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binaryfeaturematrix Convert a meaning matrix to a binary 'meaning-feature-present’ ma-
trix.

Description

Transforms a meaning matrix to *wide’ format where, instead of having a column for every meaning
dimension store all possible meaning values, every possible value for any dimension is treated
as its own categorical *meaning feature’ whose presence or absence is represented by a logical
TRUE/FALSE value in its own meaning feature column.
Usage
binaryfeaturematrix(meanings, rownames = NULL)
Arguments
meanings a matrix or data frame with meaning dimensions along columns and different
meaning combinations along rows (such as created by enumerate.meaningcombinations).
rownames optional character vector of the same length as the number of rows of meanings.
Details

Given a matrix or data frame with meaning dimensions along columns and different combinations
of meaning feature values along rows, creates a a matrix with the same number of rows but with
one column for every possible value for every meaning dimension.

All meaning dimensions and values are treated categorically, i.e. as factors with no gradual notion
of meaning feature similarity, neither within nor across the original meaning dimensions. Informa-
tion about which feature values correspond to which meaning dimensions is essentially discarded in
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this representation, but could in principle be recovered through the patterns of (non)-co-occurrence
of different meaning features.

In order for the resulting meaning columns to be interpretable, the column names of the result are
of the structure columnname=value, based on the column names of the input meaning matrix (see
Examples).

Value
A matrix of TRUE/FALSE values with as many rows as meanings and one column for every column-

value combination in meanings.

Examples

enumerate.meaningcombinations(c(2, 2))
binaryfeaturematrix(enumerate.meaningcombinations(c(2, 2)))

check.dist Check or fix a distance matrix.

Description
Checks or fixes the given distance matrix specification and returns an equivalent, symmetric matrix
object with Os in the diagonal.

Usage

check.dist(x)

Arguments

X an object (or list of objects) specifying a distance matrix

Details

If the argument is a matrix, check whether it is a valid specification of a distance matrix and return
it, making it symmetric if it isn’t already.

If the argument is a list, calls check.dist on every of its elements and returns a list of the results.

For all other object types, attempts to coerce the argument to a dist object and return the corre-
sponding distance matrix (see above).

Value

a symmetric matrix object (or list of such objects) of the same dimension as x

See Also

dist
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count.substring.occurrences
Count occurences of all possible substrings in one more strings.

Description

Count occurences of all possible substrings in one more strings.

Usage

count.substring.occurrences(strings, sortbylength = FALSE)

Arguments

strings a list or vector of character sequences

sortbylength  logical indicating whether the substring columns should be ordered according to
the (decreasing) length of the substrings. Default is to leave them in the original
order in which they occur in the given strings.

Value

A matrix with the original strings along rows and all substrings of those strings along columns. The
cell values indicate whether (and how many times) the substring is contained in each of the strings.

Examples

count.substring.occurrences(c("asd”, "asdd", "foo"))

enumerate.meaningcombinations
Enumerate meaning combinations.

Description

Enumerates all possible combinations of meanings for a meaning space of the given dimensionality.

Usage

enumerate.meaningcombinations(dimensionality, uniquelabels = TRUE,
offset = @)
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Arguments

dimensionality either a) a vector of integers specifying the number of different possible val-
ues for every meaning dimension, or b) a list or other (potentially ragged) 2-
dimensional data structure listing the possible meaning values for every dimen-
sion

uniquelabels  logical, determines whether the same integers can be reused across meaning
dimensions or not. When uniquelabels = FALSE, the resulting matrix will be
very reminiscent of tables listing all binary combinations of factors. Ignored
when dimensionality specifies the meaning values

offset a constant that is added to all meaning specifiers. Ignored when dimensionality
specifies the meaning values
Details
The resulting matrix can be passed straight on to hammingdists and other meaning distance func-
tions created by wrap.meaningdistfunction.
Value
A matrix that has as many columns as there are dimensions, with every row specifying one of the
possible meaning combinations. The entries of the first dimension cycle slowest (see examples).
See Also

hammingdists

Examples

enumerate.meaningcombinations(c(2, 2))

enumerate.meaningcombinations(c(3, 4))

enumerate.meaningcombinations(c(2, 2, 2, 2))

enumerate.meaningcombinations(8) # trivial
enumerate.meaningcombinations(list(shape=c("”square”, "circle"), color=c("red”, "blue")))

enumerate.substrings  Enumerate all substrings of a string.

Description

Enumerate all substrings of a string.

