Package ‘curl’

June 22, 2025
Type Package
Title A Modern and Flexible Web Client for R
Version 6.4.0

Description Bindings to 'libcurl' <https://curl.se/libcurl/> for performing fully
configurable HTTP/FTP requests where responses can be processed in memory, on
disk, or streaming via the callback or connection interfaces. Some knowledge
of 'libcurl' is recommended; for a more-user-friendly web client see the
'httr2" package which builds on this package with http specific tools and logic.

License MIT + file LICENSE

SystemRequirements libcurl (>= 7.73): libcurl-devel (rpm) or
libcurl4-openssl-dev (deb)

URL https://jeroen.r-universe.dev/curl

BugReports https://github.com/jeroen/curl/issues

Suggests spelling, testthat (>= 1.0.0), knitr, jsonlite, later,
rmarkdown, httpuv (>= 1.4.4), webutils

VignetteBuilder knitr
Depends R (>=3.0.0)
RoxygenNote 7.3.2.9000
Encoding UTF-8
Language en-US
NeedsCompilation yes

Author Jeroen Ooms [aut, cre] (ORCID: <https://orcid.org/0000-0002-4035-0289>),
Hadley Wickham [ctb],
Posit Software, PBC [cph]

Maintainer Jeroen Ooms <jeroenooms@gmail.com>
Repository CRAN
Date/Publication 2025-06-22 10:40:02 UTC

https://curl.se/libcurl/
https://jeroen.r-universe.dev/curl
https://github.com/jeroen/curl/issues
https://orcid.org/0000-0002-4035-0289

2 curl

Contents
curl . oL e e e 2
curl download e 4
curl_echo e 5
CUrl_eSCape e e e 6
curl_fetch_memory 6
curl_options e e e 8
curl_parse_url 9
curl_upload 11
file_Writer e e 12
handle e e e e 13
handle_cooKies e e 15
I8 PIOXY . o v o o o e e e e e 15
multi e e e 16
multipart L e e 18
multi_download e e 19
NSlOOKUP o e e e e e 21
parse_date L e e e e e 22
parse_headers e 23
send_mail L e, 23

Index 26

curl Curl connection interface
Description

Drop-in replacement for base url() that supports https, ftps, gzip, deflate, etc. Default behavior is
identical to url(), but request can be fully configured by passing a custom handle().

Usage

curl(url = "https://hb.cran.dev/get"”, open = "", handle = new_handle())

Arguments
url character string. See examples.
open character string. How to open the connection if it should be opened initially.
Currently only "r" and "rb" are supported.
handle a curl handle object
Details

As of version 2.3 curl connections support open(con, blocking = FALSE). In this case readBin
and readLines will return immediately with data that is available without waiting. For such non-
blocking connections the caller needs to call isIncomplete() to check if the download has com-
pleted yet.

curl

Examples

Not run:
con <- curl("https://hb.cran.dev/get")
readLines(con)

Auto-opened connections can be recycled
open(con, "rb")

bin <- readBin(con, raw(), 999)
close(con)

rawToChar (bin)

HTTP error
curl("https://hb.cran.dev/status/418", "r")

Follow redirects
readLines(curl("https://hb.cran.dev/redirect/3"))

Error after redirect
curl("https://hb.cran.dev/redirect-to?url=https://hb.cran.dev/status/418", "r")

Auto decompress Accept-Encoding: gzip / deflate (rfc2616 #14.3)
readLines(curl("https://hb.cran.dev/gzip"))
readLines(curl("https://hb.cran.dev/deflate"))

Binary support
buf <- readBin(curl("https://hb.cran.dev/bytes/98765", "rb"), raw(), 1e5)
length(buf)

Read file from disk
test <- paste@("file://", system.file("DESCRIPTION"))
readLines(curl(test))

Other protocols
read.csv(curl("ftp://cran.r-project.org/pub/R/CRAN_mirrors.csv"))
readLines(curl("ftps://test.rebex.net:990/readme.txt"))
readLines(curl("gopher://quux.org/1"))

Streaming data

con <- curl("http://jeroen.github.io/data/diamonds.json", "r")
while(length(x <- readLines(con, n = 5))){

print(x)
3

Stream large dataset over https with gzip

library(jsonlite)

con <- gzcon(curl("https://jeroen.github.io/data/nycflights13.json.gz"))
nycflights <- stream_in(con)

End(Not run)

4 curl_download

curl_download Download file to disk

Description

Libcurl implementation of C_download (the "internal" download method) with added support for
https, ftps, gzip, etc. Default behavior is identical to download.file(), but request can be fully
configured by passing a custom handle().

