), plot_metric_density(),
plot_probabilities(), plot_probabilities_ecdf(), sum_tile_settings()

gaussian_metrics Select metrics for Gaussian evaluation

Description

[Experimental]
Enable/disable metrics for Gaussian evaluation. Can be supplied to the `metrics` argument in
many of the cvms functions.

Note: Some functions may have slightly different defaults than the ones supplied here.

Usage

gaussian_metrics(
all = NULL,
rmse = NULL,
mae = NULL,
nrmse_rng = NULL,
nrmse_iqr = NULL,
nrmse_std = NULL,
nrmse_avg = NULL,
rae = NULL,
rse = NULL,
rrse = NULL,
rmsle = NULL,
male = NULL,
mape = NULL,
mse = NULL,
tae = NULL,
tse = NULL,
r2m = NULL,
r2c = NULL,
aic = NULL,
aicc = NULL,
bic = NULL

)

gaussian_metrics 59

Arguments

all Enable/disable all arguments at once. (Logical)
Specifying other metrics will overwrite this, why you can use (all = FALSE,
rmse = TRUE) to get only the RMSE metric.

rmse RMSE. (Default: TRUE)
Root Mean Square Error.

mae MAE. (Default: TRUE)
Mean Absolute Error.

nrmse_rng NRMSE(RNG). (Default: FALSE)
Normalized Root Mean Square Error (by target range).

nrmse_iqr NRMSE(IQR). (Default: TRUE)
Normalized Root Mean Square Error (by target interquartile range).

nrmse_std NRMSE(STD). (Default: FALSE)
Normalized Root Mean Square Error (by target standard deviation).

nrmse_avg NRMSE(AVG). (Default: FALSE)
Normalized Root Mean Square Error (by target mean).

rae RAE. (Default: TRUE)
Relative Absolute Error.

rse RSE. (Default: FALSE)
Relative Squared Error.

rrse RRSE. (Default: TRUE)
Root Relative Squared Error.

rmsle RMSLE. (Default: TRUE)
Root Mean Square Log Error.

male MALE. (Default: FALSE)
Mean Absolute Log Error.

mape MAPE. (Default: FALSE)
Mean Absolute Percentage Error.

mse MSE. (Default: FALSE)
Mean Square Error.

tae TAE. (Default: FALSE)
Total Absolute Error

tse TSE. (Default: FALSE)
Total Squared Error.

r2m r2m. (Default: FALSE)
Marginal R-squared.

r2c r2c. (Default: FALSE)
Conditional R-squared.

aic AIC. (Default: FALSE)
Akaike Information Criterion.

60 model_functions

aicc AICc. (Default: FALSE)
Corrected Akaike Information Criterion.

bic BIC. (Default: FALSE)
Bayesian Information Criterion.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other evaluation functions: binomial_metrics(), confusion_matrix(), evaluate(), evaluate_residuals(),
multinomial_metrics()

Examples

Attach packages
library(cvms)

Enable only RMSE
gaussian_metrics(all = FALSE, rmse = TRUE)

Enable all but RMSE
gaussian_metrics(all = TRUE, rmse = FALSE)

Disable RMSE
gaussian_metrics(rmse = FALSE)

model_functions Examples of model_fn functions

Description

[Experimental]

Examples of model functions that can be used in cross_validate_fn(). They can either be used
directly or be starting points.

The update_hyperparameters() function updates the list of hyperparameters with default values
for missing hyperparameters. You can also specify required hyperparameters.

Usage

model_functions(name)

most_challenging 61

Arguments

name Name of model to get model function for, as it appears in the following list:

Name Function Hyperparameters (default)
"lm" stats::lm()

"lmer" lme4::lmer() REML (FALSE)
"glm_binomial" stats::glm()

"glmer_binomial" lme4::glmer()
"svm_gaussian" e1071::svm() kernel ("radial"), cost (1)
"svm_binomial" e1071::svm() kernel ("radial"), cost (1)

"svm_multinomial" e1071::svm() kernel ("radial"), cost (1)
"naive_bayes" e1071::naiveBayes() laplace (0)

Value

A function with the following form:

function(train_data, formula, hyperparameters) {
Return fitted model object

}

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other example functions: predict_functions(), preprocess_functions(), update_hyperparameters()

most_challenging Find the data points that were hardest to predict

Description

[Experimental] Finds the data points that, overall, were the most challenging to predict, based on
a prediction metric.

Usage

most_challenging(
data,
type,
obs_id_col = "Observation",
target_col = "Target",
prediction_cols = ifelse(type == "gaussian", "Prediction", "Predicted Class"),
threshold = 0.15,

62 most_challenging

threshold_is = "percentage",
metric = NULL,
cutoff = 0.5

)

Arguments

data data.frame with predictions, targets and observation IDs. Can be grouped by
dplyr::group_by().
Predictions can be passed as values, predicted classes or predicted probabilities:
N.B. Adds .Machine$double.eps to all probabilities to avoid log(0).

Multinomial: When `type` is "multinomial", the predictions can be passed
in one of two formats.

Probabilities (Preferable):
One column per class with the probability of that class. The columns should
have the name of their class, as they are named in the target column. E.g.:

class_1 class_2 class_3 target
0.269 0.528 0.203 class_2
0.368 0.322 0.310 class_3
0.375 0.371 0.254 class_2

...

Classes:
A single column of type character with the predicted classes. E.g.:

prediction target
class_2 class_2
class_1 class_3
class_1 class_2

... ...

Binomial: When `type` is "binomial", the predictions can be passed in
one of two formats.

Probabilities (Preferable): One column with the probability of class being
the second class alphabetically ("dog" if classes are "cat" and "dog"). E.g.:

prediction target
0.769 "dog"
0.368 "dog"
0.375 "cat"

... ...

Note: At the alphabetical ordering of the class labels, they are of type character,
why e.g. 100 would come before 7.

Classes:
A single column of type character with the predicted classes. E.g.:

most_challenging 63

prediction target
class_0 class_1
class_1 class_1
class_1 class_0

... ...

Gaussian: When `type` is "gaussian", the predictions should be passed as
one column with the predicted values. E.g.:

prediction target
28.9 30.2
33.2 27.1
23.4 21.3

... ...

type Type of task used to get the predictions:
"gaussian" for regression (like linear regression).
"binomial" for binary classification.
"multinomial" for multiclass classification.

obs_id_col Name of column with observation IDs. This will be used to aggregate the per-
formance of each observation.

target_col Name of column with the true classes/values in `data`.
prediction_cols

Name(s) of column(s) with the predictions.

threshold Threshold to filter observations by. Depends on `type` and `threshold_is`.
The threshold can either be a percentage or a score. For percentages, a lower
threshold returns fewer observations. For scores, this depends on `type`.

Gaussian:
threshold_is "percentage": (Approximate) percentage of the observations
with the largest root mean square errors to return.

threshold_is "score": Observations with a root mean square error larger
than or equal to the threshold will be returned.

Binomial, Multinomial:
threshold_is "percentage": (Approximate) percentage of the observations
to return with:
MAE, Cross Entropy: Highest error scores.
Accuracy: Lowest accuracies

threshold_is "score": MAE, Cross Entropy: Observations with an error
score above or equal to the threshold will be returned.
Accuracy: Observations with an accuracy below or equal to the threshold
will be returned.

threshold_is Either "score" or "percentage". See `threshold`.

metric The metric to use. If NULL, the default metric depends on the format of the
prediction columns.

64 most_challenging

Binomial, Multinomial: "Accuracy", "MAE" or "Cross Entropy".
When one prediction column with predicted classes is passed, the default is
"Accuracy". In this configuration, the other metrics are not calculated.
When one or more prediction columns with predicted probabilities are passed,
the default is "MAE". This is the Mean Absolute Error of the probability of the
target class.

Gaussian: Ignored. Always uses "RMSE".

cutoff Threshold for predicted classes. (Numeric)
N.B. Binomial only.

Value

data.frame with the most challenging observations and their metrics.

`>=` / `<=` denotes the threshold as score.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

Examples

Attach packages
library(cvms)
library(dplyr)

##
Multinomial
##

Find the most challenging data points (per classifier)
in the predicted.musicians dataset
which resembles the "Predictions" tibble from the evaluation results

Passing predicted probabilities
Observations with 30% highest MAE scores
most_challenging(

predicted.musicians,
obs_id_col = "ID",
prediction_cols = c("A", "B", "C", "D"),
type = "multinomial",
threshold = 0.30

)

Observations with 25% highest Cross Entropy scores
most_challenging(

predicted.musicians,
obs_id_col = "ID",
prediction_cols = c("A", "B", "C", "D"),
type = "multinomial",
threshold = 0.25,

most_challenging 65

metric = "Cross Entropy"
)

Passing predicted classes
Observations with 30% lowest Accuracy scores
most_challenging(

predicted.musicians,
obs_id_col = "ID",
prediction_cols = "Predicted Class",
type = "multinomial",
threshold = 0.30

)

The 40% lowest-scoring on accuracy per classifier
predicted.musicians %>%

dplyr::group_by(Classifier) %>%
most_challenging(

obs_id_col = "ID",
prediction_cols = "Predicted Class",
type = "multinomial",
threshold = 0.40

)

Accuracy scores below 0.05
most_challenging(

predicted.musicians,
obs_id_col = "ID",
type = "multinomial",
threshold = 0.05,
threshold_is = "score"

)

##
Binomial
##

Subset the predicted.musicians
binom_data <- predicted.musicians %>%

dplyr::filter(Target %in% c("A","B")) %>%
dplyr::rename(Prediction = B)

Passing probabilities
Observations with 30% highest MAE
most_challenging(

binom_data,
obs_id_col = "ID",
type = "binomial",
prediction_cols = "Prediction",
threshold = 0.30

)

Observations with 30% highest Cross Entropy
most_challenging(

66 multiclass_probability_tibble

binom_data,
obs_id_col = "ID",
type = "binomial",
prediction_cols = "Prediction",
threshold = 0.30,
metric = "Cross Entropy"

)

Passing predicted classes
Observations with 30% lowest Accuracy scores
most_challenging(

binom_data,
obs_id_col = "ID",
type = "binomial",
prediction_cols = "Predicted Class",
threshold = 0.30

)

##
Gaussian
##

set.seed(1)

df <- data.frame(
"Observation" = rep(1:10, n = 3),
"Target" = rnorm(n = 30, mean = 25, sd = 5),
"Prediction" = rnorm(n = 30, mean = 27, sd = 7)

)

The 20% highest RMSE scores
most_challenging(

df,
type = "gaussian",
threshold = 0.2

)

RMSE scores above 9
most_challenging(

df,
type = "gaussian",
threshold = 9,
threshold_is = "score"

)

multiclass_probability_tibble

Generate a multiclass probability tibble

multiclass_probability_tibble 67

Description

[Maturing]

Generate a tibble with random numbers containing one column per specified class. When the
softmax function is applied, the numbers become probabilities that sum to 1 row-wise. Optionally,
add columns with targets and predicted classes.