Usage

enumerate.substrings(string)

Arguments

string a character string
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Value

a vector containing all substrings of the string (including duplicates)

Examples

enumerate.substrings(”abccc”)

hammingdists Pairwise Hamming distances between matrix rows.

Description

Returns a distance matrix giving all pairwise Hamming distances between the rows of its argument
meanings, which can be a matrix, data frame or vector. Vectors are treated as matrices with a single
column, so the distances in its return value can only be O or 1.

Usage

hammingdists(meanings)

Arguments
meanings a matrix with the different dimensions encoded along columns, and all combi-
nations of meanings specified along rows. The data type of the cells does not
matter since distance is simply based on equality (with the exception of NA val-
ues, see below.
Details

This function behaves differently from calling dist (meanings, method="manhattan") in how NA
values are treated: specifying a meaning component as NA allows you to ignore that dimension
for the given row/meaning combinations, (instead of counting a difference between NA and another
value as a distance of 1).

Value
A distance matrix of type dist with nx(n-1)/2 rows/columns, where n is the number of rows in
meanings.

See Also

dist
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Examples

# a 2x2 design using strings

print(strings <- matrix(c("al”, "b1", "al1", "b2", "a2", "b1", "a2", "b2"),
ncol=2, byrow=TRUE))

hammingdists(strings)

# a 2x3 design using integers
print(integers <- matrix(c(o, 0, o0, 1, o, 2, 1, @0, 1, 1, 1, 2), ncol=2, byrow=TRUE))
hammingdists(integers)

# a 3x2 design using factors (ncol is always the number of dimensions)
print(factors <- data.frame(colour=c("red”, "red”, "green", "blue"),

animal=c("dog"”, "cat"”, "dog", "cat")))
hammingdists(factors)

if some meaning dimension is not relevant for some combinations of
meanings (e.g. optional arguments), specifying them as NA in the matrix
will make them not be counted towards the hamming distance! in this
example the value of the second dimension does not matter (and does not
# count towards the distance) when the the first dimension has value '1'
print(ignoredimension <- matrix(c(@, @, @, 1, 1, NA), ncol=2, byrow=TRUE))
hammingdists(ignoredimension)

o o R

# trivial case of a vector: first and last two elements are identical,
# otherwise a difference of one
hammingdists(c(@, o, 1, 1))

mantel.test Perform one or more Mantel permutation tests.

Description

Perform correlation tests between pairs of distance matrices. The Mantel test is different from
classical correlation tests (such as those implemented by cor.test) in that the null distribution
(and significance level) are obtained through randomisation. The null distribution is generated by
shuffling the locations (matrix rows and columns) of one of the matrices to calculate an empirical
null distribution for the given data set.

Usage
mantel.test(x, vy, ...)
## Default S3 method:

mantel.test(x, y, plot = FALSE, method = c("spearman”,
"kendall”, "pearson"), trials = 9999, omitzerodistances = FALSE, ...)

## S3 method for class 'formula'
mantel.test(x, y, groups = NULL,
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mantel.test

= utils::adist, meaningdistfun = hammingdists, ...)

## S3 method for class 'list'
mantel.test(x, y, plot = FALSE, ...)

## S3 method for class 'mantel’

plot(x, xlab = "generation”, ...)
Arguments

X a formula, distance matrix, or list of distance matrices (see below)

y a data frame, distance matrix, or list of distance matrices of the same length as x
further arguments which are passed on to the default method (in particular plot,
method, trials and omitzerodistances)

plot logical: immediately produce a plot of the test results (default: FALSE)

method correlation coefficient to be computed. Passed on to cor, so one of "spearman”,
"kendall”, or, inadvisable in the case of ties: "pearson”. Following Dietz
(1983), "spearman” is used as a default that is both powerful and robust across
different distance measures.

trials integer: maximum number of random permutations to be computed (see De-
tails).

omitzerodistances
logical: if TRUE, the calculation of the correlation coefficient omits pairs of off-
diagonal cells which contain a 0 in the second distance matrix argument. (For
the formula interface, this is the matrix which specifies the meaning distances.)

groups when x is a formula: column name by which the data in y is split into separate
data sets to run several Mantel tests on

stringdistfun when x is a formula: edit distance function used to compute the distance ma-
trix from the specified string column. Supports any edit distance function that
returns a distance matrix from a vector or list of character strings. Default is Lev-
enshtein distance (adist), other options from this package include normalisedlevenshteindists()
and orderinsensitivedists().