Usage

curl_download(url, destfile, quiet = TRUE, mode = "wb"”, handle = new_handle())

Arguments
url A character string naming the URL of a resource to be downloaded.
destfile A character string with the name where the downloaded file is saved. Tilde-
expansion is performed.
quiet If TRUE, suppress status messages (if any), and the progress bar.
mode A character string specifying the mode with which to write the file. Useful
values are "w"”, "wb" (binary), "a" (append) and "ab".
handle a curl handle object
Details

The main difference between curl_download and curl_fetch_disk is that curl_download checks
the http status code before starting the download, and raises an error when status is non-successful.
The behavior of curl_fetch_disk on the other hand is to proceed as normal and write the error
page to disk in case of a non success response.

The curl_download function does support resuming and removes the temporary file if the down-
load did not complete successfully. For a more advanced download interface which supports con-
current requests and resuming large files, have a look at the multi_download function.

Value

Path of downloaded file (invisibly).

See Also

Advanced download interface: multi_download

curl _echo 5

Examples

Download large file

Not run:

url <- "http://www2.census.gov/acs2011_5yr/pums/csv_pus.zip"
tmp <- tempfile()

curl_download(url, tmp)

I

End(Not run)

curl_echo Echo Service

Description

This function is only for testing purposes. It starts a local httpuv server to echo the request body
and content type in the response.

Usage

curl_echo(handle, port = find_port(), progress = interactive(), file = NULL)

find_port(range = NULL)

Arguments
handle a curl handle object
port the port number on which to run httpuv server
progress show progress meter during http transfer
file path or connection to write body. Default returns body as raw vector.
range optional integer vector of ports to consider
Examples

if(require("httpuv')){
h <- new_handle(url = "https://hb.cran.dev/post"')
handle_setform(h, foo = "blabla”, bar = charToRaw("test"),
myfile = form_file(system.file("DESCRIPTION"), "text/description”))

Echo the POST request data
formdata <- curl_echo(h)

Show the multipart body
cat(rawToChar (formdata$body))

Parse multipart
webutils: :parse_http(formdata$body, formdata$content_type)
3

6 curl_fetch_memory

curl_escape URL encoding
Description
Escape all special characters (i.e. everything except for a-z, A-Z, 0-9, ’-’, ., ’_’ or ’~’) for use in
URLs.
Usage

curl_escape(url)

curl_unescape(url)

Arguments

url A character vector (typically containing urls or parameters) to be encoded/decoded

Examples

Escape strings
out <- curl_escape("foo = bar + 5")
curl_unescape(out)

All non-ascii characters are encoded
mu <- "\u@ob5”

curl_escape(mu)
curl_unescape(curl_escape(mu))

curl_fetch_memory Fetch the contents of a URL

Description

Low-level bindings to write data from a URL into memory, disk or a callback function.

Usage
curl_fetch_memory(url, handle = new_handle())
curl_fetch_disk(url, path, handle = new_handle())
curl_fetch_stream(url, fun, handle = new_handle())

curl_fetch_multi(
url,

curl_fetch_memory 7

done = NULL,
fail = NULL,
pool = NULL,
data = NULL,
handle = new_handle()

)

curl_fetch_echo(url, handle = new_handle())

handle_data(handle)

Arguments
url A character string naming the URL of a resource to be downloaded.
handle A curl handle object.
path Path to save results
fun Callback function. Should have one argument, which will be a raw vector.
done callback function for completed request. Single argument with response data in
same structure as curl_fetch_memory.
fail callback function called on failed request. Argument contains error message.
pool a multi handle created by new_pool. Default uses a global pool.
data (advanced) callback function, file path, or connection object for writing incom-
ing data. This callback should only be used for streaming applications, where
small pieces of incoming data get written before the request has completed. The
signature for the callback function is write(data, final = FALSE). If set to
NULL the entire response gets buffered internally and returned by in the done
callback (which is usually what you want).
Details

The curl_fetch_x() functions automatically raise an error upon protocol problems (network, disk,
TLS, etc.) but do not implement application logic. For example, you need to check the status code
of HTTP requests in the response by yourself, and deal with it accordingly.

Both curl_fetch_memory() and curl_fetch_disk have a blocking and a non-blocking C im-
plementation. The latter is slightly slower but allows for interrupting the download prematurely
(using e.g. CTRL+C or ESC). Interrupting is enabled when R runs in interactive mode or when
getOption("curl_interrupt”) == TRUE.

The curl_fetch_multi() function is the asynchronous equivalent of curl_fetch_memory(). It
wraps multi_add() to schedule requests which are executed concurrently when calling multi_run().
For each successful request, the done callback is triggered with response data. For failed requests
(when curl_fetch_memory() would raise an error), the fail function is triggered with the error
message.

After a request has been performed, metadata from the request can be read from the handle ob-
ject using handle_data() (this same information also gets returned by curl_fetch_memory()
directly). It includes things like:

8 curl_options

* Final URL (after redirects)

o HTTP status code

» Content-type

* Response headers

* Timings

» Http-version This data remains available in the handle until it is either re-used for a new
request, or handle_reset() is called.

