
Package ‘crs’
September 29, 2024

Version 0.15-38

Date 2024-09-27

Imports boot, stats, np, quantreg

Suggests logspline, quadprog, rgl

Title Categorical Regression Splines

Description Regression splines that handle a mix of continuous and categorical (discrete) data of-
ten encountered in applied settings. I would like to gratefully acknowledge support from the Nat-
ural Sciences and Engineering Research Coun-
cil of Canada (NSERC, <https://www.nserc-crsng.gc.ca>), the Social Sciences and Hu-
manities Research Coun-
cil of Canada (SSHRC, <https://www.sshrc-crsh.gc.ca>), and the Shared Hierarchi-
cal Academic Research Computing Network (SHARC-
NET, <https://www.sharcnet.ca>). We would also like to acknowledge the contribu-
tions of the GNU GSL authors. In particular, we adapt the GNU GSL B-spline rou-
tine gsl_bspline.c adding automated support for quantile knots (in addition to uniform knots), pro-
viding missing functionality for derivatives, and for extending the splines beyond their endpoints.

License GPL (>= 3)

URL https://github.com/JeffreyRacine/R-Package-crs

BugReports https://github.com/JeffreyRacine/R-Package-crs/issues

Repository CRAN

NeedsCompilation yes

Author Jeffrey S. Racine [aut, cre],
Zhenghua Nie [aut],
Brian D. Ripley [ctb] (stepCV.R)

Maintainer Jeffrey S. Racine <racinej@mcmaster.ca>

Date/Publication 2024-09-29 06:50:02 UTC

Contents
crs-package . 2
clsd . 3

1

https://www.nserc-crsng.gc.ca
https://www.sshrc-crsh.gc.ca
https://www.sharcnet.ca
https://github.com/JeffreyRacine/R-Package-crs
https://github.com/JeffreyRacine/R-Package-crs/issues

2 crs-package

cps71 . 8
crs . 10
crsiv . 18
crsivderiv . 23
crssigtest . 28
Engel95 . 30
frscv . 32
frscvNOMAD . 35
glp.model.matrix . 39
gsl.bs . 40
krscv . 42
krscvNOMAD . 45
npglpreg . 50
snomadr . 58
tensor.prod.model.matrix . 64
uniquecombs . 66
wage1 . 67

Index 70

crs-package Nonparametric Regression Splines with Continuous and Categorical
Predictors

Description

This package provides a method for nonparametric regression that combines the (global) approxi-
mation power of regression splines for continuous predictors (‘x’) with the (local) power of kernel
methods for categorical predictors (‘z’). The user also has the option of instead using indicator
bases for the categorical predictors. When the predictors contain both continuous and categorical
(discrete) data types, both approaches offer more efficient estimation than the traditional sample-
splitting (i.e. ‘frequency’) approach where the data is first broken into subsets governed by the
categorical z.

To cite the crs package type: ‘citation("crs")’ (without the single quotes).

For a listing of all routines in the crs package type: ‘library(help="crs")’.

For a listing of all demos in the crs package type: ‘demo(package="crs")’.

For a ‘vignette’ that presents an overview of the crs package type: ‘vignette("crs")’.

Details

For the continuous predictors the regression spline model employs the B-spline basis matrix using
the B-spline routines in the GNU Scientific Library (https://www.gnu.org/software/gsl/).

The tensor.prod.model.matrix function is used to construct multivariate tensor spline bases
when basis="tensor" and uses additive B-splines otherwise (i.e. when basis="additive").

For the discrete predictors the product kernel function is of the ‘Li-Racine’ type (see Li and Racine
(2007) for details) which is formed by constructing products of one of the following univariate
kernels:

https://www.gnu.org/software/gsl/

clsd 3

(z is discrete/nominal) l(zi, z, λ) = 1 if zi = z, and λ if zi ̸= z. Note that λ must lie between 0
and 1.

(z is discrete/ordinal) l(zi, z, λ) = 1 if |zi − z| = 0, and λ|zi−z| if |zi − z| ≥ 1. Note that λ must
lie between 0 and 1.

Alternatively, for the ordinal/nominal predictors the regression spline model will use indicator basis
functions.

Author(s)

Jeffrey S. Racine <racinej@mcmaster.ca> and Zhenghua Nie <niez@mcmaster.ca>

Maintainer: Jeffrey S. Racine <racinej@mcmaster.ca>

I would like to gratefully acknowledge support from the Natural Sciences and Engineering Re-
search Council of Canada (https://www.nserc-crsng.gc.ca), the Social Sciences and Humani-
ties Research Council of Canada (https://www.sshrc-crsh.gc.ca), and the Shared Hierarchical
Academic Research Computing Network (https://www.sharcnet.ca).

References

Li, Q. and J.S. Racine (2007), Nonparametric Econometrics: Theory and Practice, Princeton Uni-
versity Press.

Ma, S. and J.S. Racine and L. Yang (2015), “Spline Regression in the Presence of Categorical
Predictors,” Journal of Applied Econometrics, Volume 30, 705-717.

Ma, S. and J.S. Racine (2013), “Additive Regression Splines with Irrelevant Categorical and Con-
tinuous Regressors,” Statistica Sinica, Volume 23, 515-541.

clsd Categorical Logspline Density

Description

clsd computes the logspline density, density derivative, distribution, and smoothed quantiles for a
one (1) dimensional continuous variable using the approach of Racine (2013).

Usage

clsd(x = NULL,
beta = NULL,
xeval = NULL,
degree = NULL,
segments = NULL,
degree.min = 2,
degree.max = 25,
segments.min = 1,
segments.max = 100,
lbound = NULL,

https://www.nserc-crsng.gc.ca
https://www.sshrc-crsh.gc.ca
https://www.sharcnet.ca

4 clsd

ubound = NULL,
basis = "tensor",
knots = "quantiles",
penalty = NULL,
deriv.index = 1,
deriv = 1,
elastic.max = TRUE,
elastic.diff = 3,
do.gradient = TRUE,
er = NULL,
monotone = TRUE,
monotone.lb = -250,
n.integrate = 500,
nmulti = 1,
method = c("L-BFGS-B", "Nelder-Mead", "BFGS", "CG", "SANN"),
verbose = FALSE,
quantile.seq = seq(.01,.99,by=.01),
random.seed = 42,
maxit = 10^5,
max.attempts = 25,
NOMAD = FALSE)

Arguments

x a numeric vector of training data

beta a numeric vector of coefficients (default NULL)

xeval a numeric vector of evaluation data

degree integer/vector specifying the polynomial degree of the B-spline basis for each
dimension of the continuous x (default degree=2)

segments integer/vector specifying the number of segments of the B-spline basis for each
dimension of the continuous x (i.e. number of knots minus one) (default segments=1,
i.e. Bezier curve)

segments.min, segments.max
when elastic.max=FALSE, the minimum/maximum segments of the B-spline
basis for each of the continuous predictors (default segments.min=1,segments.max=100)

degree.min, degree.max
when elastic.max=FALSE the minimum/maximum degree of the B-spline basis
for each of the continuous predictors (default degree.min=2, degree.max=25)

lbound, ubound lower/upper bound for the support of the density. For example, if there is a priori
knowledge that the density equals zero to the left of 0, and has a discontinuity at
0, the user could specify lbound = 0. However, if the density is essentially zero
near 0, one does not need to specify lbound

basis a character string (default basis="tensor") indicating whether the additive or
tensor product B-spline basis matrix for a multivariate polynomial spline or gen-
eralized B-spline polynomial basis should be used

clsd 5

knots a character string (default knots="quantiles") specifying where knots are
to be placed. ‘quantiles’ specifies knots placed at equally spaced quantiles
(equal number of observations lie in each segment) and ‘uniform’ specifies knots
placed at equally spaced intervals

deriv an integer l (default deriv=1) specifying whether to compute the univariate lth
partial derivative for each continuous predictor (and difference in levels for each
categorical predictor) or not and if so what order. Note that if deriv is higher
than the spline degree of the associated continuous predictor then the derivative
will be zero and a warning issued to this effect

deriv.index an integer l (default deriv.index=1) specifying the index (currently only sup-
ports 1) of the variable whose derivative is requested

nmulti integer number of times to restart the process of finding extrema of the cross-
validation function from different (random) initial points (default nmulti=1)

penalty the parameter to be used in the AIC criterion. The method chooses the number of
degrees plus number of segments (knots-1) that maximizes 2*logl-penalty*(degree+segments).
The default is to use the penalty parameter of log(n)/2 (2 would deliver stan-
dard AIC, log(n) standard BIC)

elastic.max, elastic.diff
a logical value/integer indicating whether to use ‘elastic’ search bounds such that
the optimal degree/segment must lie elastic.diff units from the respective
search bounds

do.gradient a logical value indicating whether or not to use the analytical gradient during
optimization (defaults to TRUE)

er a scalar indicating the fraction of data range to extend the tails (default 1/log(n),
see extendrange for further details)

monotone a logical value indicating whether modify the standard B-spline basis function
so that it is tailored for density estimation (default TRUE)

monotone.lb a negative bound specifying the lower bound on the linear segment coefficients
used when (monotone=FALSE)

n.integrate the number of evenly spaced integration points on the extended range specified
by er (defaults to 500)

method see optim for details

verbose a logical value which when TRUE produces verbose output during optimization

quantile.seq a sequence of numbers lying in [0, 1] on which quantiles from the logspline
distribution are obtained

random.seed seeds the random number generator for initial parameter values when optim is
called

maxit maximum number of iterations used by optim

max.attempts maximum number of attempts to undertake if optim fails for any set of initial
parameters for each value of nmulti

NOMAD a logical value which when TRUE calls snomadr to determine the optimal degree
and segments

6 clsd

Details

Typical usages are (see below for a list of options and also the examples at the end of this help file)

model <- clsd(x)

clsd computes a logspline density estimate of a one (1) dimensional continuous variable.

The spline model employs the tensor product B-spline basis matrix for a multivariate polynomial
spline via the B-spline routines in the GNU Scientific Library (https://www.gnu.org/software/
gsl/) and the tensor.prod.model.matrix function.

When basis="additive" the model becomes additive in nature (i.e. no interaction/tensor terms
thus semiparametric not fully nonparametric).

When basis="tensor" the model uses the multivariate tensor product basis.

Value

clsd returns a clsd object. The generic functions coef, fitted, plot and summary support objects
of this type (er=FALSE plots the density on the sample realizations (default is ‘extended range’ data),
see er above, distribution=TRUE plots the distribution). The returned object has the following
components:

density estimates of the density function at the sample points
density.er the density evaluated on the ‘extended range’ of the data
density.deriv estimates of the derivative of the density function at the sample points
density.deriv.er

estimates of the derivative of the density function evaluated on the ‘extended
range’ of the data

distribution estimates of the distribution function at the sample points
distribution.er

the distribution evaluated on the ‘extended range’ of the data
xer the ‘extended range’ of the data
degree integer/vector specifying the degree of the B-spline basis for each dimension of

the continuous x
segments integer/vector specifying the number of segments of the B-spline basis for each

dimension of the continuous x
xq vector of quantiles
tau vector generated by quantile.seq or input by the user (lying in [0,1]) from

which the quantiles xq are obtained

Usage Issues

This function should be considered to be in ‘beta’ status until further notice.

If smoother estimates are desired and degree=degree.min, increase degree.min to, say, degree.min=3.

The use of ‘regression’ B-splines can lead to undesirable behavior at the endpoints of the data (i.e.
when monotone=FALSE). The default ‘density’ B-splines ought to be well-behaved in these regions.

https://www.gnu.org/software/gsl/
https://www.gnu.org/software/gsl/

clsd 7

Author(s)

Jeffrey S. Racine <racinej@mcmaster.ca>

References

Racine, J.S. (2013), “Logspline Mixed Data Density Estimation,” manuscript.

See Also

logspline

Examples

Not run:
Old Faithful eruptions data histogram and clsd density

library(MASS)
data(faithful)
attach(faithful)

model <- clsd(eruptions)

ylim <- c(0,max(model$density,hist(eruptions,breaks=20,plot=FALSE)$density))

plot(model,ylim=ylim)

hist(eruptions,breaks=20,freq=FALSE,add=TRUE,lty=2)

rug(eruptions)

summary(model)

coef(model)

Simulated data

set.seed(42)
require(logspline)

Example - simulated data

n <- 250
x <- sort(rnorm(n))
f.dgp <- dnorm(x)

model <- clsd(x)

Standard (cubic) estimate taken from the logspline package
Compute MSEs

mse.clsd <- mean((fitted(model)-f.dgp)^2)

8 cps71

model.logspline <- logspline(x)

mse.logspline <- mean((dlogspline(x,model.logspline)-f.dgp)^2)

ylim <- c(0,max(fitted(model),dlogspline(x,model.logspline),f.dgp))

plot(model,
ylim=ylim,
sub=paste("MSE: logspline = ",format(mse.logspline),", clsd = ",
format(mse.clsd)),
lty=3,
col=3)

xer <- model$xer

lines(xer,dlogspline(xer,model.logspline),col=2,lty=2)
lines(xer,dnorm(xer),col=1,lty=1)

rug(x)

legend("topright",c("DGP",
paste("Cubic Logspline Density (package 'logspline', knots = ",

model.logspline$nknots,")",sep=""),
paste("clsd Density (degree = ", model$degree, ", segments = ",

model$segments,", penalty = ",round(model$penalty,2),")",sep="")),
lty=1:3,
col=1:3,
bty="n",
cex=0.75)

summary(model)

coef(model)

Simulate data with known bounds

set.seed(42)
n <- 10000
x <- runif(n,0,1)

model <- clsd(x,lbound=0,ubound=1)

plot(model)

End(Not run)

cps71 Canadian High School Graduate Earnings

cps71 9

Description

Canadian cross-section wage data consisting of a random sample taken from the 1971 Canadian
Census Public Use Tapes for male individuals having common education (grade 13). There are 205
observations in total.

Usage

data("cps71")

Format

A data frame with 2 columns, and 205 rows.

logwage the first column, of type numeric

age the second column, of type integer

Source

Aman Ullah

References

Pagan, A. and A. Ullah (1999), Nonparametric Econometrics, Cambridge University Press.

Examples

Example - we compare the nonparametric local linear kernel regression
method with the regression spline for the cps71 data. Note that there
are no categorical predictors in this dataset so we are merely
comparing and contrasting the two nonparametric estimates.

data(cps71)
attach(cps71)
require(np)

model.crs <- crs(logwage~age,complexity="degree-knots")
model.np <- npreg(logwage~age,regtype="ll")

plot(age,logwage,cex=0.25,col="grey",
sub=paste("crs-CV = ", formatC(model.crs$cv.score,format="f",digits=3),

", npreg-CV = ", formatC(model.npbwsfval,format="f",digits=3),sep=""))
lines(age,fitted(model.crs),lty=1,col=1)
lines(age,fitted(model.np),lty=2,col=2)

crs.txt <- paste("crs (R-squared = ",formatC(model.crs$r.squared,format="f",digits=3),")",sep="")
np.txt <- paste("ll-npreg (R-squared = ",formatC(model.np$R2,format="f",digits=3),")",sep="")

legend(22.5,15,c(crs.txt,np.txt),lty=c(1,2),col=c(1,2),bty="n")

summary(model.crs)
summary(model.np)
detach("package:np")

10 crs

crs Categorical Regression Splines

Description

crs computes a regression spline estimate of a one (1) dimensional dependent variable on an r-
dimensional vector of continuous and categorical (factor/ordered) predictors (Ma and Racine
(2013), Ma, Racine and Yang (2015)).

Usage

crs(...)
Default S3 method:
crs(xz,

y,
degree = NULL,
segments = NULL,
include = NULL,
kernel = TRUE,
lambda = NULL,
complexity = c("degree-knots","degree","knots"),
knots = c("quantiles","uniform","auto"),
basis = c("auto","additive","tensor","glp"),
deriv = 0,
data.return = FALSE,
prune = FALSE,
model.return = FALSE,
tau = NULL,
weights = NULL,
...)

