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corpcor-package The corpcor Package
Description
This package implements a James-Stein-type shrinkage estimator for the covariance matrix, with

separate shrinkage for variances and correlations. The details of the method are explained in
Sch\"afer and Strimmer (2005) <DOI:10.2202/1544-6115.1175> and Opgen-Rhein and Strimmer
(2007) <DOI:10.2202/1544-6115.1252>. The approach is both computationally as well as statisti-
cally very efficient, it is applicable to “small n, large p” data, and always returns a positive definite
and well-conditioned covariance matrix. In addition to inferring the covariance matrix the package
also provides shrinkage estimators for partial correlations, partial variances, and regression coeffi-
cients. The inverse of the covariance and correlation matrix can be efficiently computed, and as well
as any arbitrary power of the shrinkage correlation matrix. Furthermore, functions are available for
fast singular value decomposition, for computing the pseudoinverse, and for checking the rank and
positive definiteness of a matrix.

The name of the package refers to correlations and partial correlations.

Author(s)

Juliane Sch\"afer, Rainer Opgen-Rhein, Verena Zuber, Miika Ahdesm\"aki, A. Pedro Duarte Silva,
and Korbinian Strimmer (https://strimmerlab.github.io/)

References

See website: https://strimmerlab.github.io/software/corpcor/

See Also

Cov.

shrink, invcov.shrink, powcor.shrink, pcor.shrink, fast.svd.
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cor2pcor Compute Partial Correlation from Correlation Matrix — and Vice
Versa

Description

cor2pcor computes the pairwise partial correlation coefficients from either a correlation or a co-
variance matrix.

pcor2cor takes either a partial correlation matrix or a partial covariance matrix as input, and com-
putes from it the corresponding correlation matrix.
Usage

cor2pcor(m, tol)
pcor2cor(m, tol)

Arguments
m covariance matrix or (partial) correlation matrix
tol tolerance - singular values larger than tol are considered non-zero (default value:
tol = max(dim(m))*max(D)*.Machine$double.eps). This parameter is needed
for the singular value decomposition on which pseudoinverse is based.
Details

The partial correlations are the negative standardized concentrations (which in turn are the off-
diagonal elements of the inverse correlation or covariance matrix). In graphical Gaussian models
the partial correlations represent the direct interactions between two variables, conditioned on all
remaining variables.

In the above functions the pseudoinverse is employed for inversion - hence even singular covari-
ances (with some zero eigenvalues) may be used. However, a better option may be to estimate a
positive definite covariance matrix using cov.shrink.

Note that for efficient computation of partial correlation coefficients from data x it is advised to use
pcor.shrink(x) and not cor2pcor(cor.shrink(x)).
Value

A matrix with the pairwise partial correlation coefficients (cor2pcor) or with pairwise correlations
(pcor2cor).

Author(s)

Korbinian Strimmer (https://strimmerlab.github.io).

References

Whittaker J. 1990. Graphical Models in Applied Multivariate Statistics. John Wiley, Chichester.
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See Also

decompose. invcov, pcor.shrink, pseudoinverse.

Examples

# load corpcor library
library("corpcor™)

# covariance matrix

m.cov = rbind(
c(3,1,1,0),
c(1,3,0,1),
c(1,0,2,0),
c(0,1,0,2)

)

m.cov

# corresponding correlation matrix
.cor.1 = cov2cor(m.cov)
m.cor.1

3

# compute partial correlations (from covariance matrix)
m.pcor.1 = cor2pcor(m.cov)
m.pcor.1

# compute partial correlations (from correlation matrix)

m.pcor.2 = cor2pcor(m.cor.1)
m.pcor.?2

zapsmall( m.pcor.1 ) == zapsmall( m.pcor.2 )

# backtransformation
m.cor.2 = pcor2cor(m.pcor.1)

m.cor.2
zapsmall( m.cor.1 ) == zapsmall( m.cor.2 )
cov.shrink Shrinkage Estimates of Covariance and Correlation
Description

The functions var.shrink, cor.shrink, and cov.shrink compute shrinkage estimates of vari-
ance, correlation, and covariance, respectively.
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Usage

var.shrink(x, lambda.var, w, verbose=TRUE)
cor.shrink(x, lambda, w, verbose=TRUE)
cov.shrink(x, lambda, lambda.var, w, verbose=TRUE)

Arguments
X a data matrix
lambda the correlation shrinkage intensity (range 0-1). If lambda is not specified (the
default) it is estimated using an analytic formula from Sch\"afer and Strimmer
(2005) - see details below. For lambda=0 the empirical correlations are recov-
ered.
lambda.var the variance shrinkage intensity (range 0-1). If lambda.var is not specified
(the default) it is estimated using an analytic formula from Opgen-Rhein and
Strimmer (2007) - see details below. For 1ambda. var=0 the empirical variances
are recovered.
w optional: weights for each data point - if not specified uniform weights are as-
sumed (w=rep(1/n, n) with n = nrow(x)).
verbose output some status messages while computing (default: TRUE)
Details

var.shrink computes the empirical variance of each considered random variable, and shrinks them
towards their median. The shrinkage intensity is estimated using estimate.lambda.var (Opgen-
Rhein and Strimmer 2007).

