Package 'cprobit'

October 12, 2022

Type Package

Title Conditional Probit Model for Analysing Continuous Outcomes

Version 1.0.2

Author Ning Yilin, Tan Chuen Seng

Maintainer Ning Yilin <ningyilinnyl@gmail.com>

Depends R (>= 3.5.0)

Imports car, nortest, ggplot2, gridExtra

Description Implements the three-step workflow for robust analysis of change in two repeated measurements of continuous outcomes, described in Ning et al. (in press), "Robust estimation of the effect of an exposure on the change in a continuous outcome", BMC Medical Research Methodology.

License LGPL-3 Encoding UTF-8 LazyData true RoxygenNote 7.1.0 NeedsCompilation no Repository CRAN

Date/Publication 2020-05-27 10:00:08 UTC

R topics documented:

bg_variability	. 2
compile_est	. 2
cprobit	. 3
cprobit_step1	. 5
estimate_sd_error	. 6
geom_mean	
get_v	. 7
make_design_mat	
profile_llh	. 8
update_estimate	. 8

10

Index

bg_variability

Description

A simulated dataset containing the variability of inpatient point-of-care blood glucose (BG) measurements from 1200 non-critical care adult patients in medical ward. BG variability is measured as the standard deviation of the BG readings within a day. Data was simulated based on real data.

Usage

bg_variability

Format

A data frame with 1200 rows and 7 variables:

subject_id Subject ID of each patient.

case_id Case ID, with 1 and 2 referring to the first and second follow-up respectively.

y BG variability of the first and second follow-up.

t Binary indicator for the second follow-up.

sd0 Baseline BG variability.

age Patients' age.

female Binary indicator for being female.

compile_est	Inpernal function: generate commonly used summary statistics for es-
	timates.

Description

Inpernal function: generate commonly used summary statistics for estimates.

Usage

```
compile_est(
  var,
  est,
  se = NULL,
  z_score = NULL,
  pval = NULL,
  value_null = 0,
  ci_lower = NULL,
  prefix = NULL,
  postfix = NULL
)
```

cprobit

Arguments

Names of variables.
Estimated regression coefficients.
SE of estimates.
Z score of estimates, i.e., est / se.
P-value of estimates.
Null effects for estimates, either with length 1 or length of est. Default is 0.
Lower bound of 95% CI of estimates.
Upper bound of 95% CI of estimates.
Prefix to the column names in the data.frame returned.
Postfix to the column names in the data.frame returned.

Details

Vectorised, as long as the length of the input match.

cprobit	
---------	--

Apply the three-step workflow for the analysis of two repeated outcomes from each subject

Description

Apply the three-step workflow for the analysis of two repeated outcomes from each subject

Usage

```
cprobit(
  formula,
  dat,
  index,
  transform = NULL,
  lambda = NA,
  resid_pval_threshold = 0.05
)
## S3 method for class 'cprobit'
summary(object, plot = FALSE, ...)
## S3 method for class 'cprobit'
print(x, ...)
```

Arguments

formula	Formula for the model. Do not convert data type within the formula (e.g., factor(x) is not supported in formula). See Details.	
dat	A data.frame in the long format, with each row corresponding to one mea- surement from one subject, and two columns indicating the subject and case ID respecitively. Variable names must not contain space or special characters.	
index	Names of variables indicating subject and case ID. Case ID must be coded as integers 1 and 2.	
transform	Whether a Box-Cox transformation should be applied to the outcome, taking value NULL (the default), TRUE or FALSE.	
lambda	Value of the Box-Cox transformation parameter to use. Default is NA, in which case it will be estimated from data.	
resid_pval_threshold		
	The threshold for the Lilliefors p-value of the residuals to determine whether a Box-Cox transformation on the outcome is necessary. Default is 0.05.	
object	Model fitted using cprobit function.	
plot	Wether residual qq-plots should be plotted. Default is FALSE.	
	Additional arguments affecting the summary produced (not yet implemented).	
х	Model fitted using cprobit function.	

Details

Specify the formula for the repeated measurements instead of the change in the outcome, but without any time-invariant component that would have been eliminated after taking the difference. Interaction between two variables can be specified in the formula using * or :, but users need to create their own variable for interaction involving three or more variables.

If transform = NULL, the workflow will determine the need for a Box-Cox transforamtion on the outcome (i.e., Step 3) based on the residual diagnostics in Step 2. A Box-Cox transforamtion will be used if the p-value of the Lilliefors test is smaller than resid_pval_threshold (default is 0.05). If transform = TRUE, analyses will always be performed on both the observed and Box-Cox transformed outcomes. If transform = FALSE, analysis will only be performed on the observed outcomes.

Value

Returns a list.

References

- GEP Box, DR Cox. An Analysis of Transformations. Journal of the Royal Statistical Society. Series B (Methodological). 1964;26:211–52.
- DM Hawkins, S Weisberg. Combining the box-cox power and generalised log transformations to accommodate nonpositive responses in linear and mixed-effects linear models. South African Stat J. 2017;51:317–28.
- HW Lilliefors. On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown. J Am Stat Assoc. 1967;62:399.