Usage

multiclass_probability_tibble(
num_classes,
num_observations,
apply_softmax = TRUE,
FUN = runif,
class_name = "class_",
add_predicted_classes = FALSE,
add_targets = FALSE

)

Arguments

num_classes The number of classes. Also the number of columns in the tibble.
num_observations

The number of observations. Also the number of rows in the tibble.

apply_softmax Whether to apply the softmax function row-wise. This will transform the num-
bers to probabilities that sum to 1 row-wise.

FUN Function for generating random numbers. The first argument must be the num-
ber of random numbers to generate, as no other arguments are supplied.

class_name The prefix for the column names. The column index is appended.
add_predicted_classes

Whether to add a column with the predicted classes. (Logical)
The class with the highest value is the predicted class.

add_targets Whether to add a column with randomly selected target classes. (Logical)

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

Examples

Attach cvms
library(cvms)

Create a tibble with 5 classes and 10 observations
Apply softmax to make sure the probabilities sum to 1
multiclass_probability_tibble(

num_classes = 5,
num_observations = 10,

68 multinomial_metrics

apply_softmax = TRUE
)

Using the rnorm function to generate the random numbers
multiclass_probability_tibble(

num_classes = 5,
num_observations = 10,
apply_softmax = TRUE,
FUN = rnorm

)

Add targets and predicted classes
multiclass_probability_tibble(

num_classes = 5,
num_observations = 10,
apply_softmax = TRUE,
FUN = rnorm,
add_predicted_classes = TRUE,
add_targets = TRUE

)

Creating a custom generator function that
exponentiates the numbers to create more "certain" predictions
rcertain <- function(n) {

(runif(n, min = 1, max = 100)^1.4) / 100
}
multiclass_probability_tibble(

num_classes = 5,
num_observations = 10,
apply_softmax = TRUE,
FUN = rcertain

)

multinomial_metrics Select metrics for multinomial evaluation

Description

[Experimental]
Enable/disable metrics for multinomial evaluation. Can be supplied to the `metrics` argument in
many of the cvms functions.

Note: Some functions may have slightly different defaults than the ones supplied here.

Usage

multinomial_metrics(
all = NULL,
overall_accuracy = NULL,

multinomial_metrics 69

balanced_accuracy = NULL,
w_balanced_accuracy = NULL,
accuracy = NULL,
w_accuracy = NULL,
f1 = NULL,
w_f1 = NULL,
sensitivity = NULL,
w_sensitivity = NULL,
specificity = NULL,
w_specificity = NULL,
pos_pred_value = NULL,
w_pos_pred_value = NULL,
neg_pred_value = NULL,
w_neg_pred_value = NULL,
auc = NULL,
kappa = NULL,
w_kappa = NULL,
mcc = NULL,
detection_rate = NULL,
w_detection_rate = NULL,
detection_prevalence = NULL,
w_detection_prevalence = NULL,
prevalence = NULL,
w_prevalence = NULL,
false_neg_rate = NULL,
w_false_neg_rate = NULL,
false_pos_rate = NULL,
w_false_pos_rate = NULL,
false_discovery_rate = NULL,
w_false_discovery_rate = NULL,
false_omission_rate = NULL,
w_false_omission_rate = NULL,
threat_score = NULL,
w_threat_score = NULL,
aic = NULL,
aicc = NULL,
bic = NULL

)

Arguments

all Enable/disable all arguments at once. (Logical)
Specifying other metrics will overwrite this, why you can use (all = FALSE,
accuracy = TRUE) to get only the Accuracy metric.

overall_accuracy

Overall Accuracy (Default: TRUE)
balanced_accuracy

Macro Balanced Accuracy (Default: TRUE)

70 multinomial_metrics

w_balanced_accuracy

Weighted Balanced Accuracy (Default: FALSE)

accuracy Accuracy (Default: FALSE)

w_accuracy Weighted Accuracy (Default: FALSE)

f1 F1 (Default: TRUE)

w_f1 Weighted F1 (Default: FALSE)

sensitivity Sensitivity (Default: TRUE)

w_sensitivity Weighted Sensitivity (Default: FALSE)

specificity Specificity (Default: TRUE)

w_specificity Weighted Specificity (Default: FALSE)

pos_pred_value Pos Pred Value (Default: TRUE)
w_pos_pred_value

Weighted Pos Pred Value (Default: FALSE)

neg_pred_value Neg Pred Value (Default: TRUE)
w_neg_pred_value

Weighted Neg Pred Value (Default: FALSE)

auc AUC (Default: FALSE)

kappa Kappa (Default: TRUE)

w_kappa Weighted Kappa (Default: FALSE)

mcc MCC (Default: TRUE)
Multiclass Matthews Correlation Coefficient.

detection_rate Detection Rate (Default: TRUE)
w_detection_rate

Weighted Detection Rate (Default: FALSE)
detection_prevalence

Detection Prevalence (Default: TRUE)
w_detection_prevalence

Weighted Detection Prevalence (Default: FALSE)

prevalence Prevalence (Default: TRUE)

w_prevalence Weighted Prevalence (Default: FALSE)

false_neg_rate False Neg Rate (Default: FALSE)
w_false_neg_rate

Weighted False Neg Rate (Default: FALSE)

false_pos_rate False Pos Rate (Default: FALSE)
w_false_pos_rate

Weighted False Pos Rate (Default: FALSE)
false_discovery_rate

False Discovery Rate (Default: FALSE)
w_false_discovery_rate

Weighted False Discovery Rate (Default: FALSE)

musicians 71

false_omission_rate

False Omission Rate (Default: FALSE)

w_false_omission_rate

Weighted False Omission Rate (Default: FALSE)

threat_score Threat Score (Default: FALSE)

w_threat_score Weighted Threat Score (Default: FALSE)

aic AIC. (Default: FALSE)

aicc AICc. (Default: FALSE)

bic BIC. (Default: FALSE)

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other evaluation functions: binomial_metrics(), confusion_matrix(), evaluate(), evaluate_residuals(),
gaussian_metrics()

Examples

Attach packages
library(cvms)

Enable only Balanced Accuracy
multinomial_metrics(all = FALSE, balanced_accuracy = TRUE)

Enable all but Balanced Accuracy
multinomial_metrics(all = TRUE, balanced_accuracy = FALSE)

Disable Balanced Accuracy
multinomial_metrics(balanced_accuracy = FALSE)

musicians Musician groups

Description

Made-up data on 60 musicians in 4 groups for multiclass classification.

72 participant.scores

Format

A data.frame with 60 rows and 9 variables:

ID Musician identifier, 60 levels

Age Age of the musician. Between 17 and 66 years.

Class The class of the musician. One of "A", "B", "C", and "D".

Height Height of the musician. Between 146 and 196 centimeters.

Drums Whether the musician plays drums. 0 = No, 1 = Yes.

Bass Whether the musician plays bass. 0 = No, 1 = Yes.

Guitar Whether the musician plays guitar. 0 = No, 1 = Yes.

Keys Whether the musician plays keys. 0 = No, 1 = Yes.

Vocals Whether the musician sings. 0 = No, 1 = Yes.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

predicted.musicians

participant.scores Participant scores

Description

Made-up experiment data with 10 participants and two diagnoses. Test scores for 3 sessions per
participant, where participants improve their scores each session.

Format

A data.frame with 30 rows and 5 variables:

participant participant identifier, 10 levels

age age of the participant, in years

diagnosis diagnosis of the participant, either 1 or 0

score test score of the participant, on a 0-100 scale

session testing session identifier, 1 to 3

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

plot_confusion_matrix 73

plot_confusion_matrix Plot a confusion matrix

Description

[Experimental]

Creates a ggplot2 object representing a confusion matrix with counts, overall percentages, row
percentages and column percentages. An extra row and column with sum tiles and the total count
can be added.

The confusion matrix can be created with evaluate(). See `Examples`.

While this function is intended to be very flexible (hence the large number of arguments), the
defaults should work in most cases for most users. See the Examples.

NEW: Our Plot Confusion Matrix web application allows using this function without code. Select
from multiple design templates or make your own.