Similarly cor.shrink computes a shrinkage estimate of the correlation matrix by shrinking the
empirical correlations towards the identity matrix. In this case the shrinkage intensity is computed
using estimate.lambda (Sch\"afer and Strimmer 2005).

In comparison with the standard empirical estimates (var, cov, and cor) the shrinkage estimates
exhibit a number of favorable properties. For instance,

1. they are typically much more efficient, i.e. they show (sometimes dramatically) better mean
squared error,

2. the estimated covariance and correlation matrices are always positive definite and well condi-
tioned (so that there are no numerical problems when computing their inverse),

3. they are inexpensive to compute, and

4. they are fully automatic and do not require any tuning parameters (as the shrinkage intensity
is analytically estimated from the data), and

5. they assume nothing about the underlying distributions, except for the existence of the first
two moments.

These properties also carry over to derived quantities, such as partial variances and partial correla-
tions (pvar.shrink and pcor.shrink).

As an extra benefit, the shrinkage estimators have a form that can be very efficiently inverted,
especially if the number of variables is large and the sample size is small. Thus, instead of inverting
the matrix output by cov.shrink and cor.shrink please use the functions invcov.shrink and
invcor.shrink, respectively.
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Value

var.shrink returns a vector with estimated variances.
cov.shrink returns a covariance matrix.

cor.shrink returns the corresponding correlation matrix.

Author(s)

Juliane Sch\"afer, Rainer Opgen-Rhein, and Korbinian Strimmer (https://strimmerlab.github.
io).

References

Opgen-Rhein, R., and K. Strimmer. 2007. Accurate ranking of differentially expressed genes by a
distribution-free shrinkage approach. Statist. Appl. Genet. Mol. Biol. 6:9. <DOI:10.2202/1544-
6115.1252>

Sch\"afer, J., and K. Strimmer. 2005. A shrinkage approach to large-scale covariance estimation and
implications for functional genomics. Statist. Appl. Genet. Mol. Biol. 4:32. <DOI:10.2202/1544-
6115.1175>

See Also

invcov.shrink, pcor.shrink, cor2pcor

Examples

# load corpcor library
library("corpcor™)

# small n, large p
p = 100
n = 20

# generate random pxp covariance matrix
sigma = matrix(rnorm(p*p),ncol=p)
sigma = crossprod(sigma)+ diag(rep(0.1, p))

# simulate multinormal data of sample size n
sigsvd = svd(sigma)

Y = t(sigsvd$v %*% (t(sigsvd$u) * sqrt(sigsvd$d)))
X = matrix(rnorm(n * ncol(sigma)), nrow = n) %*% Y

# estimate covariance matrix
s1 = cov(X)
s2 = cov.shrink(X)

# squared error
sum((s1-sigma)*2)
sum((s2-sigma)*2)


https://strimmerlab.github.io
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# compare positive definiteness
is.positive.definite(sigma)
is.positive.definite(s1)
is.positive.definite(s2)

# compare ranks and condition
rank.condition(sigma)
rank.condition(s1)
rank.condition(s2)

# compare eigenvalues

ed = eigen(sigma, symmetric=TRUE)$values
el = eigen(s1, symmetric=TRUE)$values

e2 = eigen(s2, symmetric=TRUE)$values

m = max(e@, el, e2)

yl = c(0, m)

par(mfrow=c(1,3))

plot(el, main="empirical”)

plot(e2, ylim=yl, main="full shrinkage")
plot(e@, ylim=yl, main="true")
par(mfrow=c(1,1))

fast.svd Fast Singular Value Decomposition

Description

fast.svd returns the singular value decomposition of a rectangular real matrix
M =UDV',

where U and V are orthogonal matrices with U'U = I and V'V = I, and D is a diagonal matrix
containing the singular values (see svd).

The main difference to the native version svd is that fast. svd is substantially faster for "fat" (small
n, large p) and "thin" (large n, small p) matrices. In this case the decomposition of M can be greatly
sped up by first computing the SVD of either M M’ (fat matrices) or M’M (thin matrices), rather
than that of M.

