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ctmcd: An R Package for Estimating the
Parameters of a Continuous-Time Markov

Chain from Discrete-Time Data
by Marius Pfeuffer

Abstract This article introduces the R package ctmed, which provides an implementation of methods
for the estimation of the parameters of a continuous-time Markov chain given that data are only
available on a discrete-time basis. This data consists of partial observations of the state of the chain,
which are made without error at discrete times, an issue also known as the embedding problem for
Markov chains. The functions provided comprise matrix logarithm based approximations as described
in Israel et al. (2001), as well as Kreinin and Sidelnikova (2001), an expectation-maximization algorithm
and a Gibbs sampling approach, both introduced by Bladt and Serensen (2005). For the expectation-
maximization algorithm Wald confidence intervals based on the Fisher information estimation method
of Oakes (1999) are provided. For the Gibbs sampling approach, equal-tailed credibility intervals
can be obtained. In order to visualize the parameter estimates, a matrix plot function is provided.
The methods described are illustrated by Standard and Poor’s discrete-time corporate credit rating
transition data.

Introduction

The estimation of the parameters of a continuous-time Markov chain (see, e.g., Norris (1998) or
Ethier and Kurtz (2005); also referred to as Markov process) when only discrete time observations
are available is a widespread problem in the statistical literature. Dating back to Elfving (1937), this
issue is also known as the embedding problem for discrete-time Markov chains. The problem occurs
in the modeling of dynamical systems when due to various reasons such as a difficult measurement
procedure only discrete-time observations are available. This is the case in a wide range of applications,
e.g., in the analysis of gene sequence data (see, e.g., FHobolth and Stone (2009), Verbyla et al. (2013)
or Chen et al. (2014)), for causal inference in epidemiology (see, e.g., Zhang and Small (2012)), for
describing the dynamics of open quantum systems (see, e.g., Cubitt et al. (2012)), or in rating based
credit risk modeling (see, e.g., Dorfleitner and Priberny (2013), Yavin et al. (2014) or Hughes and
Werner (2016)) to name only a few.

In the following, an explicit statement of the missing data setting shall be given and the notation
used in this manuscript shall be introduced: Consider that realizations of a continuous-time Markov
chain, i.e., paths of states s € {1,...,S}, which change at times Ty, ..., T are given. For a single path,
this is exemplarily illustrated in figure 1.

State(Time) s(0) s(11) s(1) s(tk-1)  s(tk) s(T)
: : — ANANNNN— : D

Figure 1: Discrete-Time / Continuous-Time Setting

In the missing data situation described in this paper, these paths are however not completely observed,
but only at points in time 0 and T. The available observations are thus the states s(0) and s(T) and
these states are assumed to be observed without error. The cumulative discrete-time data over all
paths can be summarized into conditional transition matrices with absolute transition frequencies
Nr|o or relative transition frequencies Prq (in the following, the abbreviate notations Nt and Py will
be used). The continuous-time state changes s(1;), k € {1, ...,K} are latent variables.

A continuous-time Markov chain has the parameter set
J
Q = {gijhi<i<ii<j<pi=j=s : 9i < 0,qij,izj >0, qij =0,
j=1

which is called generator matrix, transition rate matrix or intensity matrix. The problem is now to
estimate the parameters Q from the partial observations at times 0 and T. This allows to derive a
matrix of conditional discrete-time state change predictions P, for arbitrary time intervals [0, T,] of
length T, by employing the matrix exponential function

Py, = exp(QTy).
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Besides the R package msm, see Jackson et al. (2011), which only provides functions for direct
likelihood optimization, there is no other publicly accessible implementation available which allows
for estimating the parameters of a continuous-time Markov chain given that data have been only
observed on a discrete-time basis. Against this background, this paper introduces the R package
ctmced, a continuously extended, improved and documented implementation based of what started as
supplementary R code to Pfeuffer (2016). The functions of the package are explained and illustrated by
Standard and Poor’s corporate rating transition data. The outline of the paper is as follows: first, three
matrix logarithm adjustment approaches are explained. Second, likelihood inference is illustrated for
an instance of the expectation-maximization algorithm. Third, the implementation of a Gibbs sampler
is presented to facilitate Bayesian inference. Numerical properties of the different approaches are
evaluated and examples for more complex applications of the methods are shown. Finally, the results
of the paper are summarized.