Usage

plot_confusion_matrix(
conf_matrix,
target_col = "Target",
prediction_col = "Prediction",
counts_col = "N",
sub_col = NULL,
class_order = NULL,
add_sums = FALSE,
add_counts = TRUE,
add_normalized = TRUE,
add_row_percentages = TRUE,
add_col_percentages = TRUE,
diag_percentages_only = FALSE,
rm_zero_percentages = TRUE,
rm_zero_text = TRUE,
add_zero_shading = TRUE,
amount_3d_effect = 1,
add_arrows = TRUE,
counts_on_top = FALSE,
palette = "Blues",
intensity_by = "counts",
intensity_lims = NULL,
intensity_beyond_lims = "truncate",
theme_fn = ggplot2::theme_minimal,
place_x_axis_above = TRUE,
rotate_y_text = TRUE,
digits = 1,
font_counts = font(),

https://huggingface.co/spaces/ludvigolsen/plot_confusion_matrix

74 plot_confusion_matrix

font_normalized = font(),
font_row_percentages = font(),
font_col_percentages = font(),
dynamic_font_colors = dynamic_font_color_settings(),
arrow_size = 0.048,
arrow_color = "black",
arrow_nudge_from_text = 0.065,
tile_border_color = NA,
tile_border_size = 0.1,
tile_border_linetype = "solid",
sums_settings = sum_tile_settings(),
darkness = 0.8

)

Arguments

conf_matrix Confusion matrix tibble with each combination of targets and predictions along
with their counts.
E.g. for a binary classification:

Target Prediction N
class_1 class_1 5
class_1 class_2 9
class_2 class_1 3
class_2 class_2 2

As created with the various evaluation functions in cvms, like evaluate().
An additional `sub_col` column (character) can be specified as well. Its
content will replace the bottom text (‘counts‘ by default or ‘normalized‘ when
`counts_on_top` is enabled).
Note: If you supply the results from evaluate() or confusion_matrix() di-
rectly, the confusion matrix tibble is extracted automatically, if possible.

target_col Name of column with target levels.

prediction_col Name of column with prediction levels.

counts_col Name of column with a count for each combination of the target and prediction
levels.

sub_col Name of column with text to replace the bottom text (‘counts‘ by default or
‘normalized‘ when `counts_on_top` is enabled).
It simply replaces the text, so all settings will still be called e.g. `font_counts`
etc. When other settings make it so, that no bottom text is displayed (e.g.
`add_counts` = FALSE), this text is not displayed either.

class_order Names of the classes in `conf_matrix` in the desired order. When NULL, the
classes are ordered alphabetically. Note that the entire set of unique classes from
both `target_col` and `prediction_col` must be specified.

plot_confusion_matrix 75

add_sums Add tiles with the row/column sums. Also adds a total count tile. (Logical)
The appearance of these tiles can be specified in `sums_settings`.
Note: Adding the sum tiles with a palette requires the ggnewscale package.

add_counts Add the counts to the middle of the tiles. (Logical)

add_normalized Normalize the counts to percentages and add to the middle of the tiles. (Logical)
add_row_percentages

Add the row percentages, i.e. how big a part of its row the tile makes up. (Logi-
cal)
By default, the row percentage is placed to the right of the tile, rotated 90 de-
grees.

add_col_percentages

Add the column percentages, i.e. how big a part of its column the tile makes up.
(Logical)
By default, the row percentage is placed at the bottom of the tile.

diag_percentages_only

Whether to only have row and column percentages in the diagonal tiles. (Logi-
cal)

rm_zero_percentages

Whether to remove row and column percentages when the count is 0. (Logical)

rm_zero_text Whether to remove counts and normalized percentages when the count is 0.
(Logical)

add_zero_shading

Add image of skewed lines to zero-tiles. (Logical)
Note: Adding the zero-shading requires the rsvg and ggimage packages.
Note: For large confusion matrices, this can be very slow. Consider turning off
until the final plotting.

amount_3d_effect

Amount of 3D effect (tile overlay) to add. Passed as whole number from 0 (no
effect) up to 6 (biggest effect). This helps separate tiles with the same intensities.
Note: The overlay may not fit the tiles in many-class cases that haven’t been
tested. If the boxes do not overlap properly, simply turn it off.
Note: For large confusion matrices, this can be very slow. Consider turning off
until the final plotting.

add_arrows Add the arrows to the row and col percentages. (Logical)
Note: Adding the arrows requires the rsvg and ggimage packages.

counts_on_top Switch the counts and normalized counts, such that the counts are on top. (Log-
ical)

palette Color scheme. Passed directly to `palette` in ggplot2::scale_fill_distiller.
Try these palettes: "Greens", "Oranges", "Greys", "Purples", "Reds", as
well as the default "Blues".
Alternatively, pass a named list with limits of a custom gradient as e.g. `list("low"="#B1F9E8",
"high"="#239895")`. These are passed to ggplot2::scale_fill_gradient.

76 plot_confusion_matrix

intensity_by The measure that should control the color intensity of the tiles. Either `counts`,
`normalized`, `row_percentages`, `col_percentages`, or one of `log
counts`, `log2 counts`, `log10 counts`, `arcsinh counts`.
For ‘normalized‘, ‘row_percentages‘, and ‘col_percentages‘, the color limits be-
come 0-100 (except when `intensity_lims` are specified), why the intensi-
ties can better be compared across plots.
Note: When `add_sums=TRUE`, the ‘row_percentages‘ and ‘col_percentages‘
options are only available for the main tiles. A separate intensity metric must be
specified for the sum tiles (e.g., via `sums_settings = sum_tile_settings(intensity_by='normalized')`).
For the ‘log*‘ and ‘arcsinh‘ versions, the log/arcsinh transformed counts are
used.
Note: In ‘log*‘ transformed counts, 0-counts are set to ‘0‘, why they won’t be
distinguishable from 1-counts.

intensity_lims A specific range of values for the color intensity of the tiles. Given as a numeric
vector with c(min, max).
This allows having the same intensity scale across plots for better comparison
of prediction sets.

intensity_beyond_lims

What to do with values beyond the `intensity_lims`. One of "truncate",
"grey".

theme_fn The ggplot2 theme function to apply.
place_x_axis_above

Move the x-axis text to the top and reverse the levels such that the "correct"
diagonal goes from top left to bottom right. (Logical)

rotate_y_text Whether to rotate the y-axis text to be vertical instead of horizontal. (Logical)

digits Number of digits to round to (percentages only). Set to a negative number for
no rounding.
Can be set for each font individually via the font_* arguments.

font_counts list of font settings for the counts. Can be provided with font().
font_normalized

list of font settings for the normalized counts. Can be provided with font().
font_row_percentages

list of font settings for the row percentages. Can be provided with font().
font_col_percentages

list of font settings for the column percentages. Can be provided with font().
dynamic_font_colors

A list of settings for using dynamic font colors based on the value of the counts/normalized.
Allows changing the font colors when the background tiles are too dark, etc. Can
be provided with dynamic_font_color_settings().
Individual thresholds can be set for the different fonts/values via the `font_*`
arguments. Specifying colors in these arguments will overwrite this argument
(for the specific font only).
Specifying colors for specific fonts overrides the "all" values for those fonts.

arrow_size Size of arrow icons. (Numeric)
Is divided by sqrt(nrow(conf_matrix)) and passed on to ggimage::geom_icon().

plot_confusion_matrix 77

arrow_color Color of arrow icons. One of "black", "white".
arrow_nudge_from_text

Distance from the percentage text to the arrow. (Numeric)
tile_border_color

Color of the tile borders. Passed as ‘colour‘ to ggplot2::geom_tile.
tile_border_size

Size of the tile borders. Passed as ‘size‘ to ggplot2::geom_tile.
tile_border_linetype

Linetype for the tile borders. Passed as ‘linetype‘ to ggplot2::geom_tile.

sums_settings A list of settings for the appearance of the sum tiles. Can be provided with
sum_tile_settings().

darkness How dark the darkest colors should be, between 0 and 1, where 1 is darkest.
Technically, a lower value increases the upper limit in ggplot2::scale_fill_distiller.

Details

Inspired by Antoine Sachet’s answer at https://stackoverflow.com/a/53612391/11832955

Value

A ggplot2 object representing a confusion matrix. Color intensity depends on either the counts
(default) or the overall percentages.

By default, each tile has the normalized count (overall percentage) and count in the middle, the
column percentage at the bottom, and the row percentage to the right and rotated 90 degrees.

In the "correct" diagonal (upper left to bottom right, by default), the column percentages are the
class-level sensitivity scores, while the row percentages are the class-level positive predictive values.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other plotting functions: dynamic_font_color_settings(), font(), plot_metric_density(),
plot_probabilities(), plot_probabilities_ecdf(), sum_tile_settings()

Examples

Attach cvms
library(cvms)
library(ggplot2)

Two classes

Create targets and predictions data frame
data <- data.frame(

"target" = c("A", "B", "A", "B", "A", "B", "A", "B",
"A", "B", "A", "B", "A", "B", "A", "A"),

78 plot_confusion_matrix

"prediction" = c("B", "B", "A", "A", "A", "B", "B", "B",
"B", "B", "A", "B", "A", "A", "A", "A"),

stringsAsFactors = FALSE
)

Evaluate predictions and create confusion matrix
evaluation <- evaluate(

data = data,
target_col = "target",
prediction_cols = "prediction",
type = "binomial"

)

Inspect confusion matrix tibble
evaluation[["Confusion Matrix"]][[1]]

Plot confusion matrix
Supply confusion matrix tibble directly
plot_confusion_matrix(evaluation[["Confusion Matrix"]][[1]])
Plot first confusion matrix in evaluate() output
plot_confusion_matrix(evaluation)

Not run:
Add sum tiles
plot_confusion_matrix(evaluation, add_sums = TRUE)

End(Not run)

Add labels to diagonal row and column percentages
This example assumes "B" is the positive class
but you could write anything as prefix to the percentages
plot_confusion_matrix(

evaluation,
font_row_percentages = font(prefix=c("NPV = ", "", "", "PPV = ")),
font_col_percentages = font(prefix=c("Spec = ", "", "", "Sens = "))

)

Dynamic font colors when background becomes too dark
Also inverts the arrow colors
plot_confusion_matrix(

evaluation[["Confusion Matrix"]][[1]],
Black and white theme
palette = list("low"="#ffffff", "high"="#000000"),
Increase contrast
darkness = 1.0,
Specify colors below and above threshold
dynamic_font_colors = dynamic_font_color_settings(
threshold = 30,
by = "normalized",
Black at low values, white at high values
all = c('#000', '#fff'),

plot_confusion_matrix 79

White arrows above threshold
invert_arrows = "at_and_above"

)
)

Three (or more) classes

Create targets and predictions data frame
data <- data.frame(

"target" = c("A", "B", "C", "B", "A", "B", "C",
"B", "A", "B", "C", "B", "A"),

"prediction" = c("C", "B", "A", "C", "A", "B", "B",
"C", "A", "B", "C", "A", "C"),

stringsAsFactors = FALSE
)