Examples

Load in memory
res <- curl_fetch_memory("https://hb.cran.dev/cookies/set?foo=123&bar=ftw")
res$content

Save to disk

res <- curl_fetch_disk("https://hb.cran.dev/stream/10", tempfile())
res$content

readLines(res$content)

Stream with callback
drip_url <- "https://hb.cran.dev/drip?duration=3&numbytes=15&code=200"
res <- curl_fetch_stream(drip_url, function(x){

cat(rawToChar(x))

b

Async API
data <- list()
success <- function(res){
cat("Request done! Status:”, res$status, "\n")
data <<- c(data, list(res))
3
failure <- function(msg){
cat("0Oh noes! Request failed!"”, msg, "\n")
3
curl_fetch_multi("https://hb.cran.dev/get", success, failure)
curl_fetch_multi("https://hb.cran.dev/status/418", success, failure)
curl_fetch_multi("https://urldoesnotexist.xyz", success, failure)
multi_run()
str(data)

curl_options List curl version and options.

Description

curl_version() shows the versions of libcurl, libssl and zlib and supported protocols. curl_options()
lists all options available in the current version of libcurl. The dataset curl_symbols lists all sym-
bols (including options) provides more information about the symbols, including when support was
added/removed from libcurl.

curl_parse_url 9

Usage

curl_options(filter

n ”)
curl_symbols(filter = ")

curl_version()

Arguments

filter string: only return options with string in name

Examples

Available options
curl_options()

List proxy options
curl_options("proxy")

Symbol table
curl_symbols("proxy")
Curl/ssl version info
curl_version()

curl_parse_url Normalizing URL parser

Description

Interfaces the libcurl URL parser. URLs are automatically normalized where possible, such as in
the case of relative paths or url-encoded queries (see examples). When parsing hyperlinks from
a HTML document, it is possible to set baseurl to the location of the document itself such that
relative links can be resolved.

Usage
curl_parse_url(url, baseurl = NULL, decode = TRUE, params = TRUE)

curl_modify_url(

url = NULL,
scheme = NULL,
host = NULL,
port = NULL,
path = NULL,
query = NULL,
fragment = NULL,
user = NULL,

password = NULL,

https://curl.se/libcurl/c/libcurl-url.html

10 curl_parse_url

params = NULL

)
Arguments
url either URL string or list returned by curl_parse_url. Use this to modify a URL
using the other parameters.
baseurl use this as the parent if url may be a relative path
decode automatically url-decode output into the actual values. If set to FALSE, values
for query, path, fragment, user and password are returned in url-encoded
format.
params named character vector with http GET parameters. This will automatically be
converted to application/x-www-form-urlencoded and override query,
scheme string with e.g. https. Required if no url parameter was given.
host string with hostname. Required if no url parameter was given.
port string or number with port, e.g. "443".
path piece of the url starting with / up till ? or #
query piece of url starting with ? up till #. Only used if no params is given.
fragment part of url starting with #.
user string with username
password string with password
Details

A valid URL contains at least a scheme and a host, other pieces are optional. If these are missing,
the parser raises an error. Otherwise it returns a list with the following elements:

* url: the normalized input URL

* scheme: the protocol part before the : // (required)

* host: name of host without port (required)

* port: decimal between 0 and 65535

* path: normalized path up till the ? of the url

* query: search query: part between the ? and # of the url. Use params below to get individual
parameters from the query.

* fragment: the hash part after the # of the url

* user: authentication username

* password: authentication password

* params: named vector with parameters from query if set
Each element above is either a string or NULL, except for params which is always a character vector
with the length equal to the number of parameters.

Note that the params field is only usable if the query is in the usual application/x-www-form-urlencoded
format which is technically not part of the RFC. Some services may use e.g. a json blob as the

curl_upload 11

query, in which case the parsed params field here can be ignored. There is no way for the parser to
automatically infer or validate the query format, this is up to the caller.

For more details on the URL format see rfc3986 or the steps explained in the whatwg basic url
parser.

On platforms that do not have a recent enough curl version (basically only RHEL-8) the Ada URL
library is used as fallback. Results should be identical, though curl has nicer error messages. This
is a temporary solution, we plan to remove the fallback when old systems are no longer supported.

You can use curl_modify_url() both to modify an existing URL, or to create new URL from
scratch. Arguments get automatically URL-encoded where needed, unless wrapped in I(). If
params is given, this gets converted into a application/x-www-form-urlencoded string which
overrides query. When modifying a URL, use an empty string "" to unset a piece of the URL.