S3 method for class 'formula'
crs(formula,

data = list(),
degree = NULL,
segments = NULL,
include = NULL,
degree.max = 10,
segments.max = 10,
degree.min = 0,
segments.min = 1,
cv.df.min = 1,
cv = c("nomad","exhaustive","none"),
cv.threshold = 1000,
cv.func = c("cv.ls","cv.gcv","cv.aic"),
kernel = TRUE,
lambda = NULL,

crs 11

lambda.discrete = FALSE,
lambda.discrete.num = 100,
complexity = c("degree-knots","degree","knots"),
knots = c("quantiles","uniform","auto"),
basis = c("auto","additive","tensor","glp"),
deriv = 0,
data.return = FALSE,
prune = FALSE,
model.return = FALSE,
restarts = 0,
random.seed = 42,
max.bb.eval = 10000,
initial.mesh.size.real = "r1.0e-01",
initial.mesh.size.integer = "1",
min.mesh.size.real = paste(sqrt(.Machine$double.eps)),
min.mesh.size.integer = 1,
min.poll.size.real = 1,
min.poll.size.integer = 1,
opts=list(),
nmulti = 5,
tau = NULL,
weights = NULL,
singular.ok = FALSE,
...)

Arguments

xz numeric (x) and or nominal/ordinal (factor/ordered) predictors (z)

y a numeric vector of responses.

degree integer/vector specifying the polynomial degree of the B-spline basis for each
dimension of the continuous x (default degree=3, i.e. cubic spline)

segments integer/vector specifying the number of segments of the B-spline basis for each
dimension of the continuous x (i.e. number of knots minus one) (default segments=1,
i.e. Bezier curve)

include integer/vector specifying whether each of the nominal/ordinal (factor/ordered)
predictors in x are included or omitted from the resulting estimate

lambda a vector of bandwidths for each dimension of the categorical z
lambda.discrete

if lambda.discrete=TRUE, the bandwidth will be discretized into lambda.discrete.num+1
points and lambda will be chosen from these points

lambda.discrete.num

a positive integer indicating the number of discrete values that lambda can as-
sume - this parameter will only be used when lambda.discrete=TRUE

formula a symbolic description of the model to be fit

data an optional data frame containing the variables in the model

12 crs

cv a character string (default cv="nomad") indicating whether to use nonsmooth
mesh adaptive direct search, exhaustive search, or no search (i.e. use user sup-
plied values for degree, segments, and lambda)

cv.threshold an integer (default cv.threshold=1000) for simple problems with no categor-
ical predictors (i.e. kernel=FALSE otherwise optim/snomadr search is neces-
sary) such that, if the number of combinations of degree/segments is less than
the threshold and cv="nomad", instead use exhaustive search (cv="exhaustive")

cv.func a character string (default cv.func="cv.ls") indicating which method to use
to select smoothing parameters. cv.gcv specifies generalized cross-validation
(Craven and Wahba (1979)), cv.aic specifies expected Kullback-Leibler cross-
validation (Hurvich, Simonoff, and Tsai (1998)), and cv.ls specifies least-
squares cross-validation

kernel a logical value (default kernel=TRUE) indicating whether to use kernel smooth-
ing or not

degree.max the maximum degree of the B-spline basis for each of the continuous predictors
(default degree.max=10)

segments.max the maximum segments of the B-spline basis for each of the continuous predic-
tors (default segments.max=10)

degree.min the minimum degree of the B-spline basis for each of the continuous predictors
(default degree.min=0)

segments.min the minimum segments of the B-spline basis for each of the continuous predic-
tors (default segments.min=1)

cv.df.min the minimum degrees of freedom to allow when conducting NOMAD-based
cross-validation (default cv.df.min=1)

complexity a character string (default complexity="degree-knots") indicating whether
model ‘complexity’ is determined by the degree of the spline or by the number
of segments (i.e. number of knots minus one). This option allows the user to use
cross-validation to select either the spline degree (number of knots held fixed)
or the number of knots (spline degree held fixed) or both the spline degree and
number of knots
For the continuous predictors the regression spline model employs either the
additive or tensor product B-spline basis matrix for a multivariate polynomial
spline via the B-spline routines in the GNU Scientific Library (https://www.
gnu.org/software/gsl/) and the tensor.prod.model.matrix function

knots a character string (default knots="quantiles") specifying where knots are
to be placed. ‘quantiles’ specifies knots placed at equally spaced quantiles
(equal number of observations lie in each segment) and ‘uniform’ specifies knots
placed at equally spaced intervals. If knots="auto", the knot type will be auto-
matically determined by cross-validation

basis a character string (default basis="auto") indicating whether the additive or ten-
sor product B-spline basis matrix for a multivariate polynomial spline or gen-
eralized B-spline polynomial basis should be used. Note this can be automat-
ically determined by cross-validation if cv="nomad" or cv="exhaustive" and
basis="auto", and is an ‘all or none’ proposition (i.e. interaction terms for all
predictors or for no predictors given the nature of ‘tensor products’). Note also

https://www.gnu.org/software/gsl/
https://www.gnu.org/software/gsl/

crs 13

that if there is only one predictor this defaults to basis="additive" to avoid
unnecessary computation as the spline bases are equivalent in this case

deriv an integer l (default deriv=0) specifying whether to compute the univariate lth
partial derivative for each continuous predictor (and difference in levels for each
categorical predictor) or not and if so what order. Note that if deriv is higher
than the spline degree of the associated continuous predictor then the derivative
will be zero and a warning issued to this effect

data.return a logical value indicating whether to return x,z,y or not (default data.return=FALSE)
prune a logical value (default prune=FALSE) specifying whether the (final) model is to

be ‘pruned’ using a stepwise cross-validation criterion based upon a modified
version of stepAIC (see below for details)

model.return a logical value indicating whether to return the list of lm models or not when
kernel=TRUE (default model.return=FALSE)

restarts integer specifying the number of times to restart the process of finding extrema
of the cross-validation function (for the bandwidths only) from different (ran-
dom) initial points

random.seed when it is not missing and not equal to 0, the initial points will be generated
using this seed when using frscvNOMAD or krscvNOMAD and nmulti > 0

max.bb.eval argument passed to the NOMAD solver (see snomadr for further details)
initial.mesh.size.real

argument passed to the NOMAD solver (see snomadr for further details)
initial.mesh.size.integer

argument passed to the NOMAD solver (see snomadr for further details)
min.mesh.size.real

argument passed to the NOMAD solver (see snomadr for further details)
min.mesh.size.integer

arguments passed to the NOMAD solver (see snomadr for further details)
min.poll.size.real

arguments passed to the NOMAD solver (see snomadr for further details)
min.poll.size.integer

arguments passed to the NOMAD solver (see snomadr for further details)
opts list of optional arguments to be passed to snomadr

nmulti integer number of times to restart the process of finding extrema of the cross-
validation function from different (random) initial points (default nmulti=5)

tau if non-null a number in (0,1) denoting the quantile for which a quantile regres-
sion spline is to be estimated rather than estimating the conditional mean (de-
fault tau=NULL). Criterion function set by cv.func= are modified accordingly
to admit quantile regression.

weights an optional vector of weights to be used in the fitting process. Should be ‘NULL’
or a numeric vector. If non-NULL, weighted least squares is used with weights
‘weights’ (that is, minimizing ‘sum(w*e^2)’); otherwise ordinary least squares
is used.

singular.ok a logical value (default singular.ok=FALSE) that, when FALSE, discards sin-
gular bases during cross-validation (a check for ill-conditioned bases is per-
formed).

... optional arguments

14 crs

Details

Typical usages are (see below for a list of options and also the examples at the end of this help file)

Estimate the model and let the basis type be determined by
cross-validation (i.e. cross-validation will determine whether to
use the additive, generalized, or tensor product basis)

model <- crs(y~x1+x2)

Estimate the model for a specified degree/segment/bandwidth
combination and do not run cross-validation (will use the
additive basis by default)

model <- crs(y~x1+factor(x2),cv="none",degree=3,segments=1,lambda=.1)

Plot the mean and (asymptotic) error bounds

plot(model,mean=TRUE,ci=TRUE)

Plot the first partial derivative and (asymptotic) error bounds

plot(model,deriv=1,ci=TRUE)

crs computes a regression spline estimate of a one (1) dimensional dependent variable on an r-
dimensional vector of continuous and categorical (factor/ordered) predictors.

The regression spline model employs the tensor product B-spline basis matrix for a multivariate
polynomial spline via the B-spline routines in the GNU Scientific Library (https://www.gnu.
org/software/gsl/) and the tensor.prod.model.matrix function.

When basis="additive" the model becomes additive in nature (i.e. no interaction/tensor terms
thus semiparametric not fully nonparametric).

When basis="tensor" the model uses the multivariate tensor product basis.

When kernel=FALSE the model uses indicator basis functions for the nominal/ordinal (factor/ordered)
predictors rather than kernel weighting.

When kernel=TRUE the product kernel function for the discrete predictors is of the ‘Li-Racine’ type
(see Li and Racine (2007) for details).

When cv="nomad", numerical search is undertaken using Nonsmooth Optimization by Mesh Adap-
tive Direct Search (Abramson, Audet, Couture, Dennis, Jr., and Le Digabel (2011)).

When kernel=TRUE and cv="exhaustive", numerical search is undertaken using optim and the
box-constrained L-BFGS-B method (see optim for details). The user may restart the algorithm as
many times as desired via the restarts argument (default restarts=0). The approach ascends
from degree=0 (or segments=0) through degree.max and for each value of degree (or segments)
searches for the optimal bandwidths. After the most complex model has been searched then the
optimal degree/segments/lambda combination is selected. If any element of the optimal degree
(or segments) vector coincides with degree.max (or segments.max) a warning is produced and
the user ought to restart their search with a larger value of degree.max (or segments.max).

https://www.gnu.org/software/gsl/
https://www.gnu.org/software/gsl/

crs 15

Note that the default plot method for a crs object provides some diagnostic measures, in particular,
a) residuals versus fitted values (useful for checking the assumption that E(u|x)=0), b) a normal
quantile-quantile plot which allows residuals to be assessed for normality (qqnorm), c) a scale-
location plot that is useful for checking the assumption that the errors are iid and, in particular, that
the variance is homogeneous, and d) ‘Cook’s distance’ which computes the single-case influence
function. See below for other arguments for the plot function for a crs object.

Note that setting prune=TRUE produces a final ‘pruning’ of the model via a stepwise cross-validation
criterion achieved by modifying stepAIC and replacing extractAIC with extractCV throughout
the function. This option may be enabled to remove potentially superfluous bases thereby improving
the finite-sample efficiency of the resulting model. Note that if the cross-validation score for the
pruned model is no better than that for the original model then the original model is returned with a
warning to this effect. Note also that this option can only be used when kernel=FALSE.

Value

crs returns a crs object. The generic functions fitted and residuals extract (or generate) es-
timated values and residuals. Furthermore, the functions summary, predict, and plot (options
mean=FALSE, deriv=i where i is an integer, ci=FALSE, persp.rgl=FALSE, plot.behavior=c("plot","plot-data","data"),
xtrim=0.0,xq=0.5) support objects of this type. The returned object has the following components:

fitted.values estimates of the regression function (conditional mean) at the sample points or
evaluation points

lwr, upr lower/upper bound for a 95% confidence interval for the fitted.values (condi-
tional mean) obtained from predict.lm via the argument interval="confidence"

residuals residuals computed at the sample points or evaluation points

degree integer/vector specifying the degree of the B-spline basis for each dimension of
the continuous x

segments integer/vector specifying the number of segments of the B-spline basis for each
dimension of the continuous x

include integer/vector specifying whether each of the nominal/ordinal (factor/ordered)
predictors z are included or omitted from the resulting estimate if kernel=FALSE
(see below)

kernel a logical value indicating whether kernel smoothing was used (kernel=TRUE) or
not

lambda vector of bandwidths used if kernel=TRUE

call a symbolic description of the model

r.squared coefficient of determination (Doksum and Samarov (1995))

model.lm an object of ‘class’ ‘lm’ if kernel=FALSE or a list of objects of ‘class’ ‘lm’
if kernel=TRUE (accessed by model.lm[[1]], model.lm[[2]],. . . ,. By way of
example, if foo is a crs object and kernel=FALSE, then foo$model.lm is an
object of ‘class’ ‘lm’, while objects of ‘class’ ‘lm’ return the model.frame
in model.lm$model which can be accessed via foo$model.lm$model where
foo is the crs object (the model frame foo$model.lm$model contains the B-
spline bases underlying the estimate which might be of interest). Again by
way of example, when kernel=TRUE then foo$model.lm[[1]]$model con-
tains the model frame for the first unique combination of categorical predictors,

16 crs

foo$model.lm[[2]]$model the second and so forth (the weights will poten-
tially differ for each model depending on the value(s) of lambda)

deriv.mat a matrix of derivatives (or differences in levels for the categorical z) whose order
is determined by deriv= in the crs call

deriv.mat.lwr a matrix of 95% coverage lower bounds for deriv.mat

deriv.mat.upr a matrix of 95% coverage upper bounds for deriv.mat

hatvalues the hatvalues for the estimated model

P.hat the kernel probability estimates corresponding to the categorical predictors in
the estimated model

Usage Issues

Note that when kernel=FALSE summary supports the option sigtest=TRUE that conducts an F-test
for significance for each predictor.

Author(s)

Jeffrey S. Racine <racinej@mcmaster.ca>

References

Abramson, M.A. and C. Audet and G. Couture and J.E. Dennis Jr. and and S. Le Digabel (2011),
“The NOMAD project”. Software available at https://www.gerad.ca/nomad.

Craven, P. and G. Wahba (1979), “Smoothing Noisy Data With Spline Functions,” Numerische
Mathematik, 13, 377-403.

Doksum, K. and A. Samarov (1995), “Nonparametric Estimation of Global Functionals and a Mea-
sure of the Explanatory Power of Covariates in Regression,” The Annals of Statistics, 23 1443-1473.

Hurvich, C.M. and J.S. Simonoff and C.L. Tsai (1998), “Smoothing Parameter Selection in Non-
parametric Regression Using an Improved Akaike Information Criterion,” Journal of the Royal
Statistical Society B, 60, 271-293.

Le Digabel, S. (2011), “Algorithm 909: NOMAD: Nonlinear Optimization With The MADS Algo-
rithm”. ACM Transactions on Mathematical Software, 37(4):44:1-44:15.

Li, Q. and J.S. Racine (2007), Nonparametric Econometrics: Theory and Practice, Princeton Uni-
versity Press.

Ma, S. and J.S. Racine and L. Yang (2015), “Spline Regression in the Presence of Categorical
Predictors,” Journal of Applied Econometrics, Volume 30, 705-717.

Ma, S. and J.S. Racine (2013), “Additive Regression Splines with Irrelevant Categorical and Con-
tinuous Regressors,” Statistica Sinica, Volume 23, 515-541.

Racine, J.S. (2011), “Cross-Validated Quantile Regression Splines,” manuscript.

See Also

smooth.spline, loess, npreg

crs 17

Examples

set.seed(42)
Example - simulated data
n <- 1000
num.eval <- 50
x1 <- runif(n)
x2 <- runif(n)
z <- rbinom(n,1,.5)
dgp <- cos(2*pi*x1)+sin(2*pi*x2)+z
z <- factor(z)
y <- dgp + rnorm(n,sd=.5)

Estimate a model with specified degree, segments, and bandwidth
model <- crs(y~x1+x2+z,degree=c(5,5),

segments=c(1,1),
lambda=0.1,
cv="none",
kernel=TRUE)

summary(model)

Perspective plot
x1.seq <- seq(min(x1),max(x1),length=num.eval)
x2.seq <- seq(min(x2),max(x2),length=num.eval)
x.grid <- expand.grid(x1.seq,x2.seq)
newdata <- data.frame(x1=x.grid[,1],x2=x.grid[,2],

z=factor(rep(0,num.eval**2),levels=c(0,1)))
z0 <- matrix(predict(model,newdata=newdata),num.eval,num.eval)
newdata <- data.frame(x1=x.grid[,1],x2=x.grid[,2],

z=factor(rep(1,num.eval),levels=c(0,1)))
z1 <- matrix(predict(model,newdata=newdata),num.eval,num.eval)
zlim=c(min(z0,z1),max(z0,z1))
persp(x=x1.seq,y=x2.seq,z=z0,

xlab="x1",ylab="x2",zlab="y",zlim=zlim,
ticktype="detailed",
border="red",
theta=45,phi=45)

par(new=TRUE)
persp(x=x1.seq,y=x2.seq,z=z1,

xlab="x1",ylab="x2",zlab="y",zlim=zlim,
theta=45,phi=45,
ticktype="detailed",
border="blue")

Partial regression surface plot
plot(model,mean=TRUE,ci=TRUE)
Not run:
A plot example where we extract the partial surfaces, confidence
intervals etc. automatically generated by plot(mean=TRUE,...) but do
not plot, rather save for separate use.
pdat <- plot(model,mean=TRUE,ci=TRUE,plot.behavior="data")

Column 1 is the (evaluation) predictor ([,1]), 2-4 ([,-1]) the mean,

18 crsiv

lwr, and upr (note the returned value is a 'list' hence pdat[[1]] is
data for the first predictor, pdat[[2]] the second etc). Note that
matplot() can plot this nicely.
matplot(pdat[[1]][,1],pdat[[1]][,-1],

xlab=names(pdat[[1]][1]),ylab=names(pdat[[1]][2]),
lty=c(1,2,2),col=c(1,2,2),type="l")

End(Not run)

crsiv Nonparametric Instrumental Regression

Description

crsiv computes nonparametric estimation of an instrumental regression function φ defined by con-
ditional moment restrictions stemming from a structural econometric model: E[Y −φ(Z,X)|W] =
0, and involving endogenous variables Y and Z, exogenous variables X , and instruments W . The
function φ is the solution of an ill-posed inverse problem.