Matrix logarithm adjustment approaches

A basic approach to estimate generator matrices from discrete-time observations is to inversely use
the matrix exponential relationship between conditional discrete time transition matrices Pt (the
cumulative discrete-time state change data) and the parameters Q, i.e., to employ a matrix logarithm
function, which leads to the estimate

o (_ 1\k+1
Q. =log(Pr) = Y %(PT -
k=1

Besides finite truncation of this Taylor series, the matrix logarithm can, e.g., also be calculated by an
eigendecomposition, which is the default setting in ctmed.

However, the matrix logarithm approach has two shortcomings. First, the matrix logarithm is not
a bijective function. As, e.g., shown by Speakman (1967), a transition matrix can have more than one
valid generator. However, for a certain subset of discrete-time transition matrices, it can be shown that
there exists only a single unique generator, for details on criteria (for discrete-time transition matrices)
under which this is the case, see, e.g., Cuthbert (1972), Cuthbert (1973), Singer and Spilerman (1976) or
Israel et al. (2001). Second, the method requires that the derived matrix Q. actually meets the above
outlined parameter constraints for Markov generator matrices, concretely that off diagonal elements
are non-negative, which is not necessarily the case. Therefore, in the following we shall discuss
techniques for adjusting logarithms of the discrete time data matrices Pr, so that proper generator
matrices can be derived.

Diagonal and weighted adjustment

In this context, Israel et al. (2001) introduce two approaches. On the one hand, diagonal adjustment
(DA) works by forcing negative off-diagonal elements of Q. to zero

Gij,i#j = 04ij,c <0

and adjusting the diagonal elements
]
qii = — Z qij
j=1

to ensure that Z]]‘:1 gij = 0. In ctmed such an estimate can be performed by passing method="DA"
to gm(), the generic generator matrix estimation function of the package. The method requires the
specification of a discrete time transition matrix tm, which in the case of matrix logarithm adjustment
approaches is a matrix of relative transition frequencies, which refers to the matrix Pt introduced
above, as input data.

In order to illustrate the methods, we employ Standard and Poor’s (2000) global corporate credit
ratings data. The rating categories in this data set have the commonly known symbols AAA, AA,
A, BBB, BB, B, C and D. These abbreviations represent states of decreasing credit quality whereas
category D stands for the event of credit default, which means that if rated D the obligor cannot or
does not have the willingness to meet its financial obligations any more. The data is provided as
tm_abs a matrix of discrete-time absolute transition frequencies from the first to the last day of the
fiscal year 2000. We have to take into account that the default category D has to be considered as an
absorbing state, because once an obligor has defaulted it can not escape this state any more. Following
the intuitive ordering of decreasing credit quality described above, in this example the default state
will refer to row 8. Thus, in order to convert the data into the required format, we have to create
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a matrix of relative transition frequencies tm_rel by standardizing the row entries to sum to 1 and
adding a unit row vector as row 8 with the last entry of this row being 1. Subsequently, we can apply
the diagonal adjustment approach by specifying tm=tm_rel and the time horizon of this discrete-time
matrix as te=1, because tm_abs and tm_rel refer to credit rating changes for a single year time interval
(fiscal year 2000).

data(tm_abs)
tm_rel <- rbind((tm_abs / rowSums(tm_abs))[1:7,]1, c(rep(@, 7), 1
gmda <- gm(tm=tm_rel, te=1, method="DA")

On the other hand, Israel et al. (2001) also describe the weighted adjustment (WA) of the non-
negative off-diagonal entries as an alternative, i.e., off diagonal elements are adjusted by

Giji#j = Gijc T Z];éz qz],c < 0)|qzjc >0,

j#i

where the cut off jump probability mass is redistributed among the remaining positive off diagonal
elements according to their absolute values. In analogy to diagonal adjustment, a weighted adjustment
estimate can be derived by using method="WA" as follows:

gmwa <- gm(tm=tm_rel, te=1, method="WA")

Quasi-optimization

The third matrix logarithm adjustment approach is the quasi-optimization (QO) procedure of Kreinin
and Sidelnikova (2001). This method finds a generator Q from the set of all possible generator matrices
Q’ by solving the minimization problem

I ]
7argm1 EZ qzj q,]C ,

which means that the algorithm chooses a generator matrix which is closest to the matrix logarithm in
terms of sum of squared deviations.

gmgo <- gm(tm=tm_rel, te=1, method="Q0")

By specifying method="Q0", we can then get a quasi-optimization approach result for our data.
Despite the possibility to just show the parameter estimates for the different methods in the console
using, e.g., print(gmDA) or simply calling gmDA(), ctmed also provides a matrix plot function plotM()
that especially allows the visualization of generator matrix estimates and can be easily accessed by the
generic plot() function:

plot(gmda)
plot(gmwa)
plot(gmqgo)

The results can be seen in figure 2.