meaningdistfun when x is a formula: meaning distance function used to compute the distance
matrix from the specified meaning columns. Defaults to Hamming distances be-
tween meanings (hammingdists()), custom meaning functions can be created
easily using wrap.meaningdistfunction().

xlab the x axis label used when plotting the result of several Mantel tests next to each
other

Details

If the number of possible permutations of the matrices is reasonably close to the number of permu-
tations specified by the trials parameter, a deterministic enumeration of all the permutations will
be carried out instead of random sampling: such a deterministic test will return an exact p-value.

plot() called on a data frame of class mantel plots a visualisation of the test results (in particu-
lar, the distribution of the permutated samples against the veridical correlation coefficient). If the
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veridical correlation coefficient is plotted in blue it means that it was higher than all other coef-
ficients generated by random permutations of the data. When the argument contains the result of
more than one Mantel tests, a side-by-side boxplot visualisation shows the mean and standard devi-
ation of the randomised samples (see examples). Additional parameters ... to plot() are passed
onto plot.default.

Value

A dataframe of class mantel, with one row per Mantel test carried out, containing the following
columns:

method Character string: type of correlation coefficient used

statistic The veridical correlation coefficient between the entries in the two distance matrices
rsample A list of correlation coefficients calculated from the permutations of the input matrices
mean Average correlation coefficient produced by the permutations

sd Standard deviation of the sampled correlation coefficients

p.value Empirical p-value computed from the Mantel test: let ngreater be the number of correla-
tion coefficients in rsample greater than or equal to statistic, thenp.valueis (ngreater+1)/(length(rsample)+1

p.approx The theoretical p-value that would correspond to the standard z score as calculated
above.

is.unique.max Logical, TRUE iff the veridical correlation coefficient is greater than any of the co-
efficients calculated for the permutations. If this is true, then p.value == 1 / (length(rsample)+1)

Multiple mantel objects can easily be combined by calling rbind(test1, test2, ...).

Methods (by class)

e default: Perform Mantel correlation test on two distance matrices. The distance matrices can
either be of type dist, plain R matrices or any object that can be interpreted by check.dist.
The order of the two matrices does not matter unless omitzerodistances = TRUE, in which
case cells with a O in the second matrix are omitted from the calculation of the correlation
coefficient. For consistency it is therefore recommended to always pass the string distance
matrix first, meaning distance matrix second.

e formula: This function can be called with raw experimental result data frames, distance ma-
trix calculation is taken care of internally. x is a formula of the type s ~m1 +m2 + ... where
s is the column name of the character strings in data frame or matrix y, while m1 etc. are the
column names specifying the different meaning dimensions. To calculate the respective dis-
tances, the function stringdistfun is applied to the strings, meaningdistfun to the meaning
columns.

* list: When x is a list of distance matrices, and y is either a single distance matrix or a list of
distance matrices the same length as x: runs a Mantel test for every pairwise combination of
distance matrices in x and y and returns a mantel object with as many rows.

References

Dietz, E. J. 1983 “Permutation Tests for Association Between Two Distance Matrices.” Systematic
Biology 32 (1): 21--26. https://doi.org/10.1093/sysbio/32.1.21.


https://doi.org/10.1093/sysbio/32.1.21

10 mantel.test

North, B. V., D. Curtis and P. C. Sham. 2002 “A Note on the Calculation of Empirical P Values
from Monte Carlo Procedures.” The American Journal of Human Genetics 71 (2): 439-—41. https:
//doi.org/10.1086/341527

See Also

cor, adist, hammingdists, normalisedlevenshteindists, orderinsensitivedists

Examples

# small distance matrix, Mantel test run deterministically
mantel.test(dist(1:7), dist(1:7))

## Not run:

# run test on smallest distance matrix which requires a random
# permutation test, and plot it

plot(mantel.test(dist(1:8), dist(1:8), method="kendall"))

## End(Not run)

## Not run:

# 2x2x2x2 design

mantel.test(hammingdists(enumerate.meaningcombinations(c(2, 2, 2, 2))),
dist(1:16), plot=TRUE)

## End(Not run)

# using the formula interface in combination with a data frame:
print(data <- cbind(word=c("aa”, "ab", "ba", "bb"),
enumerate.meaningcombinations(c(2, 2))))

mantel.test(word ~ Varl + Var2, data)

## Not run:

# pass a list of distance matrices as the first argument, but just one

# distance matrix as the second argument: this runs separate tests on

# the pairwise combinations of the first and second argument

result <- mantel.test(list(dist(1:8), dist(sample(8:1)), dist(runif(8))),
hammingdists(enumerate.meaningcombinations(c(2, 2, 2))))

# print the result of the three independently run permutation tests
print(result)

# show the three test results in one plot
plot(result, xlab="group")

## End(Not run)


https://doi.org/10.1086/341527
https://doi.org/10.1086/341527
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normalisedlevenshteindists
Compute the normalised Levenshtein distances between strings.