A second difference to svd is that fast.svd only returns the positive singular values (thus the
dimension of D always equals the rank of M). Note that the singular vectors computed by fast . svd
may differ in sign from those computed by svd.

Usage
fast.svd(m, tol)
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Arguments
m matrix
tol tolerance - singular values larger than tol are considered non-zero (default value:
tol = max(dim(m))*max(D)*.Machine$double.eps)
Details

For "fat" M (small n, large p) the SVD decomposition of M M’ yields

MM =UD?U

As the matrix M M’ has dimension n x n only, this is faster to compute than SVD of M. The V
matrix is subsequently obtained by

V=MUD"

Similarly, for "thin" M (large n, small p), the decomposition of M’ M yields

M M =VD2V

which is also quick to compute as M’ M has only dimension p x p. The U matrix is then computed

via
U=MVD™!
Value
A list with the following components:
d a vector containing the positive singular values
u a matrix with the corresponding left singular vectors
v a matrix with the corresponding right singular vectors

Author(s)

Korbinian Strimmer (https://strimmerlab.github.io).

See Also

svd, solve.


https://strimmerlab.github.io
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Examples

# load corpcor library
library("corpcor™)

= 50
= 5000

X T 5 H

# compute SVD
system.time( (s1
system.time( (s2

eps = le-10

generate a "fat" data matrix

matrix(rnorm(n*p), n, p)

= svd(X)) )
= fast.svd(X)) )

sum(abs(s1$d-s2%$d) > eps)
sum(abs(abs(s1$u)-abs(s2$u)) > eps)
sum(abs(abs(s1$v)-abs(s2$v)) > eps)

invcov.shrink

Fast Computation of the Inverse of the Covariance and Correlation
Matrix

Description

The functions invcov.shrink and invcor.shrink implement an algorithm to efficiently compute
the inverses of shrinkage estimates of covariance (cov.shrink) and correlation (cor. shrink).

Usage

invcov.shrink(x, lambda, lambda.var, w, verbose=TRUE)
invcor.shrink(x, lambda, w, verbose=TRUE)

Arguments

X
lambda

lambda.var

verbose

a data matrix

the correlation shrinkage intensity (range 0-1). If lambda is not specified (the
default) it is estimated using an analytic formula from Sch\"afer and Strimmer
(2005) - see cor.shrink. For lambda=0 the empirical correlations are recov-
ered.

the variance shrinkage intensity (range 0-1). If 1ambda. var is not specified (the
default) it is estimated using an analytic formula from Sch\"afer and Strimmer
(2005) - see var.shrink. For lambda. var=0 the empirical variances are recov-
ered.

optional: weights for each data point - if not specified uniform weights are as-
sumed (w =rep(1/n, n) with n = nrow(x)).

output status while computing (default: TRUE)
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Details

Both invcov.shrink and invcor.shrink rely on powcor.shrink. This allows to compute the
inverses in a very efficient fashion (much more efficient than directly inverting the matrices - see
the example).

Value

invcov.shrink returns the inverse of the output from cov.shrink.

invcor. shrink returns the inverse of the output from cor . shrink.

Author(s)

Juliane Sch\"afer and Korbinian Strimmer (https://strimmerlab.github.io).

References

Sch\"afer, J., and K. Strimmer. 2005. A shrinkage approach to large-scale covariance estimation and
implications for functional genomics. Statist. Appl. Genet. Mol. Biol. 4:32. <DOI:10.2202/1544-
6115.1175>

See Also

powcor.shrink, cov.shrink, pcor.shrink, cor2pcor

Examples

# load corpcor library
library("corpcor")

# generate data matrix
p = 500

n=10

X

matrix(rnorm(n*p), nrow = n, ncol = p)
lambda = ©.23 # some arbitrary lambda

# slow
system.time(

(W1 = solve(cov.shrink(X, lambda)))
)

# very fast
system.time(

(W2 = invcov.shrink(X, lambda))
)

# no difference
sum((W1-W2)*2)


https://strimmerlab.github.io
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mpower Compute the Power of a Real Symmetric Matrix

Description

mpower computes m®Ipha, i.e. the alpha-th power of the real symmetric matrix m.

Usage

mpower (m, alpha, pseudo=FALSE, tol)

Arguments
m a real-valued symmetric matrix.
alpha exponent.
pseudo if pseudo=TRUE then all zero eigenvalues are dropped (e.g. for computing the
pseudoinverse). The default is to use all eigenvalues.
tol tolerance - eigenvalues with absolute value smaller or equal to tol are consid-
ered identically zero (default: tol = max(dim(m))*max(abs(eval))*.Machine$double.eps).
Details

The matrix power of m is obtained by first computing the spectral decomposition of m, and subse-
quent modification of the resulting eigenvalues.