Likelihood inference

Given that complete continuous-time data is available, the likelihood function for a generator matrix
is given by

H H qz] exp ql]Rl(T))/
i=1j#i

where N;;(T) denotes the number of transitions from i to j within time T and R;(T) for the cumulative
sojourn times in state i before a state change occurs. A maximum likelihood estimate for a single
off-diagonal element of Q can then be derived by

_Ny(T)
qij,ML = RI(T) ’

for more information see, e.g., Inamura (2006).
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Diagonal Adjustment Weighted Adjustment
AAA 4 =011 0.105 0.005 0 0 0 0 0 AAA 4 =011 0.104 0.005 0 0 0 0 0
AA — 0.006 | -0.096 0.088 0.001 0 0 0 ] AA -| 0.006 | -0.095 0.088 0.001 0 0 0 0

A- 0 0.038 - 0.093  0.002 ] 0.005  0.002 A- 0 0.038 - 0.093  0.002 0 0.005  0.002
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Figure 2: Matrix Logarithm Adjustment Approaches

Expectation-maximization algorithm

The difficulty is now that when data is only observed at times 0 and T, the expressions N;;(T) and
R;(T) are not known. In order to derive a maximum likelihood estimate given this partially accessible
observations setting, Bladt and Serensen (2005) derive an instance of the expectation-maximization
(EM) algorithm. The missing data is then iteratively imputed by conditional expectations given the
current parameter set. This requires a complicated computation of the integrals in

5(0)s(T) Uay0) (foT exp(Qit)u;uf exp(Qi(T — t))dt> U7
ul) exp(QT)uy(r)
T5(0)s(T) i1 %2 ) (foT exp(Q;t)u;uf exp(Q;(T — t))df) uy(7)

d E(N;j(T)|Qy,s(0),s(T)) = ’
and  E(N;;(T)|Qy,5(0),s(T)) ul) exp(QT)uy(r)

E(R;i(T)|Q,5(0),s(T)) =

where 7 refers to an element of the discrete-time absolute transition frequency matrix N7, uy denotes

a unit vector with entry 1 at position k and I points to the current iteration step of the EM algorithm.

The computation of the integrals is carried out following the matrix exponential approach described
in van Loan (1978) and Inamura (2006). In order to perform an estimate based on the EM algorithm
an initial generator matrix guess has to be chosen, which has to be a proper generator matrix. In the
following example, this will be the matrix gm@, which is an arbitrarily chosen generator matrix where
all off diagonal entries are 1 and state 8 is determined as an absorbing state.

gmo <- matrix(1, 8, 8)
diag(gmo) <- @

diag(gm@) <- -rowSums(gmo)
gmo[8,] <- 0

The maximum likelihood estimate can then be obtained by using the gm() function, providing a
matrix of absolute numbers of state changes (in the credit rating example i.e., tm=tm_abs), specifying
the method argument by method="EM" and setting an initial guess (here: gmguess=gmo).

gmem <- gm(tm=tm_abs, te=1, method="EM", gmguess=gm@)

plot(gmem)

plot(gmem$ll, main="Expectation Maximization Algorithm\nLog Likelihood Path”,
xlab="Iteration"”, ylab="Log-Likelihood")
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The result of this estimate can be seen in figure 3 together with a plot of the log-likelihood path of the
single EM algorithm iteration steps.

Direct likelihood optimization

The function being actually optimized by the EM algorithm is the marginal likelihood

I ]
Q|N7) :HH exp(Q-T)) nT’”

i=1j=1

Besides the EM algorithm, also other numerical optimization methods can be employed to perform the
maximization of this function. The R-package msm, which is actually built for estimating Markov mod-
els with covariates, so called multi-state models, contains simplex optimization (opt.method="optim"),
Newton optimization (opt.method="nlm"), a bounded optimization by a quadratic approximation
approach (opt.method="bobyga") introduced by Powell (2009) and a Fisher scoring technique by
Kalbfleisch and Lawless (1985) (opt.method="fisher"). In order to benchmark the EM algorithm, the
different techniques shall be compared using the derived maxima and the time needed to perform the
estimation.