Examples

url <- "https://jerry:secret@google.com:888/foo/bar?test=123#bla"
curl_parse_url(url)

Resolve relative links from a baseurl
curl_parse_url("/somelink"”, baseurl = url)

Paths get normalized
curl_parse_url("https://foobar.com/foo/bar/../baz/../yolo")$url

Also normalizes URL-encoding (these URLs are equivalent):
urll <- "https://ja.wikipedia.org/wiki/\u5bff\u53f8"

url2 <- "https://ja.wikipedia.org/wiki/%e5%af%bf%e5%8f%b8"
curl_parse_url(urll)s$path

curl_parse_url(url2)$path

curl_parse_url(urll, decode = FALSE)$path
curl_parse_url(urll, decode = FALSE)$path

curl_upload Upload a File

Description

Upload afile to an http://, ftp://, or sftp:// (ssh) server. Uploading to HTTP means perform-
ing an HTTP PUT on that URL. Be aware that sftp is only available for libcurl clients built with
libssh2.

Usage

curl_upload(file, url, verbose = TRUE, reuse = TRUE, ...)

https://datatracker.ietf.org/doc/html/rfc3986
https://url.spec.whatwg.org/#concept-basic-url-parser
https://url.spec.whatwg.org/#concept-basic-url-parser
https://github.com/ada-url/ada

12

Arguments
file
url
verbose

reuse

Examples

file_writer

connection object or path to an existing file on disk
where to upload, should start with e.g. ftp://

emit some progress output

try to keep alive and recycle connections when possible

other arguments passed to handle_setopt(), for example a username and
password.

Not run: # Upload package to winbuilder:
curl_upload('mypkg_1.3.tar.gz', 'ftp://win-builder.r-project.org/R-devel/")

End(Not run)

file_writer

Lazy File Writer

Description

Generates a closure that writes binary (raw) data to a file.

Usage

file_writer(path, append = FALSE)

Arguments

path
append

Details

file name or path on disk

open file in append mode

The writer function automatically opens the file on the first write and closes when it goes out of
scope, or explicitly by setting close = TRUE. This can be used for the data callback inmulti_add()
or curl_fetch_multi() such that we only keep open file handles for active downloads. This
prevents running out of file descriptors when performing thousands of concurrent requests.

Value

Function with signature writer(data = raw(), close = FALSE)

handle 13

Examples

Doesn't open yet
tmp <- tempfile()
writer <- file_writer(tmp)

Now it opens
writer(charToRaw("Hello!\n"))
writer(charToRaw("How are you?\n"))

Close it!
writer(charToRaw("All done!\n"), close = TRUE)

Check it worked
readLines(tmp)

handle Create and configure a curl handle

Description

Handles are the work horses of libcurl. A handle is used to configure a request with custom options,
headers and payload. Once the handle has been set up, it can be passed to any of the download
functions such as curl() ,curl_download() or curl_fetch_memory(). The handle will maintain
state in between requests, including keep-alive connections, cookies and settings.

Usage
new_handle(...)
handle_setopt(handle, ..., .list = list())
handle_setheaders(handle, ..., .list = list())
handle_getheaders(handle)
handle_setform(handle, ..., .list = 1list())

handle_reset(handle)

Arguments
named options / headers to be set in the handle. To send a file, see form_file().
To list all allowed options, see curl_options()
handle Handle to modify
.list A named list of options. This is useful if you’ve created a list of options else-

where, avoiding the use of do.call().

14 handle

Details

Use new_handle() to create a new clean curl handle that can be configured with custom op-
tions and headers. Note that handle_setopt appends or overrides options in the handle, whereas
handle_setheaders replaces the entire set of headers with the new ones. The handle_reset func-
tion resets only options/headers/forms in the handle. It does not affect active connections, cookies
or response data from previous requests. The safest way to perform multiple independent requests
is by using a separate handle for each request. There is very little performance overhead in creating
handles.

The handle_setform function is used to perform a multipart/form-data HTTP POST request
(a.k.a. posting a form). The form fields can be specified as strings, raw vectors (for binary data), or
form_file and form_data for upload elements. See the examples.

Value

A handle object (external pointer to the underlying curl handle). All functions modify the handle in
place but also return the handle so you can create a pipeline of operations.

See Also

Other handles: handle_cookies()

Examples

h <- new_handle()

handle_setopt(h, customrequest = "PUT")
handle_setform(h, a = "1", b = "2")

r <- curl_fetch_memory("https://hb.cran.dev/put”, h)
cat(rawToChar(r$content))

Or use the list form

h <- new_handle()

handle_setopt(h, .list = list(customrequest = "PUT"))
handle_setform(h, .list = list(a = "1", b = "2"))

r <- curl_fetch_memory("https://hb.cran.dev/put”, h)
cat(rawToChar(r$content))

Posting multipart forms
h <- new_handle()
handle_setform(h,
foo = "blabla”,
bar = charToRaw("boeboe"),
iris = form_data(serialize(iris, NULL), "application/rda"),
description = form_file(system.file("DESCRIPTION")),
logo = form_file(file.path(R.home('doc'), "html/logo.jpg"), "image/jpeg")
)
req <- curl_fetch_memory("https://hb.cran.dev/post”, handle = h)

handle_cookies 15

handle_cookies Extract cookies from a handle

Description

The handle_cookies function returns a data frame with 7 columns as specified in the netscape
cookie file format.

