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crisp-package crisp: A package for fitting a model that partitions the covariate space
into blocks in a data-adaptive way.

Description

This package is called crisp for "Convex Regression with Interpretable Sharp Partitions", which
considers the problem of predicting an outcome variable on the basis of two covariates, using an
interpretable yet non-additive model. CRISP partitions the covariate space into blocks in a data-
adaptive way, and fits a mean model within each block. Unlike other partitioning methods, CRISP
is fit using a non-greedy approach by solving a convex optimization problem, resulting in low-
variance fits. More details are provided in Petersen, A., Simon, N., and Witten, D. (2016). Convex
Regression with Interpretable Sharp Partitions. Journal of Machine Learning Research, 17(94):
1-31 <http://jmlr.org/papers/volume17/15-344/15-344.pdf>.

Details

The main functions are: (1)crisp and (2)crispCV. The first function crisp fits CRISP for a se-
quence of tuning parameters and provides the fits for this entire sequence of tuning parameters. The
second function crispCV considers a sequence of tuning parameters and provides the fits, but also
returns the optimal tuning parameter, as chosen using K-fold cross-validation.

Examples

## Not run:
#general example illustrating all functions
#see specific function help pages for details of using each function

#generate data (using a very small 'n' for illustration purposes)
set.seed(1)
data <- sim.data(n = 15, scenario = 2)
#plot the mean model for the scenario from which we generated data
plot(data)

#fit model for a range of tuning parameters, i.e., lambda values
#lambda sequence is chosen automatically if not specified
crisp.out <- crisp(X = data$X, y = data$y)
#or fit model and select lambda using 2-fold cross-validation
#note: use larger 'n.fold' (e.g., 10) in practice
crispCV.out <- crispCV(X = data$X, y = data$y, n.fold = 2)

#summarize all of the fits
summary(crisp.out)
#or just summarize a single fit
#we examine the fit with an index of 25. that is, lambda of
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crisp.out$lambda.seq[25]
summary(crisp.out, lambda.index = 25)
#lastly, we can summarize the fit chosen using cross-validation
summary(crispCV.out)
#and also plot the cross-validation error
plot(summary(crispCV.out))
#the lambda chosen by cross-validation is also available using
crispCV.out$lambda.cv

#plot the estimated relationships between two predictors and outcome
#do this for a specific fit
plot(crisp.out, lambda.index = 25)
#or for the fit chosen using cross-validation
plot(crispCV.out)

#we can make predictions for a covariate matrix with new observations
#new.X with 20 observations
new.data <- sim.data(n = 20, scenario = 2)
new.X <- new.data$X
#these will give the same predictions:
yhat1 <- predict(crisp.out, new.X = new.X, lambda.index = crispCV.out$index.cv)
yhat2 <- predict(crispCV.out, new.X = new.X)

## End(Not run)

crisp Convex Regression with Interpretable Sharp Partitions (CRISP).

Description

This function implements CRISP, which considers the problem of predicting an outcome variable
on the basis of two covariates, using an interpretable yet non-additive model. CRISP partitions the
covariate space into blocks in a data-adaptive way, and fits a mean model within each block. Unlike
other partitioning methods, CRISP is fit using a non-greedy approach by solving a convex optimiza-
tion problem, resulting in low-variance fits. More details are provided in Petersen, A., Simon, N.,
and Witten, D. (2016). Convex Regression with Interpretable Sharp Partitions. Journal of Machine
Learning Research, 17(94): 1-31 <http://jmlr.org/papers/volume17/15-344/15-344.pdf>.

Usage

crisp(y, X, q = NULL, lambda.min.ratio = 0.01, n.lambda = 50,
lambda.seq = NULL, rho = 0.1, e_abs = 10^-4, e_rel = 10^-3,
varyrho = TRUE, double.run = FALSE)

Arguments

y An n-vector containing the response.