When method="Tikhonov", crsiv uses the approach of Darolles, Fan, Florens and Renault (2011)
modified for regression splines (Darolles et al use local constant kernel weighting). When method="Landweber-Fridman",
crsiv uses the approach of Horowitz (2011) using the regression spline methodology implemented
in the crs package.

Usage

crsiv(y,
z,
w,
x = NULL,
zeval = NULL,
weval = NULL,
xeval = NULL,
alpha = NULL,
alpha.min = 1e-10,
alpha.max = 1e-01,
alpha.tol = .Machine$double.eps^0.25,
deriv = 0,
iterate.max = 1000,
iterate.diff.tol = 1.0e-08,
constant = 0.5,
penalize.iteration = TRUE,
smooth.residuals = TRUE,
start.from = c("Eyz","EEywz"),
starting.values = NULL,
stop.on.increase = TRUE,
method = c("Landweber-Fridman","Tikhonov"),
opts = list("MAX_BB_EVAL"=10000,

crsiv 19

"EPSILON"=.Machine$double.eps,
"INITIAL_MESH_SIZE"="r1.0e-01",
"MIN_MESH_SIZE"=paste("r",sqrt(.Machine$double.eps),sep=""),
"MIN_POLL_SIZE"=paste("r",1,sep=""),
"DISPLAY_DEGREE"=0),

...)

Arguments

y a one (1) dimensional numeric or integer vector of dependent data, each element
i corresponding to each observation (row) i of z

z a p-variate data frame of endogenous predictors. The data types may be contin-
uous, discrete (unordered and ordered factors), or some combination thereof

w a q-variate data frame of instruments. The data types may be continuous, dis-
crete (unordered and ordered factors), or some combination thereof

x an r-variate data frame of exogenous predictors. The data types may be contin-
uous, discrete (unordered and ordered factors), or some combination thereof

zeval a p-variate data frame of endogenous predictors on which the regression will
be estimated (evaluation data). By default, evaluation takes place on the data
provided by z

weval a q-variate data frame of instruments on which the regression will be estimated
(evaluation data). By default, evaluation takes place on the data provided by w

xeval an r-variate data frame of exogenous predictors on which the regression will
be estimated (evaluation data). By default, evaluation takes place on the data
provided by x

alpha a numeric scalar that, if supplied, is used rather than numerically solving for
alpha, when using method="Tikhonov"

alpha.min minimum of search range for α, the Tikhonov regularization parameter, when
using method="Tikhonov"

alpha.max maximum of search range for α, the Tikhonov regularization parameter, when
using method="Tikhonov"

alpha.tol the search tolerance for optimize when solving for α, the Tikhonov regulariza-
tion parameter, when using method="Tikhonov"

iterate.max an integer indicating the maximum number of iterations permitted before termi-
nation occurs when using method="Landweber-Fridman"

iterate.diff.tol

the search tolerance for the difference in the stopping rule from iteration to iter-
ation when using method="Landweber-Fridman" (disable by setting to zero)

constant the constant to use when using method="Landweber-Fridman"

method the regularization method employed (default "Landweber-Fridman", see Horowitz
(2011); see Darolles, Fan, Florens and Renault (2011) for details for "Tikhonov")

penalize.iteration

a logical value indicating whether to penalize the norm by the number of itera-
tions or not (default TRUE)

20 crsiv

smooth.residuals

a logical value (defaults to TRUE) indicating whether to optimize bandwidths
for the regression of y − φ(z) on w or for the regression of φ(z) on w during
iteration

start.from a character string indicating whether to start from E(Y |z) (default, "Eyz") or
from E(E(Y |z)|z) (this can be overridden by providing starting.values be-
low)

starting.values

a value indicating whether to commence Landweber-Fridman assuming φ−1 =
starting.values (proper Landweber-Fridman) or instead begin from E(y|z)
(defaults to NULL, see details below)

stop.on.increase

a logical value (defaults to TRUE) indicating whether to halt iteration if the stop-
ping criterion (see below) increases over the course of one iteration (i.e. it may
be above the iteration tolerance but increased)

opts arguments passed to the NOMAD solver (see snomadr for further details)
deriv an integer l (default deriv=0) specifying whether to compute the univariate lth

partial derivative for each continuous predictor (and difference in levels for each
categorical predictor) or not and if so what order. Note that if deriv is higher
than the spline degree of the associated continuous predictor then the derivative
will be zero and a warning issued to this effect (see important note below)

... additional arguments supplied to crs

Details

Tikhonov regularization requires computation of weight matrices of dimension n × n which can
be computationally costly in terms of memory requirements and may be unsuitable (i.e. unfeasi-
ble) for large datasets. Landweber-Fridman will be preferred in such settings as it does not require
construction and storage of these weight matrices while it also avoids the need for numerical opti-
mization methods to determine α, though it does require iteration that may be equally or even more
computationally demanding in terms of total computation time.

When using method="Landweber-Fridman", an optimal stopping rule based upon ||E(y|w) −
E(φk(z, x)|w)||2 is used to terminate iteration. However, if local rather than global optima are
encountered the resulting estimates can be overly noisy. To best guard against this eventuality set
nmulti to a larger number than the default nmulti=5 for crs when using cv="nomad" or instead
use cv="exhaustive" if possible (this may not be feasible for non-trivial problems).

When using method="Landweber-Fridman", iteration will terminate when either the change in the
value of ||(E(y|w)−E(φk(z, x)|w))/E(y|w)||2 from iteration to iteration is less than iterate.diff.tol
or we hit iterate.max or ||(E(y|w)−E(φk(z, x)|w))/E(y|w)||2 stops falling in value and starts
rising.

When your problem is a simple one (e.g. univariate Z, W , and X) you might want to avoid
cv="nomad" and instead use cv="exhaustive" since exhaustive search may be feasible (for degree.max
and segments.max not overly large). This will guarantee an exact solution for each iteration (i.e.
there will be no errors arising due to numerical search).

demo(crsiv), demo(crsiv_exog), and demo(crsiv_exog_persp) provide flexible interactive demon-
strations similar to the example below that allow you to modify and experiment with parameters
such as the sample size, method, and so forth in an interactive session.

crsiv 21

Value

crsiv returns a crs object. The generic functions fitted and residuals extract (or generate)
estimated values and residuals. Furthermore, the functions summary, predict, and plot (options
mean=FALSE, deriv=i where i is an integer, ci=FALSE, plot.behavior=c("plot","plot-data","data"))
support objects of this type.

See crs for details on the return object components.

In addition to the standard crs components, crsiv returns components phi and either alpha when
method="Tikhonov" or phi, phi.mat, num.iterations, norm.stop, norm.value and convergence
when method="Landweber-Fridman".

Note

Using the option deriv= computes (effectively) the analytical derivative of the estimated φ(Z,X)
and not that using crsivderiv, which instead uses the method of Florens and Racine (2012).
Though both are statistically consistent, practitioners may desire one over the other hence we pro-
vide both.

Note

This function should be considered to be in ‘beta test’ status until further notice.

Author(s)

Jeffrey S. Racine <racinej@mcmaster.ca>, Samuele Centorrino <samuele.centorrino@univ-tlse1.fr>

References

Carrasco, M. and J.P. Florens and E. Renault (2007), “Linear Inverse Problems in Structural Econo-
metrics Estimation Based on Spectral Decomposition and Regularization,” In: James J. Heckman
and Edward E. Leamer, Editor(s), Handbook of Econometrics, Elsevier, 2007, Volume 6, Part 2,
Chapter 77, Pages 5633-5751

Darolles, S. and Y. Fan and J.P. Florens and E. Renault (2011), “Nonparametric Instrumental Re-
gression,” Econometrica, 79, 1541-1565.

Feve, F. and J.P. Florens (2010), “The Practice of Non-parametric Estimation by Solving Inverse
Problems: The Example of Transformation Models,” Econometrics Journal, 13, S1-S27.

Florens, J.P. and J.S. Racine (2012), “Nonparametric Instrumental Derivatives,” Working Paper.

Fridman, V. M. (1956), “A Method of Successive Approximations for Fredholm Integral Equations
of the First Kind,” Uspeskhi, Math. Nauk., 11, 233-334, in Russian.

Horowitz, J.L. (2011), “Applied Nonparametric Instrumental Variables Estimation,” Econometrica,
79, 347-394.

Landweber, L. (1951), “An Iterative Formula for Fredholm Integral Equations of the First Kind,”
American Journal of Mathematics, 73, 615-24.

Li, Q. and J.S. Racine (2007), Nonparametric Econometrics: Theory and Practice, Princeton Uni-
versity Press.

22 crsiv

See Also

npreg, crs

Examples

Not run:
This illustration was made possible by Samuele Centorrino
<samuele.centorrino@univ-tlse1.fr>

set.seed(42)
n <- 1500

The DGP is as follows:

1) y = phi(z) + u

2) E(u|z) != 0 (endogeneity present)

3) Suppose there exists an instrument w such that z = f(w) + v and
E(u|w) = 0

4) We generate v, w, and generate u such that u and z are
correlated. To achieve this we express u as a function of v (i.e. u =
gamma v + eps)

v <- rnorm(n,mean=0,sd=0.27)
eps <- rnorm(n,mean=0,sd=0.05)
u <- -0.5*v + eps
w <- rnorm(n,mean=0,sd=1)

In Darolles et al (2011) there exist two DGPs. The first is
phi(z)=z^2 and the second is phi(z)=exp(-abs(z)) (which is
discontinuous and has a kink at zero).

fun1 <- function(z) { z^2 }
fun2 <- function(z) { exp(-abs(z)) }

z <- 0.2*w + v

Generate two y vectors for each function.

y1 <- fun1(z) + u
y2 <- fun2(z) + u

You set y to be either y1 or y2 (ditto for phi) depending on which
DGP you are considering:

y <- y1
phi <- fun1

Create an evaluation dataset sorting on z (for plotting)

crsivderiv 23

evaldata <- data.frame(y,z,w)
evaldata <- evaldata[order(evaldata$z),]

Compute the non-IV regression spline estimator of E(y|z)

model.noniv <- crs(y~z,opts=opts)
mean.noniv <- predict(model.noniv,newdata=evaldata)

Compute the IV-regression spline estimator of phi(z)

model.iv <- crsiv(y=y,z=z,w=w)
phi.iv <- predict(model.iv,newdata=evaldata)

For the plots, restrict focal attention to the bulk of the data
(i.e. for the plotting area trim out 1/4 of one percent from each
tail of y and z)

trim <- 0.0025

curve(phi,min(z),max(z),
xlim=quantile(z,c(trim,1-trim)),
ylim=quantile(y,c(trim,1-trim)),
ylab="Y",
xlab="Z",
main="Nonparametric Instrumental Spline Regression",
sub=paste("Landweber-Fridman: iterations = ", model.iv$num.iterations,sep=""),
lwd=1,lty=1)

points(z,y,type="p",cex=.25,col="grey")

lines(evaldata$z,evaldata$z^2 -0.325*evaldata$z,lwd=1,lty=1)

lines(evaldata$z,phi.iv,col="blue",lwd=2,lty=2)

lines(evaldata$z,mean.noniv,col="red",lwd=2,lty=4)

legend(quantile(z,trim),quantile(y,1-trim),
c(expression(paste(varphi(z),", E(y|z)",sep="")),

expression(paste("Nonparametric ",hat(varphi)(z))),
"Nonparametric E(y|z)"),

lty=c(1,2,4),
col=c("black","blue","red"),
lwd=c(1,2,2))

End(Not run)

crsivderiv Nonparametric Instrumental Derivatives

24 crsivderiv

Description

crsivderiv uses the approach of Florens and Racine (2012) to compute the partial derivative of a
nonparametric estimation of an instrumental regression function φ defined by conditional moment
restrictions stemming from a structural econometric model: E[Y −φ(Z,X)|W] = 0, and involving
endogenous variables Y and Z and exogenous variables X and instruments W . The derivative
function φ′ is the solution of an ill-posed inverse problem, and is computed using Landweber-
Fridman regularization.

Usage

crsivderiv(y,
z,
w,
x = NULL,
zeval = NULL,
weval = NULL,
xeval = NULL,
iterate.max = 1000,
iterate.diff.tol = 1.0e-08,
constant = 0.5,
penalize.iteration = TRUE,
start.from = c("Eyz","EEywz"),
starting.values = NULL,
stop.on.increase = TRUE,
smooth.residuals = TRUE,
opts = list("MAX_BB_EVAL"=10000,

"EPSILON"=.Machine$double.eps,
"INITIAL_MESH_SIZE"="r1.0e-01",

"MIN_MESH_SIZE"=paste("r",sqrt(.Machine$double.eps),sep=""),
"MIN_POLL_SIZE"=paste("r",1,sep=""),
"DISPLAY_DEGREE"=0),

...)

Arguments

y a one (1) dimensional numeric or integer vector of dependent data, each element
i corresponding to each observation (row) i of z

z a p-variate data frame of endogenous predictors. The data types may be contin-
uous, discrete (unordered and ordered factors), or some combination thereof

w a q-variate data frame of instruments. The data types may be continuous, dis-
crete (unordered and ordered factors), or some combination thereof

x an r-variate data frame of exogenous predictors. The data types may be contin-
uous, discrete (unordered and ordered factors), or some combination thereof

zeval a p-variate data frame of endogenous predictors on which the regression will
be estimated (evaluation data). By default, evaluation takes place on the data
provided by z

crsivderiv 25

weval a q-variate data frame of instruments on which the regression will be estimated
(evaluation data). By default, evaluation takes place on the data provided by w

xeval an r-variate data frame of exogenous predictors on which the regression will
be estimated (evaluation data). By default, evaluation takes place on the data
provided by x

iterate.max an integer indicating the maximum number of iterations permitted before termi-
nation occurs when using Landweber-Fridman iteration

iterate.diff.tol

the search tolerance for the difference in the stopping rule from iteration to iter-
ation when using Landweber-Fridman (disable by setting to zero)

constant the constant to use when using Landweber-Fridman iteration
penalize.iteration

a logical value indicating whether to penalize the norm by the number of itera-
tions or not (default TRUE)

start.from a character string indicating whether to start from E(Y |z) (default, "Eyz") or
from E(E(Y |z)|z) (this can be overridden by providing starting.values be-
low)

starting.values

a value indicating whether to commence Landweber-Fridman assuming φ′
−1 =

starting.values (proper Landweber-Fridman) or instead begin from E(y|z)
(defaults to NULL, see details below)

stop.on.increase

a logical value (defaults to TRUE) indicating whether to halt iteration if the stop-
ping criterion (see below) increases over the course of one iteration (i.e. it may
be above the iteration tolerance but increased)

smooth.residuals

a logical value (defaults to TRUE) indicating whether to optimize bandwidths
for the regression of y − φ(z) on w or for the regression of φ(z) on w during
iteration

opts arguments passed to the NOMAD solver (see snomadr for further details)
... additional arguments supplied to crs

Details

For Landweber-Fridman iteration, an optimal stopping rule based upon ||E(y|w)−E(φk(z, x)|w)||2
is used to terminate iteration. However, if local rather than global optima are encountered the result-
ing estimates can be overly noisy. To best guard against this eventuality set nmulti to a larger num-
ber than the default nmulti=5 for crs when using cv="nomad" or instead use cv="exhaustive" if
possible (this may not be feasible for non-trivial problems).