Usage

handle_cookies(handle)

Arguments

handle a curl handle object

See Also
Other handles: handle

Examples

h <- new_handle()
handle_cookies(h)

Server sets cookies
req <- curl_fetch_memory("https://hb.cran.dev/cookies/set?foo=123&bar=ftw"”, handle = h)
handle_cookies(h)

Server deletes cookies
req <- curl_fetch_memory("https://hb.cran.dev/cookies/delete?foo”, handle = h)
handle_cookies(h)

Cookies will survive a reset!
handle_reset(h)
handle_cookies(h)

ie_proxy Internet Explorer proxy settings

Description

Lookup and mimic the system proxy settings on Windows as set by Internet Explorer. This can be
used to configure curl to use the same proxy server.

http://www.cookiecentral.com/faq/#3.5
http://www.cookiecentral.com/faq/#3.5

16 multi

Usage

ie_proxy_info()

ie_get_proxy_for_url(target_url = "http://www.google.com")

Arguments

target_url url with host for which to lookup the proxy server

Details

The ie_proxy_info function looks up your current proxy settings as configured in IE under "Internet
Options" under "LAN Settings". The ie_get_proxy_for_url determines if and which proxy should
be used to connect to a particular URL. If your settings have an "automatic configuration script"
this involves downloading and executing a PAC file, which can take a while.

multi Async Concurrent Requests

Description

AJAX style concurrent requests, possibly using HTTP/2 multiplexing. Results are only available via
callback functions. Advanced use only! For downloading many files in parallel use multi_download
instead.

Usage
multi_add(handle, done = NULL, fail = NULL, data = NULL, pool = NULL)
multi_run(timeout = Inf, poll = FALSE, pool = NULL)

multi_set(
total_con = 50,
host_con = 6,
max_streams = 10,
multiplex = TRUE,
pool = NULL

)

multi_list(pool = NULL)
multi_cancel(handle)
new_pool(total_con = 100, host_con = 6, max_streams = 10, multiplex = TRUE)

multi_fdset(pool = NULL)

multi 17

Arguments

handle a curl handle with preconfigured url option.

done callback function for completed request. Single argument with response data in
same structure as curl_fetch_memory.

fail callback function called on failed request. Argument contains error message.

data (advanced) callback function, file path, or connection object for writing incom-
ing data. This callback should only be used for streaming applications, where
small pieces of incoming data get written before the request has completed. The
signature for the callback function is write(data, final = FALSE). If set to
NULL the entire response gets buffered internally and returned by in the done
callback (which is usually what you want).

pool a multi handle created by new_pool. Default uses a global pool.

timeout max time in seconds to wait for results. Use @ to poll for results without waiting
at all.

poll If TRUE then return immediately after any of the requests has completed. May
also be an integer in which case it returns after n requests have completed.

total_con max total concurrent connections.

host_con max concurrent connections per host.

max_streams max HTTP/2 concurrent multiplex streams per connection.

multiplex use HTTP/2 multiplexing if supported by host and client.

Details

Requests are created in the usual way using a curl handle and added to the scheduler with multi_add.
This function returns immediately and does not perform the request yet. The user needs to call
multi_run which performs all scheduled requests concurrently. It returns when all requests have
completed, or case of a timeout or SIGINT (e.g. if the user presses ESC or CTRL+C in the console).
In case of the latter, simply call multi_run again to resume pending requests.

When the request succeeded, the done callback gets triggered with the response data. The struc-
ture if this data is identical to curl_fetch_memory. When the request fails, the fail callback
is triggered with an error message. Note that failure here means something went wrong in per-
forming the request such as a connection failure, it does not check the http status code. Just like
curl_fetch_memory, the user has to implement application logic.

Raising an error within a callback function stops execution of that function but does not affect other
requests.

A single handle cannot be used for multiple simultaneous requests. However it is possible to add
new requests to a pool while it is running, so you can re-use a handle within the callback of a request
from that same handle. It is up to the user to make sure the same handle is not used in concurrent
requests.

The multi_cancel function can be used to cancel a pending request. It has no effect if the request
was already completed or canceled.