### Data transformation for msm function
mig <- NULL
id <- 0
for(i in 1:7) {
for(j in 1:8) {
if(tm_abs[i,j] > @) {
for(n in 1:tm_abs[i,jl1) {
id <- id + 1
mig <- rbind(mig, c(id, @, i), c(id, 1, j))
3
}
3

}
mig_df <- data.frame(id=mig[,1], time=mig[,2], state=mig[,3])

### Comparing estimates
gmem <- gm(tm_abs, te=1, method="EM", eps=le-7, gmguess=gmo)
ctmcdloglik(gmem$par, tm_abs, 1)

g0 <- rbind(matrix(1, 7, 8), 0)
msm_est1l <- msm(state ~ time, id, data=mig_df, gmat=qo,
opt.method="optim”, gen.inits=TRUE)
ctmcdloglik(gmatrix.msm(msm_est)[[1]], tm_abs, 1)
msm_est2 <- msm(state ~ time, id, data=mig_df, gmat=qo,
opt.method="nlm", gen.inits=TRUE)
ctmcdloglik(gmatrix.msm(msm_est)[[1]], tm_abs, 1)
msm_est3 <- msm(state ~ time, id, data=mig_df, gmat=qo,
opt.method="nlm", gen.inits=TRUE)
ctmcdloglik(gmatrix.msm(msm_est)[[1]], tm_abs, 1)

msm_est4 <- msm(state ~ time, id, data=mig_df, gmat=qo,
opt.method="fisher"”, gen.inits=TRUE)

The marginal likelihood function for a given generator matrix, discrete-time interval T and corre-
sponding discrete-time transition frequencies Nt can be computed by the function ctmcdlogLik().
Optimization with the previously employed remote initial value gmo fails for all msm optimization
methods, with the closer built-in parameter initialization gen. inits=TRUE, we obtain the results pre-
sented in table 1. Optimization also fails for the method of Kalbfleisch and Lawless (1985). However, it
is already mentioned in the helpfiles for the msm() function, that optimization using this approach lacks
stability. Thus, the advantages of the EM algorithm in this specific data setting where no covariates
are included in the calculation are its numerical performance and its stability.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 132

Method | EM optim nlm bobyqa
Log-Likelihood | -3194.255 -3194.255 -3194.255 -3194.259
Time Elapsed [s] 0.46 4.65 28.33 167.52

Table 1: Likelihood Optimization - Numerical Comparison

Confidence intervals

The package ctmed also provides a function for deriving a confidence interval based on the asymptotic
normality of the maximum likelihood estimate. As however in a partially observed data setting
the maximum likelihood estimate is based on the likelihood function of the complete observations
{N;j(T), Ri(T) }1<i<r1,1<j<J given that only part of them, N are actually available, the Fisher informa-
tion matrix has to be adjusted for the missing information in order to derive proper standard error
estimates. Following Oakes (1999), a Fisher information matrix estimate for the observed data Iy, can
be obtained by

Expectation Maximization Algorithm

Expectation—-Maximization Algorithm Log Likelihood Path

AAA - =041 0.105 0.005 0 0 0 0 0 3 5000000000000000
= o
<
AA -| 0006 | -0.095 0088 0.001 0 0 0 0 i o°
°
A o0 0.037 - 0093  0.002 0 0004  0.002 - 8 o
H
g ¢
£ BBB o 0001 0003 0044 0401 0044 0004 0002 0.003 £ o
g -
BB 0 0.004 0 0.044 0 7@ o
5>
2
B- o0 0006 0003 0.006 0.055 - o
7 o
cH o 0 0 0 0.201 00
8 gooocooooooo
p-J o 0 0 0 0 0 0 0 S 0°
} T T T T T T 1 I T T T T T
AAA  AA A BBE BB B c D 0 10 20 30 40

To Iteration

Figure 3: Maximum-Likelihood Estimation.