When using Landweber-Fridman iteration, iteration will terminate when either the change in the
value of ||(E(y|w)−E(φk(z, x)|w))/E(y|w)||2 from iteration to iteration is less than iterate.diff.tol
or we hit iterate.max or ||(E(y|w)−E(φk(z, x)|w))/E(y|w)||2 stops falling in value and starts
rising.

When your problem is a simple one (e.g. univariate Z, W , and X) you might want to avoid
cv="nomad" and instead use cv="exhaustive" since exhaustive search may be feasible (for degree.max
and segments.max not overly large). This will guarantee an exact solution for each iteration (i.e.
there will be no errors arising due to numerical search).

26 crsivderiv

Value

crsivderiv returns components phi.prime, phi, phi.prime.mat, num.iterations, norm.stop,
norm.value and convergence.

Note

This function currently supports univariate z only. This function should be considered to be in ‘beta
test’ status until further notice.

Author(s)

Jeffrey S. Racine <racinej@mcmaster.ca>

References

Carrasco, M. and J.P. Florens and E. Renault (2007), “Linear Inverse Problems in Structural Econo-
metrics Estimation Based on Spectral Decomposition and Regularization,” In: James J. Heckman
and Edward E. Leamer, Editor(s), Handbook of Econometrics, Elsevier, 2007, Volume 6, Part 2,
Chapter 77, Pages 5633-5751

Darolles, S. and Y. Fan and J.P. Florens and E. Renault (2011), “Nonparametric Instrumental Re-
gression,” Econometrica, 79, 1541-1565.

Feve, F. and J.P. Florens (2010), “The Practice of Non-parametric Estimation by Solving Inverse
Problems: The Example of Transformation Models,” Econometrics Journal, 13, S1-S27.

Florens, J.P. and J.S. Racine (2012), “Nonparametric Instrumental Derivatives,” Working Paper.

Fridman, V. M. (1956), “A Method of Successive Approximations for Fredholm Integral Equations
of the First Kind,” Uspeskhi, Math. Nauk., 11, 233-334, in Russian.

Horowitz, J.L. (2011), “Applied Nonparametric Instrumental Variables Estimation,” Econometrica,
79, 347-394.

Landweber, L. (1951), “An Iterative Formula for Fredholm Integral Equations of the First Kind,”
American Journal of Mathematics, 73, 615-24.

Li, Q. and J.S. Racine (2007), Nonparametric Econometrics: Theory and Practice, Princeton Uni-
versity Press.

See Also

npreg, crsiv, crs

Examples

Not run:
This illustration was made possible by Samuele Centorrino
<samuele.centorrino@univ-tlse1.fr>

set.seed(42)
n <- 1000

For trimming the plot (trim .5% from each tail)

crsivderiv 27

trim <- 0.005

The DGP is as follows:

1) y = phi(z) + u

2) E(u|z) != 0 (endogeneity present)

3) Suppose there exists an instrument w such that z = f(w) + v and
E(u|w) = 0

4) We generate v, w, and generate u such that u and z are
correlated. To achieve this we express u as a function of v (i.e. u =
gamma v + eps)

v <- rnorm(n,mean=0,sd=0.27)
eps <- rnorm(n,mean=0,sd=0.05)
u <- -0.5*v + eps
w <- rnorm(n,mean=0,sd=1)

In Darolles et al (2011) there exist two DGPs. The first is
phi(z)=z^2 and the second is phi(z)=exp(-abs(z)) (which is
discontinuous and has a kink at zero).

fun1 <- function(z) { z^2 }
fun2 <- function(z) { exp(-abs(z)) }

z <- 0.2*w + v

Generate two y vectors for each function.

y1 <- fun1(z) + u
y2 <- fun2(z) + u

You set y to be either y1 or y2 (ditto for phi) depending on which
DGP you are considering:

y <- y1
phi <- fun1

Sort on z (for plotting)

ivdata <- data.frame(y,z,w,u,v)
ivdata <- ivdata[order(ivdata$z),]
rm(y,z,w,u,v)
attach(ivdata)

model.ivderiv <- crsivderiv(y=y,z=z,w=w)

ylim <-c(quantile(model.ivderiv$phi.prime,trim),
quantile(model.ivderiv$phi.prime,1-trim))

28 crssigtest

plot(z,model.ivderiv$phi.prime,
xlim=quantile(z,c(trim,1-trim)),
main="",
ylim=ylim,
xlab="Z",
ylab="Derivative",
type="l",
lwd=2)

rug(z)

End(Not run)

crssigtest Regression Spline Significance Test with Mixed Data Types

Description

crssigtest implements a consistent test of significance of an explanatory variable in a nonpara-
metric regression setting that is analogous to a simple t-test in a parametric regression setting. The
test is based on Ma and Racine (2011).

Usage

crssigtest(model = NULL,
index = NULL,
boot.num = 399,
boot.type = c("residual","reorder"),
random.seed = 42,
boot = TRUE)

Arguments

model a crs model object.

index a vector of indices for the columns of model$xz for which the test of significance
is to be conducted. Defaults to (1,2,. . . ,p) where p is the number of columns in
model$xz.

boot.num an integer value specifying the number of bootstrap replications to use. Defaults
to 399.

boot.type whether to conduct ‘residual’ bootstrapping (iid) or permute (reorder) in place
the predictor being tested when imposing the null.

random.seed an integer used to seed R’s random number generator. This is to ensure replica-
bility. Defaults to 42.

boot a logical value (default TRUE) indicating whether to compute the bootstrap P-
value or simply return the asymptotic P-value.

crssigtest 29

Value

crssigtest returns an object of type sigtest. summary supports sigtest objects. It has the
following components:

index the vector of indices input

P the vector of bootstrap P-values for each statistic in F

P.asy the vector of asymptotic P-values for each statistic in index

F the vector of pseudo F-statistics F

F.boot the matrix of bootstrapped pseudo F-statistics generated under the null (one col-
umn for each statistic in F)

df1 the vector of numerator degrees of freedom for each statistic in F (based on the
smoother matrix)

df2 the vector of denominator degrees of freedom for each statistic in F (based on
the smoother matrix)

rss the vector of restricted sums of squared residuals for each statistic in F

uss the vector of unrestricted sums of squared residuals for each statistic in F

boot.num the number of bootstrap replications

boot.type the boot.type

xnames the names of the variables in model$xz

Usage Issues

This function should be considered to be in ‘beta status’ until further notice.

Caution: bootstrap methods are, by their nature, computationally intensive. This can be frustrating
for users possessing large datasets. For exploratory purposes, you may wish to override the default
number of bootstrap replications, say, setting them to boot.num=99.

Author(s)

Jeffrey S. Racine <racinej@mcmaster.ca>

References

Li, Q. and J.S. Racine (2007), Nonparametric Econometrics: Theory and Practice, Princeton Uni-
versity Press.

Ma, S. and J.S. Racine, (2011), “Inference for Regression Splines with Categorical and Continuous
Predictors,” Working Paper.

Examples

Not run:
options(crs.messages=FALSE)
set.seed(42)

n <- 1000

30 Engel95

z <- rbinom(n,1,.5)
x1 <- rnorm(n)
x2 <- runif(n,-2,2)
z <- factor(z)
z is irrelevant
y <- x1 + x2 + rnorm(n)

model <- crs(y~x1+x2+z,complexity="degree",segments=c(1,1))
summary(model)

model.sigtest <- crssigtest(model)
summary(model.sigtest)

End(Not run)

Engel95 1995 British Family Expenditure Survey

Description

British cross-section data consisting of a random sample taken from the British Family Expenditure
Survey for 1995. The households consist of married couples with an employed head-of-household
between the ages of 25 and 55 years. There are 1655 household-level observations in total.

Usage

data("Engel95")

Format

A data frame with 10 columns, and 1655 rows.

food expenditure share on food, of type numeric

catering expenditure share on catering, of type numeric

alcohol expenditure share on alcohol, of type numeric

fuel expenditure share on fuel, of type numeric

motor expenditure share on motor, of type numeric

fares expenditure share on fares, of type numeric

leisure expenditure share on leisure, of type numeric

logexp logarithm of total expenditure, of type numeric

logwages logarithm of total earnings, of type numeric

nkids number of children, of type numeric

Source

Richard Blundell and Dennis Kristensen

Engel95 31

References

Blundell, R. and X. Chen and D. Kristensen (2007), “Semi-Nonparametric IV Estimation of Shape-
Invariant Engel Curves,” Econometrica, 75, 1613-1669.

Li, Q. and J.S. Racine (2007), Nonparametric Econometrics: Theory and Practice, Princeton Uni-
versity Press.

Examples

Not run:
Example - we compute nonparametric instrumental regression of an
Engel curve for food expenditure shares using Landweber-Fridman
iteration of Fredholm integral equations of the first kind.

We consider an equation with an endogenous predictor ('z') and an
instrument ('w'). Let y = phi(z) + u where phi(z) is the function of
interest. Here E(u|z) is not zero hence the conditional mean E(y|z)
does not coincide with the function of interest, but if there exists
an instrument w such that E(u|w) = 0, then we can recover the
function of interest by solving an ill-posed inverse problem.

data(Engel95)

Sort on logexp (the endogenous predictor) for plotting purposes
(i.e. so we can plot a curve for the fitted values versus logexp)

Engel95 <- Engel95[order(Engel95$logexp),]

attach(Engel95)

model.iv <- crsiv(y=food,z=logexp,w=logwages,method="Landweber-Fridman")
phihat <- model.iv$phi

Compute the non-IV regression (i.e. regress y on z)

ghat <- crs(food~logexp)

For the plots, we restrict focal attention to the bulk of the data
(i.e. for the plotting area trim out 1/4 of one percent from each
tail of y and z). This is often helpful as estimates in the tails of
the support are less reliable (i.e. more variable) so we are
interested in examining the relationship 'where the action is'.

trim <- 0.0025

plot(logexp,food,
ylab="Food Budget Share",
xlab="log(Total Expenditure)",
xlim=quantile(logexp,c(trim,1-trim)),
ylim=quantile(food,c(trim,1-trim)),
main="Nonparametric Instrumental Regression Splines",
type="p",

32 frscv

cex=.5,
col="lightgrey")

lines(logexp,phihat,col="blue",lwd=2,lty=2)

lines(logexp,fitted(ghat),col="red",lwd=2,lty=4)

legend(quantile(logexp,trim),quantile(food,1-trim),
c(expression(paste("Nonparametric IV: ",hat(varphi)(logexp))),

"Nonparametric Regression: E(food | logexp)"),
lty=c(2,4),
col=c("blue","red"),
lwd=c(2,2),
bty="n")

End(Not run)

frscv Categorical Factor Regression Spline Cross-Validation

Description

frscv computes exhaustive cross-validation directed search for a regression spline estimate of a
one (1) dimensional dependent variable on an r-dimensional vector of continuous predictors and
nominal/ordinal (factor/ordered) predictors.

Usage

frscv(xz,
y,
degree.max = 10,
segments.max = 10,
degree.min = 0,
segments.min = 1,
complexity = c("degree-knots","degree","knots"),
knots = c("quantiles","uniform","auto"),
basis = c("additive","tensor","glp","auto"),
cv.func = c("cv.ls","cv.gcv","cv.aic"),
degree = degree,
segments = segments,
tau = NULL,
weights = NULL,
singular.ok = FALSE)

Arguments

y continuous univariate vector

xz continuous and/or nominal/ordinal (factor/ordered) predictors

frscv 33

degree.max the maximum degree of the B-spline basis for each of the continuous predictors
(default degree.max=10)

segments.max the maximum segments of the B-spline basis for each of the continuous predic-
tors (default segments.max=10)

degree.min the minimum degree of the B-spline basis for each of the continuous predictors
(default degree.min=0)

segments.min the minimum segments of the B-spline basis for each of the continuous predic-
tors (default segments.min=1)

complexity a character string (default complexity="degree-knots") indicating whether
model ‘complexity’ is determined by the degree of the spline or by the number
of segments (‘knots’). This option allows the user to use cross-validation to
select either the spline degree (number of knots held fixed) or the number of
knots (spline degree held fixed) or both the spline degree and number of knots

knots a character string (default knots="quantiles") specifying where knots are
to be placed. ‘quantiles’ specifies knots placed at equally spaced quantiles
(equal number of observations lie in each segment) and ‘uniform’ specifies knots
placed at equally spaced intervals. If knots="auto", the knot type will be auto-
matically determined by cross-validation

basis a character string (default basis="additive") indicating whether the additive
or tensor product B-spline basis matrix for a multivariate polynomial spline or
generalized B-spline polynomial basis should be used. Note this can be auto-
matically determined by cross-validation if cv=TRUE and basis="auto", and is
an ‘all or none’ proposition (i.e. interaction terms for all predictors or for no pre-
dictors given the nature of ‘tensor products’). Note also that if there is only one
predictor this defaults to basis="additive" to avoid unnecessary computation
as the spline bases are equivalent in this case

cv.func a character string (default cv.func="cv.ls") indicating which method to use
to select smoothing parameters. cv.gcv specifies generalized cross-validation
(Craven and Wahba (1979)), cv.aic specifies expected Kullback-Leibler cross-
validation (Hurvich, Simonoff, and Tsai (1998)), and cv.ls specifies least-
squares cross-validation

degree integer/vector specifying the degree of the B-spline basis for each dimension of
the continuous x

segments integer/vector specifying the number of segments of the B-spline basis for each
dimension of the continuous x (i.e. number of knots minus one)

tau if non-null a number in (0,1) denoting the quantile for which a quantile regres-
sion spline is to be estimated rather than estimating the conditional mean (default
tau=NULL)

weights an optional vector of weights to be used in the fitting process. Should be ‘NULL’
or a numeric vector. If non-NULL, weighted least squares is used with weights
‘weights’ (that is, minimizing ‘sum(w*e^2)’); otherwise ordinary least squares
is used.

singular.ok a logical value (default singular.ok=FALSE) that, when FALSE, discards sin-
gular bases during cross-validation (a check for ill-conditioned bases is per-
formed).

34 frscv

Details

frscv computes exhaustive cross-validation for a regression spline estimate of a one (1) dimen-
sional dependent variable on an r-dimensional vector of continuous and nominal/ordinal (factor/ordered)
predictors. The optimal K/I combination (i.e.\ degree/segments/I) is returned along with other re-
sults (see below for return values).

For the continuous predictors the regression spline model employs either the additive or tensor prod-
uct B-spline basis matrix for a multivariate polynomial spline via the B-spline routines in the GNU
Scientific Library (https://www.gnu.org/software/gsl/) and the tensor.prod.model.matrix
function.

For the nominal/ordinal (factor/ordered) predictors the regression spline model uses indicator
basis functions.

Value

frscv returns a crscv object. Furthermore, the function summary supports objects of this type. The
returned objects have the following components:

K scalar/vector containing optimal degree(s) of spline or number of segments

I scalar/vector containing an indicator of whether the predictor is included or not
for each dimension of the nominal/ordinal (factor/ordered) predictors

K.mat vector/matrix of values of K evaluated during search

cv.func objective function value at optimum

cv.func.vec vector of objective function values at each degree of spline or number of seg-
ments in K.mat

Author(s)

Jeffrey S. Racine <racinej@mcmaster.ca>

References

Craven, P. and G. Wahba (1979), “Smoothing Noisy Data With Spline Functions,” Numerische
Mathematik, 13, 377-403.

Hurvich, C.M. and J.S. Simonoff and C.L. Tsai (1998), “Smoothing Parameter Selection in Non-
parametric Regression Using an Improved Akaike Information Criterion,” Journal of the Royal
Statistical Society B, 60, 271-293.

Li, Q. and J.S. Racine (2007), Nonparametric Econometrics: Theory and Practice, Princeton Uni-
versity Press.