 Y Ning, NC Støer, PJ Ho, SL Kao, KY Ngiam, EYH Khoo, SC Lee, ES Tai, M Hartman, M Reilly, CS Tan. Robust estimation of the effect of an exposure on the change in a continuous outcome. BMC Medical Research Methodology (in press).

Examples

cprobit_step1

Inpernal function: step 1 of the proposed workflow

Description

Implements the Step 1 of the proposed workflow, where a cprobit model is applied to analyse whether there is an increase in the outcome within each subject.

Usage

```
cprobit_step1(y_name, x_names, dat_diff, var_names = NULL)
```

Arguments

y_name	Name of outcome variable for Step 1.
x_names	Names of covariates for Step 1.
dat_diff	A data.frame containing the difference data.
var_names	Variable names for the estimates.

Value

Returns a data.frame summarising the Step 1 estimates (coef) and the covariance matrix for the Step 1 estimates (vcov).

estimate_sd_error

Description

Inpernal function: estimate the SD of error terms in the difference model

Usage

```
estimate_sd_error(beta_c, y1, y2, lambda = NA, design_mat_diff)
```

Arguments

beta_c	Numeric vector of Step 1 estimates.
y1	Numeric vector of the observed outcome at observation time 1.
y2	Numeric vector of the observed outcome at observation time 2.
lambda	The Box-Cox transformation parameter. Default is NA, indicating no need for a transformation. See Details.
design_mat_diff	
	Numeric matrix of the design matrix for difference.

Value

Returns the estimate for sigma_delta if lambda = NULL, or sigma_delta_lambda on the transformed scale.

geom_mean

Inpernal function: compute geometric mean of a positive variable

Description

Inpernal function: compute geometric mean of a positive variable

Usage

```
geom_mean(x)
```

Arguments

x A numeric vector.

get_v

Description

Inpernal function: compute difference in the (transformed) outcome

Usage

get_v(y1, y2, lambda = NA, scaled = TRUE)

Arguments

y1	Numeric vector of the observed outcome at observation time 1.
y2	Numeric vector of the observed outcome at observation time 2.
lambda	The Box-Cox transformation parameter. Default is NA, indicating no need for a transformation. See Details.
scaled	Whether the difference in the transformed outomes should be scaled by the Jacobian.

Value

Returns the difference in the observed outcomes if lambda = NA, or the difference in the scaled transformed outcomes with transformation parameter lambda.

make_design_mat Inpernal function: construct design matrix without the intercept term.

Description

Inpernal function: construct design matrix without the intercept term.

Usage

```
make_design_mat(lp, dat, remove_intercept = TRUE)
```

Arguments

lp	Formula for the linear predictor part, as a string.
dat	Data to construct the design matrix from.
remove_intercep	ot
	Whether the first column should be removed. Default is TRUE (to remove the intercept term).

Value

Returns a list containing the constructed design matrix and the original variable names. In the column names of the design matrix returned, any : in variable names are replaced with . to avoid computational issues when using the design matrix to fit model.

profile_11h

Inpernal function: profile log-likelihood of lambda

Description

Inpernal function: profile log-likelihood of lambda

Usage

profile_llh(lambda, beta_c, y1, y2, design_mat_diff)

Arguments

lambda	The Box-Cox transformation parameter. Default is NA, indicating no need for a transformation. See Details.	
beta_c	Numeric vector of Step 1 estimates.	
y1	Numeric vector of the observed outcome at observation time 1.	
y2	Numeric vector of the observed outcome at observation time 2.	
design_mat_diff		
	Numeric matrix of the design matrix for difference.	

Value

Returns the profile log likelihood (not the negative value).

update_estimate	Inpernal function: update Step 1 estimates to obtain linear exposure
	effect on (transformed) outcome

Description

Inpernal function: update Step 1 estimates to obtain linear exposure effect on (transformed) outcome

update_estimate

Usage

```
update_estimate(
  y1_name,
  y2_name,
  var_names = NULL,
  dat_diff,
  res_step1,
  transform = FALSE
)
```

Arguments

y1_name	Name of observed outcome at observation time 1.
y2_name	Name of observed outcome at observation time 2.
var_names	Variable names for the estimates.
dat_diff	A data.frame containing the difference data.
res_step1	Results from Step 1 of the workflow.
transform	Whether the outcome should be transformed. Default is FALSE.

Value

Returns a list: a data.frame summarising the estimated linear exposure effect, the estimated standard deviation of the error terms from the difference model, the covariance matrix of the estimated exposure effects, a data.frame summarising the estimated transforamtion parameter, and the residuals.

Index

* datasets
 bg_variability, 2

 $bg_variability, 2$

compile_est, 2
cprobit, 3
cprobit_step1, 5

estimate_sd_error, 6

geom_mean, 6
get_v, 7

make_design_mat,7

print.cprobit(cprobit), 3
profile_llh, 8

summary.cprobit(cprobit), 3

update_estimate, 8