Note that m is assumed to by symmetric, and only its lower triangle (diagonal included) is used in
eigen.

For computing the matrix power of cor. shrink use the vastly more efficient function powcor. shrink.

Value

mpower returns a matrix of the same dimensions as m.

Author(s)

Korbinian Strimmer (https://strimmerlab.github.io).

See Also

powcor.shrink, eigen.


https://strimmerlab.github.io
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Examples

# load corpcor library
library("corpcor™)

# generate symmetric matrix

p =10

n =20

X = matrix(rnorm(n*p), nrow = n, ncol = p)
m = cor(X)

m %*% m

mpower(m, 2)

solve(m)
mpower(m, -1)

msq = mpower(m, 0.5)
msq %*% msq

m

mpower(m, 1.234)

pcor.shrink Shrinkage Estimates of Partial Correlation and Partial Variance

Description
The functions pcor.shrink and pvar.shrink compute shrinkage estimates of partial correlation
and partial variance, respectively.

Usage

pcor.shrink(x, lambda, w, verbose=TRUE)
pvar.shrink(x, lambda, lambda.var, w, verbose=TRUE)

Arguments

X a data matrix

lambda the correlation shrinkage intensity (range 0-1). If lambda is not specified (the
default) it is estimated using an analytic formula from Sch\"afer and Strimmer
(2005) - see cor.shrink. For lambda=0@ the empirical correlations are recov-
ered.

lambda.var the variance shrinkage intensity (range 0-1). If lambda.var is not specified
(the default) it is estimated using an analytic formula from Opgen-Rhein and
Strimmer (2007) - see details below. For 1ambda. var=0 the empirical variances
are recovered.

w optional: weights for each data point - if not specified uniform weights are as-

sumed (w=rep(1/n, n) with n = nrow(x)).
verbose report progress while computing (default: TRUE)
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Details

The partial variance var(Xy|rest) is the variance of X}, conditioned on the remaining variables. It
equals the inverse of the corresponding diagonal entry of the precision matrix (see Whittaker 1990).

The partial correlations corr (X}, X;|rest) is the correlation between X}, and X; conditioned on the
remaining variables. It equals the sign-reversed entries of the off-diagonal entries of the precision
matrix, standardized by the the squared root of the associated inverse partial variances.

Note that using pcor . shrink(x) much faster than cor2pcor (cor.shrink(x)).

For details about the shrinkage procedure consult Sch\"afer and Strimmer (2005), Opgen-Rhein and
Strimmer (2007), and the help page of cov.shrink.

Value

pcor.shrink returns the partial correlation matrix. Attached to this matrix are the standardized
partial variances (i.e. PVAR/VAR) that can be retrieved using attr under the attribute "spv".

pvar.shrink returns the partial variances.

Author(s)

Juliane Sch\"afer and Korbinian Strimmer (https://strimmerlab.github.io).

References

Opgen-Rhein, R., and K. Strimmer. 2007. Accurate ranking of differentially expressed genes by a
distribution-free shrinkage approach. Statist. Appl. Genet. Mol. Biol. 6:9. <DOI:10.2202/1544-
6115.1252>

Sch\"afer, J., and K. Strimmer. 2005. A shrinkage approach to large-scale covariance estimation and
implications for functional genomics. Statist. Appl. Genet. Mol. Biol. 4:32. <DOI:10.2202/1544-
6115.1175>

Whittaker J. 1990. Graphical Models in Applied Multivariate Statistics. John Wiley, Chichester.

See Also

invcov.shrink, cov.shrink, cor2pcor

Examples

# load corpcor library
library("corpcor™)

# generate data matrix
p = 50

n=10

X

matrix(rnorm(nxp), nrow = n, ncol = p)

# partial variance
pv = pvar.shrink(X)
pv


https://strimmerlab.github.io

14 powecor.shrink

# partial correlations (fast and recommend way)
pcr1l = pcor.shrink(X)

# other possibilities to estimate partial correlations

pcr2 = cor2pcor( cor.shrink(X) )

# all the same
sum((pcr1 - pcr2)*2)

powcor. shrink Fast Computation of the Power of the Shrinkage Correlation Matrix

Description

The function powcor . shrink efficiently computes the alpha-th power of the shrinkage correlation
matrix produced by cor. shrink.