Description

Compute the normalised Levenshtein distances between strings.

Usage

normalisedlevenshteindists(strings)

Arguments

strings a vector or list of strings

Value

A distance matrix specifying all pairwise normalised Levenshtein distances between the strings.

See Also

dist

Examples

normalisedlevenshteindists(c("abd"”, "absolute", "asdasd”, "casd"))

orderinsensitivedists Calculate the bag-of-characters similarity between strings.

Description

Calculate the bag-of-characters similarity between strings.

Usage

orderinsensitivedists(strings = NULL, split = NULL,
segmentcounts = segment.counts(strings, split))

Arguments
strings a vector or list of strings
split boundary sequency at which to segment the strings (default splits the string into

all its constituent characters)

segmentcounts if custom segmentation is required, the pre-segmented strings can be passed as
this argument (which is a list of lists)
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Value

a distance matrix

See Also

dist

Examples

orderinsensitivedists(c(”xxxx", "asdf", "asd”, "dsa"))

page.test Page test for monotonicity of ranks.

Description

Given N replications of k different treatments/conditions, tests whether the median ordinal ranks m;
of the treatments are identical
mp =Moo = ... =Mk

against the alternative hypothesis
mp <mg < ... <my

where at least one of the inequalities is a strict inequality (Siegel and Castellan 1988, p.184). Given
that even a single point change in the distribution of ranks across conditions represents evidence
against the null hypothesis, the Page test is simply a test for some ordered differences in ranks, but
not a ’trend test’ in any meaningful way (see also the Page test tutorial).

Usage

page.test(data, verbose = TRUE)
page.L(data, verbose = TRUE, ties.method = "average")

page.compute.exact(k, N, L)

Arguments

data a matrix with the different conditions along its k columns and the N replications
along rows. Conversion of the data to ordinal ranks is taken care of internally.

verbose whether to print the final rankings based on which the L statistic is computed

ties.method how to resolve tied ranks. Passed on to rank, should be left on "average" (the
default).

k number of conditions/generations

N number of replications/chains

L value of the Page L statistic


https://kevinstadler.github.io/cultevo/articles/page.test.html
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Details

Tests the given matrix for monotonically increasing ranks across k linearly ordered conditions
(along columns) based on N replications (along rows). To test for monotonically decreasing ranks,
either reverse the order of columns, or simply invert the rank ordering by calling - on the entire
dataset.

Exact p-values are computed for k up to 22, using the pre-computed null distributions from the
pspearman package. For larger k, p-values are computed based on a Normal distribution approxi-
mation (Siegel and Castellan, 1988).

Value
page.test returns a list of class pagetest (and htest) containing the following elements:

statistic value of the L statistic for the data set

parameter anamed vector specifying the number of conditions (k) and replications (N) of the data
(which is the number of columns and rows of the data set, respectively)

p.value significance level

p.type whether the computed p-value is "exact” or "approximate”

Functions

e page.test: See above.
* page.L: Calculate Page’s L statistic for the given dataset.

* page.compute.exact: Calculate exact significance levels of the Page L statistic. Returns a
single numeric indicating the null probability of the Page statistic with the given k, N being
greater or equal than the given L.
References
Siegel, S., and N. J. Castellan, Jr. (1988). Nonparametric Statistics for the Behavioral Sciences.
McGraw-Hill.
See Also

rank, Page test tutorial

Examples

# exact p value computation for N=4, k=4
page.test(t(replicate(4, sample(4))))

# exact p value computation for N=4, k=10
page.test(t(replicate(4, sample(10))))

# approximate p value computation for N=4, k=23
result <- page.test(t(replicate(4, sample(23))), verbose = FALSE)

print(result)


https://CRAN.R-project.org/package=pspearman
https://kevinstadler.github.io/cultevo/articles/page.test.html
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# raw calculation of the significance levels
page.compute.exact(6, 4, 322)

read.dist Read a distance matrix from a file or data frame.