The multi_fdset function returns the file descriptors curl is polling currently, and also a timeout
parameter, the number of milliseconds an application should wait (at most) before proceeding. It is
equivalent to the curl_multi_fdset and curl_multi_timeout calls. It is handy for applications
that is expecting input (or writing output) through both curl, and other file descriptors.

18 multipart

See Also

Advanced download interface: multi_download

Examples

results <- list()
success <- function(x){
results <<- append(results, list(x))
3
failure <- function(str){
cat(paste(”"Failed request:”, str), file = stderr())
3
This handle will take longest (3sec)
h1 <- new_handle(url = "https://hb.cran.dev/delay/3")
multi_add(h1l, done = success, fail = failure)

This handle writes data to a file

con <- file("output.txt")

h2 <- new_handle(url = "https://hb.cran.dev/post”, postfields = "bla bla")
multi_add(h2, done = success, fail = failure, data = con)

This handle raises an error
h3 <- new_handle(url = "https://urldoesnotexist.xyz")
multi_add(h3, done = success, fail = failure)

Actually perform the requests
multi_run(timeout = 2)
multi_run()

Check the file
readLines("output.txt")
unlink("output.txt")

multipart POST files or data

Description

Build multipart form data elements. The form_file function uploads a file. The form_data func-
tion allows for posting a string or raw vector with a custom content-type.

Usage

form_file(path, type = NULL, name = NULL)

form_data(value, type = NULL)

multi_download

Arguments

path
type
name

value

19

a string with a path to an existing file on disk
MIME content-type of the file.
a string with the file name to use for the upload

a character or raw vector to post

multi_download

Advanced download interface

Description

Download multiple files concurrently, with support for resuming large files. This function is based
on multi_run() and hence does not error in case any of the individual requests fail; you should
inspect the return value to find out which of the downloads were completed successfully.

Usage

multi_download(

urls,

destfiles
resume =

NULL,
FALSE,

progress = TRUE,
multi_timeout = Inf,

multiplex

Arguments

urls

destfiles

resume

progress

multi_timeout

multiplex

TRUE,

vector with URLs to download. Alternatively it may also be a list of handle
objects that have the url option already set.

vector (of equal length as urls) with paths of output files, or NULL to use base-
name of urls.

if the file already exists, resume the download. Note that this may change server
responses, see details.

print download progress information
in seconds, passed to multi_run
passed to new_pool

extra handle options passed to each request new_handle

20 multi_download

Details

Upon completion of all requests, this function returns a data frame with results. The success
column indicates if a request was successfully completed (regardless of the HTTP status code). If it
failed, e.g. due to a networking issue, the error message is in the error column. A success value
NA indicates that the request was still in progress when the function was interrupted or reached the
elapsed multi_timeout and perhaps the download can be resumed if the server supports it.

It is also important to inspect the status_code column to see if any of the requests were successful
but had a non-success HTTP code, and hence the downloaded file probably contains an error page
instead of the requested content.

Note that when you set resume = TRUE you should expect HTTP-206 or HTTP-416 responses. The
latter could indicate that the file was already complete, hence there was no content left to resume
from the server. If you try to resume a file download but the server does not support this, success
if FALSE and the file will not be touched. In fact, if we request to a download to be resumed and
the server responds HTTP 200 instead of HTTP 206, libcurl will error and not download anything,
because this probably means the server did not respect our range request and is sending us the full
file.

About HTTP/2:

Availability of HTTP/2 can increase the performance when making many parallel requests to a
server, because HTTP/2 can multiplex many requests over a single TCP connection. Support for
HTTP/2 depends on the version of 1ibcurl that your system has, and the TLS back-end that is in
use, check curl_version. For clients or servers without HTTP/2, curl makes at most 6 connections
per host over which it distributes the queued downloads.

On Windows and MacOS you can switch the active TLS backend by setting an environment
variable CURL_SSL_BACKEND in your ~/.Renviron file. On Windows you can switch between
SecureChannel (default) and OpenSSL where only the latter supports HTTP/2. On MacOS you
can use either SecureTransport or LibreSSL, the default varies by MacOS version.

Value
The function returns a data frame with one row for each downloaded file and the following columns:

* success if the HTTP request was successfully performed, regardless of the response status
code. This is FALSE in case of a network error, or in case you tried to resume from a server
that did not support this. A value of NA means the download was interrupted while in progress.

* status_code the HTTP status code from the request. A successful download is usually 200
for full requests or 206 for resumed requests. Anything else could indicate that the downloaded
file contains an error page instead of the requested content.

* resumefrom the file size before the request, in case a download was resumed.
e url final url (after redirects) of the request.

e destfile downloaded file on disk.

* error if success == FALSE this column contains an error message.

* type the Content-Type response header value.

» modified the Last-Modified response header value.

* time total elapsed download time for this file in seconds.