X An n x 2 matrix with each column containing a covariate.
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q The desired granularity of the CRISP fit, M.hat, which will be a q by q matrix.
M.hat is a mean matrix whose element M.hat[i,j] contains the mean for pairs
of covariate values within a quantile range of the observed predictors X[,1]
and X[,2]. For example, M.hat[1,2] represents the mean of the observations
with the first covariate value less than the 1/q-quantile of X[,1], and the second
covariate value between the 1/q- and 2/q-quantiles of X[,2]. If left NULL, then
q=n is used when n<100, and q=100 is used when n>=100. We recommend using
q<=100 as higher values take longer to fit and provide an unneeded amount of
granularity.

lambda.min.ratio

The smallest value for lambda.seq, as a fraction of the maximum lambda value,
which is the data-derived smallest value for which the fit is a constant value. The
default is 0.01.

n.lambda The number of lambda values to consider - the default is 50.

lambda.seq A user-supplied sequence of positive lambda values to consider. The typical
usage is to calculate lambda.seq using lambda.min.ratio and n.lambda, but
providing lambda.seq overrides this. If provided, lambda.seq should be a de-
creasing sequence of values, since CRISP relies on warm starts for speed. Thus
fitting the model for a whole sequence of lambda values is often faster than
fitting for a single lambda value.

rho The penalty parameter for our ADMM algorithm. The default is 0.1.

e_abs, e_rel Values used in the stopping criterion for our ADMM algorithm, and discussed
in Appendix C.2 of the CRISP paper.

varyrho Should rho be varied from iteration to iteration? This is discussed in Appendix
C.3 of the CRISP paper.

double.run The initial complete run of our ADMM algorithm will yield sparsity in z_1i and
z_2i, but not necessarily exact equality of the rows and columns of M.hat. If
double.run is TRUE, then the algorithm is run a second time to obtain M.hat
with exact equality of the appropriate rows and columns. This issue is discussed
further in Appendix C.4 of the CRISP paper.

Value

An object of class crisp, which can be summarized using summary, plotted using plot, and used
to predict outcome values for new covariates using predict.

• M.hat.list: A list of length n.lambda giving M.hat for each value of lambda.seq.

• num.blocks: A vector of length n.lambda giving the number of blocks in M.hat for each
value of lambda.seq.

• obj.vec: A vector of length n.lambda giving the value of the objective of Eqn (4) in the
CRISP paper for each value of lambda.seq.

• Other elements: As specified by the user.

See Also

crispCV, plot, summary, predict
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Examples

## Not run:
#See ?'crisp-package' for a full example of how to use this package

#generate data (using a very small 'n' for illustration purposes)
set.seed(1)
data <- sim.data(n = 15, scenario = 2)

#fit model for a range of tuning parameters, i.e., lambda values
#lambda sequence is chosen automatically if not specified
crisp.out <- crisp(X = data$X, y = data$y)

## End(Not run)

crispCV CRISP with Tuning Parameter Selection via Cross-Validation.

Description

This function implements CRISP, which considers the problem of predicting an outcome variable
on the basis of two covariates, using an interpretable yet non-additive model. CRISP partitions
the covariate space into blocks in a data-adaptive way, and fits a mean model within each block.
Unlike other partitioning methods, CRISP is fit using a non-greedy approach by solving a convex
optimization problem, resulting in low-variance fits. This function differs from the crisp func-
tion in that the tuning parameter, lambda, is automatically selected using K-fold cross-validation.
More details are provided in Petersen, A., Simon, N., and Witten, D. (2016). Convex Regres-
sion with Interpretable Sharp Partitions. Journal of Machine Learning Research, 17(94): 1-31
<http://jmlr.org/papers/volume17/15-344/15-344.pdf>.

Usage

crispCV(y, X, q = NULL, lambda.min.ratio = 0.01, n.lambda = 50,
lambda.seq = NULL, fold = NULL, n.fold = NULL, seed = NULL,
within1SE = FALSE, rho = 0.1, e_abs = 10^-4, e_rel = 10^-3,
varyrho = TRUE, double.run = FALSE)

Arguments

y An n-vector containing the response.