Ma, S. and J.S. Racine and L. Yang (2015), “Spline Regression in the Presence of Categorical
Predictors,” Journal of Applied Econometrics, Volume 30, 705-717.

Ma, S. and J.S. Racine (2013), “Additive Regression Splines with Irrelevant Categorical and Con-
tinuous Regressors,” Statistica Sinica, Volume 23, 515-541.

See Also

loess, npregbw,

https://www.gnu.org/software/gsl/

frscvNOMAD 35

Examples

set.seed(42)
Simulated data
n <- 1000

x <- runif(n)
z <- round(runif(n,min=-0.5,max=1.5))
z.unique <- uniquecombs(as.matrix(z))
ind <- attr(z.unique,"index")
ind.vals <- sort(unique(ind))
dgp <- numeric(length=n)
for(i in 1:nrow(z.unique)) {

zz <- ind == ind.vals[i]
dgp[zz] <- z[zz]+cos(2*pi*x[zz])

}

y <- dgp + rnorm(n,sd=.1)

xdata <- data.frame(x,z=factor(z))

Compute the optimal K and I, determine optimal number of knots, set
spline degree for x to 3

cv <- frscv(x=xdata,y=y,complexity="knots",degree=c(3))
summary(cv)

frscvNOMAD Categorical Factor Regression Spline Cross-Validation

Description

frscvNOMAD computes NOMAD-based (Nonsmooth Optimization by Mesh Adaptive Direct Search,
Abramson, Audet, Couture and Le Digabel (2011)) cross-validation directed search for a regression
spline estimate of a one (1) dimensional dependent variable on an r-dimensional vector of continu-
ous predictors and nominal/ordinal (factor/ordered) predictors.

Usage

frscvNOMAD(xz,
y,
degree.max = 10,
segments.max = 10,
degree.min = 0,
segments.min = 1,
cv.df.min = 1,
complexity = c("degree-knots","degree","knots"),
knots = c("quantiles","uniform","auto"),
basis = c("additive","tensor","glp","auto"),

36 frscvNOMAD

cv.func = c("cv.ls","cv.gcv","cv.aic"),
degree = degree,
segments = segments,
include = include,
random.seed = 42,
max.bb.eval = 10000,
initial.mesh.size.integer = "1",
min.mesh.size.integer = "1",
min.poll.size.integer = "1",
opts=list(),
nmulti = 0,
tau = NULL,
weights = NULL,
singular.ok = FALSE)

Arguments

y continuous univariate vector
xz continuous and/or nominal/ordinal (factor/ordered) predictors
degree.max the maximum degree of the B-spline basis for each of the continuous predictors

(default degree.max=10)
segments.max the maximum segments of the B-spline basis for each of the continuous predic-

tors (default segments.max=10)
degree.min the minimum degree of the B-spline basis for each of the continuous predictors

(default degree.min=0)
segments.min the minimum segments of the B-spline basis for each of the continuous predic-

tors (default segments.min=1)
cv.df.min the minimum degrees of freedom to allow when conducting cross-validation

(default cv.df.min=1)
complexity a character string (default complexity="degree-knots") indicating whether

model ‘complexity’ is determined by the degree of the spline or by the number
of segments (‘knots’). This option allows the user to use cross-validation to
select either the spline degree (number of knots held fixed) or the number of
knots (spline degree held fixed) or both the spline degree and number of knots

knots a character string (default knots="quantiles") specifying where knots are
to be placed. ‘quantiles’ specifies knots placed at equally spaced quantiles
(equal number of observations lie in each segment) and ‘uniform’ specifies knots
placed at equally spaced intervals. If knots="auto", the knot type will be auto-
matically determined by cross-validation

basis a character string (default basis="additive") indicating whether the additive
or tensor product B-spline basis matrix for a multivariate polynomial spline or
generalized B-spline polynomial basis should be used. Note this can be auto-
matically determined by cross-validation if cv=TRUE and basis="auto", and is
an ‘all or none’ proposition (i.e. interaction terms for all predictors or for no pre-
dictors given the nature of ‘tensor products’). Note also that if there is only one
predictor this defaults to basis="additive" to avoid unnecessary computation
as the spline bases are equivalent in this case

frscvNOMAD 37

cv.func a character string (default cv.func="cv.ls") indicating which method to use
to select smoothing parameters. cv.gcv specifies generalized cross-validation
(Craven and Wahba (1979)), cv.aic specifies expected Kullback-Leibler cross-
validation (Hurvich, Simonoff, and Tsai (1998)), and cv.ls specifies least-
squares cross-validation

degree integer/vector specifying the degree of the B-spline basis for each dimension of
the continuous x

segments integer/vector specifying the number of segments of the B-spline basis for each
dimension of the continuous x (i.e. number of knots minus one)

include integer/vector for the categorical predictors. If it is not NULL, it will be the
initial value for the fitting

random.seed when it is not missing and not equal to 0, the initial points will be generated
using this seed when nmulti > 0

max.bb.eval argument passed to the NOMAD solver (see snomadr for further details)
initial.mesh.size.integer

argument passed to the NOMAD solver (see snomadr for further details)
min.mesh.size.integer

arguments passed to the NOMAD solver (see snomadr for further details)
min.poll.size.integer

arguments passed to the NOMAD solver (see snomadr for further details)

opts list of optional arguments to be passed to snomadr

nmulti integer number of times to restart the process of finding extrema of the cross-
validation function from different (random) initial points (default nmulti=0)

tau if non-null a number in (0,1) denoting the quantile for which a quantile regres-
sion spline is to be estimated rather than estimating the conditional mean (default
tau=NULL)

weights an optional vector of weights to be used in the fitting process. Should be ‘NULL’
or a numeric vector. If non-NULL, weighted least squares is used with weights
‘weights’ (that is, minimizing ‘sum(w*e^2)’); otherwise ordinary least squares
is used.

singular.ok a logical value (default singular.ok=FALSE) that, when FALSE, discards sin-
gular bases during cross-validation (a check for ill-conditioned bases is per-
formed).

Details

frscvNOMAD computes NOMAD-based cross-validation for a regression spline estimate of a one
(1) dimensional dependent variable on an r-dimensional vector of continuous and nominal/ordinal
(factor/ordered) predictors. Numerical search for the optimal degree/segments/I is undertaken
using snomadr.

The optimal K/I combination is returned along with other results (see below for return values).

For the continuous predictors the regression spline model employs either the additive or tensor prod-
uct B-spline basis matrix for a multivariate polynomial spline via the B-spline routines in the GNU
Scientific Library (https://www.gnu.org/software/gsl/) and the tensor.prod.model.matrix
function.

https://www.gnu.org/software/gsl/

38 frscvNOMAD

For the nominal/ordinal (factor/ordered) predictors the regression spline model uses indicator
basis functions.

Value

frscvNOMAD returns a crscv object. Furthermore, the function summary supports objects of this
type. The returned objects have the following components:

K scalar/vector containing optimal degree(s) of spline or number of segments

I scalar/vector containing an indicator of whether the predictor is included or not
for each dimension of the nominal/ordinal (factor/ordered) predictors

K.mat vector/matrix of values of K evaluated during search

degree.max the maximum degree of the B-spline basis for each of the continuous predictors
(default degree.max=10)

segments.max the maximum segments of the B-spline basis for each of the continuous predic-
tors (default segments.max=10)

degree.min the minimum degree of the B-spline basis for each of the continuous predictors
(default degree.min=0)

segments.min the minimum segments of the B-spline basis for each of the continuous predic-
tors (default segments.min=1)

cv.func objective function value at optimum

cv.func.vec vector of objective function values at each degree of spline or number of seg-
ments in K.mat

Author(s)

Jeffrey S. Racine <racinej@mcmaster.ca> and Zhenghua Nie <niez@mcmaster.ca>

References

Abramson, M.A. and C. Audet and G. Couture and J.E. Dennis Jr. and S. Le Digabel (2011), “The
NOMAD project”. Software available at https://www.gerad.ca/nomad.

Craven, P. and G. Wahba (1979), “Smoothing Noisy Data With Spline Functions,” Numerische
Mathematik, 13, 377-403.

Hurvich, C.M. and J.S. Simonoff and C.L. Tsai (1998), “Smoothing Parameter Selection in Non-
parametric Regression Using an Improved Akaike Information Criterion,” Journal of the Royal
Statistical Society B, 60, 271-293.

Le Digabel, S. (2011), “Algorithm 909: NOMAD: Nonlinear Optimization With the MADS Algo-
rithm”. ACM Transactions on Mathematical Software, 37(4):44:1-44:15.

Li, Q. and J.S. Racine (2007), Nonparametric Econometrics: Theory and Practice, Princeton Uni-
versity Press.

Ma, S. and J.S. Racine and L. Yang (2015), “Spline Regression in the Presence of Categorical
Predictors,” Journal of Applied Econometrics, Volume 30, 705-717.

Ma, S. and J.S. Racine (2013), “Additive Regression Splines with Irrelevant Categorical and Con-
tinuous Regressors,” Statistica Sinica, Volume 23, 515-541.

glp.model.matrix 39

See Also

loess, npregbw,

Examples

set.seed(42)
Simulated data
n <- 1000

x <- runif(n)
z <- round(runif(n,min=-0.5,max=1.5))
z.unique <- uniquecombs(as.matrix(z))
ind <- attr(z.unique,"index")
ind.vals <- sort(unique(ind))
dgp <- numeric(length=n)
for(i in 1:nrow(z.unique)) {

zz <- ind == ind.vals[i]
dgp[zz] <- z[zz]+cos(2*pi*x[zz])

}

y <- dgp + rnorm(n,sd=.1)

xdata <- data.frame(x,z=factor(z))

Compute the optimal K and I, determine optimal number of knots, set
spline degree for x to 3

cv <- frscvNOMAD(x=xdata,y=y,complexity="knots",degree=c(3),segments=c(5))
summary(cv)

glp.model.matrix Utility function for constructing generalized polynomial smooths

Description

Produce model matrices for a generalized polynomial smooth from the model matrices for the
marginal bases of the smooth.

Usage

glp.model.matrix(X)

Arguments

X a list of model matrices for the marginal bases of a smooth

Details

This function computes a generalized polynomial where the orders of each term entering the poly-
nomial may vary.

40 gsl.bs

Value

A model matrix for a generalized polynomial smooth.

Author(s)

Jeffrey S. Racine <racinej@mcmaster.ca>

References

Hall, P. and J.S. Racine (forthcoming), “Cross-Validated Generalized Local Polynomial Regres-
sion,” Journal of Econometrics.

Examples

X <- list(matrix(1:4,2,2),matrix(5:10,2,3))
glp.model.matrix(X)

gsl.bs GSL (GNU Scientific Library) B-spline/B-spline Derivatives

Description

gsl.bs generates the B-spline basis matrix for a polynomial spline and (optionally) the B-spline
basis matrix derivative of a specified order with respect to each predictor

Usage

gsl.bs(...)
Default S3 method:
gsl.bs(x,

degree = 3,
nbreak = 2,
deriv = 0,
x.min = NULL,
x.max = NULL,
intercept = FALSE,
knots = NULL,
...)

Arguments

x the predictor variable. Missing values are not allowed

degree degree of the piecewise polynomial - default is ‘3’ (cubic spline)

nbreak number of breaks in each interval - default is ‘2’

deriv the order of the derivative to be computed-default if 0

x.min the lower bound on which to construct the spline - defaults to min(x)

gsl.bs 41

x.max the upper bound on which to construct the spline - defaults to max(x)

intercept if ‘TRUE’, an intercept is included in the basis; default is ‘FALSE’

knots a vector (default knots="NULL") specifying knots for the spline basis (default
enables uniform knots, otherwise those provided are used)

... optional arguments

Details

Typical usages are (see below for a list of options and also the examples at the end of this help file)

B <- gsl.bs(x,degree=10)
B.predict <- predict(gsl.bs(x,degree=10),newx=xeval)

Value

gsl.bs returns a gsl.bs object. A matrix of dimension ‘c(length(x), degree+nbreak-1)’. The
generic function predict extracts (or generates) predictions from the returned object.

A primary use is in modelling formulas to directly specify a piecewise polynomial term in a model.
See https://www.gnu.org/software/gsl/ for further details.

Author(s)

Jeffrey S. Racine <racinej@mcmaster.ca>

References

Li, Q. and J.S. Racine (2007), Nonparametric Econometrics: Theory and Practice, Princeton Uni-
versity Press.

Ma, S. and J.S. Racine and L. Yang (2015), “Spline Regression in the Presence of Categorical
Predictors,” Journal of Applied Econometrics, Volume 30, 705-717.

Ma, S. and J.S. Racine (2013), “Additive Regression Splines with Irrelevant Categorical and Con-
tinuous Regressors,” Statistica Sinica, Volume 23, 515-541.

See Also

bs

Examples

Plot the spline bases and their first order derivatives
x <- seq(0,1,length=100)
matplot(x,gsl.bs(x,degree=5),type="l")
matplot(x,gsl.bs(x,degree=5,deriv=1),type="l")

Regression example
n <- 1000
x <- sort(runif(n))
y <- cos(2*pi*x) + rnorm(n,sd=.25)

https://www.gnu.org/software/gsl/

42 krscv

B <- gsl.bs(x,degree=5,intercept=FALSE)
plot(x,y,cex=.5,col="grey")
lines(x,fitted(lm(y~B)))

krscv Categorical Kernel Regression Spline Cross-Validation

Description

krscv computes exhaustive cross-validation directed search for a regression spline estimate of a one
(1) dimensional dependent variable on an r-dimensional vector of continuous and nominal/ordinal
(factor/ordered) predictors.

Usage

krscv(xz,
y,
degree.max = 10,
segments.max = 10,
degree.min = 0,
segments.min = 1,
restarts = 0,
complexity = c("degree-knots","degree","knots"),
knots = c("quantiles","uniform","auto"),
basis = c("additive","tensor","glp","auto"),
cv.func = c("cv.ls","cv.gcv","cv.aic"),
degree = degree,
segments = segments,
tau = NULL,
weights = NULL,
singular.ok = FALSE)

Arguments

y continuous univariate vector

xz continuous and/or nominal/ordinal (factor/ordered) predictors

degree.max the maximum degree of the B-spline basis for each of the continuous predictors
(default degree.max=10)

segments.max the maximum segments of the B-spline basis for each of the continuous predic-
tors (default segments.max=10)

degree.min the minimum degree of the B-spline basis for each of the continuous predictors
(default degree.min=0)

segments.min the minimum segments of the B-spline basis for each of the continuous predic-
tors (default segments.min=1)

krscv 43

restarts number of times to restart optim from different initial random values (default
restarts=0) when searching for optimal bandwidths for the categorical predic-
tors for each unique K combination (i.e.\ degree/segments)

complexity a character string (default complexity="degree-knots") indicating whether
model ‘complexity’ is determined by the degree of the spline or by the number
of segments (‘knots’). This option allows the user to use cross-validation to
select either the spline degree (number of knots held fixed) or the number of
knots (spline degree held fixed) or both the spline degree and number of knots

knots a character string (default knots="quantiles") specifying where knots are
to be placed. ‘quantiles’ specifies knots placed at equally spaced quantiles
(equal number of observations lie in each segment) and ‘uniform’ specifies knots
placed at equally spaced intervals. If knots="auto", the knot type will be auto-
matically determined by cross-validation

basis a character string (default basis="additive") indicating whether the additive
or tensor product B-spline basis matrix for a multivariate polynomial spline or
generalized B-spline polynomial basis should be used. Note this can be auto-
matically determined by cross-validation if cv=TRUE and basis="auto", and is
an ‘all or none’ proposition (i.e. interaction terms for all predictors or for no pre-
dictors given the nature of ‘tensor products’). Note also that if there is only one
predictor this defaults to basis="additive" to avoid unnecessary computation
as the spline bases are equivalent in this case

cv.func a character string (default cv.func="cv.ls") indicating which method to use
to select smoothing parameters. cv.gcv specifies generalized cross-validation
(Craven and Wahba (1979)), cv.aic specifies expected Kullback-Leibler cross-
validation (Hurvich, Simonoff, and Tsai (1998)), and cv.ls specifies least-
squares cross-validation

degree integer/vector specifying the degree of the B-spline basis for each dimension of
the continuous x

segments integer/vector specifying the number of segments of the B-spline basis for each
dimension of the continuous x (i.e. number of knots minus one)

tau if non-null a number in (0,1) denoting the quantile for which a quantile regres-
sion spline is to be estimated rather than estimating the conditional mean (default
tau=NULL)

weights an optional vector of weights to be used in the fitting process. Should be ‘NULL’
or a numeric vector. If non-NULL, weighted least squares is used with weights
‘weights’ (that is, minimizing ‘sum(w*e^2)’); otherwise ordinary least squares
is used.

singular.ok a logical value (default singular.ok=FALSE) that, when FALSE, discards sin-
gular bases during cross-validation (a check for ill-conditioned bases is per-
formed).