* headers vector with http response headers for the request.

https://curl.se/libcurl/c/libcurl-env.html

nslookup 21

Examples

Not run:

Example: some large files

urls <- sprintf(
"https://d37ci6vzurychx.cloudfront.net/trip-data/yellow_tripdata_2021-%02d.parquet”, 1:12)

res <- multi_download(urls, resume = TRUE) # You can interrupt (ESC) and resume

Example: revdep checker

Download all reverse dependencies for the 'curl' package from CRAN:

pkg <- 'curl!'

mirror <- 'https://cloud.r-project.org’

db <- available.packages(repos = mirror)

packages <- c(pkg, tools::package_dependencies(pkg, db = db, reverse = TRUE)[[pkgll)
versions <- db[packages, 'Version']

urls <- sprintf("%s/src/contrib/%s_%s.tar.gz", mirror, packages, versions)
res <- multi_download(urls)

all.equal(unname(tools: :md5sum(res$destfile)), unname(db[packages, 'MD5sum']))
And then you could use e.g.: tools:::check_packages_in_dir()

Example: URL checker
pkg_url_checker <- function(dir){
db <- tools:::url_db_from_package_sources(dir)
res <- multi_download(db$URL, rep('/dev/null’, nrow(db)), nobody=TRUE)
db$0K <- res$status_code == 200
db
3

Use a local package source directory
pkg_url_checker(".")

End(Not run)

nslookup Lookup a hostname

Description

The nslookup function is similar to ns1 but works on all platforms and can resolve ipv6 addresses
if supported by the OS. Default behavior raises an error if lookup fails.

Usage

nslookup(host, ipv4_only = FALSE, multiple = FALSE, error = TRUE)

has_internet()

22 parse_date

Arguments
host a string with a hostname
ipv4_only always return ipv4 address. Set to FALSE to allow for ipv6 as well.
multiple returns multiple ip addresses if possible
error raise an error for failed DNS lookup. Otherwise returns NULL.
Details

The has_internet function tests for internet connectivity by performing a dns lookup. If a proxy
server is detected, it will also check for connectivity by connecting via the proxy.

Examples

Should always work if we are online
nslookup("www.r-project.org")

If your OS supports IPv6
nslookup("ipv6.test-ipv6.com”, ipv4_only = FALSE, error = FALSE)

parse_date Parse date/time

Description

Can be used to parse dates appearing in http response headers such as Expires or Last-Modified.
Automatically recognizes most common formats. If the format is known, strptime() might be
easier.

Usage

parse_date(datestring)

Arguments

datestring a string consisting of a timestamp

Examples

Parse dates in many formats
parse_date("Sunday, 06-Nov-94 08:49:37 GMT")
parse_date("06 Nov 1994 08:49:37")
parse_date("20040911 +0200")

parse_headers 23

parse_headers Parse response headers

Description

Parse response header data as returned by curl_fetch, either as a set of strings or into a named list.

Usage

parse_headers(txt, multiple = FALSE)

parse_headers_list(txt)

Arguments

txt raw or character vector with the header data

multiple parse multiple sets of headers separated by a blank line. See details.
Details

The parse_headers_list function parses the headers into a normalized (lowercase field names, trimmed
whitespace) named list.

If a request has followed redirects, the data can contain multiple sets of headers. When multiple
= TRUE, the function returns a list with the response headers for each request. By default it only
returns the headers of the final request.

Examples

req <- curl_fetch_memory("https://hb.cran.dev/redirect/3")
parse_headers(reg$headers)
parse_headers(req$headers, multiple = TRUE)

Parse into named list
parse_headers_list(req$headers)

send_mail Send email

Description

Use the curl SMTP client to send an email. The message argument must be properly formatted
RFC2822 email message with From/To/Subject headers and CRLF line breaks.

https://www.rfc-editor.org/rfc/rfc2822

24

Usage

send_mail(
mail_from,
mail_rcpt,
message,

send_mail

smtp_server = "smtp://localhost”,

n n

use_ssl = c("try", "no", "force"),
verbose = TRUE,

Arguments

mail_from

mail_rcpt

message

smtp_server

use_ssl

verbose

email address of the sender.

one or more recipient email addresses. Do not include names, these go into the
message headers.

either a string or connection with (properly formatted) email message, including
sender/recipient/subject headers. See example.

hostname or address of the SMTP server, or, an smtp:// or smtps:// URL. See
"Specifying the server, port, and protocol" below.

Request to upgrade the connection to SSL using the STARTTLS command, see
CURLOPT_USE_SSL for details. Default will try to SSL, proceed as normal
otherwise.

print output

other options passed to handle_setopt(). In most cases you will need to set
a username and password or login_options to authenticate with the SMTP
server, see details.