Bladt and Serensen (2009) then concretize this expression for a generator matrix estimation
framework and derive

! 1 9
INg (i-1) 14, (i-1) 14 ng(Nij(T)‘Ql,S(O),S(T)) - g%E(Nij(T)\Qz,S(O),s(T))
1 i
0
+TE(R1'(T)|Q1,S(0),S(T))

qij

1 9 5
and  Ing (i-1)14j,(r- 1)1+ = — EWi/ﬂE(Z\fij(T)\QZ,S(O),S(T)) + o E(R/(T)|Q1,5(0), s(T))

ij

as diagonal and off-diagonal (i,j) # (i, ') elements of the observed Fisher information matrix In.
The confidence interval then has the common form

qij = 21 sse(q;7),

wherez; _ s denotes the 1 — 5 quantile of the standard normal distribution. The method is implemented
as a function ciEM(), which can be easily accessed using the generic gmci() command, which takes as
arguments an EM algorithm estimate object and a significance level alpha.

ciem <- gmci(gmem, alpha=.05)
plot(ciem)

By default, the derivatives for the information matrix are calculated using the analytical expressions of
Smith and dos Reis (2017) (cimethod="SdR"), numerical derivatives as suggested in Bladt and Serensen
(2009) can be accessed by cimethod="BS".

The matrix plot function can also be applied to "gmci” interval estimate objects, see, e.g., figure 4. One
can see in this example that interval estimates are not provided for all generator matrix entries. This
is due to the fact that the numerical evaluation of the above described expressions for deriving the
Fisher information matrix and inverting it becomes unstable when the parameter estimates are small.
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Thus a lower limit eps can or has to be specified so that for generator matrix elements smaller than
eps, no interval estimates are obtained. By default eps=1e-04.

95% Wald Confidence Interval (Oakes Standard Error)

AAA —  [-0.15; -0.066] [0.061; 0.15] [-0.0084; 0.018]
AA — [0.00077;0.012] [-0.12; -0.074] [0.067; 0.11] [-0.0041; 0.0059]
A~ [0.028; 0.047] _ [0.077; 0.11] [-0.0013; 0.0054] [0.00086; 0.0081]  [-0.00057; 0.0045]
£ BBB [-0.00061; 0.0018] [-0.00017; 0.0062] [0.033; 0.054] [-0.12; -0.085] [0.034; 0.055] [7.6e-05; 0.0083]  [-0.00079; 0.0044]  [0.00036; 0.0064]
"EL BB - [-0.00024; 0.0083] [0.03; 0.057] [0.066; 0.11] [0.001; 0.016]
B - [0.00053; 0.011] [-9e-04; 0.0074] [-6.5e-05; 0.012] [0.042; 0.076] [0.045; 0.083] [0.038; 0.071]
C [-0.016; 0.029] [0.07; 0.24] [0.11; 0.29]
D - [0; 0] [0; 0] [0; 0] [0; 0] [0; 0] [0; 0] [0; 0] [0; 0]
T T T T T T T 1
AAA AA A BBB BB B c D

To

Figure 4: Confidence Interval

Bayesian inference

Gibbs sampler

Bladt and Serensen (2005) show that the Gamma distribution I'(¢, ) constitutes a conjugate prior for
the off diagonal elements of the generator matrix under the continuous-time Markov chain likelihood
function. The posterior distribution can then be derived as

1
f(QI{s(0),s(T)}) “L(QI{S(O),S(T)})HHqijif_leXP(—qiiji)

i=1j#i

1
Nii(T)+;i—
“1111;[%’( P e (— g (Ri(T) + ).
i=1j#i

Based on these expressions, they describe a Gibbs sampling algorithm (GS) which in analogy to the
EM algorithm iteratively simulates the missing data N;;(T) and R;(T) given the current parameter
estimate and subsequently draws new parameter estimates given the imputed data. In order to use
the method, the prior parameters have to be specified as a "1ist" object named prior. Thereby, the
first element of the list has to be an I x | matrix of the Gamma parameters ¢;; and the second element
a vector of length I with the parameters ;. Consider, e.g.,

pr <- list()

pri[11] <- matrix(1, 8, 8)
prC[111[8,]1 <- @

pri[21] <- c(rep(5, 7), Inf)