Details

krscv computes exhaustive cross-validation for a regression spline estimate of a one (1) dimen-
sional dependent variable on an r-dimensional vector of continuous and nominal/ordinal (factor/ordered)
predictors. The optimal K/lambda combination is returned along with other results (see below for

44 krscv

return values). The method uses kernel functions appropriate for categorical (ordinal/nominal) pre-
dictors which avoids the loss in efficiency associated with sample-splitting procedures that are typi-
cally used when faced with a mix of continuous and nominal/ordinal (factor/ordered) predictors.

For the continuous predictors the regression spline model employs either the additive or tensor prod-
uct B-spline basis matrix for a multivariate polynomial spline via the B-spline routines in the GNU
Scientific Library (https://www.gnu.org/software/gsl/) and the tensor.prod.model.matrix
function.

For the discrete predictors the product kernel function is of the ‘Li-Racine’ type (see Li and Racine
(2007) for details).

For each unique combination of degree and segment, numerical search for the bandwidth vec-
tor lambda is undertaken using optim and the box-constrained L-BFGS-B method (see optim for
details). The user may restart the optim algorithm as many times as desired via the restarts argu-
ment. The approach ascends from K=0 through degree.max/segments.max and for each value of
K searches for the optimal bandwidths for this value of K. After the most complex model has been
searched then the optimal K/lambda combination is selected. If any element of the optimal K vector
coincides with degree.max/segments.max a warning is produced and the user ought to restart their
search with a larger value of degree.max/segments.max.

Value

krscv returns a crscv object. Furthermore, the function summary supports objects of this type. The
returned objects have the following components:

K scalar/vector containing optimal degree(s) of spline or number of segments

K.mat vector/matrix of values of K evaluated during search

restarts number of restarts during search, if any

lambda optimal bandwidths for categorical predictors

lambda.mat vector/matrix of optimal bandwidths for each degree of spline

cv.func objective function value at optimum

cv.func.vec vector of objective function values at each degree of spline or number of seg-
ments in K.mat

Author(s)

Jeffrey S. Racine <racinej@mcmaster.ca>

References

Craven, P. and G. Wahba (1979), “Smoothing Noisy Data With Spline Functions,” Numerische
Mathematik, 13, 377-403.

Hurvich, C.M. and J.S. Simonoff and C.L. Tsai (1998), “Smoothing Parameter Selection in Non-
parametric Regression Using an Improved Akaike Information Criterion,” Journal of the Royal
Statistical Society B, 60, 271-293.

Li, Q. and J.S. Racine (2007), Nonparametric Econometrics: Theory and Practice, Princeton Uni-
versity Press.

https://www.gnu.org/software/gsl/

krscvNOMAD 45

Ma, S. and J.S. Racine and L. Yang (2015), “Spline Regression in the Presence of Categorical
Predictors,” Journal of Applied Econometrics, Volume 30, 705-717.

Ma, S. and J.S. Racine (2013), “Additive Regression Splines with Irrelevant Categorical and Con-
tinuous Regressors,” Statistica Sinica, Volume 23, 515-541.

See Also

loess, npregbw,

Examples

set.seed(42)
Simulated data
n <- 1000

x <- runif(n)
z <- round(runif(n,min=-0.5,max=1.5))
z.unique <- uniquecombs(as.matrix(z))
ind <- attr(z.unique,"index")
ind.vals <- sort(unique(ind))
dgp <- numeric(length=n)
for(i in 1:nrow(z.unique)) {

zz <- ind == ind.vals[i]
dgp[zz] <- z[zz]+cos(2*pi*x[zz])

}
y <- dgp + rnorm(n,sd=.1)

xdata <- data.frame(x,z=factor(z))

Compute the optimal K and lambda, determine optimal number of knots, set
spline degree for x to 3

cv <- krscv(x=xdata,y=y,complexity="knots",degree=c(3))
summary(cv)

krscvNOMAD Categorical Kernel Regression Spline Cross-Validation

Description

krscvNOMAD computes NOMAD-based (Nonsmooth Optimization by Mesh Adaptive Direct Search,
Abramson, Audet, Couture and Le Digabel (2011)) cross-validation directed search for a regression
spline estimate of a one (1) dimensional dependent variable on an r-dimensional vector of continu-
ous and nominal/ordinal (factor/ordered) predictors.

46 krscvNOMAD

Usage

krscvNOMAD(xz,
y,
degree.max = 10,
segments.max = 10,
degree.min = 0,
segments.min = 1,
cv.df.min = 1,
complexity = c("degree-knots","degree","knots"),
knots = c("quantiles","uniform","auto"),
basis = c("additive","tensor","glp","auto"),
cv.func = c("cv.ls","cv.gcv","cv.aic"),
degree = degree,
segments = segments,
lambda = lambda,
lambda.discrete = FALSE,
lambda.discrete.num = 100,
random.seed = 42,
max.bb.eval = 10000,
initial.mesh.size.real = "r0.1",
initial.mesh.size.integer = "1",
min.mesh.size.real = paste("r",sqrt(.Machine$double.eps),sep=""),
min.mesh.size.integer = "1",
min.poll.size.real = "1",
min.poll.size.integer = "1",
opts=list(),
nmulti = 0,
tau = NULL,
weights = NULL,
singular.ok = FALSE)

Arguments

y continuous univariate vector

xz continuous and/or nominal/ordinal (factor/ordered) predictors

degree.max the maximum degree of the B-spline basis for each of the continuous predictors
(default degree.max=10)

segments.max the maximum segments of the B-spline basis for each of the continuous predic-
tors (default segments.max=10)

degree.min the minimum degree of the B-spline basis for each of the continuous predictors
(default degree.min=0)

segments.min the minimum segments of the B-spline basis for each of the continuous predic-
tors (default segments.min=1)

cv.df.min the minimum degrees of freedom to allow when conducting cross-validation
(default cv.df.min=1)

krscvNOMAD 47

complexity a character string (default complexity="degree-knots") indicating whether
model ‘complexity’ is determined by the degree of the spline or by the number
of segments (‘knots’). This option allows the user to use cross-validation to
select either the spline degree (number of knots held fixed) or the number of
knots (spline degree held fixed) or both the spline degree and number of knots

knots a character string (default knots="quantiles") specifying where knots are
to be placed. ‘quantiles’ specifies knots placed at equally spaced quantiles
(equal number of observations lie in each segment) and ‘uniform’ specifies knots
placed at equally spaced intervals. If knots="auto", the knot type will be auto-
matically determined by cross-validation

basis a character string (default basis="additive") indicating whether the additive
or tensor product B-spline basis matrix for a multivariate polynomial spline or
generalized B-spline polynomial basis should be used. Note this can be auto-
matically determined by cross-validation if cv=TRUE and basis="auto", and is
an ‘all or none’ proposition (i.e. interaction terms for all predictors or for no pre-
dictors given the nature of ‘tensor products’). Note also that if there is only one
predictor this defaults to basis="additive" to avoid unnecessary computation
as the spline bases are equivalent in this case

cv.func a character string (default cv.func="cv.ls") indicating which method to use
to select smoothing parameters. cv.gcv specifies generalized cross-validation
(Craven and Wahba (1979)), cv.aic specifies expected Kullback-Leibler cross-
validation (Hurvich, Simonoff, and Tsai (1998)), and cv.ls specifies least-
squares cross-validation

degree integer/vector specifying the degree of the B-spline basis for each dimension of
the continuous x

segments integer/vector specifying the number of segments of the B-spline basis for each
dimension of the continuous x (i.e. number of knots minus one)

lambda real/vector for the categorical predictors. If it is not NULL, it will be the starting
value(s) for lambda

lambda.discrete

if lambda.discrete=TRUE, the bandwidth will be discretized into lambda.discrete.num+1
points and lambda will be chosen from these points

lambda.discrete.num

a positive integer indicating the number of discrete values that lambda can as-
sume - this parameter will only be used when lambda.discrete=TRUE

random.seed when it is not missing and not equal to 0, the initial points will be generated
using this seed when nmulti > 0

max.bb.eval argument passed to the NOMAD solver (see snomadr for further details)
initial.mesh.size.real

argument passed to the NOMAD solver (see snomadr for further details)
initial.mesh.size.integer

argument passed to the NOMAD solver (see snomadr for further details)
min.mesh.size.real

argument passed to the NOMAD solver (see snomadr for further details)
min.mesh.size.integer

arguments passed to the NOMAD solver (see snomadr for further details)

48 krscvNOMAD

min.poll.size.real

arguments passed to the NOMAD solver (see snomadr for further details)
min.poll.size.integer

arguments passed to the NOMAD solver (see snomadr for further details)

opts list of optional arguments to be passed to snomadr

nmulti integer number of times to restart the process of finding extrema of the cross-
validation function from different (random) initial points (default nmulti=0)

tau if non-null a number in (0,1) denoting the quantile for which a quantile regres-
sion spline is to be estimated rather than estimating the conditional mean (default
tau=NULL)

weights an optional vector of weights to be used in the fitting process. Should be ‘NULL’
or a numeric vector. If non-NULL, weighted least squares is used with weights
‘weights’ (that is, minimizing ‘sum(w*e^2)’); otherwise ordinary least squares
is used.

singular.ok a logical value (default singular.ok=FALSE) that, when FALSE, discards sin-
gular bases during cross-validation (a check for ill-conditioned bases is per-
formed).

Details

krscvNOMAD computes NOMAD-based cross-validation for a regression spline estimate of a one
(1) dimensional dependent variable on an r-dimensional vector of continuous and nominal/ordinal
(factor/ordered) predictors. Numerical search for the optimal degree/segments/lambda is un-
dertaken using snomadr.

The optimal K/lambda combination is returned along with other results (see below for return values).
The method uses kernel functions appropriate for categorical (ordinal/nominal) predictors which
avoids the loss in efficiency associated with sample-splitting procedures that are typically used
when faced with a mix of continuous and nominal/ordinal (factor/ordered) predictors.

For the continuous predictors the regression spline model employs either the additive or tensor prod-
uct B-spline basis matrix for a multivariate polynomial spline via the B-spline routines in the GNU
Scientific Library (https://www.gnu.org/software/gsl/) and the tensor.prod.model.matrix
function.

For the discrete predictors the product kernel function is of the ‘Li-Racine’ type (see Li and Racine
(2007) for details).

Value

krscvNOMAD returns a crscv object. Furthermore, the function summary supports objects of this
type. The returned objects have the following components:

K scalar/vector containing optimal degree(s) of spline or number of segments

K.mat vector/matrix of values of K evaluated during search

degree.max the maximum degree of the B-spline basis for each of the continuous predictors
(default degree.max=10)

segments.max the maximum segments of the B-spline basis for each of the continuous predic-
tors (default segments.max=10)

https://www.gnu.org/software/gsl/

krscvNOMAD 49

degree.min the minimum degree of the B-spline basis for each of the continuous predictors
(default degree.min=0)

segments.min the minimum segments of the B-spline basis for each of the continuous predic-
tors (default segments.min=1)

restarts number of restarts during search, if any

lambda optimal bandwidths for categorical predictors

lambda.mat vector/matrix of optimal bandwidths for each degree of spline

cv.func objective function value at optimum

cv.func.vec vector of objective function values at each degree of spline or number of seg-
ments in K.mat

Author(s)

Jeffrey S. Racine <racinej@mcmaster.ca> and Zhenghua Nie <niez@mcmaster.ca>

References

Abramson, M.A. and C. Audet and G. Couture and J.E. Dennis Jr. and S. Le Digabel (2011), “The
NOMAD project”. Software available at https://www.gerad.ca/nomad.

Craven, P. and G. Wahba (1979), “Smoothing Noisy Data With Spline Functions,” Numerische
Mathematik, 13, 377-403.

Hurvich, C.M. and J.S. Simonoff and C.L. Tsai (1998), “Smoothing Parameter Selection in Non-
parametric Regression Using an Improved Akaike Information Criterion,” Journal of the Royal
Statistical Society B, 60, 271-293.

Le Digabel, S. (2011), “Algorithm 909: NOMAD: Nonlinear Optimization With The MADS Algo-
rithm”. ACM Transactions on Mathematical Software, 37(4):44:1-44:15.

Li, Q. and J.S. Racine (2007), Nonparametric Econometrics: Theory and Practice, Princeton Uni-
versity Press.

Ma, S. and J.S. Racine and L. Yang (2015), “Spline Regression in the Presence of Categorical
Predictors,” Journal of Applied Econometrics, Volume 30, 705-717.

Ma, S. and J.S. Racine (2013), “Additive Regression Splines with Irrelevant Categorical and Con-
tinuous Regressors,” Statistica Sinica, Volume 23, 515-541.

See Also

loess, npregbw,

Examples

set.seed(42)
Simulated data
n <- 1000

x <- runif(n)
z <- round(runif(n,min=-0.5,max=1.5))
z.unique <- uniquecombs(as.matrix(z))

50 npglpreg

ind <- attr(z.unique,"index")
ind.vals <- sort(unique(ind))
dgp <- numeric(length=n)
for(i in 1:nrow(z.unique)) {

zz <- ind == ind.vals[i]
dgp[zz] <- z[zz]+cos(2*pi*x[zz])

}
y <- dgp + rnorm(n,sd=.1)

xdata <- data.frame(x,z=factor(z))

Compute the optimal K and lambda, determine optimal number of knots, set
spline degree for x to 3

cv <- krscvNOMAD(x=xdata,y=y,complexity="knots",degree=c(3),segments=c(5))
summary(cv)

npglpreg Generalized Local Polynomial Regression

Description

npglpreg computes a generalized local polynomial kernel regression estimate (Hall and Racine
(2015)) of a one (1) dimensional dependent variable on an r-dimensional vector of continuous and
categorical (factor/ordered) predictors.

Usage

npglpreg(...)

Default S3 method:
npglpreg(tydat = NULL,

txdat = NULL,
eydat = NULL,
exdat = NULL,
bws = NULL,
degree = NULL,
leave.one.out = FALSE,

ckertype = c("gaussian", "epanechnikov", "uniform", "truncated gaussian"),
ckerorder = 2,
ukertype = c("liracine", "aitchisonaitken"),
okertype = c("liracine", "wangvanryzin"),
bwtype = c("fixed", "generalized_nn", "adaptive_nn", "auto"),
gradient.vec = NULL,
gradient.categorical = FALSE,
cv.shrink = TRUE,
cv.maxPenalty = sqrt(.Machine$double.xmax),
cv.warning = FALSE,

npglpreg 51

Bernstein = TRUE,
mpi = FALSE,
...)

S3 method for class 'formula'
npglpreg(formula,

data = list(),
tydat = NULL,
txdat = NULL,
eydat = NULL,
exdat = NULL,
bws = NULL,
degree = NULL,
leave.one.out = FALSE,

ckertype = c("gaussian", "epanechnikov","uniform","truncated gaussian"),
ckerorder = 2,
ukertype = c("liracine", "aitchisonaitken"),
okertype = c("liracine", "wangvanryzin"),
bwtype = c("fixed", "generalized_nn", "adaptive_nn", "auto"),
cv = c("degree-bandwidth", "bandwidth", "none"),
cv.func = c("cv.ls", "cv.aic"),
nmulti = 5,
random.seed = 42,
degree.max = 10,
degree.min = 0,
bandwidth.max = .Machine$double.xmax,
bandwidth.min = sqrt(.Machine$double.eps),
bandwidth.min.numeric = 1.0e-02,
bandwidth.switch = 1.0e+06,
bandwidth.scale.categorical = 1.0e+04,
max.bb.eval = 10000,
min.epsilon = .Machine$double.eps,
initial.mesh.size.real = 1,
initial.mesh.size.integer = 1,
min.mesh.size.real = sqrt(.Machine$double.eps),
min.mesh.size.integer = 1,
min.poll.size.real = 1,
min.poll.size.integer = 1,
opts=list(),
restart.from.min = FALSE,
gradient.vec = NULL,
gradient.categorical = FALSE,
cv.shrink = TRUE,
cv.maxPenalty = sqrt(.Machine$double.xmax),
cv.warning = FALSE,
Bernstein = TRUE,
mpi = FALSE,
...)