X An n x 2 matrix with each column containing a covariate.

q The desired granularity of the CRISP fit, M.hat, which will be a q by q matrix.
M.hat is a mean matrix whose element M.hat[i,j] contains the mean for pairs
of covariate values within a quantile range of the observed predictors X[,1]
and X[,2]. For example, M.hat[1,2] represents the mean of the observations
with the first covariate value less than the 1/q-quantile of X[,1], and the second
covariate value between the 1/q- and 2/q-quantiles of X[,2]. If left NULL, then
q=n is used when n<100, and q=100 is used when n>=100. We recommend using
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q<=100 as higher values take longer to fit and provide an unneeded amount of
granularity.

lambda.min.ratio

The smallest value for lambda.seq, as a fraction of the maximum lambda value,
which is the data-derived smallest value for which the fit is a constant value. The
default is 0.01.

n.lambda The number of lambda values to consider - the default is 50.

lambda.seq A user-supplied sequence of positive lambda values to consider. The typical
usage is to calculate lambda.seq using lambda.min.ratio and n.lambda, but
providing lambda.seq overrides this. If provided, lambda.seq should be a de-
creasing sequence of values, since CRISP relies on warm starts for speed. Thus
fitting the model for a whole sequence of lambda values is often faster than
fitting for a single lambda value.

fold User-supplied fold numbers for cross-validation. If supplied, fold should be an
n-vector with entries in 1,...,K when doing K-fold cross-validation. The default
is to choose fold using n.fold.

n.fold The number of folds, K, to use for the K-fold cross-validation selection of the
tuning parameter, lambda. The default is 10 - specification of fold overrides
use of n.fold.

seed An optional number used with set.seed() at the beginning of the function.
This is only relevant if fold is not specified by the user.

within1SE Logical value indicating how cross-validated tuning parameters should be cho-
sen. If within1SE=TRUE, lambda is chosen to be the value corresponding to the
most sparse model with cross-validation error within one standard error of the
minimum cross-validation error. If within1SE=FALSE, lambda is chosen to be
the value corresponding to the minimum cross-validation error.

rho The penalty parameter for our ADMM algorithm. The default is 0.1.

e_abs, e_rel Values used in the stopping criterion for our ADMM algorithm, and discussed
in Appendix C.2 of the CRISP paper.

varyrho Should rho be varied from iteration to iteration? This is discussed in Appendix
C.3 of the CRISP paper.

double.run The initial complete run of our ADMM algorithm will yield sparsity in z_1i and
z_2i, but not necessarily exact equality of the rows and columns of M.hat. If
double.run is TRUE, then the algorithm is run a second time to obtain M.hat
with exact equality of the appropriate rows and columns. This issue is discussed
further in Appendix C.4 of the CRISP paper.

Value

An object of class crispCV, which can be summarized using summary, plotted using plot, and used
to predict outcome values for new covariates using predict.

• lambda.cv: Optimal lambda value chosen by K-fold cross-validation.

• index.cv: The index of the model corresponding to the chosen tuning parameter, lambda.cv.
That is, lambda.cv=crisp.out$lambda.seq[index.cv].
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• crisp.out: An object of class crisp returned by crisp.

• mean.cv.error: An m-vector containing cross-validation error where m is the length of
lambda.seq. Note that mean.cv.error[i] contains the cross-validation error for the tun-
ing parameter crisp.out$lambda.seq[i].

• se.cv.error: An m-vector containing cross-validation standard error where m is the length
of lambda.seq. Note that se.cv.error[i] contains the standard error of the cross-validation
error for the tuning parameter crisp.out$lambda.seq[i].

• Other elements: As specified by the user.

See Also

crisp, plot, summary, predict, plot.cvError

Examples

## Not run:
#See ?'crisp-package' for a full example of how to use this package

#generate data (using a very small 'n' for illustration purposes)
set.seed(1)
data <- sim.data(n = 15, scenario = 2)

#fit model and select lambda using 2-fold cross-validation
#note: use larger 'n.fold' (e.g., 10) in practice
crispCV.out <- crispCV(X = data$X, y = data$y, n.fold = 2)

## End(Not run)

plot Plots Fit from crisp or crispCV.

Description

This function plots fit of the class crispCV, or class crisp with a user-specified tuning parameter.

Usage

## S3 method for class 'crisp'
plot(x, lambda.index, title = NULL, x1lab = NULL,
x2lab = NULL, min = NULL, max = NULL, cex.axis = 1, cex.lab = 1,
color1 = "seagreen1", color2 = "steelblue1", color3 = "darkorchid4",
...)