as a simple example, where ¢;; = 1, ; = 5 and there is an absorbing state 8, which can be specified by
determining ¢. g = 0 and g = 0. As for the EM algorithm we need to provide a matrix of absolute,
rather than relative, transition frequencies as input data (in our example tm=tm_abs). Furthermore,
the length of the burn-in period must be chosen (here: burnin=1000). Convergence of the algorithm is
evaluated by the approach of Heidelberger and Welch (1981), which is implemented in the R package
coda, see Plummer et al. (2006). The advantage of this method is that it can be applied to single chains;
a shortcoming is that, as for similar methods, evaluation with multiple parameters is time consuming.
Thus, besides specifying a p-value for the convergence test by the argument conv_pvalue, one can also
set a frequency criterion conv_freq for how often with an equidistant number of trials convergence
shall be checked. By default, conv_pvalue=0.05 and conv_freg=10. One should notice that as the
method of Heidelberger and Welch (1981) is a two sample location test for comparing the stability
of the parameter estimates at the beginning and the end of the Markov chain, the hypotheses are set
so that an increasing p-value implies a stricter convergence criterion. Another stopping rule is the
maximum number of iterations niter, which by default is set as niter=1e04. If convergence according
to the method of Heidelberger and Welch (1981) is not given before the maximum number of iterations
is reached, a warning is displayed.

Setting the method argument to the value "GS" will then lead the generic generator matrix estima-
tion method to provide a posterior mean estimate
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gmgs <- gm(tm=tm_abs, te=1, method="GS", prior=pr, burnin=1000)
plot(gmgs)

The result can be seen in figure 5.

Gibbs Sampler

AAA - 0.108 0.01 0.005 0.004 0.004 0.005 0.004

AA — 0.007 | -0.103 0.087 0.003 0001 0001 0.001 0.001

A -{ 0.001 0.038 - 0.092 0.003 0.001 0.005 0.002

BBB - 0.001 0.004 0.044 -0.105 0.045 0.005 0.003 0.004

From

BB - 0.001 0.005 0.002 0.044 0.002

B 4 0.001 0.006 0.004 0.007 0.055

C - 0.008 0.011 0.01 0.011 0.202

To

Figure 5: Posterior Mean Estimate

Endpoint-conditioned path sampling

Central to the Gibbs sampling algorithm is the sampling of realizations from the missing data full
conditional distribution given the current parameters and the discrete time observations. This yields
the sample paths from a continuous-time Markov chain with generator matrix estimate Q; given
initial and end states s(0) and s(T). In the package, two methods for deriving these sampling paths
are provided, on the one hand the modified rejection sampling approach of Nielsen (2002) which can
be accessed by sampl_method="ModRej", on the other hand the uniformization sampling scheme of
Fearnhead and Sherlock (2006), which is set as default method and can be manually employed by
setting sampl_method="Unif". As the simulation of trajectories of the process is in practice often very
time consuming, the method is implemented in C++ based on the source code of Fintzi (2016) which
itself is built upon the supplementary R code of Hobolth (2008). Figure 6 shows the time (in seconds)
needed for sampling 10000 trajectories for each of the two methods and any combination of initial and
endstates.

speedmat_modrej <- matrix(@, 8, 8)
speedmat_unif <- matrix(@, 8, 8)
tpm <- expm(gmgs$par)
for(i in 1:7){
for(j in 1:8){
elem <- matrix(@, 8, 8)
elem[i,j] <- 1e5
t0 <- proc.time()
rNijTRiT_ModRej(elem, 1, gmgs$par)
speedmat_modrej[i,j] <- (proc.time() - t@)[3]
t0 <- proc.time()
rNijTRiT_Unif(elem, 1, gmgs$par,tpm)
speedmat_unif[i,j] <- (proc.time() - t@)[3]
}
}

plotM(speedmat_modrej,
main="Time for Simulation of 100,000 Paths\nModified Rejection Sampling”,
xnames=rownames (tm_abs), ynames=colnames(tm_abs))

plotM(speedmat_unif,
main="Time for Simulation of 100,000 Paths\nUniformization Sampling”,
xnames=rownames (tm_abs), ynames=colnames(tm_abs))

Although in this example, the uniformization sampling approach clearly outperforms modified
rejection sampling, it has to be mentioned that the computing time for deriving discrete time state
transitions in the uniformization approach (which is carried out by using the matrix exponential) is not
included, because it is only calculated once in each Gibbs sampling iteration step. Moreover, rejection
rates of the approach of Nielsen (2002) might be lower if trajectories are sampled for a whole row
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Time [sec] for Simulation of 100,000 Paths Time [sec] for Simulation of 100,000 Paths
Modified Rejection Sampling Uniformization Sampling
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Figure 6: Endpoint-Conditioned Trajectory Sampling

of a transition matrix and not single initial and end state combinations because then more than one
possible path ending can be accepted in a single draw. Therefore, to provide the option to combine
the individual strengths of both approaches, it is possible to set sampl_method="Comb" and provide a
matrix with entries of either "M" or "U" for the optional argument combmat, specifying which algorithm
shall be used for simulating trajectories for the specific start and endpoint combination. Moreover, it is
possible to include an own external sampling algorithm implementation by specifying method="Ext"
and an argument sampl_func with a sampling function of the format

sf <- function(tmabs, te, gmest) {
### Derive Expected Holding Times (RiT) and Number of State Transitions (NijT)
return(list(RiT=..., NijT=...))