Specifying the server, port, and protocol

The smtp_server argument takes a hostname, or an SMTP URL:

* mail.example.com - hostname only

* mail.example.com:587 - hostname and port

e smtp://mail.example.com - protocol and hostname
e smtp://mail.example.com:587 - full SMTP URL
e smtps://mail.example.com:465 - full SMTPS URL

By default, the port will be 25, unless smtps:// is specified—then the default will be 465 instead.

For internet SMTP servers you probably need to pass a username and passwords option. For some
servers you also need to pass a string with login_options for example login_options="AUTH=NTLM".

https://curl.se/libcurl/c/CURLOPT_USE_SSL.html
https://curl.se/libcurl/c/CURLOPT_USERNAME.html
https://curl.se/libcurl/c/CURLOPT_PASSWORD.html
https://curl.se/libcurl/c/CURLOPT_LOGIN_OPTIONS.html

send_mail 25

Encrypting connections via SMTPS or STARTTLS

There are two different ways in which SMTP can be encrypted: SMTPS servers run on a port
which only accepts encrypted connections, similar to HTTPS. Alternatively, a regular insecure smtp
connection can be "upgraded" to a secure TLS connection using the STARTTLS command. It is
important to know which method your server expects.

If your smtp server listens on port 465, then use a smtps://hostname: 465 URL. The SMTPS
protocol guarantees that TLS will be used to protect all communications from the start.

If your email server listens on port 25 or 587, use an smtp: // URL in combination with the use_ss1
parameter to control if the connection should be upgraded with STARTTLS. The default value
"try" will opportunistically try to upgrade to a secure connection if the server supports it, and
proceed as normal otherwise.

Examples

Not run: # Set sender and recipients (email addresses only)
recipients <- readline("Enter your email address to receive test: ")
sender <- 'test@noreply.com'

Full email message in RFC2822 format

message <- 'From: "R (curl package)" <test@noreply.com>
To: "Roger Recipient” <roger@noreply.com>

Subject: Hello R user!

Dear R user,

I am sending this email using curl.'

Send the email

send_mail(sender, recipients, message, smtp_server = 'smtps://smtp.gmail.com',

username = 'curlpackage', password = 'qyyjddvphjsrbnlm')
End(Not run)

Index

x handles
handle, 13
handle_cookies, 15

basename, /9

curl, 2

curl(), I3

curl_download, 4

curl_download(), I3

curl_echo, 5

curl_escape, 6

curl_fetch_disk (curl_fetch_memory), 6
curl_fetch_echo (curl_fetch_memory), 6
curl_fetch_memory, 6,7, 17
curl_fetch_memory(), 13
curl_fetch_multi (curl_fetch_memory), 6
curl_fetch_stream (curl_fetch_memory), 6
curl_modify_url (curl_parse_url), 9
curl_modify_url(), 11

curl_options, 8

curl_options(), 13
curl_parse_url, 9, 10

curl_symbols (curl_options), 8
curl_unescape (curl_escape), 6
curl_upload, 11

curl_version, 20

curl_version (curl_options), 8

download.file(), 4

file_writer, 12
find_port (curl_echo), 5
form_data, 14

form_data (multipart), 18
form_file, 14

form_file (multipart), 18
form_file(), I3

handle, 13, 15,17, 19
handle(), 2, 4

26

handle_cookies, 14, 15

handle_data (curl_fetch_memory), 6
handle_getheaders (handle), 13
handle_reset (handle), 13
handle_setform, /4
handle_setform (handle), 13
handle_setheaders (handle), 13
handle_setopt (handle), 13
handle_setopt(), 12, 24
has_internet (nslookup), 21

ie_get_proxy_for_url, 16
ie_get_proxy_for_url (ie_proxy), 15
ie_proxy, 15

ie_proxy_info, 16

ie_proxy_info (ie_proxy), 15
isIncomplete(), 2

multi, 16

multi_add, /7
multi_add (multi), 16
multi_add(), 7
multi_cancel, 17
multi_cancel (multi), 16
multi_download, 4, 16, 18, 19
multi_fdset, 17
multi_fdset (multi), 16
multi_list (multi), 16
multi_run, 17, 19
multi_run (multi), 16
multi_run(), 7, 19
multi_set (multi), 16
multipart, 18

new_handle, /9
new_handle (handle), 13
new_pool, 7, 17, 19
new_pool (multi), 16
nslookup, 21

parse_date, 22

INDEX

parse_headers, 23
parse_headers_list (parse_headers), 23

send_mail, 23
strptime(), 22

urlQ), 2
url-decode, 10

27

	curl
	curl_download
	curl_echo
	curl_escape
	curl_fetch_memory
	curl_options
	curl_parse_url
	curl_upload
	file_writer
	handle
	handle_cookies
	ie_proxy
	multi
	multipart
	multi_download
	nslookup
	parse_date
	parse_headers
	send_mail
	Index