Evaluate predictions and create confusion matrix
evaluation <- evaluate(

data = data,
target_col = "target",
prediction_cols = "prediction",
type = "multinomial"

)

Inspect confusion matrix tibble
evaluation[["Confusion Matrix"]][[1]]

Plot confusion matrix
Supply confusion matrix tibble directly
plot_confusion_matrix(evaluation[["Confusion Matrix"]][[1]])
Plot first confusion matrix in evaluate() output
plot_confusion_matrix(evaluation)

Not run:
Add sum tiles
plot_confusion_matrix(evaluation, add_sums = TRUE)

End(Not run)

Counts only
plot_confusion_matrix(

evaluation[["Confusion Matrix"]][[1]],
add_normalized = FALSE,
add_row_percentages = FALSE,
add_col_percentages = FALSE

)

Change color palette to green
Change theme to `theme_light`.
plot_confusion_matrix(

evaluation[["Confusion Matrix"]][[1]],

80 plot_metric_density

palette = "Greens",
theme_fn = ggplot2::theme_light

)

Not run:
Change colors palette to custom gradient
with a different gradient for sum tiles
plot_confusion_matrix(

evaluation[["Confusion Matrix"]][[1]],
palette = list("low" = "#B1F9E8", "high" = "#239895"),
sums_settings = sum_tile_settings(

palette = list("low" = "#e9e1fc", "high" = "#BE94E6")
),
add_sums = TRUE

)

End(Not run)

The output is a ggplot2 object
that you can add layers to
Here we change the axis labels
plot_confusion_matrix(evaluation[["Confusion Matrix"]][[1]]) +

ggplot2::labs(x = "True", y = "Guess")

Replace the bottom tile text
with some information
First extract confusion matrix
Then add new column with text
cm <- evaluation[["Confusion Matrix"]][[1]]
cm[["Trials"]] <- c(

"(8/9)", "(3/9)", "(1/9)",
"(3/9)", "(7/9)", "(4/9)",
"(1/9)", "(2/9)", "(8/9)"
)

Now plot with the `sub_col` argument specified
plot_confusion_matrix(cm, sub_col="Trials")

plot_metric_density Density plot for a metric

Description

[Experimental]
Creates a ggplot2 object with a density plot for one of the columns in the passed data.frame(s).

Note: In its current form, it is mainly intended as a quick way to visualize the results from cross-
validations and baselines (random evaluations). It may change significantly in future versions.

plot_metric_density 81

Usage

plot_metric_density(
results = NULL,
baseline = NULL,
metric = "",
fill = c("darkblue", "lightblue"),
alpha = 0.6,
theme_fn = ggplot2::theme_minimal,
xlim = NULL

)

Arguments

results data.frame with a metric column to create density plot for.
To only plot the baseline, set to NULL.

baseline data.frame with the random evaluations from baseline(). Should contain a
column for the metric.
To only plot the results, set to NULL.

metric Name of the metric column in `results` to plot. (Character)

fill Colors of the plotted distributions. The first color is for the `baseline`, the
second for the `results`.

alpha Transparency of the distribution (0 - 1).

theme_fn The ggplot2 theme function to apply.

xlim Limits for the x-axis. Can be set to NULL.
E.g. c(0, 1).

Value

A ggplot2 object with the density of a metric, possibly split in ‘Results‘ and ‘Baseline‘.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other plotting functions: dynamic_font_color_settings(), font(), plot_confusion_matrix(),
plot_probabilities(), plot_probabilities_ecdf(), sum_tile_settings()

Examples

Attach packages
library(cvms)
library(dplyr)

We will use the musicians and predicted.musicians datasets
musicians

82 precomputed.formulas

predicted.musicians

Set seed
set.seed(42)

Create baseline for targets
bsl <- baseline_multinomial(

test_data = musicians,
dependent_col = "Class",
n = 20 # Normally 100

)

Evaluate predictions grouped by classifier and fold column
eval <- predicted.musicians %>%

dplyr::group_by(Classifier, `Fold Column`) %>%
evaluate(
target_col = "Target",
prediction_cols = c("A", "B", "C", "D"),
type = "multinomial"

)

Plot density of the Overall Accuracy metric
plot_metric_density(

results = eval,
baseline = bsl$random_evaluations,
metric = "Overall Accuracy",
xlim = c(0,1)

)

The bulk of classifier results are much better than
the baseline results

precomputed.formulas Precomputed formulas

Description

Fixed effect combinations for model formulas with/without two- and three-way interactions. Up to
eight fixed effects in total with up to five fixed effects per formula.

Format

A data.frame with 259,358 rows and 5 variables:

formula_ combination of fixed effects, separated by "+" and "*"

max_interaction_size maximum interaction size in the formula, up to 3

max_effect_frequency maximum count of an effect in the formula, e.g. the 3 A’s in "A * B + A * C
+ A * D"

predicted.musicians 83

num_effects number of unique effects included in the formula

min_num_fixed_effects minimum number of fixed effects required to use the formula, i.e. the
index in the alphabet of the last of the alphabetically ordered effects (letters) in the formula,
so 4 for the formula: "A + B + D"

Details

Effects are represented by the first eight capital letters.

Used by combine_predictors.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

predicted.musicians Predicted musician groups

Description

Predictions by 3 classifiers of the 4 classes in the musicians dataset. Obtained with 5-fold stratified
cross-validation (3 repetitions). The three classifiers were fit using nnet::multinom, randomForest::randomForest,
and e1071::svm.

Format

A data.frame with 540 rows and 10 variables:

Classifier The applied classifier. One of "nnet_multinom", "randomForest", and "e1071_svm".

Fold Column The fold column name. Each is a unique 5-fold split. One of ".folds_1", ".folds_2",
and ".folds_3".

Fold The fold. 1 to 5.

ID Musician identifier, 60 levels

Target The actual class of the musician. One of "A", "B", "C", and "D".

A The probability of class "A".

B The probability of class "B".

C The probability of class "C".

D The probability of class "D".

Predicted Class The predicted class. The argmax of the four probability columns.

Details

Used formula: "Class ~ Height + Age + Drums + Bass + Guitar + Keys + Vocals"

84 predict_functions

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

musicians

Examples

Attach packages
library(cvms)
library(dplyr)

Evaluate each fold column
predicted.musicians %>%

dplyr::group_by(Classifier, `Fold Column`) %>%
evaluate(target_col = "Target",

prediction_cols = c("A", "B", "C", "D"),
type = "multinomial")

Overall ID evaluation
I.e. if we average all 9 sets of predictions,
how well did we predict the targets?
overall_id_eval <- predicted.musicians %>%

evaluate(target_col = "Target",
prediction_cols = c("A", "B", "C", "D"),
type = "multinomial",
id_col = "ID")

overall_id_eval
Plot the confusion matrix
plot_confusion_matrix(overall_id_eval$`Confusion Matrix`[[1]])

predict_functions Examples of predict_fn functions

Description

[Experimental]

Examples of predict functions that can be used in cross_validate_fn(). They can either be used
directly or be starting points.

Usage

predict_functions(name)

preprocess_functions 85

Arguments

name Name of model to get predict function for, as it appears in the following table.

The Model HParams column lists hyperparameters used in the respective model
function.

Name Function Model HParams
"lm" stats::lm()

"lmer" lme4::lmer()
"glm_binomial" stats::glm() family = "binomial"

"glmer_binomial" lme4::glmer() family = "binomial"
"svm_gaussian" e1071::svm() type = "eps-regression"
"svm_binomial" e1071::svm() type = "C-classification", probability = TRUE

"svm_multinomial" e1071::svm() type = "C-classification", probability = TRUE
"naive_bayes" e1071::naiveBayes()

"nnet_multinom" nnet::multinom()
"nnet_gaussian" nnet::nnet() linout = TRUE
"nnet_binomial" nnet::nnet()

"randomForest_gaussian" randomForest::randomForest()
"randomForest_binomial" randomForest::randomForest()

"randomForest_multinomial" randomForest::randomForest()

Value

A function with the following form:

function(test_data, model, formula, hyperparameters, train_data) {
Use model to predict test_data
Return predictions

}

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other example functions: model_functions(), preprocess_functions(), update_hyperparameters()

preprocess_functions Examples of preprocess_fn functions

86 preprocess_functions

Description

[Experimental]
Examples of preprocess functions that can be used in cross_validate_fn() and validate_fn().
They can either be used directly or be starting points.

The examples use recipes, but you can also use caret::preProcess() or similar functions.

In these examples, the preprocessing will only affect the numeric predictors.

You may prefer to hardcode a formula like "y ~ ." (where y is your dependent variable) as that
will allow you to set ‘preprocess_one‘ to TRUE in cross_validate_fn() and validate_fn() and
save time.

Usage

preprocess_functions(name)

Arguments

name Name of preprocessing function as it appears in the following list:

Name Description
"standardize" Centers and scales the numeric predictors

"range" Normalizes the numeric predictors to the 0-1 range
"scale" Scales the numeric predictors to have a standard deviation of one

"center" Centers the numeric predictors to have a mean of zero
"warn" Identity function that throws a warning and a message

Value

A function with the following form:

function(train_data, test_data, formula, hyperparameters) {
Preprocess train_data and test_data
Return a list with the preprocessed datasets
and optionally a data frame with preprocessing parameters
list(

"train" = train_data,
"test" = test_data,
"parameters" = tidy_parameters

)

}

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other example functions: model_functions(), predict_functions(), update_hyperparameters()

process_info_binomial 87

process_info_binomial A set of process information object constructors

Description

[Experimental]
Classes for storing process information from prediction evaluations.

Used internally.

Usage

process_info_binomial(
data,
target_col,
prediction_cols,
id_col,
cat_levels,
positive,
cutoff,
locale = NULL

)

S3 method for class 'process_info_binomial'
print(x, ...)

S3 method for class 'process_info_binomial'
as.character(x, ...)

process_info_multinomial(
data,
target_col,
prediction_cols,
pred_class_col,
id_col,
cat_levels,
apply_softmax,
locale = NULL

)

S3 method for class 'process_info_multinomial'
print(x, ...)