52 npglpreg

Arguments

formula a symbolic description of the model to be fit

data an optional data frame containing the variables in the model

tydat a one (1) dimensional numeric or integer vector of dependent data, each element
i corresponding to each observation (row) i of txdat. Defaults to the training
data used to compute the bandwidth object

txdat a p-variate data frame of explanatory data (training data) used to calculate the re-
gression estimators. Defaults to the training data used to compute the bandwidth
object

eydat a one (1) dimensional numeric or integer vector of the true values of the depen-
dent variable. Optional, and used only to calculate the true errors

exdat a p-variate data frame of points on which the regression will be estimated (eval-
uation data). By default, evaluation takes place on the data provided by txdat

bws a vector of bandwidths, with each element i corresponding to the bandwidth for
column i in txdat

degree integer/vector specifying the polynomial degree of the for each dimension of the
continuous x in txdat

leave.one.out a logical value to specify whether or not to compute the leave one out sums.
Will not work if exdat is specified. Defaults to FALSE

ckertype character string used to specify the continuous kernel type. Can be set as gaussian,
epanechnikov, or uniform. Defaults to gaussian.

ckerorder numeric value specifying kernel order (one of (2,4,6,8)). Kernel order spec-
ified along with a uniform continuous kernel type will be ignored. Defaults to
2.

ukertype character string used to specify the unordered categorical kernel type. Can be
set as aitchisonaitken or liracine. Defaults to liracine

okertype character string used to specify the ordered categorical kernel type. Can be set
as wangvanryzin or liracine. Defaults to liracine

bwtype character string used for the continuous variable bandwidth type, specifying the
type of bandwidth to compute and return in the bandwidth object. If bwtype="auto",
the bandwidth type type will be automatically determined by cross-validation.
Defaults to fixed. Option summary:
fixed: compute fixed bandwidths
generalized_nn: compute generalized nearest neighbor bandwidths
adaptive_nn: compute adaptive nearest neighbor bandwidths

cv a character string (default cv="nomad") indicating whether to use nonsmooth
mesh adaptive direct search, or no search (i.e. use supplied values for degree
and bws)

cv.func a character string (default cv.func="cv.ls") indicating which method to use
to select smoothing parameters. cv.aic specifies expected Kullback-Leibler
cross-validation (Hurvich, Simonoff, and Tsai (1998)), and cv.ls specifies least-
squares cross-validation

max.bb.eval argument passed to the NOMAD solver (see snomadr for further details)

npglpreg 53

min.epsilon argument passed to the NOMAD solver (see snomadr for further details)
initial.mesh.size.real

argument passed to the NOMAD solver (see snomadr for further details)
initial.mesh.size.integer

argument passed to the NOMAD solver (see snomadr for further details)
min.mesh.size.real

argument passed to the NOMAD solver (see snomadr for further details)
min.mesh.size.integer

arguments passed to the NOMAD solver (see snomadr for further details)
min.poll.size.real

arguments passed to the NOMAD solver (see snomadr for further details)
min.poll.size.integer

arguments passed to the NOMAD solver (see snomadr for further details)

opts list of optional arguments passed to the NOMAD solver (see snomadr for further
details)

nmulti integer number of times to restart the process of finding extrema of the cross-
validation function from different (random) initial points (default nmulti=5)

random.seed when it is not missing and not equal to 0, the initial points will be generated
using this seed when using snomadr

degree.max the maximum degree of the polynomial for each of the continuous predictors
(default degree.max=10)

degree.min the minimum degree of the polynomial for each of the continuous predictors
(default degree.min=0)

bandwidth.max the maximum bandwidth scale (i.e. number of scaled standard deviations) for
each of the continuous predictors (default bandwidth.max=.Machine$double.xmax)

bandwidth.min the minimum bandwidth scale for each of the categorical predictors (default
sqrt(.Machine$double.eps))

bandwidth.min.numeric

the minimum bandwidth scale (i.e. number of scaled standard deviations) for
each of the continuous predictors (default bandwidth.min=1.0e-02)

bandwidth.switch

the minimum bandwidth scale (i.e. number of scaled standard deviations) for
each of the continuous predictors (default bandwidth.switch=1.0e+06) before
the local polynomial is treated as global during cross-validation at which point
a global categorical kernel weighted least squares fit is used for computational
efficiency

bandwidth.scale.categorical

the upper end for the rescaled bandwidths for the categorical predictors (default
bandwidth.scale.categorical=1.0e+04) - the aim is to ‘even up’ the scale
of the search parameters as much as possible, so when very large scale factors
are selected for the continuous predictors, a larger value may improve search

restart.from.min

a logical value indicating to recommence snomadr with the optimal values found
from its first invocation (typically quick but sometimes recommended in the field
of optimization)

54 npglpreg

gradient.vec a vector corresponding to the order of the partial (or cross-partial) and which
variable the partial (or cross-partial) derivative(s) are required

gradient.categorical

a logical value indicating whether discrete gradients (i.e. differences in the re-
sponse from the base value for each categorical predictor) are to be computed

cv.shrink a logical value indicating whether to use ridging (Seifert and Gasser (2000)) for
ill-conditioned inversion during cross-validation (default cv.shrink=TRUE) or
to instead test for ill-conditioned matrices and penalize heavily when this is the
case (much stronger condition imposed on cross-validation)

cv.maxPenalty a penalty applied during cross-validation when a delete-one estimate is not finite
or the polynomial basis is not of full column rank

cv.warning a logical value indicating whether to issue an immediate warning message when
ill conditioned bases are encountered during cross-validation (default cv.warning=FALSE)

Bernstein a logical value indicating whether to use raw polynomials or Bernstein polyno-
mials (default) (note that a Bernstein polynomial is also know as a Bezier curve
which is also a B-spline with no interior knots)

mpi a logical value (default mpi=FALSE) that, when mpi=TRUE, can call the npRmpi
rather than the np package (note - code needs to mirror examples in the demo
directory of the npRmpi package, you need to broadcast loading of the crs pack-
age, and need .Rprofile in your current directory)

... additional arguments supplied to specify the regression type, bandwidth type,
kernel types, training data, and so on, detailed below

Details

Typical usages are (see below for a list of options and also the examples at the end of this help file)

Conduct generalized local polynomial estimation

model <- npglpreg(y~x1+x2)

Conduct degree 0 local polynomial estimation
(i.e. Nadaraya-Watson)

model <- npglpreg(y~x1+x2,cv="bandwidth",degree=c(0,0))

Conduct degree 1 local polynomial estimation (i.e. local linear)

model <- npglpreg(y~x1+x2,cv="bandwidth",degree=c(1,1))

Conduct degree 2 local polynomial estimation (i.e. local
quadratic)

model <- npglpreg(y~x1+x2,cv="bandwidth",degree=c(2,2))

Plot the mean and bootstrap confidence intervals

npglpreg 55

plot(model,ci=TRUE)

Plot the first partial derivatives and bootstrap confidence
intervals

plot(model,deriv=1,ci=TRUE)

Plot the first second partial derivatives and bootstrap
confidence intervals

plot(model,deriv=2,ci=TRUE)

This function is in beta status until further notice (eventually it will be rolled into the np/npRmpi
packages after the final status of snomadr/NOMAD gets sorted out).

Optimizing the cross-validation function jointly for bandwidths (vectors of continuous parameters)
and polynomial degrees (vectors of integer parameters) constitutes a mixed-integer optimization
problem. These problems are not only ‘hard’ from the numerical optimization perspective, but
are also computationally intensive (contrast this to where we conduct, say, local linear regression
which sets the degree of the polynomial vector to a global value degree=1 hence we only need to
optimize with respect to the continuous bandwidths). Because of this we must be mindful of the
presence of local optima (the objective function is non-convex and non-differentiable). Restarting
search from different initial starting points is recommended (see nmulti) and by default this is done
more than once. We encourage users to adopt ‘multistarting’ and to investigate the impact of chang-
ing default search parameters such as initial.mesh.size.real, initial.mesh.size.integer,
min.mesh.size.real, min.mesh.size.integer,min.poll.size.real, and min.poll.size.integer.
The default values were chosen based on extensive simulation experiments and were chosen so as to
yield robust performance while being mindful of excessive computation - of course, no one setting
can be globally optimal.

Value

npglpreg returns a npglpreg object. The generic functions fitted and residuals extract (or gen-
erate) estimated values and residuals. Furthermore, the functions summary, predict, and plot (op-
tions deriv=0, ci=FALSE [ci=TRUE produces pointwise bootstrap error bounds], persp.rgl=FALSE,
plot.behavior=c("plot","plot-data","data"), plot.errors.boot.num=99, plot.errors.type=c("quantiles","standard")
["quantiles" produces percentiles determined by plot.errors.quantiles below, "standard"
produces error bounds given by +/- 1.96 bootstrap standard deviations], plot.errors.quantiles=c(.025,.975),
xtrim=0.0, xq=0.5) support objects of this type. The returned object has the following compo-
nents:

fitted.values estimates of the regression function (conditional mean) at the sample points or
evaluation points

residuals residuals computed at the sample points or evaluation points

degree integer/vector specifying the degree of the polynomial for each dimension of the
continuous x

gradient the estimated gradient (vector) corresponding to the vector gradient.vec

56 npglpreg

gradient.categorical.mat

the estimated gradient (matrix) for the categorical predictors

gradient.vec the supplied gradient.vec

bws vector of bandwidths

bwtype the supplied bwtype

call a symbolic description of the model

r.squared coefficient of determination (Doksum and Samarov (1995))

Note

Note that the use of raw polynomials (Bernstein=FALSE) for approximation is appealing as they
can be computed and differentiated easily, however, they can be unstable (their inversion can be ill
conditioned) which can cause problems in some instances as the order of the polynomial increases.
This can hamper search when excessive reliance on ridging to overcome ill conditioned inversion
becomes computationally burdensome.

npglpreg tries to detect whether this is an issue or not when Bernstein=FALSE for each numeric
predictor and will adjust the search range for snomadr and the degree fed to npglpreg if appropriate.

However, if you suspect that this might be an issue for your specific problem and you are using raw
polynomials (Bernstein=FALSE), you are encouraged to investigate this by limiting degree.max to
value less than the default value (say 3). Alternatively, you might consider re-scaling your numeric
predictors to lie in [0, 1] using scale.

For a given predictor x you can readily determine if this is an issue by considering the following:
Suppose x is given by

x <- runif(100,10000,11000)
y <- x + rnorm(100,sd=1000)

so that a polynomial of order, say, 5 would be ill conditioned. This would be apparent if you
considered

X <- poly(x,degree=5,raw=TRUE)
solve(t(X)%*%X)

which will throw an error when the polynomial is ill conditioned, or

X <- poly(x,degree=5,raw=TRUE)
lm(y~X)

which will return NA for one or more coefficients when this is an issue.

In such cases you might consider transforming your numeric predictors along the lines of the fol-
lowing:

npglpreg 57

x <- as.numeric(scale(x))
X <- poly(x,degree=5,raw=TRUE)
solve(t(X)%*%X)
lm(y~X)

Note that now your least squares coefficients (i.e. first derivative of y with respect to x) represent
the effect of a one standard deviation change in x and not a one unit change.

Alternatively, you can use Bernstein polynomials by not setting Bernstein=FALSE.

Author(s)

Jeffrey S. Racine <racinej@mcmaster.ca> and Zhenghua Nie <niez@mcmaster.ca>

References

Doksum, K. and A. Samarov (1995), “Nonparametric Estimation of Global Functionals and a Mea-
sure of the Explanatory Power of Covariates in Regression,” The Annals of Statistics, 23, 1443-
1473.

Hall, P. and J.S. Racine (2015), “Infinite Order Cross-Validated Local Polynomial Regression,”
Journal of Econometrics, 185, 510-525.

Li, Q. and J.S. Racine (2007), Nonparametric Econometrics: Theory and Practice, Princeton Uni-
versity Press.

Seifert, B. and T. Gasser (2000), “Data Adaptive Ridging in Local Polynomial Regression,” Journal
of Computational and Graphical Statistics, 9(2), 338-360.

See Also

npreg

Examples

Not run:
set.seed(42)
n <- 100
x1 <- runif(n,-2,2)
x2 <- runif(n,-2,2)
y <- x1^3 + rnorm(n,sd=1)

Ideally the method should choose large bandwidths for x1 and x2 and a
generalized polynomial that is a cubic for x1 and degree 0 for x2.

model <- npglpreg(y~x1+x2,nmulti=1)
summary(model)

Plot the partial means and percentile confidence intervals
plot(model,ci=T)
Extract the data from the plot object and plot it separately
myplot.dat <- plot(model,plot.behavior="data",ci=T)
matplot(myplot.dat[[1]][,1],myplot.dat[[1]][,-1],type="l")

58 snomadr

matplot(myplot.dat[[2]][,1],myplot.dat[[2]][,-1],type="l")

End(Not run)

snomadr R interface to NOMAD

Description

snomadr is an R interface to NOMAD (Nonsmooth Optimization by Mesh Adaptive Direct Search,
Abramson, Audet, Couture and Le Digabel (2011)), an open source software C++ implementation
of the Mesh Adaptive Direct Search (MADS, Le Digabel (2011)) algorithm designed for constrained
optimization of blackbox functions.

NOMAD is designed to find (local) solutions of mathematical optimization problems of the form

min f(x)
x in R^n

s.t. g(x) <= 0
x_L <= x <= x_U

where f(x) : Rn → Rk is the objective function, and g(x) : Rn → Rm are the constraint func-
tions. The vectors xL and xU are the bounds on the variables x. The functions f(x) and g(x)
can be nonlinear and nonconvex. The variables can be integer, continuous real number, binary, and
categorical.

Kindly see https://www.gerad.ca/en/software/nomad and the references below for details.

Usage

snomadr(eval.f,
n,
bbin = NULL,
bbout = NULL,
x0 = NULL,
lb = NULL,
ub = NULL,
nmulti = 0,
random.seed = 0,
opts = list(),
print.output = TRUE,
information = list(),
snomadr.environment = new.env(),
...)

https://www.gerad.ca/en/software/nomad

snomadr 59

Arguments

eval.f function that returns the value of the objective function

n the number of variables

bbin types of variables. Variable types are 0 (CONTINUOUS), 1 (INTEGER), 2
(CATEGORICAL), 3 (BINARY)

bbout types of output of eval.f. See the NOMAD User Guide https://nomad-4-user-guide.
readthedocs.io/en/latest/#

x0 vector with starting values for the optimization. If it is provided and nmulti is
bigger than 1, x0 will be the first initial point for multiple initial points

lb vector with lower bounds of the controls (use -1.0e19 for controls without lower
bound)

ub vector with upper bounds of the controls (use 1.0e19 for controls without upper
bound)

nmulti when it is missing, or it is equal to 0 and x0 is provided, snomadRSolve will be
called to solve the problem. Otherwise, smultinomadRSolve will be called

random.seed when it is not missing and not equal to 0, the initial points will be generated
using this seed when nmulti > 0

opts list of options for NOMAD, see the NOMAD user guide https://nomad-4-user-guide.
readthedocs.io/en/latest/#. Options can also be set by nomad.opt which
should be in the folder where R (snomadr) is executed. Options that affect the
solution and their defaults and some potential values are
"MAX_BB_EVAL"=10000

"INITIAL_MESH_SIZE"=1

"MIN_MESH_SIZE"="r1.0e-10"

"MIN_POLL_SIZE"=1

Note that the "r..." denotes relative measurement (relative to lb and ub)
Note that decreasing the maximum number of black box evaluations ("MAX_BB_EVAL")
will terminate search sooner and may result in a less accurate solution. For com-
plicated problems you may want to increase this value. When experimenting it
is desirable to set "DISPLAY_DEGREE"=1 (or a larger integer) to get some sense
for how the algorithm is progressing

print.output when FALSE, no output from snomadr is displayed on the screen. If the NO-
MAD option "DISPLAY_DEGREE"=0, is set, there will also be no output from
NOMAD. Higher integer values for "DISPLAY_DEGREE"= provide successively
more detail

information is a list. snomadr will call snomadRInfo to return the information about NO-
MAD according to the values of "info", "version" and "help".
"info"="-i": display the usage and copyright of NOMAD
"version"="-v": display the version of NOMAD you are using
"help"="-h": display all options
You also can display a specific option, for example, "help"="-h x0", this will
tell you how to set x0

https://nomad-4-user-guide.readthedocs.io/en/latest/#
https://nomad-4-user-guide.readthedocs.io/en/latest/#
https://nomad-4-user-guide.readthedocs.io/en/latest/#
https://nomad-4-user-guide.readthedocs.io/en/latest/#

60 snomadr

snomadr.environment

environment that is used to evaluate the functions. Use this to pass additional
data or parameters to a function

... arguments that will be passed to the user-defined objective and constraints func-
tions. See the examples below

Details

snomadr is used in the crs package to numerically minimize an objective function with respect
to the spline degree, number of knots, and optionally the kernel bandwidths when using crs with
the option cv="nomad" (default). This is a constrained mixed integer combinatoric problem and
is known to be computationally ‘hard’. See frscvNOMAD and krscvNOMAD for the functions called
when cv="nomad" while using crs.