Description

Read a distance matrix from a file or data frame.

Usage

read.dist(data, ell.column = 1, el2.column = 2, dist.columns = 3)

Arguments
data a filename, data frame or matrix
ell.column the column name or id specifying the first element
el2.column the column name or id specifying the second element

dist.columns the column name(s) or id(s) specifying the distance(s) between the two corre-
sponding elements
Value
a distance matrix (or list of distance matrixes when there is more than one dist.columns) of type
matrix

Examples

read.dist(cbind(c(1,1,1,2,2,3), c(2,3,4,3,4,4), 1:6, 6:1), dist.columns=c(3,4))

repmatrix Extend a matrix by repetition of elements.

Description

Returns a new matrix, where the entries of the original matrix are repeated along both dimensions.

Usage

repmatrix(x, times = 1, each = 1, times.row = times, times.col = times,
each.row = each, each.col = each, ...)
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Arguments
X a matrix
times how often the matrix should be replicated next to itself
each how often individual cells should be replicated next to themselves
times.row number of vertical repetitions of the matrix, overrides times
times.col number of horizontal repetitions of the matrix, overrides times
each.row number of vertical repetitions of individual elements, overrides each
each.col number of horizontal repetitions of individual elements, overrides each

not used
Value

A matrix, which will have times*each times more rows and columns than the original matrix.

See Also

rep

Examples

repmatrix(diag(4))
repmatrix(diag(4), times=2)
repmatrix(diag(4), each=2)
repmatrix(diag(3), times=2, each=2)
repmatrix(diag(4), each.row=2)
repmatrix(diag(4), times.row=2)

segment.string Split strings into their constituent segments.

Description

Split strings into their constituent segments (and count them).

Usage

segment.string(x, split = NULL)

segment.counts(x, split = NULL)

Arguments
X one or more strings to be split (and, optionally, counted)
split the boundary character or sequence at which to segment the string(s). The de-

fault, NULL, splits the string after every character.
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Functions

* segment.string: Returns a list (of the same length as x), each item a vector of character
vectors.

* segment.counts: Calculate the frequency of individual characters in one or more strings.
Returns a matrix with one row for every string in Xx.

Examples

segment.string(c("asd”, "fghj"))

segment.string(c(”la-dee-da"”, "lala-1la"), "-")
segment.counts(c("asd”, "aasd", "asdf"))
shuffle.locations Permute the rows and columns of a square matrix.
Description

Returns the given matrix with rows and columns permuted in the same order.

Usage

shuffle.locations(m, perm = sample.int(dim(m)[1]1))

Arguments

m a matrix with an equal number of rows and columns

perm vector of indices specifying the new order of rows/columns
Value

a matrix of the same size as m

sm.compositionality Spike’s segmentation and measure of additive compositionality.

Description

Implementation of the Spike-Montague segmentation and measure of additive compositionality
(Spike 2016), which finds the most predictive associations between meaning features and substrings.
Computation is deterministic and fast.

Usage

sm.compositionality(x, y, groups = NULL, strict = FALSE)

sm.segmentation(x, y, strict = FALSE)
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Arguments

X a list or vector of character sequences specifying the signals to be analysed.
Alternatively, x can also be a formula of the format s ~m1 +m2 + ..., where s
and m1, m2, etc. specify the column names of the signals and meaning features
found in the data frame that is passed as the second argument.

y a matrix or data frame with as many rows as there are signals, indicating the
presence/value of the different meaning dimensions along columns (see section
Meaning data format). If x is a formula, the y data frame can contain any number
of columns, but only the ones whose column name is specified in the formula
will be considered.

groups alist or vector with as many items as strings, used to split strings and meanings
into data sets for which compositionality measures are computed separately.

strict logical: if TRUE, perform additional filtering of candidate segments. In particu-
lar, it removes combinations of segments (across meanings) which overlap in at
least one of the strings where they co-occur. For convenience, it also removes
segments which are shorter substrings of longer candidates (for the same mean-
ing feature).

Details

The algorithm works on compositional meanings that can be expressed as sets of categorical mean-
ing features (see below), and does not take the order of elements into account. Rather than looking
directly at how complex meanings are expressed, the measure really captures the degree to which a
homonymy- and synonymy-free signalling system exists at the level of individual semantic features.