}

Thereby, the matrix of absolute transition frequencies tmabs, the time interval for the discrete-time
transitions te and the current parameter estimate of the Gibbs sampler gmest are input variables to
this function and a vector of cumulative simulated holding times RiT and a matrix of continuous-time
state changes NijT needs to be returned.

Parallelization

As the numerical performance of the Gibbs sampling algorithm is severely dependent on the per-
formance of the endpoint conditioned path sampling algorithm, we would like to briefly point out
that the whole method can also be run in parallel. This can be achieved by setting up a number of
nco independent chains with N/nco iterations each, whereas N denotes the total number of iterations
and nco the number of parallel threads. As long as the initial states of the chain are forgotten, the
single generator matrix draws can be seen as independent realizations. Thus, a burnin period must be
considered in every thread and conv_pvalue has to be set to 1 in order to ensure that the predetermined
number of iterations is reached. Without loss of generality we use the packages foreach Microsoft and
Weston (2017) and doParallel Corporation and Weston (2017) to provide with a simple example.

library(foreach)

library(doParallel)

N <- 1eb5

nco <- detectCores()

cl <- makeCluster(nco)

registerDoParallel(cl)

gspar=foreach(i=1:nco, .packages=c("ctmcd”, "expm")) %dopar
gm(tm=tm_abs, te=1, method="GS", burnin=1000, prior=pr,

conv_pvalue=1, niter=N / nco)
stopCluster(cl)

### Derive Estimate
parlist <- lapply(gspar, function(x) x$par)
parest <- Reduce('+', parlist) / nco

In this multiple chain setting, convergence can be analyzed by the potential scale reduction factor
diagnostic of Gelman and Rubin (1992). The potential scale reduction factor describes by what fraction
the variance of the draws in the chain can be reduced if the chain is extended to an infinite length.
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Convergence is assumed when the factor is close to 1. Rules of thumb on how close its value should
be are, e.g., 1.2, see Bolker (2008) or 1.1, see Gelman et al. (2011). With the absorbing default state and
diagonal elements being only a linear combination of the parameters in the single rows, chains for 49
parameters have to be evaluated. This can be conducted by employing the multivariate extension of
the originally univariate factor, which has been introduced by Brooks and Gelman (1998).

### Check Convergence

library(coda)

chainlist <- as.mcmc.list(lapply(gspar, function(x) {
as.mcmc(do.call(rbind, lapply(x$draws, as.vector)))

1))
parchainlist <- lapply(chainlist,

function(x) x[,as.vector(parest) > @])
gelman.diag(parchainlist)

Employing the implementation of this diagnostic in the coda package, we derive a multivariate
potential scale reduction factor of 1.01 in this example. Thus, convergence may be assumed.

Credibility intervals

After having discussed various aspects of point estimation, an example for Bayesian interval estimation
shall be presented as well. Bladt and Serensen (2009) show that equal-tailed credibility intervals can
be easily obtained from samples of the joint posterior distribution by empirical quantiles

[%j,(ngqij,(L%q]-

Calling gmci(), the generic function for generator matrix interval estimates, and specifying that an
interval based on a Gibbs sampling object (here: gmgs) shall be derived will automatically call the
¢iGS() subroutine and yield an equal-tailed credibility interval as outlined above. Setting a confidence
level alpha=0.05 will then yield the estimate which can be seen in figure 7.

cigs <- gmci(gm=gmgs, alpha=0.05)
plot(cigs)

95% Equal Tailed Credibility Interval
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Figure 7: Credibility Interval

Comparison of Approaches

The approaches "DA", "WA", "EM" and "GS" are suitable for state spaces of size 2 or greater. However,
with a state space of size 2, the approaches diagonal adjustment and weighted adjustment will always
yield the same result as there is only one possible rearrangement of off-diagonal elements in this case.
Method "Q0" requires a state space of at least size 3 as two off diagonal elements for each row of a
generator matrix are required to perform the implemented sorting scheme.

