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cpi Conditional Predictive Impact (CPI).

Description

A general test for conditional independence in supervised learning algorithms. Implements a condi-
tional variable importance measure which can be applied to any supervised learning algorithm and
loss function. Provides statistical inference procedures without parametric assumptions and applies
equally well to continuous and categorical predictors and outcomes.

Usage

cpi(
task,
learner,
resampling = NULL,
test_data = NULL,
measure = NULL,
test = "t",
log = FALSE,
B = 1999,
alpha = 0.05,
x_tilde = NULL,
aggr_fun = mean,
knockoff_fun = function(x) knockoff::create.second_order(as.matrix(x)),
groups = NULL,
verbose = FALSE

)

Arguments

task The prediction mlr3 task, see examples.

learner The mlr3 learner used in CPI. If you pass a string, the learner will be created via
mlr3::lrn.

resampling Resampling strategy, mlr3 resampling object (e.g. rsmp("holdout")), "oob"
(out-of-bag) or "none" (in-sample loss).

test_data External validation data, use instead of resampling.

measure Performance measure (loss). Per default, use MSE ("regr.mse") for regression
and logloss ("classif.logloss") for classification.

test Statistical test to perform, one of "t" (t-test, default), "wilcox" (Wilcoxon
signed-rank test), "binom" (binomial test), "fisher" (Fisher permutation test)
or "bayes" (Bayesian testing, computationally intensive!). See Details.

log Set to TRUE for multiplicative CPI (λ), to FALSE (default) for additive CPI (∆).

B Number of permutations for Fisher permutation test.
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alpha Significance level for confidence intervals.

x_tilde Knockoff matrix or data.frame. If not given (the default), it will be created
with the function given in knockoff_fun. Also accepts a list of matrices or
data.frames.

aggr_fun Aggregation function over replicates.

knockoff_fun Function to generate knockoffs. Default: knockoff::create.second_order
with matrix argument.

groups (Named) list with groups. Set to NULL (default) for no groups, i.e. compute CPI
for each feature. See examples.

verbose Verbose output of resampling procedure.

Details

This function computes the conditional predictive impact (CPI) of one or several features on a given
supervised learning task. This represents the mean error inflation when replacing a true variable
with its knockoff. Large CPI values are evidence that the feature(s) in question have high condi-
tional variable importance – i.e., the fitted model relies on the feature(s) to predict the outcome,
even after accounting for the signal from all remaining covariates.

We build on the mlr3 framework, which provides a unified interface for training models, specifying
loss functions, and estimating generalization error. See the package documentation for more info.

Methods are implemented for frequentist and Bayesian inference. The default is test = "t", which
is fast and powerful for most sample sizes. The Wilcoxon signed-rank test (test = "wilcox") may
be more appropriate if the CPI distribution is skewed, while the binomial test (test = "binom")
requires basically no assumptions but may have less power. For small sample sizes, we recommend
permutation tests (test = "fisher") or Bayesian methods (test = "bayes"). In the latter case,
default priors are assumed. See the BEST package for more info.

For parallel execution, register a backend, e.g. with doParallel::registerDoParallel().

Value

For test = "bayes" a list of BEST objects. In any other case, a data.frame with a row for each
feature and columns:

Variable/Group Variable/group name

CPI CPI value

SE Standard error

test Testing method

statistic Test statistic (only for t-test, Wilcoxon and binomial test)

estimate Estimated mean (for t-test), median (for Wilcoxon test), or proportion of ∆-
values greater than 0 (for binomial test).

p.value p-value

ci.lo Lower limit of (1 - alpha) * 100% confidence interval

Note that NA values are no error but a result of a CPI value of 0, i.e. no difference in model
performance after replacing a feature with its knockoff.



4 cpi

References

Watson, D. & Wright, M. (2020). Testing conditional independence in supervised learning algo-
rithms. Machine Learning, 110(8): 2107-2129. doi:10.1007/s10994021060306

Candès, E., Fan, Y., Janson, L, & Lv, J. (2018). Panning for gold: ’model-X’ knockoffs for high
dimensional controlled variable selection. J. R. Statistc. Soc. B, 80(3): 551-577. doi:10.1111/
rssb.12265

Examples

library(mlr3)
library(mlr3learners)

# Regression with linear model and holdout validation
cpi(task = tsk("mtcars"), learner = lrn("regr.lm"),

resampling = rsmp("holdout"))

# Classification with logistic regression, log-loss and t-test
cpi(task = tsk("wine"),

learner = lrn("classif.glmnet", predict_type = "prob", lambda = 0.1),
resampling = rsmp("holdout"),
measure = "classif.logloss", test = "t")

# Use your own data (and out-of-bag loss with random forest)
mytask <- as_task_classif(iris, target = "Species")
mylearner <- lrn("classif.ranger", predict_type = "prob", keep.inbag = TRUE)
cpi(task = mytask, learner = mylearner,

resampling = "oob", measure = "classif.logloss")

# Group CPI
cpi(task = tsk("iris"),

learner = lrn("classif.ranger", predict_type = "prob", num.trees = 10),
resampling = rsmp("cv", folds = 3),
groups = list(Sepal = 1:2, Petal = 3:4))

## Not run:
# Bayesian testing
res <- cpi(task = tsk("iris"),

learner = lrn("classif.glmnet", predict_type = "prob", lambda = 0.1),
resampling = rsmp("holdout"),
measure = "classif.logloss", test = "bayes")

plot(res$Petal.Length)

# Parallel execution
doParallel::registerDoParallel()
cpi(task = tsk("wine"),

learner = lrn("classif.glmnet", predict_type = "prob", lambda = 0.1),
resampling = rsmp("cv", folds = 5))

# Use sequential knockoffs for categorical features
# package available here: https://github.com/kormama1/seqknockoff

https://doi.org/10.1007/s10994-021-06030-6
https://doi.org/10.1111/rssb.12265
https://doi.org/10.1111/rssb.12265
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mytask <- as_task_regr(iris, target = "Petal.Length")
cpi(task = mytask, learner = lrn("regr.ranger"),

resampling = rsmp("holdout"),
knockoff_fun = seqknockoff::knockoffs_seq)

## End(Not run)
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