The segmentation algorithm provided by sm.segmentation() scans through all sub-strings found
in strings to find the pairings of meaning features and sub-strings whose respective presence is
most predictive of each other. Mathematically, for every meaning feature f € M, it finds the sub-
string s;; from the set of strings .S that yields the highest mutual predictability across all signals,

mp(f,S) = max P(f[siz) - P(si;lf) -

Sij

Based on the mutual predictability levels obtained for the individual meaning features, sm. compositionality
then computes the mean mutual predictability weighted by the individual features’ relative frequen-
cies of attestation, i.e.

mp(M,S) = > freqs - mp(f,5)

feMm
as a measure of the overall compositionality of the signalling system.

Since mutual predictability is determined seperately for every meaning feature, the most predictive
sub-strings posited for different meaning features as returned by sm. segmentation() can overlap,
and even coincide completely. Such results are generally indicative of either limited data (in partic-
ular frequent co-occurrence of the meaning features in question), or spurious results in the absence
of a consistent signalling system. The latter will also be indicated by the significance level of the
given mutual predictability.
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Value

sm. segmentation provides detailed information about the most predictably co-occurring segments
for every meaning feature. It returns a data frame with one row for every meaning feature, in
descending order of the mutual predictability from (and to) their corresponding string segments.
The data frame has the following columns:

N The number of signal-meaning pairings in which this meaning feature was attested.

mp The highest mutual predictability between this meaning feature and one (or more) segments that
was found.

p Significance levels of the given mutual predictability, i.e. the probability that the given mutual
predictability level could be reached by chance. The calculation depends on the frequency of
the meaning feature as well as the number and relative frequency of all substrings across all
signals (see below).

ties The number of substrings found in strings which have this same level of mutual predictabil-
ity with the meaning feature.

segments For strict=FALSE: a list containing the ties substrings in descending order of their
length (the ordering is for convenience only and not inherently meaningful). When strict=TRUE,
the lists of segments for each meaning feature are all of the same length, with a meaningful
relationship of the order of segments across the different rows: every set of segments which
are found in the same position for each of the different meaning features constitute a valid
segmentation where the segments occurrences in the actual signals do not overlap.

sm.compositionality calculates the weighted average of the mutual predictability of all meaning
features and their most predictably co-occurring strings, as computed by sm.segmentation. The
function returns a data frame of three columns: N is the total number of signals (utterances) on which
the computation was based, M the number of distinct meaning features attested across all signals, and
meanmp the mean mutual predictability across all these features, weighted by the features’ relative
frequency. When groups is not NULL, the data frame contains one row for every group.

Null distribution and p-value calculation

A perfectly unambiguous mapping between a meaning feature to a specific string segment will
always yield a mutual predictability of 1. In the absence of such a regular mapping, on the other
hand, chance co-occurrences of strings and meanings will in most cases stop the mutual predictabil-
ity from going all the way down to @. In order to help distinguish chance co-occurrence levels from
significant signal-meaning associations, sm.segmentation() provides significance levels for the
mutual predictability levels obtained for each meaning feature.

What is the baseline level of association between a meaning feature and a set of sub-strings that we
would expect to be due to chance co-occurrences? This depends on several factors, from the number
of data points on which the analysis is based to the frequency of the meaning feature in question
and, perhaps most importantly, the overall makeup of the different substrings that are present in
the signals. Since every substring attested in the data is a candidate for signalling the presence of a
meaning feature, the absolute number of different substrings greatly affects the likelihood of chance
signal-meaning associations. (Diversity of the set of substrings is in turn heavily influenced by the
size of the underlying alphabet, a factor which is often not appreciated.)

For every candidate substring, the degree of association with a specific meaning feature that we
would expect by chance is again dependent on the absolute number of signals in which the substring
is attested.
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Starting from the simplest case, take a meaning that is featured in m of the total n signals (where
0 < m < n). Assume next that there is a string segment that is attested in s of these signals
(where again 0 < s < n). The degree of association between the meaning feature and string
segment is dependent on the number of times that they co-occur, which can be no more than ¢, 4, =
min(m, s) times. The null probability of getting a given number of co-occurrences can be obtained
by considering all possible reshufflings of the meaning feature in question across all signals: if s
signals contain a given substring, how many of s randomly drawn signals from the pool of n signals
would contain the meaning feature if a total of m signals in the pool did? Approached from this
angle, the likelihood of the number of co-occurrences follows the hypergeometric distribution, with
c being the number of successes when taking s draws without replacement from a population of
size n with fixed number of successes m.