## S3 method for class 'crispCV'
plot(x, title = NULL, x1lab = NULL, x2lab = NULL,
min = NULL, max = NULL, cex.axis = 1, cex.lab = 1,
color1 = "seagreen1", color2 = "steelblue1", color3 = "darkorchid4",
...)
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Arguments

x An object of class crisp or crispCV, which result from running the crisp or
crispCV functions, respectively.

lambda.index The index for the desired value of lambda, i.e., x$lambda.seq[lambda.index].

title The title of the plot. By default, the value of lambda is noted.

x1lab The axis label for the first covariate. By default, it is "X1".

x2lab The axis label for the second covariate. By default, it is "X2".

min, max The minimum and maximum y-values, respectively, to use when plotting the fit.
By default, they are chosen to be the minimum and maximum of all of the fits,
i.e., the minimum and maximum of unlist(x$M.hat.list).

cex.axis The magnification to be used for axis annotation relative to the current setting
of cex.

cex.lab The magnification to be used for x and y labels relative to the current setting of
cex.

color1, color2, color3

The colors to use to create the color gradient for plotting the response val-
ues. At least the first two must be specified, or the defaults of "seagreen1",
"steelblue1", and "darkorchid4" will be used.

... Additional arguments to be passed, which are ignored in this function.

Value

None.

Examples

## Not run:
#See ?'crisp-package' for a full example of how to use this package

#generate data (using a very small 'n' for illustration purposes)
set.seed(1)
data <- sim.data(n = 15, scenario = 2)

#fit model for a range of tuning parameters, i.e., lambda values
#lambda sequence is chosen automatically if not specified
crisp.out <- crisp(X = data$X, y = data$y)
#or fit model and select lambda using 2-fold cross-validation
#note: use larger 'n.fold' (e.g., 10) in practice
crispCV.out <- crispCV(X = data$X, y = data$y, n.fold = 2)

#plot the estimated relationships between two predictors and outcome
#do this for a specific fit
plot(crisp.out, lambda.index = 25)
#or for the fit chosen using cross-validation
plot(crispCV.out)

## End(Not run)
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plot.cvError Plots Cross-Validation Curve for crispCV.

Description

This function plots the cross-validation curve for a series of models fit using crispCV. The cross-
validation error with +/-1 standard error is plotted for each value of lambda considered in the call
to crispCV with a dotted vertical line indicating the chosen lambda.

Usage

## S3 method for class 'cvError'
plot(x, showSE = T, ...)

Arguments

x An object of class cvError, which results from calling summary on an object of
class crispCV.

showSE A logical value indicating whether the standard error of the curve should be
plotted.

... Additional arguments to be passed, which are ignored in this function.

Value

None.

Examples

## Not run:
#See ?'crisp-package' for a full example of how to use this package

#generate data (using a very small 'n' for illustration purposes)
set.seed(1)
data <- sim.data(n = 15, scenario = 2)

#fit model and select lambda using 2-fold cross-validation
#note: use larger 'n.fold' (e.g., 10) in practice
crispCV.out <- crispCV(X = data$X, y = data$y, n.fold = 2)

#plot the cross-validation error
plot(summary(crispCV.out))

## End(Not run)
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plot.sim.data Plot Mean Model for Data.

Description

This function plots the mean model for the scenario from which data was generated using sim.data.

Usage

## S3 method for class 'sim.data'
plot(x, ...)

Arguments

x An object of class sim.data, which results from running the sim.data function.

... Additional arguments to be passed, which are ignored in this function.

Value

None.

See Also

sim.data

Examples

#See ?'crisp-package' for a full example of how to use this package

#generate data (using a very small 'n' for illustration purposes)
set.seed(1)
data <- sim.data(n = 15, scenario = 2)

#plot the mean model for the scenario from which we generated data
plot(data)

predict Predicts Observations for a New Covariate Matrix using Fit from
crisp or crispCV.