S3 method for class 'process_info_multinomial'
as.character(x, ...)

process_info_gaussian(data, target_col, prediction_cols, id_col, locale = NULL)

88 reconstruct_formulas

S3 method for class 'process_info_gaussian'
print(x, ...)

S3 method for class 'process_info_gaussian'
as.character(x, ...)

Arguments

data Data frame.

target_col Name of target column.
prediction_cols

Names of prediction columns.

id_col Name of ID column.

cat_levels Categorical levels (classes).

positive Name of the positive class.

cutoff The cutoff used to get class predictions from probabilities.

locale The locale when performing the evaluation. Relevant when any sorting has been
performed.

x a process info object used to select a method.

... further arguments passed to or from other methods.

pred_class_col Name of predicted classes column.

apply_softmax Whether softmax has been applied.

Value

List with relevant information.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

reconstruct_formulas Reconstruct model formulas from results tibbles

Description

[Maturing]
In the (cross-)validation results from functions like cross_validate(), the model formulas have
been split into the columns Dependent, Fixed and Random. Quickly reconstruct the model formulas
from these columns.

Usage

reconstruct_formulas(results, topn = NULL)

select_definitions 89

Arguments

results data.frame with results from cross_validate() or validate(). (tbl)
Must contain at least the columns "Dependent" and "Fixed". For random ef-
fects, the "Random" column should be included.

topn Number of top rows to return. Simply applies head() to the results tibble.

Value

list of model formulas.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

select_definitions Select model definition columns

Description

[Experimental]

Select the columns that define the models, such as the formula terms and hyperparameters.

If an expected column is not in the `results` tibble, it is simply ignored.

Usage

select_definitions(results, unnest_hparams = TRUE, additional_includes = NULL)

Arguments

results Results tibble. E.g. from cross_validate() or evaluate().

unnest_hparams Whether to unnest the HParams column. (Logical)
additional_includes

Names of additional columns to select. (Character)

Value

The model definition columns from the results tibble.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

90 simplify_formula

select_metrics Select columns with evaluation metrics and model definitions

Description

[Maturing]
When reporting results, we might not want all the nested tibbles and process information columns.
This function selects the evaluation metrics and model formulas only.

If an expected column is not in the `results` tibble, it is simply ignored.

Usage

select_metrics(results, include_definitions = TRUE, additional_includes = NULL)

Arguments

results Results tibble. E.g. from cross_validate() or evaluate().
include_definitions

Whether to include the Dependent, Fixed and (possibly) Random and HParams
columns. (Logical)

additional_includes

Names of additional columns to select. (Character)

Value

The results tibble with only the metric and model definition columns.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

simplify_formula Simplify formula with inline functions

Description

[Experimental]
Extracts all variables from a formula object and creates a new formula with all predictor variables
added together without the inline functions.

E.g.:

y ~ x*z + log(a) + (1|b)

becomes

y ~ x + z + a + b.

This is useful when passing a formula to recipes::recipe() for preprocessing a dataset, as used
in the preprocess_functions().

summarize_metrics 91

Usage

simplify_formula(formula, data = NULL, string_out = FALSE)

Arguments

formula Formula object.
If a string is passed, it will be converted with as.formula().
When a side only contains a NULL, it is kept. Otherwise NULLs are removed.
An intercept (1) will only be kept if there are no variables on that side of the
formula.

data data.frame. Used to extract variables when the formula contains a ".".

string_out Whether to return as a string. (Logical)

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

Examples

Attach cvms
library(cvms)

Create formula
f1 <- "y ~ x*z + log(a) + (1|b)"

Simplify formula (as string)
simplify_formula(f1)

Simplify formula (as formula)
simplify_formula(as.formula(f1))

summarize_metrics Summarize metrics with common descriptors

Description

[Experimental]

Summarizes all numeric columns. Counts the NAs and Infs in the columns.

Usage

summarize_metrics(data, cols = NULL, na.rm = TRUE, inf.rm = TRUE)

92 sum_tile_settings

Arguments

data data.frame with numeric columns to summarize.

cols Names of columns to summarize. Non-numeric columns are ignored. (Charac-
ter)

na.rm Whether to remove NAs before summarizing. (Logical)

inf.rm Whether to remove Infs before summarizing. (Logical)

Value

tibble where each row is a descriptor of the column.

The Measure column contains the name of the descriptor.

The NAs row is a count of the NAs in the column.

The INFs row is a count of the Infs in the column.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

Examples

Attach packages
library(cvms)
library(dplyr)

df <- data.frame("a" = c("a", "a", "a", "b", "b", "b", "c", "c", "c"),
"b" = c(0.8, 0.6, 0.3, 0.2, 0.4, 0.5, 0.8, 0.1, 0.5),
"c" = c(0.2, 0.3, 0.4, 0.6, 0.5, 0.8, 0.1, 0.8, 0.3))

Summarize all numeric columns
summarize_metrics(df)

Summarize column "b"
summarize_metrics(df, cols = "b")

sum_tile_settings Create a list of settings for the sum tiles in plot_confusion_matrix()

Description

[Experimental]

Creates a list of settings for plotting the column/row sums in plot_confusion_matrix().

The `tc_` in the arguments refers to the total count tile.

NOTE: This is very experimental and will likely change.

sum_tile_settings 93

Usage

sum_tile_settings(
palette = NULL,
label = NULL,
tile_fill = NULL,
font_counts_color = NULL,
font_normalized_color = NULL,
dynamic_font_colors = dynamic_font_color_settings(),
tile_border_color = NULL,
tile_border_size = NULL,
tile_border_linetype = NULL,
tc_tile_fill = NULL,
tc_font_color = NULL,
tc_tile_border_color = NULL,
tc_tile_border_size = NULL,
tc_tile_border_linetype = NULL,
intensity_by = NULL,
intensity_lims = NULL,
intensity_beyond_lims = NULL,
font_color = deprecated()

)

Arguments

palette Color scheme to use for sum tiles. Should be different from the `palette` used
for the regular tiles.
Passed directly to `palette` in ggplot2::scale_fill_distiller.
Try these palettes: "Greens", "Oranges", "Greys", "Purples", "Reds", and
"Blues".
Alternatively, pass a named list with limits of a custom gradient as e.g. `list("low"="#e9e1fc",
"high"="#BE94E6")`. These are passed to ggplot2::scale_fill_gradient.
Note: When `tile_fill` is specified, the `palette` is ignored.

label The label to use for the sum column and the sum row.
font_counts_color, font_normalized_color

Color of the text in the tiles with the column and row sums. Either the value di-
rectly passed to ggplot2::geom_text or a function that take in the values (e.g.,
counts, percentages, etc.) and returns a vector of values to pass to ggplot2::geom_text.

dynamic_font_colors

A list of settings for using dynamic font colors based on the value of the counts/normalized.
Allows changing the font colors when the background tiles are too dark, etc.
Can be provided with dynamic_font_color_settings(threshold =, by =,
all =, counts =, normalized =).
Individual thresholds can be set for the different fonts/values via the `font_*_color`
arguments. Specifying colors in these arguments will overwrite this argument
(for the specific font only).
Specifying colors for specific fonts overrides the "all" values for those fonts.

94 sum_tile_settings

tc_tile_fill, tile_fill
Specific background color for the tiles. Passed as ‘fill‘ to ggplot2::geom_tile.
If specified, the `palette` is ignored.

tc_font_color Color of the text in the total count tile.
tc_tile_border_color, tile_border_color

Color of the tile borders. Passed as ‘colour‘ to ggplot2::geom_tile.
tc_tile_border_size, tile_border_size

Size of the tile borders. Passed as ‘size‘ to ggplot2::geom_tile.
tc_tile_border_linetype, tile_border_linetype

Linetype for the tile borders. Passed as ‘linetype‘ to ggplot2::geom_tile.

intensity_by The measure that should control the color intensity of the tiles. Either `counts`,
`normalized`, `row_percentages`, `col_percentages`, or one of `log
counts`, `log2 counts`, `log10 counts`, `arcsinh counts`.
For ‘normalized‘, ‘row_percentages‘, and ‘col_percentages‘, the color limits be-
come 0-100 (except when `intensity_lims` are specified), why the intensi-
ties can better be compared across plots.
Note: When `add_sums=TRUE`, the ‘row_percentages‘ and ‘col_percentages‘
options are only available for the main tiles. A separate intensity metric must be
specified for the sum tiles (e.g., via `sums_settings = sum_tile_settings(intensity_by='normalized')`).
For the ‘log*‘ and ‘arcsinh‘ versions, the log/arcsinh transformed counts are
used.
Note: In ‘log*‘ transformed counts, 0-counts are set to ‘0‘, why they won’t be
distinguishable from 1-counts.

intensity_lims A specific range of values for the color intensity of the tiles. Given as a numeric
vector with c(min, max).
This allows having the same intensity scale across plots for better comparison
of prediction sets.

intensity_beyond_lims

What to do with values beyond the `intensity_lims`. One of "truncate",
"grey".

font_color Deprecated.

Value

List of settings.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other plotting functions: dynamic_font_color_settings(), font(), plot_confusion_matrix(),
plot_metric_density(), plot_probabilities(), plot_probabilities_ecdf()

update_hyperparameters 95

update_hyperparameters

Check and update hyperparameters

Description

[Experimental]

1. Checks if the required hyperparameters are present and throws an error when it is not the case.

2. Inserts the missing hyperparameters with the supplied default values.

For managing hyperparameters in custom model functions for cross_validate_fn() or validate_fn().

Usage

update_hyperparameters(..., hyperparameters, .required = NULL)

Arguments

... Default values for missing hyperparameters.

E.g.:

kernel = "linear", cost = 10

hyperparameters

list of hyperparameters as supplied to cross_validate_fn(). Can also be a
single-row data.frame.

.required Names of required hyperparameters. If any of these are not present in the hy-
perparameters, an error is thrown.