For every number of co-occurrences ¢ € [0, Cpnqz], One can compute the corresponding mutual
probability level as p(c|s) - p(¢|m) to obtain the null distribution of mutual predictability levels
between a meaning feature and one substring of a particular frequency s:

Pr(mp = p(c|s) - p(c|m)) = f(k = N =n,K =m,n=s)

From this, we can now derive the null distribution for the entire set of attested substrings as follows:
making the simplifying assumption that the occurrences of different substrings are independent of
each other, we first aggregate over the null distributions of all the individual substrings to obtain the
mean probability p = Pr(X > mp) of finding a given mutual predictability level at least as high
as mp for one randomly drawn string from the entire population of substrings. Assuming the total
number of candidate substrings is |S|, the overall null probability that at least one of them would
yield a mutual predictability at least as high is

Note that, since the null distribution also depends on the frequency with which the meaning fea-
ture is attested, the significance levels corresponding to a given mutual predictability level are not
necessarily identical for all meaning features, even within one analysis.

(In theory, one can also compute an overall p-value of the weighted mean mutual predictability as
calculated by sm.compositionality. However, the significance levels for the individual meaning
features are much more insightful and should therefore be consulted directly.)

Meaning data format

The meanings argument can be a matrix or data frame in one of two formats. If it is a matrix of log-
icals (TRUE/FALSE values), then the columns are assumed to refer to meaning features, with individ-
ual cells indicating whether the meaning feature is present or absent in the signal represented by that
row (see binaryfeaturematrix() for an explanation). If meanings is a data frame or matrix of any
other type, it is assumed that the columns specify different meaning dimensions, with the cell values
showing the levels with which the different dimensions can be realised. This dimension-based rep-
resentation is automatically converted to a feature-based one by calling binaryfeaturematrix().
As a consequence, whatever the actual types of the columns in the meaning matrix, they will be
treated as categorical factors for the purpose of this algorithm, also discarding any explicit knowl-
edge of which “meaning dimension’ they might belong to.


https://en.wikipedia.org/wiki/Hypergeometric_distribution
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See Also

binaryfeaturematrix(), ssm.compositionality()

Examples

# perfect communication system for two meaning features (which are marked
# as either present or absent)

sm.compositionality(c("a", "b", "ab"),
cbind(a=c(TRUE, FALSE, TRUE), b=c(FALSE, TRUE, TRUE)))
sm.segmentation(c(”a", "b", "ab"),

cbind(a=c(TRUE, FALSE, TRUE), b=c(FALSE, TRUE, TRUE)))

# not quite perfect communication system

sm.compositionality(c("as"”, "bas"”, "basf"),
cbind(a=c(TRUE, FALSE, TRUE), b=c(FALSE, TRUE, TRUE)))
sm.segmentation(c(”as”, "bas"”, "basf"),

cbind(a=c(TRUE, FALSE, TRUE), b=c(FALSE, TRUE, TRUE)))

# same communication system, but force candidate segments to be non-overlapping
# via the 'strict' option
sm.segmentation(c("as"”, "bas”, "basf"),

cbind(a=c(TRUE, FALSE, TRUE), b=c(FALSE, TRUE, TRUE)), strict=TRUE)

# the function also accepts meaning-dimension based matrix definitions:
print(twobytwoanimals <- enumerate.meaningcombinations(c(animal=2, colour=2)))

# note how there are many more candidate segments than just the full length

# ones. the less data we have, the more likely it is that shorter substrings

# will be just as predictable as the full segments that contain them.
sm.segmentation(c("greendog”, "bluedog”, "greencat”, "bluecat”), twobytwoanimals)

# perform the same analysis, but using the formula interface
print(twobytwosignalingsystem <- cbind(twobytwoanimals,
signal=c("greendog"”, "bluedog”, "greencat”, "bluecat")))

sm.segmentation(signal ~ colour + animal, twobytwosignalingsystem)
since there is no overlap in the constituent characters of the identified
'morphemes', they are all tied in their mutual predictiveness with the

(shorter) substrings they contain

to reduce the pool of candidate segments to those which are
non-overlapping and of maximal length, again use the 'strict=TRUE' option:

N

sm.segmentation(signal ~ colour + animal, twobytwosignalingsystem, strict=TRUE)


http://hdl.handle.net/1842/25930
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ssm.compositionality Find a segmentation that maximises the overall string coverage across

all signals.