Figure 8 shows how the methods scale concerning numerical performance. The simulation study
shows examples for the average time in seconds to perform an estimate with each of the methods
outlined in this manuscript. Thereby, the EM algorithm and the Gibbs sampler are run for 100
iterations each and the data on which the estimates are performed is generated by distributing 1000
and respectively, 10000 discrete-time transitions over a single unit time horizon uniformly over
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matrices of dimension 2 x 2 to 10 x 10. The estimation procedures are repeated 1000 times and the
mean execution times are summarized in the graphics below. One can recognize that the matrix
logarithm adjustment approaches require by far less computation time than the EM algorithm and the
Gibbs sampler and that with increasing dimension of the state space, computing time is increasing as
well. Moreover, one can also identify that the matrix logarithm adjustment approaches and the EM
algorithm are - in contrast to the Gibbs sampler - almost only dependent on the size of the state space
and not the number of discrete-time transitions in the sample.

Numerical Performance Given Dimension Numerical Performance Given Dimension
1000 Discrete-Time Transitions 10000 Discrete-Time Transitions
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Figure 8: Speed Comparison

Profiles of Discrete-Time Transitions into Absorbing States

Based on the derived parameter estimates, predictions about discrete-time transitions into absorbing
states of the Markov chain can be made and moreover, systemized as a function of the length of the
discrete time interval. In the credit rating example shown in this paper, such functions are discrete time
probabilities of default of a given initial rating category depending on the time horizon (in years) and
shall be called probability of default profiles in the following. Thereby, an advantage of the Bayesian
approach is that in contrast to the other methods outlined, interval estimates for such profiles can
be easily derived. This involves the computation of empirical quantiles p;, ;j s and py, i1« of all
elements of the discrete time transition matrix estimates

(Pt,1,---, P 1) = (exp(Qita), ..., exp(Qrts))

given the single Gibbs sampling generator matrix draws Qy, ..., Qr, see Bladt and Serensen (2009).

For the seven possible initial states in the credit rating example, probability-of-default profiles can
then be obtained using the following code, the results are shown in figure 9.

tmax <- 20
for(cat in 1:7){
absStvec <- sapply(1:tmax, function(t) expm(gmgs$par x t)[cat,8])
quantMat <- matrix(@, 4, tmax + 1)
for(t in 1:tmax){
dtdraws <- lapply(gmgs$draws, function(x) expm(t * x))
drawvec <- sapply(1:length(gmgs$draws), function(x) dtdraws[[x]]1[cat,81)
quantMat[,t + 1] <- quantile(drawvec, c(.025, .05, .95, .975))
}
plot(@:tmax, c(@, absStvec), t="1", lwd=3, ylim=c(@, max(quantMat)),
main=paste@("Absorbing State Profiles\nInitial Rating Category ",
rownames (tm_abs)[cat]),
xlab="Time [Years]"”, ylab="Probability of Default")
for(i in 1:4)
lines(0@:tmax, quantMat[i,], lty=c(3, 2, 2, 3)[il)
legend("topleft”, lty=c(3, 2, 1), c("95%", "90%", "Median"))

Complementary to the solid line, which represents the posterior mean estimate based discrete-
time probability of default predictions, pointwise credibility intervals for # = 0.05 and a = 0.1 are
computed here. As expected, one can recognize that with increasing time horizon, the width of the
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Figure 9: Probability-of-Default Profiles
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intervals is increasing as well. Furthermore, the width of intervals increases with decreasing number
of observations in the specific category. This can be seen, e.g., for the profile with pointwise intervals
of initial rating category "AAA".

Summary

The problem of estimating the parameters of a continuous-time Markov chain from discrete-time
data occurs in a wide range of applications and especially plays an important role in gene sequence
data analysis and rating based credit risk modeling. This paper introduces and illustrates the ctmcd
package, which provides an implementation of different approaches to derive such estimates. It
supports matrix logarithm-based methods with diagonal and weighted adjustment as well as a quasi-
optimization procedure. Moreover, maximum likelihood estimation is implemented by an instance
of the EM algorithm and Bayesian estimates can be derived by a Gibbs sampling procedure. For the
latter two approaches also interval estimates can be obtained. The Bayesian approach can be used to
derive pointwise credibility intervals of discrete-time transition probabilities and systematic profiles
of discrete-time transition probabilities into absorbing states given the corresponding time horizon.
Above all, a matrix plot function is provided and can be used to visualize both point and interval
estimates.
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