Value

A named list with the updated hyperparameters.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other example functions: model_functions(), predict_functions(), preprocess_functions()

96 validate

Examples

Attach packages
library(cvms)

Create a list of hyperparameters
hparams <- list(

"kernel" = "radial",
"scale" = TRUE

)

Update hyperparameters with defaults
Only 'cost' is changed as it's missing
update_hyperparameters(

cost = 10,
kernel = "linear",
"scale" = FALSE,
hyperparameters = hparams

)

'cost' is required
throws error
if (requireNamespace("xpectr", quietly = TRUE)){

xpectr::capture_side_effects(
update_hyperparameters(

kernel = "linear",
"scale" = FALSE,
hyperparameters = hparams,
.required = "cost"

)
)

}

validate Validate regression models on a test set

Description

[Stable]

Train linear or logistic regression models on a training set and validate it by predicting a test/validation
set. Returns results in a tibble for easy reporting, along with the trained models.

See validate_fn() for use with custom model functions.

Usage

validate(
train_data,

validate 97

formulas,
family,
test_data = NULL,
partitions_col = ".partitions",
control = NULL,
REML = FALSE,
cutoff = 0.5,
positive = 2,
metrics = list(),
preprocessing = NULL,
err_nc = FALSE,
rm_nc = FALSE,
parallel = FALSE,
verbose = FALSE,
link = deprecated(),
models = deprecated(),
model_verbose = deprecated()

)

Arguments

train_data data.frame.
Can contain a grouping factor for identifying partitions - as made with groupdata2::partition().
See `partitions_col`.

formulas Model formulas as strings. (Character)
E.g. c("y~x", "y~z").
Can contain random effects.
E.g. c("y~x+(1|r)", "y~z+(1|r)").

family Name of the family. (Character)
Currently supports "gaussian" for linear regression with lm() / lme4::lmer()
and "binomial" for binary classification with glm() / lme4::glmer().
See cross_validate_fn() for use with other model functions.

test_data data.frame. If specifying `partitions_col`, this can be NULL.

partitions_col Name of grouping factor for identifying partitions. (Character)
Rows with the value 1 in `partitions_col` are used as training set and rows
with the value 2 are used as test set.
N.B. Only used if ‘test_data‘ is NULL.

control Construct control structures for mixed model fitting (with lme4::lmer() or
lme4::glmer()). See lme4::lmerControl and lme4::glmerControl.
N.B. Ignored if fitting lm() or glm() models.

REML Restricted Maximum Likelihood. (Logical)

cutoff Threshold for predicted classes. (Numeric)
N.B. Binomial models only

98 validate

positive Level from dependent variable to predict. Either as character (preferable) or
level index (1 or 2 - alphabetically).
E.g. if we have the levels "cat" and "dog" and we want "dog" to be the positive
class, we can either provide "dog" or 2, as alphabetically, "dog" comes after
"cat".
Note: For reproducibility, it’s preferable to specify the name directly, as dif-
ferent locales may sort the levels differently.
Used when calculating confusion matrix metrics and creating ROC curves.
The Process column in the output can be used to verify this setting.
N.B. Only affects evaluation metrics, not the model training or returned predic-
tions.
N.B. Binomial models only.

metrics list for enabling/disabling metrics.
E.g. list("RMSE" = FALSE) would remove RMSE from the results, and list("Accuracy"
= TRUE) would add the regular Accuracy metric to the classification results. De-
fault values (TRUE/FALSE) will be used for the remaining available metrics.
You can enable/disable all metrics at once by including "all" = TRUE/FALSE
in the list. This is done prior to enabling/disabling individual metrics, why
list("all" = FALSE, "RMSE" = TRUE) would return only the RMSE metric.
The list can be created with gaussian_metrics() or binomial_metrics().
Also accepts the string "all".

preprocessing Name of preprocessing to apply.
Available preprocessings are:

Name Description
"standardize" Centers and scales the numeric predictors.

"range" Normalizes the numeric predictors to the 0-1 range. Values outside the min/max range in the test fold are truncated to 0/1.
"scale" Scales the numeric predictors to have a standard deviation of one.

"center" Centers the numeric predictors to have a mean of zero.

The preprocessing parameters (mean, SD, etc.) are extracted from the training
folds and applied to both the training folds and the test fold. They are returned
in the Preprocess column for inspection.
N.B. The preprocessings should not affect the results to a noticeable degree,
although "range" might due to the truncation.

err_nc Whether to raise an error if a model does not converge. (Logical)

rm_nc Remove non-converged models from output. (Logical)

parallel Whether to validate the list of models in parallel. (Logical)
Remember to register a parallel backend first. E.g. with doParallel::registerDoParallel.

verbose Whether to message process information like the number of model instances to
fit and which model function was applied. (Logical)

link, models, model_verbose
Deprecated.

validate 99

Details

Packages used:

Models:
Gaussian: stats::lm, lme4::lmer
Binomial: stats::glm, lme4::glmer

Results:

Shared:
AIC : stats::AIC
AICc : MuMIn::AICc
BIC : stats::BIC

Gaussian:
r2m : MuMIn::r.squaredGLMM
r2c : MuMIn::r.squaredGLMM

Binomial:
ROC and AUC: pROC::roc

Value

tibble with the results and model objects.

Shared across families:
A nested tibble with coefficients of the models from all iterations.
Count of convergence warnings. Consider discarding models that did not converge.
Count of other warnings. These are warnings without keywords such as "convergence".
Count of Singular Fit messages. See lme4::isSingular for more information.
Nested tibble with the warnings and messages caught for each model.
Specified family.
Nested model objects.
Name of dependent variable.
Names of fixed effects.
Names of random effects, if any.
Nested tibble with preprocessing parameters, if any.

—————————————————————-

Gaussian Results:
—————————————————————-
RMSE, MAE, NRMSE(IQR), RRSE, RAE, RMSLE, AIC, AICc, and BIC.
See the additional metrics (disabled by default) at ?gaussian_metrics.
A nested tibble with the predictions and targets.

—————————————————————-

100 validate

Binomial Results:
—————————————————————-
Based on predictions of the test set, a confusion matrix and ROC curve are used to get the following:
ROC:
AUC, Lower CI, and Upper CI.
Confusion Matrix:
Balanced Accuracy, F1, Sensitivity, Specificity, Positive Predictive Value, Negative
Predictive Value, Kappa, Detection Rate, Detection Prevalence, Prevalence, and MCC
(Matthews correlation coefficient).
See the additional metrics (disabled by default) at ?binomial_metrics.
Also includes:
A nested tibble with predictions, predicted classes (depends on cutoff), and the targets. Note,
that the predictions are not necessarily of the specified positive class, but of the model’s positive
class (second level of dependent variable, alphabetically).
The pROC::roc ROC curve object(s).
A nested tibble with the confusion matrix/matrices. The Pos_ columns tells you whether a row
is a True Positive (TP), True Negative (TN), False Positive (FP), or False Negative (FN), depending
on which level is the "positive" class. I.e. the level you wish to predict.
The name of the Positive Class.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other validation functions: cross_validate(), cross_validate_fn(), validate_fn()

Examples

Attach packages
library(cvms)
library(groupdata2) # partition()
library(dplyr) # %>% arrange()

Data is part of cvms
data <- participant.scores

Set seed for reproducibility
set.seed(7)

Partition data
Keep as single data frame
We could also have fed validate() separate train and test sets.
data_partitioned <- partition(

data,
p = 0.7,
cat_col = "diagnosis",
id_col = "participant",

validate_fn 101

list_out = FALSE
) %>%

arrange(.partitions)

Validate a model

Gaussian
validate(

data_partitioned,
formulas = "score~diagnosis",
partitions_col = ".partitions",
family = "gaussian",
REML = FALSE

)

Binomial
validate(data_partitioned,

formulas = "diagnosis~score",
partitions_col = ".partitions",
family = "binomial"

)

Feed separate train and test sets

Partition data to list of data frames
The first data frame will be train (70% of the data)
The second will be test (30% of the data)
data_partitioned <- partition(

data,
p = 0.7,
cat_col = "diagnosis",
id_col = "participant",
list_out = TRUE

)
train_data <- data_partitioned[[1]]
test_data <- data_partitioned[[2]]

Validate a model

Gaussian
validate(

train_data,
test_data = test_data,
formulas = "score~diagnosis",
family = "gaussian",
REML = FALSE

)

validate_fn Validate a custom model function on a test set

102 validate_fn

Description

[Experimental]
Fit your model function on a training set and validate it by predicting a test/validation set. Validate
different hyperparameter combinations and formulas at once. Preprocess the train/test split. Returns
results and fitted models in a tibble for easy reporting and further analysis.

Compared to validate(), this function allows you supply a custom model function, a predict
function, a preprocess function and the hyperparameter values to validate.

Supports regression and classification (binary and multiclass). See `type`.

Note that some metrics may not be computable for some types of model objects.

Usage

validate_fn(
train_data,
formulas,
type,
model_fn,
predict_fn,
test_data = NULL,
preprocess_fn = NULL,
preprocess_once = FALSE,
hyperparameters = NULL,
partitions_col = ".partitions",
cutoff = 0.5,
positive = 2,
metrics = list(),
rm_nc = FALSE,
parallel = FALSE,
verbose = TRUE

)

Arguments

train_data data.frame.
Can contain a grouping factor for identifying partitions - as made with groupdata2::partition().
See `partitions_col`.

formulas Model formulas as strings. (Character)
Will be converted to formula objects before being passed to `model_fn`.
E.g. c("y~x", "y~z").
Can contain random effects.
E.g. c("y~x+(1|r)", "y~z+(1|r)").

type Type of evaluation to perform:
"gaussian" for regression (like linear regression).
"binomial" for binary classification.
"multinomial" for multiclass classification.

validate_fn 103

model_fn Model function that returns a fitted model object. Will usually wrap an existing
model function like e1071::svm or nnet::multinom.
Must have the following function arguments:
function(train_data, formula,

hyperparameters)

predict_fn Function for predicting the targets in the test folds/sets using the fitted model
object. Will usually wrap stats::predict(), but doesn’t have to.
Must have the following function arguments:
function(test_data, model, formula,

hyperparameters, train_data)

Must return predictions in the following formats, depending on `type`:

Binomial: vector or one-column matrix / data.frame with probabilities
(0-1) of the second class, alphabetically. E.g.:
c(0.3, 0.5, 0.1, 0.5)
N.B. When unsure whether a model type produces probabilities based off the
alphabetic order of your classes, using 0 and 1 as classes in the dependent
variable instead of the class names should increase the chance of getting prob-
abilities of the right class.