Description

This algorithm builds on Spike’s measure of compositionality (see sm.compositionality), except
instead of simply determining which segment(s) have the highest mutual predictability for each
meaning feature separately, it attempts to find a combination of non-overlapping segments for each
feature that maximises the overall string coverage over all signals. In other words, it tries to find a
segmentation which can account for (or ’explain’) as much of the string material in the signals as

possible.

Usage

ssm.compositionality(x, y, groups = NULL)

ssm.segmentation(x, y, mergefeatures = FALSE, verbose = FALSE)

Arguments

X

y

groups

mergefeatures

verbose

Details

a list or vector of character sequences

a matrix or data frame with as many rows as there are strings (see section Mean-
ing data format)

a list or vector with as many items as strings, used to split the signals and mean-
ings into data sets for which the compositionality measures are computed sepa-
rately.

logical: if TRUE, ssm. segmentation will try to improve on the initial solution by
incrementally merging pairs of meaning features as long as doing so improves
the overall string coverage of the segmentation.

logical: if TRUE, messages detailed information about the number of segment
combinations considered for every coverage computed.

For large data sets and long strings, this computation can get very slow. If the attested signals are
such that no perfect segmentation is possible, this algorithm is not guaranteed to find any segmen-
tation (as no such segmentation might exist).

See Also

sm.compositionality
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Examples

ssm.segmentation(c("as"”, "bas", "basf"),
cbind(a=c(TRUE, FALSE, TRUE), b=c(FALSE, TRUE, TRUE)))

# signaling system where one meaning distinction is not encoded in the signals
print(threebytwoanimals <- enumerate.meaningcombinations(list(animal=c("dog", "cat"”, "tiger"),
colour=c("coll", "col2"))))

ssm.segmentation(c("greendog”, "bluedog”, "greenfeline”, "bluefeline”, "greenfeline”, "bluefeline”),
threebytwoanimals)

# the same analysis again, but allow merging of features
ssm.segmentation(c("greendog”, "bluedog”, "greenfeline”, "bluefeline”, "greenfeline”, "bluefeline"),
threebytwoanimals, mergefeatures=TRUE)

temperature.colors Create a vector of ‘temperature’ colors (from blue over white to red).

Description

Create a vector of "temperature’ colors (from blue over white to red).

Usage

temperature.colors(mn, mx = NULL, intensity = 1)

Arguments
mn integer: when mx is not specified, total number of colors (>1) in the palette.
when mx is specified: ’coldest’ temperature (see examples)
mx integer: “warmest’ temperature (see examples)
intensity saturation of the most extreme color(s), in the range [0, 1].
See Also

gray, hsv, rainbow

Examples

# full intensity

image(as.matrix(1:7), z=as.matrix(1:7), col=temperature.colors(7))

# half intensity

image(as.matrix(1:7), z=as.matrix(1:7), col=temperature.colors(7, intensity=0.5))
# skewed palette with more negative than positive temperature colors
image(as.matrix(1:7), z=as.matrix(1:7), col=temperature.colors(-4, 2))
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wrap.meaningdistfunction
Make a meaning distance function vectorisable.

Description

This function takes as its only argument a function f(m1, m2) which returns a single numeric in-
dicating the distance between two *meanings’ m1, m2 (which are themselves most likely vectors or
lists). Based on f, this function returns a function g(mm) which takes as its only argument a matrix
or data frame mm with the meaning elements (equivalent to the ones in m1, m2) along columns and
different meaning combinations (like m1, m2, ...) along rows. This function returns a distance ma-
trix of class dist containing all pairwise distances between the rows of mm. The resulting function
g can be passed to other functions in this package, in particular mantel. test.

Usage

wrap.meaningdistfunction(pairwisemeaningdistfun)

Arguments

pairwisemeaningdistfun
a function of two arguments returning a single numeric indicating the semantic
distance between its arguments

Details

The meaning distance function should be commutative, i.e. f(a,b) = f(b,a), and meanings should
have a distance of zero to themselves, i.e. f(a,a) = 0.

Value

A function that takes a meaning matrix and returns a corresponding distance matrix of class dist.

Examples

trivialdistance <- function(a, b) return(a - b)

trivialmeanings <- as.matrix(3:1)

trivialdistance(trivialmeanings[1], trivialmeanings[2])
trivialdistance(trivialmeanings[1], trivialmeanings[3])
trivialdistance(trivialmeanings[2], trivialmeanings[3])

distmatrixfunction <- wrap.meaningdistfunction(trivialdistance)
distmatrixfunction(trivialmeanings)
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