Description

This function makes predictions for a specified covariate matrix for a fit of the class crispCV, or
class crisp with a user-specified tuning parameter.
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Usage

## S3 method for class 'crisp'
predict(object, new.X, lambda.index, ...)

## S3 method for class 'crispCV'
predict(object, new.X, ...)

Arguments

object An object of class crisp or crispCV, which result from running the crisp or
crispCV functions, respectively.

new.X The covariate matrix for which to make predictions.

lambda.index The index for the desired value of lambda, i.e., object$lambda.seq[lambda.index].

... Additional arguments to be passed, which are ignored in this function.

Details

The ith prediction is made to be the value of object$M.hat.list[[lambda.index]] correspond-
ing to the pair of covariates closest (in Euclidean distance) to new.X[i,].

Value

A vector containing the fitted y values for new.X.

Examples

## Not run:
#See ?'crisp-package' for a full example of how to use this package

#generate data (using a very small 'n' for illustration purposes)
set.seed(1)
data <- sim.data(n = 15, scenario = 2)

#fit model for a range of tuning parameters, i.e., lambda values
#lambda sequence is chosen automatically if not specified
crisp.out <- crisp(X = data$X, y = data$y)
#or fit model and select lambda using 2-fold cross-validation
#note: use larger 'n.fold' (e.g., 10) in practice
crispCV.out <- crispCV(X = data$X, y = data$y, n.fold = 2)

#we can make predictions for a covariate matrix with new observations
#new.X with 20 observations
new.data <- sim.data(n = 20, scenario = 2)
new.X <- new.data$X
#these will give the same predictions:
yhat1 <- predict(crisp.out, new.X = new.X, lambda.index = crispCV.out$index.cv)
yhat2 <- predict(crispCV.out, new.X = new.X)

## End(Not run)
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sim.data Simulate Data to Use with crisp.

Description

This function generates data according to the simulation scenarios considered in Section 3 of the
CRISP paper (and plotted in Figure 2 of the paper).

Usage

sim.data(n, scenario, noise = 1, X = NULL)

Arguments

n The number of observations.

scenario The simulation scenario to use. Options are 1 (additive model), 2 (interaction
model), 3 (’tetris’ model), or 4 (smooth model), which correspond to the simu-
lation scenarios of Section 3 of the CRISP paper. Each scenario has two covari-
ates.

noise The standard deviation of the normally-distributed noise that is added to the
signal.

X The n x 2 covariate matrix, which is automatically generated if not specified.

Value

A list containing:

• X: An n x 2 covariate matrix.

• y: An n-vector containing the response values.

• Other elements: As specified by the user.

See Also

crisp, crispCV

Examples

#See ?'crisp-package' for a full example of how to use this package

#generate data (using a very small 'n' for illustration purposes)
set.seed(1)
data <- sim.data(n = 15, scenario = 2)

#plot the mean model for the scenario from which we generated data
plot(data)
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summary Summarizes Fit from crisp or crispCV.

Description

This function summarizes fit of the class crispCV or crisp.

Usage

## S3 method for class 'crisp'
summary(object, lambda.index = NULL, ...)

## S3 method for class 'crispCV'
summary(object, ...)

Arguments

object An object of class crisp or crispCV, which result from running the crisp or
crispCV functions, respectively.

lambda.index The index for the desired value of lambda, i.e., object$lambda.seq[lambda.index].
By default, fits for all values of lambda are summarized.

... Additional arguments to be passed, which are ignored in this function.

Value

None.

Examples

## Not run:
#See ?'crisp-package' for a full example of how to use this package
#generate data (using a very small 'n' for illustration purposes)
set.seed(1)
data <- sim.data(n = 15, scenario = 2)

#fit model for a range of tuning parameters, i.e., lambda values
#lambda sequence is chosen automatically if not specified
crisp.out <- crisp(X = data$X, y = data$y)
#or fit model and select lambda using 2-fold cross-validation
#note: use larger 'n.fold' (e.g., 10) in practice
crispCV.out <- crispCV(X = data$X, y = data$y, n.fold = 2)

#summarize all of the fits
summary(crisp.out)
#or just summarize a single fit
#we examine the fit with an index of 25. that is, lambda of
crisp.out$lambda.seq[25]
summary(crisp.out, lambda.index = 25)



14 summary

#lastly, we can summarize the fit chosen using cross-validation
summary(crispCV.out)

## End(Not run)
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