Gaussian: vector or one-column matrix / data.frame with the predicted
value. E.g.:
c(3.7, 0.9, 1.2, 7.3)

Multinomial: data.frame with one column per class containing probabili-
ties of the class. Column names should be identical to how the class names are
written in the target column. E.g.:

class_1 class_2 class_3
0.269 0.528 0.203
0.368 0.322 0.310
0.375 0.371 0.254

...

test_data data.frame. If specifying `partitions_col`, this can be NULL.

preprocess_fn Function for preprocessing the training and test sets.
Can, for instance, be used to standardize both the training and test sets with the
scaling and centering parameters from the training set.
Must have the following function arguments:
function(train_data, test_data,

formula, hyperparameters)

Must return a list with the preprocessed `train_data` and `test_data`. It
may also contain a tibble with the parameters used in preprocessing:
list("train" = train_data,

"test" = test_data,
"parameters" = preprocess_parameters)

Additional elements in the returned list will be ignored.
The optional parameters tibble will be included in the output. It could have
the following format:

104 validate_fn

Measure var_1 var_2
Mean 37.921 88.231

SD 12.4 5.986
...

N.B. When `preprocess_once` is FALSE, the current formula and hyperpa-
rameters will be provided. Otherwise, these arguments will be NULL.

preprocess_once

Whether to apply the preprocessing once (ignoring the formula and hyperpa-
rameters arguments in `preprocess_fn`) or for every model separately. (Log-
ical)
When preprocessing does not depend on the current formula or hyperparame-
ters, we can do the preprocessing of each train/test split once, to save time. This
may require holding a lot more data in memory though, why it is not the
default setting.

hyperparameters

Either a named list with hyperparameter values to combine in a grid or a
data.frame with one row per hyperparameter combination.

Named list for grid search: Add ".n" to sample the combinations. Can be
the number of combinations to use, or a percentage between 0 and 1.
E.g.
list(".n" = 10, # sample 10 combinations

"lrn_rate" = c(0.1, 0.01, 0.001),
"h_layers" = c(10, 100, 1000),
"drop_out" = runif(5, 0.3, 0.7))

data.frame with specific hyperparameter combinations: One row per
combination to test.
E.g.

lrn_rate h_layers drop_out
0.1 10 0.65
0.1 1000 0.65

0.01 1000 0.63
...

partitions_col Name of grouping factor for identifying partitions. (Character)
Rows with the value 1 in `partitions_col` are used as training set and rows
with the value 2 are used as test set.
N.B. Only used if ‘test_data‘ is NULL.

cutoff Threshold for predicted classes. (Numeric)
N.B. Binomial models only

positive Level from dependent variable to predict. Either as character (preferable) or
level index (1 or 2 - alphabetically).
E.g. if we have the levels "cat" and "dog" and we want "dog" to be the positive
class, we can either provide "dog" or 2, as alphabetically, "dog" comes after
"cat".

validate_fn 105

Note: For reproducibility, it’s preferable to specify the name directly, as dif-
ferent locales may sort the levels differently.
Used when calculating confusion matrix metrics and creating ROC curves.
The Process column in the output can be used to verify this setting.
N.B. Only affects evaluation metrics, not the model training or returned predic-
tions.
N.B. Binomial models only.

metrics list for enabling/disabling metrics.
E.g. list("RMSE" = FALSE) would remove RMSE from the regression results,
and list("Accuracy" = TRUE) would add the regular Accuracy metric to the
classification results. Default values (TRUE/FALSE) will be used for the remain-
ing available metrics.
You can enable/disable all metrics at once by including "all" = TRUE/FALSE in
the list. This is done prior to enabling/disabling individual metrics, why f.i.
list("all" = FALSE, "RMSE" = TRUE) would return only the RMSE metric.
The list can be created with gaussian_metrics(), binomial_metrics(), or
multinomial_metrics().
Also accepts the string "all".

rm_nc Remove non-converged models from output. (Logical)

parallel Whether to cross-validate the list of models in parallel. (Logical)
Remember to register a parallel backend first. E.g. with doParallel::registerDoParallel.

verbose Whether to message process information like the number of model instances to
fit. (Logical)

Details

Packages used:

Results:

Shared:
AIC : stats::AIC
AICc : MuMIn::AICc
BIC : stats::BIC

Gaussian:
r2m : MuMIn::r.squaredGLMM
r2c : MuMIn::r.squaredGLMM

Binomial and Multinomial:
ROC and related metrics:
Binomial: pROC::roc
Multinomial: pROC::multiclass.roc

Value

tibble with the results and model objects.

106 validate_fn

Shared across families:
A nested tibble with coefficients of the models. The coefficients are extracted from the model
object with parameters::model_parameters() or coef() (with some restrictions on the out-
put). If these attempts fail, a default coefficients tibble filled with NAs is returned.
Nested tibble with the used preprocessing parameters, if a passed `preprocess_fn` returns
the parameters in a tibble.
Count of convergence warnings, using a limited set of keywords (e.g. "convergence"). If a con-
vergence warning does not contain one of these keywords, it will be counted with other warnings.
Consider discarding models that did not converge on all iterations. Note: you might still see re-
sults, but these should be taken with a grain of salt!
Nested tibble with the warnings and messages caught for each model.
Specified family.
Nested model objects.
Name of dependent variable.
Names of fixed effects.
Names of random effects, if any.

—————————————————————-

Gaussian Results:
—————————————————————-
RMSE, MAE, NRMSE(IQR), RRSE, RAE, and RMSLE.
See the additional metrics (disabled by default) at ?gaussian_metrics.
A nested tibble with the predictions and targets.

—————————————————————-

Binomial Results:
—————————————————————-
Based on predictions of the test set, a confusion matrix and a ROC curve are created to get the
following:
ROC:
AUC, Lower CI, and Upper CI

Confusion Matrix:
Balanced Accuracy, F1, Sensitivity, Specificity, Positive Predictive Value, Negative
Predictive Value, Kappa, Detection Rate, Detection Prevalence, Prevalence, and MCC
(Matthews correlation coefficient).
See the additional metrics (disabled by default) at ?binomial_metrics.
Also includes:
A nested tibble with predictions, predicted classes (depends on cutoff), and the targets. Note,
that the predictions are not necessarily of the specified positive class, but of the model’s positive
class (second level of dependent variable, alphabetically).
The pROC::roc ROC curve object(s).
A nested tibble with the confusion matrix/matrices. The Pos_ columns tells you whether a row
is a True Positive (TP), True Negative (TN), False Positive (FP), or False Negative (FN), depending
on which level is the "positive" class. I.e. the level you wish to predict.
The name of the Positive Class.

validate_fn 107

—————————————————————-

Multinomial Results:
—————————————————————-
For each class, a one-vs-all binomial evaluation is performed. This creates a Class Level Results
tibble containing the same metrics as the binomial results described above (excluding MCC, AUC,
Lower CI and Upper CI), along with a count of the class in the target column (Support). These
metrics are used to calculate the macro-averaged metrics. The nested class level results tibble
is also included in the output tibble, and could be reported along with the macro and overall
metrics.
The output tibble contains the macro and overall metrics. The metrics that share their name with
the metrics in the nested class level results tibble are averages of those metrics (note: does not
remove NAs before averaging). In addition to these, it also includes the Overall Accuracy and
the multiclass MCC.
Note: Balanced Accuracy is the macro-averaged metric, not the macro sensitivity as sometimes
used!
Other available metrics (disabled by default, see metrics): Accuracy, multiclass AUC, Weighted
Balanced Accuracy, Weighted Accuracy, Weighted F1, Weighted Sensitivity, Weighted Sensitivity,
Weighted Specificity, Weighted Pos Pred Value, Weighted Neg Pred Value, Weighted Kappa,
Weighted Detection Rate, Weighted Detection Prevalence, and Weighted Prevalence.
Note that the "Weighted" average metrics are weighted by the Support.
Also includes:
A nested tibble with the predictions, predicted classes, and targets.
A list of ROC curve objects when AUC is enabled.
A nested tibble with the multiclass Confusion Matrix.
Class Level Results
Besides the binomial evaluation metrics and the Support, the nested class level results tibble
also contains a nested tibble with the Confusion Matrix from the one-vs-all evaluation. The
Pos_ columns tells you whether a row is a True Positive (TP), True Negative (TN), False Positive
(FP), or False Negative (FN), depending on which level is the "positive" class. In our case, 1 is the
current class and 0 represents all the other classes together.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other validation functions: cross_validate(), cross_validate_fn(), validate()

Examples

Attach packages
library(cvms)
library(groupdata2) # fold()
library(dplyr) # %>% arrange() mutate()

Note: More examples of custom functions can be found at:

108 validate_fn

model_fn: model_functions()
predict_fn: predict_functions()
preprocess_fn: preprocess_functions()

Data is part of cvms
data <- participant.scores

Set seed for reproducibility
set.seed(7)

Fold data
data <- partition(

data,
p = 0.8,
cat_col = "diagnosis",
id_col = "participant",
list_out = FALSE

) %>%
mutate(diagnosis = as.factor(diagnosis)) %>%
arrange(.partitions)

Formulas to validate

formula_gaussian <- "score ~ diagnosis"
formula_binomial <- "diagnosis ~ score"

#
Gaussian
#

Create model function that returns a fitted model object
lm_model_fn <- function(train_data, formula, hyperparameters) {

lm(formula = formula, data = train_data)
}

Create predict function that returns the predictions
lm_predict_fn <- function(test_data, model, formula,

hyperparameters, train_data) {
stats::predict(
object = model,
newdata = test_data,
type = "response",
allow.new.levels = TRUE