However, the user should note that for simple problems involving one predictor exhaustive search
may be faster and potentially more accurate, so please bear in mind that cv="exhaustive" can be
useful when using crs.

Naturally, exhaustive search is also useful for verifying solutions returned by snomadr. See frscv
and krscv for the functions called when cv="exhaustive" while using crs.

Value

The return value contains a list with the inputs, and additional elements

call the call that was made to solve

status integer value with the status of the optimization

message more informative message with the status of the optimization

iterations number of iterations that were executed, if multiple initial points are set, this
number will be the sum for each initial point.

objective value if the objective function in the solution

solution optimal value of the controls

Author(s)

Zhenghua Nie <niez@mcmaster.ca>

References

Abramson, M.A. and C. Audet and G. Couture and J.E. Dennis Jr. and S. Le Digabel (2011), “The
NOMAD project”. Software available at https://www.gerad.ca/en/software/nomad/

Le Digabel, S. (2011), “Algorithm 909: NOMAD: Nonlinear Optimization With The MADS Algo-
rithm”. ACM Transactions on Mathematical Software, 37(4):44:1-44:15.

See Also

optim, nlm, nlminb

snomadr 61

Examples

Not run:
List all options
snomadr(information=list("help"="-h"))

Print given option, for example, MESH_SIZE
snomadr(information=list("help"="-h MESH_SIZE"))

Print the version of NOMAD
snomadr(information=list("version"="-v"))

Print usage and copyright
snomadr(information=list("info"="-i"))

This is the example found in
NOMAD/examples/basic/library/single_obj/basic_lib.cpp

eval.f <- function (x) {

f <- c(Inf, Inf, Inf);
n <- length (x);

if (n == 5 && (is.double(x) || is.integer(x))) {
f[1] <- x[5];
f[2] <- sum ((x-1)^2) - 25;
f[3] <- 25 - sum ((x+1)^2);

}

return (as.double(f));
}

Initial values
x0 <- rep(0.0, 5)

bbin <-c(1, 1, 1, 1, 1)
Bounds
lb <- rep(-6.0,5)
ub <- c(5.0, 6.0, 7.0, 1000000, 100000)

bbout <-c(0, 2, 1)
Options
opts <-list("MAX_BB_EVAL"=500,

"MIN_MESH_SIZE"=0.001,
"INITIAL_MESH_SIZE"=0.1,
"MIN_POLL_SIZE"=1)

snomadr(eval.f=eval.f,n=5, x0=x0, bbin=bbin, bbout=bbout, lb=lb, ub=ub, opts=opts)

How to transfer other parameters into eval.f
##
First example: supply additional arguments in user-defined functions

62 snomadr

##

objective function and gradient in terms of parameters
eval.f.ex1 <- function(x, params) {

return(params[1]*x^2 + params[2]*x + params[3])
}

Define parameters that we want to use
params <- c(1,2,3)

Define initial value of the optimization problem
x0 <- 0

solve using snomadr
snomadr(n =1,

x0 = x0,
eval.f = eval.f.ex1,
params = params)

##
Second example: define an environment that contains extra parameters
##

Objective function and gradient in terms of parameters
without supplying params as an argument
eval.f.ex2 <- function(x) {

return(params[1]*x^2 + params[2]*x + params[3])
}

Define initial value of the optimization problem
x0 <- 0

Define a new environment that contains params
auxdata <- new.env()
auxdata$params <- c(1,2,3)

pass The environment that should be used to evaluate functions to snomadr
snomadr(n =1,

x0 = x0,
eval.f = eval.f.ex2,
snomadr.environment = auxdata)

Solve using algebra
cat(paste("Minimizing f(x) = ax^2 + bx + c\n"))
cat(paste("Optimal value of control is -b/(2a) = ", -params[2]/(2*params[1]), "\n"))
cat(paste("With value of the objective function f(-b/(2a)) = ",

eval.f.ex1(-params[2]/(2*params[1]), params), "\n"))

The following example is NOMAD/examples/advanced/multi_start/multi.cpp
This will call smultinomadRSolve to resolve the problem.
eval.f.ex1 <- function(x, params) {

M<-as.numeric(params$M)

snomadr 63

NBC<-as.numeric(params$NBC)

f<-rep(0, M+1)
x<-as.numeric(x)

x1 <- rep(0.0, NBC)
y1 <- rep(0.0, NBC)

x1[1]<-x[1]
x1[2]<-x[2]
y1[3]<-x[3]
x1[4]<-x[4]
y1[4]<-x[5]

epi <- 6
for(i in 5:NBC){

x1[i]<-x[epi]
epi <- epi+1
y1[i]<-x[epi]
epi<-epi+1

}
constraint <- 0.0
ic <- 1
f[ic]<-constraint
ic <- ic+1

constraint <- as.numeric(1.0)
distmax <- as.numeric(0.0)
avg_dist <- as.numeric(0.0)
dist1<-as.numeric(0.0)

for(i in 1:(NBC-1)){
for (j in (i+1):NBC){

dist1 <- as.numeric((x1[i]-x1[j])*(x1[i]-x1[j])+(y1[i]-y1[j])*(y1[i]-y1[j]))

if((dist1 > distmax)) {distmax <- as.numeric(dist1)}
if((dist1[1]) < 1) {constraint <- constraint*sqrt(dist1)}
else if((dist1) > 14) {avg_dist <- avg_dist+sqrt(dist1)}

}
}

if(constraint < 0.9999) constraint <- 1001.0-constraint
else constraint = sqrt(distmax)+avg_dist/(10.0*NBC)

f[2] <- 0.0
f[M+1] <- constraint

return(as.numeric(f))
}

Define parameters that we want to use
params<-list()

64 tensor.prod.model.matrix

NBC <- 5
M <- 2
n<-2*NBC-3

params$NBC<-NBC
params$M<-M
x0<-rep(0.1, n)
lb<-rep(0, n)
ub<-rep(4.5, n)

eval.f.ex1(x0, params)

bbout<-c(2, 2, 0)
nmulti=5
bbin<-rep(0, n)
Define initial value of the optimization problem

Solve using snomadRSolve
snomadr(n = as.integer(n),

x0 = x0,
eval.f = eval.f.ex1,
bbin = bbin,
bbout = bbout,
lb = lb,
ub = ub,
params = params)

Solve using smultinomadRSolve, if x0 is provided, x0 will
be the first initial point, otherwise, the program will
check best_x.txt, if it exists, it will be read in as
the first initial point. Other initial points will be
generated by uniform distribution.
nmulti represents the number of mads will run.
##
snomadr(n = as.integer(n),

eval.f = eval.f.ex1,
bbin = bbin,
bbout = bbout,
lb = lb,
ub = ub,
nmulti = as.integer(nmulti),
print.output = TRUE,
params = params)

End(Not run)

tensor.prod.model.matrix

Utility functions for constructing tensor product smooths

tensor.prod.model.matrix 65

Description

Produce model matrices or penalty matrices for a tensor product smooth from the model matrices
or penalty matrices for the marginal bases of the smooth.

Usage

tensor.prod.model.matrix(X)

Arguments

X a list of model matrices for the marginal bases of a smooth

Details

If X[[1]], X[[2]] ... X[[m]] are the model matrices of the marginal bases of a tensor product
smooth then the ith row of the model matrix for the whole tensor product smooth is given by
X[[1]][i,]%x%X[[2]][i,]%x% ... X[[m]][i,], where %x% is the Kronecker product. Of course
the routine operates column-wise, not row-wise!

Value

Either a single model matrix for a tensor product smooth, or a list of penalty terms for a tensor
product smooth.

Author(s)

Simon N. Wood <simon.wood@r-project.org>

References

Wood, S.N. (2006) “Low Rank Scale Invariant Tensor Product Smooths for Generalized Additive
Mixed Models”. Biometrics 62(4):1025-1036

See Also

te, smooth.construct.tensor.smooth.spec

Examples

X <- list(matrix(1:4,2,2),matrix(5:10,2,3))
tensor.prod.model.matrix(X)

66 uniquecombs

uniquecombs Find the unique rows in a matrix

Description

This routine returns a matrix containing all the unique rows of the matrix supplied as its argument.
That is, all the duplicate rows are stripped out. Note that the ordering of the rows on exit is not the
same as on entry. It also returns an index attribute for relating the result back to the original matrix.

Usage

uniquecombs(x)

Arguments

x is an R matrix (numeric)

Details

Models with more parameters than unique combinations of covariates are not identifiable. This
routine provides a means of evaluating the number of unique combinations of covariates in a model.
The routine calls compiled C code.

Value

A matrix consisting of the unique rows of x (in arbitrary order).

The matrix has an "index" attribute. index[i] gives the row of the returned matrix that contains
row i of the original matrix.

Author(s)

Simon N. Wood <simon.wood@r-project.org>

See Also

unique can do the same thing, including for non-numeric matrices, but more slowly and without
returning the index.

Examples

X<-matrix(c(1,2,3,1,2,3,4,5,6,1,3,2,4,5,6,1,1,1),6,3,byrow=TRUE)
print(X)
Xu <- uniquecombs(X);Xu
ind <- attr(Xu,"index")
find the value for row 3 of the original from Xu
Xu[ind[3],];X[3,]

wage1 67

wage1 Cross-Sectional Data on Wages

Description

Cross-section wage data consisting of a random sample taken from the U.S. Current Population
Survey for the year 1976. There are 526 observations in total.

Usage

data("wage1")

Format

A data frame with 24 columns, and 526 rows.

wage column 1, of type numeric, average hourly earnings

educ column 2, of type numeric, years of education

exper column 3, of type numeric, years potential experience

tenure column 4, of type numeric, years with current employer

nonwhite column 5, of type factor, =“Nonwhite” if nonwhite, “White” otherwise

female column 6, of type factor, =“Female” if female, “Male” otherwise

married column 7, of type factor, =“Married” if Married, “Nonmarried” otherwise

numdep column 8, of type numeric, number of dependents

smsa column 9, of type numeric, =1 if live in SMSA

northcen column 10, of type numeric, =1 if live in north central U.S

south column 11, of type numeric, =1 if live in southern region

west column 12, of type numeric, =1 if live in western region

construc column 13, of type numeric, =1 if work in construc. indus.

ndurman column 14, of type numeric, =1 if in nondur. manuf. indus.

trcommpu column 15, of type numeric, =1 if in trans, commun, pub ut

trade column 16, of type numeric, =1 if in wholesale or retail

services column 17, of type numeric, =1 if in services indus.

profserv column 18, of type numeric, =1 if in prof. serv. indus.

profocc column 19, of type numeric, =1 if in profess. occupation

clerocc column 20, of type numeric, =1 if in clerical occupation

servocc column 21, of type numeric, =1 if in service occupation

lwage column 22, of type numeric, log(wage)

expersq column 23, of type numeric, exper2

tenursq column 24, of type numeric, tenure2

68 wage1

Source

Jeffrey M. Wooldridge

References

Wooldridge, J.M. (2000), Introductory Econometrics: A Modern Approach, South-Western College
Publishing.

Examples

Not run:
data(wage1)

Cross-validated model selection for spline degree and bandwidths Note
- we override the default nmulti here to get a quick illustration
(we don't advise doing this, in fact advise using more restarts in
serious applications)

model <- crs(lwage~married+
female+
nonwhite+
educ+
exper+
tenure,
basis="additive",
complexity="degree",
data=wage1,
segments=c(1,1,1),
nmulti=1)

summary(model)

Residual plots
plot(model)
Partial mean plots (control for non axis predictors)
plot(model,mean=TRUE)
Partial first derivative plots (control for non axis predictors)
plot(model,deriv=1)
Partial second derivative plots (control for non axis predictors)
plot(model,deriv=2)
Compare with local linear kernel regression
require(np)
model <- npreg(lwage~married+

female+
nonwhite+
educ+
exper+
tenure,
regtype="ll",
bwmethod="cv.aic",
data=wage1)

wage1 69

summary(model)

Partial mean plots (control for non axis predictors)
plot(model,common.scale=FALSE)
Partial first derivative plots (control for non axis predictors)
plot(model,gradients=TRUE,common.scale=FALSE)
detach("package:np")

End(Not run)

Index

∗ datasets
cps71, 8
Engel95, 30
wage1, 67

∗ instrument
crsiv, 18
crsivderiv, 23

∗ interface
snomadr, 58

∗ models
glp.model.matrix, 39
tensor.prod.model.matrix, 64
uniquecombs, 66

∗ nonparametric
clsd, 3
crs, 10
crssigtest, 28
frscv, 32
frscvNOMAD, 35
gsl.bs, 40
krscv, 42
krscvNOMAD, 45
npglpreg, 50

∗ optimize
snomadr, 58

∗ package
crs-package, 2

∗ regression
glp.model.matrix, 39
npglpreg, 50
tensor.prod.model.matrix, 64
uniquecombs, 66

∗ smooth
glp.model.matrix, 39
tensor.prod.model.matrix, 64

bs, 41

class, 15
clsd, 3

coef, 6
cps71, 8
crs, 10, 20–22, 25, 26, 60
crs-package, 2
crsiv, 18, 26
crsivderiv, 21, 23
crssigtest, 28

Engel95, 30
extendrange, 5

factor, 10, 11, 14, 15, 32, 34–38, 42–46, 48,
50

fitted, 6, 15, 21, 55
frscv, 32, 60
frscvNOMAD, 13, 35, 60

glp.model.matrix, 39
gsl.bs, 40

hatvalues, 16

krscv, 42, 60
krscvNOMAD, 13, 45, 60

lm, 13, 15
loess, 16, 34, 39, 45, 49
logspline, 7

model.frame, 15

nlm, 60
nlminb, 60
npglpreg, 50
npreg, 16, 22, 26, 57
npregbw, 34, 39, 45, 49

optim, 5, 12, 14, 43, 44, 60
ordered, 10, 11, 14, 15, 32, 34–38, 42–46, 48,

50

plot, 6, 15, 21, 55

70

INDEX 71

predict, 15, 21, 41, 55
predict.lm, 15

qqnorm, 15

residuals, 15, 21, 55

scale, 56
smooth.construct.tensor.smooth.spec,

65
smooth.spline, 16
snomadr, 5, 12, 13, 20, 25, 37, 47, 48, 52, 53,

56, 58
stepAIC, 13, 15
summary, 6, 15, 16, 21, 29, 34, 38, 44, 48, 55

te, 65
tensor.prod.model.matrix, 2, 6, 12, 14, 34,

37, 44, 48, 64

unique, 66
uniquecombs, 66

vignette, 2

wage1, 67

	crs-package
	clsd
	cps71
	crs
	crsiv
	crsivderiv
	crssigtest
	Engel95
	frscv
	frscvNOMAD
	glp.model.matrix
	gsl.bs
	krscv
	krscvNOMAD
	npglpreg
	snomadr
	tensor.prod.model.matrix
	uniquecombs
	wage1
	Index