)
}

Validate the model function
v <- validate_fn(

data,
formulas = formula_gaussian,
type = "gaussian",
model_fn = lm_model_fn,
predict_fn = lm_predict_fn,

validate_fn 109

partitions_col = ".partitions"
)

v

Extract model object
v$Model[[1]]

#
Binomial
#

Create model function that returns a fitted model object
glm_model_fn <- function(train_data, formula, hyperparameters) {

glm(formula = formula, data = train_data, family = "binomial")
}

Create predict function that returns the predictions
glm_predict_fn <- function(test_data, model, formula,

hyperparameters, train_data) {
stats::predict(
object = model,
newdata = test_data,
type = "response",
allow.new.levels = TRUE

)
}

Validate the model function
validate_fn(

data,
formulas = formula_binomial,
type = "binomial",
model_fn = glm_model_fn,
predict_fn = glm_predict_fn,
partitions_col = ".partitions"

)

#
Support Vector Machine (svm)
with known hyperparameters
#

Only run if the `e1071` package is installed
if (requireNamespace("e1071", quietly = TRUE)){

Create model function that returns a fitted model object
We use the hyperparameters arg to pass in the kernel and cost values
These will usually have been found with cross_validate_fn()
svm_model_fn <- function(train_data, formula, hyperparameters) {

Expected hyperparameters:
- kernel

110 validate_fn

- cost
if (!"kernel" %in% names(hyperparameters))

stop("'hyperparameters' must include 'kernel'")
if (!"cost" %in% names(hyperparameters))

stop("'hyperparameters' must include 'cost'")

e1071::svm(
formula = formula,
data = train_data,
kernel = hyperparameters[["kernel"]],
cost = hyperparameters[["cost"]],
scale = FALSE,
type = "C-classification",
probability = TRUE

)
}

Create predict function that returns the predictions
svm_predict_fn <- function(test_data, model, formula,

hyperparameters, train_data) {
predictions <- stats::predict(
object = model,
newdata = test_data,
allow.new.levels = TRUE,
probability = TRUE

)

Extract probabilities
probabilities <- dplyr::as_tibble(

attr(predictions, "probabilities")
)

Return second column
probabilities[[2]]

}

Specify hyperparameters to use
We found these in the examples in ?cross_validate_fn()
svm_hparams <- list(

"kernel" = "linear",
"cost" = 10

)

Validate the model function
validate_fn(

data,
formulas = formula_binomial,
type = "binomial",
model_fn = svm_model_fn,
predict_fn = svm_predict_fn,
hyperparameters = svm_hparams,
partitions_col = ".partitions"

)

wines 111

} # closes `e1071` package check

wines Wine varieties

Description

A list of wine varieties in an approximately Zipfian distribution, ordered by descending frequencies.

Format

A data.frame with 368 rows and 1 variable:

Variety Wine variety, 10 levels

Details

Based on the wine-reviews (v4) kaggle dataset by Zack Thoutt: https://www.kaggle.com/zynicide/wine-
reviews

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

Index

∗ baseline functions
baseline, 3
baseline_binomial, 11
baseline_gaussian, 14
baseline_multinomial, 17

∗ data
compatible.formula.terms, 25
musicians, 71
participant.scores, 72
precomputed.formulas, 82
predicted.musicians, 83
wines, 111

∗ evaluation functions
binomial_metrics, 21
confusion_matrix, 26
evaluate, 47
evaluate_residuals, 55
gaussian_metrics, 58
multinomial_metrics, 68

∗ example functions
model_functions, 60
predict_functions, 84
preprocess_functions, 85
update_hyperparameters, 95

∗ plotting functions
dynamic_font_color_settings, 46
font, 57
plot_confusion_matrix, 73
plot_metric_density, 80
sum_tile_settings, 92

∗ validation functions
cross_validate, 30
cross_validate_fn, 35
validate, 96
validate_fn, 101

.Machine$double.eps, 62
?binomial_metrics, 33, 40, 100, 106
?gaussian_metrics, 6, 16, 33, 40, 50, 99, 106

as.character.process_info_binomial

(process_info_binomial), 87
as.character.process_info_gaussian

(process_info_binomial), 87
as.character.process_info_multinomial

(process_info_binomial), 87
as.formula(), 91

baseline, 3, 13, 16, 20
baseline(), 3, 81
baseline_binomial, 9, 11, 16, 20
baseline_binomial(), 4
baseline_gaussian, 9, 13, 14, 20
baseline_gaussian(), 4
baseline_multinomial, 9, 13, 16, 17
baseline_multinomial(), 4
binomial_metrics, 21, 29, 52, 56, 60, 71
binomial_metrics(), 5, 12, 19, 27, 31, 39,

50, 98, 105

coef(), 40, 106
combine_predictors, 24, 26, 83
compatible.formula.terms, 25
confusion_matrix, 23, 26, 52, 56, 60, 71
confusion_matrix(), 74
cross_validate, 30, 42, 100, 107
cross_validate(), 3, 36, 88–90
cross_validate_fn, 34, 35, 100, 107
cross_validate_fn(), 3, 30, 31, 60, 84, 86,

95, 97
cvms (cvms-package), 3
cvms-package, 3

dplyr::group_by(), 26, 55, 62
dynamic_font_color_settings, 46, 58, 77,

81, 94
dynamic_font_color_settings(), 76

e1071::naiveBayes(), 61, 85
e1071::svm, 37, 103
e1071::svm(), 61, 85

112

INDEX 113

evaluate, 23, 29, 47, 56, 60, 71
evaluate(), 3, 26, 55, 73, 74, 89, 90
evaluate_residuals, 23, 29, 52, 55, 60, 71

font, 47, 57, 77, 81, 94
font(), 76
formula, 36, 102

gaussian_metrics, 23, 29, 52, 56, 58, 71
gaussian_metrics(), 5, 15, 31, 39, 50, 55,

98, 105
generate_formulas (combine_predictors),

24
ggimage::geom_icon(), 76
ggplot2, 73, 80
ggplot2::geom_text, 57, 93
ggplot2::geom_tile, 77, 94
ggplot2::scale_fill_distiller, 75, 77,

93
ggplot2::scale_fill_gradient, 75, 93
glm(), 31, 97
group_by, 48, 50
groupdata2::fold(), 31, 36
groupdata2::partition(), 97, 102

hardest (most_challenging), 61

lm(), 31, 97
lme4::glmer, 32, 99
lme4::glmer(), 31, 61, 85, 97
lme4::glmerControl, 31, 97
lme4::isSingular, 33, 99
lme4::lmer, 6, 15, 32, 99
lme4::lmer(), 31, 61, 85, 97
lme4::lmerControl, 31, 97
locales, 5, 12, 27, 31, 38, 50, 98, 105

model_functions, 60, 85, 86, 95
most_challenging, 61
multiclass_probability_tibble, 66
multiclass_probability_tibble(), 5, 18
multinomial_metrics, 23, 29, 52, 56, 60, 68
multinomial_metrics(), 5, 18, 27, 39, 50,

105
MuMIn::AICc, 6, 15, 32, 39, 99, 105
MuMIn::r.squaredGLMM, 6, 15, 32, 39, 99, 105
musicians, 71, 83

nnet::multinom, 37, 103
nnet::multinom(), 85

nnet::nnet(), 85

parameters::model_parameters(), 40, 106
participant.scores, 72
plot_confusion_matrix, 47, 58, 73, 81, 94
plot_confusion_matrix(), 92
plot_metric_density, 47, 58, 77, 80, 94
plot_probabilities, 47, 58, 77, 81, 94
plot_probabilities_ecdf, 47, 58, 77, 81,

94
precomputed.formulas, 82
predict_functions, 61, 84, 86, 95
predicted.musicians, 83
preprocess_functions, 61, 85, 85, 95
preprocess_functions(), 90
print.process_info_binomial

(process_info_binomial), 87
print.process_info_gaussian

(process_info_binomial), 87
print.process_info_multinomial

(process_info_binomial), 87
pROC::multiclass.roc, 6, 18, 39, 50, 105
pROC::roc, 6, 12, 32, 34, 39, 41, 50, 99, 100,

105, 106
process_info_binomial, 87
process_info_gaussian

(process_info_binomial), 87
process_info_multinomial

(process_info_binomial), 87

randomForest::randomForest(), 85
recipes, 86
recipes::recipe(), 90
reconstruct_formulas, 88

select_definitions, 89
select_metrics, 90
simplify_formula, 90
stats::AIC, 6, 15, 32, 39, 99, 105
stats::BIC, 6, 15, 32, 39, 99, 105
stats::glm, 32, 99
stats::glm(), 61, 85
stats::lm, 6, 15, 32, 99
stats::lm(), 61, 85
stats::predict(), 37, 103
sum_tile_settings, 47, 58, 77, 81, 92
sum_tile_settings(), 77
summarize_metrics, 91

tidyr::unnest, 8, 19

114 INDEX

update_hyperparameters, 61, 85, 86, 95
update_hyperparameters(), 60

validate, 34, 42, 96, 107
validate(), 3, 89, 102
validate_fn, 34, 42, 100, 101
validate_fn(), 3, 86, 95, 96

wines, 111

	cvms-package
	baseline
	baseline_binomial
	baseline_gaussian
	baseline_multinomial
	binomial_metrics
	combine_predictors
	compatible.formula.terms
	confusion_matrix
	cross_validate
	cross_validate_fn
	dynamic_font_color_settings
	evaluate
	evaluate_residuals
	font
	gaussian_metrics
	model_functions
	most_challenging
	multiclass_probability_tibble
	multinomial_metrics
	musicians
	participant.scores
	plot_confusion_matrix
	plot_metric_density
	precomputed.formulas
	predicted.musicians
	predict_functions
	preprocess_functions
	process_info_binomial
	reconstruct_formulas
	select_definitions
	select_metrics
	simplify_formula
	summarize_metrics
	sum_tile_settings
	update_hyperparameters
	validate
	validate_fn
	wines
	Index