For instance, this function may be used for fast computation of the (inverse) square root of the
shrinkage correlation matrix (needed, e.g., for decorrelation).

crossprod.powcor . shrink efficiently computes Ry without actually computing the full matrix
R*.
Usage

powcor.shrink(x, alpha, lambda, w, verbose=TRUE)
crossprod.powcor.shrink(x, y, alpha, lambda, w, verbose=TRUE)

Arguments

X a data matrix

y a matrix, the number of rows of y must be the same as the number of columns
of x

alpha exponent

lambda the correlation shrinkage intensity (range 0-1). If lambda is not specified (the
default) it is estimated using an analytic formula from Sch\"afer and Strimmer
(2005) - see cor.shrink. For lambda=0 the empirical correlations are recov-
ered.

w optional: weights for each data point - if not specified uniform weights are as-

sumed (w =rep(1/n, n) with n = nrow(x)).

verbose output status while computing (default: TRUE)
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Details

This function employs a special matrix identity to speed up the computation of the matrix power of
the shrinkage correlation matrix (see Zuber and Strimmer 2009 for details).

Apart from a scaling factor the shrinkage correlation matrix computed by cor.shrink takes on the
form

Z=I,+VMVT,

where VM VAT is a multiple of the empirical correlation matrix. Crucially, Z is a matrix of size p
times p whereas M is a potentially much smaller matrix of size m times m, where m is the rank of the
empirical correlation matrix.

In order to calculate the alpha-th power of Z the function uses the identity
7 =1, V(ILy — (I, + M)*)VT

requiring only the computation of the alpha-th power of the m by m matrix I,,, + M. This trick
enables substantial computational savings especially when the number of observations is much
smaller than the number of variables.

Note that the above identity is related but not identical to the Woodbury matrix identity for inversion
of a matrix. For « = —1 the above identity reduces to

Z' =1, -V, — (Im, + M) VT,
whereas the Woodbury matrix identity equals
Z7l =1, -V, +MYH VT

Value

powcor. shrink returns a matrix of the same size as the correlation matrix R

crossprod. powcor. shrink returns a matrix of the same size as R y.

Author(s)

Verena Zuber, A. Pedro Duarte Silva, and Korbinian Strimmer (https://strimmerlab.github.
io).

References

Zuber, V., and K. Strimmer. 2009. Gene ranking and biomarker discovery under correlation. Bioin-
formatics 25:2700-2707. <DOI:10.1093/bioinformatics/btp460>

Zuber, V., A. P. Duarte Silva, and K. Strimmer. 2012. A novel algorithm for simultaneous SNP

selection in high-dimensional genome-wide association studies. BMC Bioinformatics 13: 284
<DOI:10.1186/1471-2105-13-284>
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See Also

invcor.shrink, cor.shrink, mpower.

Examples

# load corpcor library
library("corpcor")

# generate data matrix
p = 500

n=10

X

matrix(rnorm(nxp), nrow = n, ncol = p)

lambda = ©.23 # some arbitrary lambda

### computing the inverse #it#
# slow
system.time(
(W1 = solve(cor.shrink(X, lambda=lambda)))
)

# very fast
system. time(
(W2 = powcor.shrink(X, alpha=-1, lambda=lambda))

)

# no difference
sum( (W1-W2)*2)

### computing the square root ##i#

system. time(
(W1 = mpower (cor.shrink(X, lambda=lambda), alpha=0.5))

)

# very fast
system.time(
(W2 = powcor.shrink(X, alpha=0.5, lambda=lambda))

)
# no difference

sum( (W1-W2)*2)

### computing an arbitrary power (alpha=1.23) #i##

system.time(
(W1 = mpower (cor.shrink(X, lambda=lambda), alpha=1.23))

)

# very fast
system.time(
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(W2 = powcor.shrink(X, alpha=1.23, lambda=lambda))
)

# no difference

sum((W1-W2)42)

### fast computation of cross product

y = rnorm(p)

system. time(
(CP1 = crossprod(powcor.shrink(X, alpha=1.23, lambda=lambda), y))
)

system.time(
(CP2 = crossprod.powcor.shrink(X, y, alpha=1.23, lambda=lambda))

)

# no difference
sum((CP1-CP2)*2)

pseudoinverse Pseudoinverse of a Matrix

Description

The standard definition for the inverse of a matrix fails if the matrix is not square or singular.
However, one can generalize the inverse using singular value decomposition. Any rectangular real
matrix M can be decomposed as

M =UDV

where U and V are orthogonal, V' means V transposed, and D is a diagonal matrix containing only
the positive singular values (as determined by tol, see also fast. svd).

The pseudoinverse, also known as Moore-Penrose or generalized inverse is then obtained as

iM =VD U
Usage
pseudoinverse(m, tol)
Arguments
m matrix
tol tolerance - singular values larger than tol are considered non-zero (default value:

tol = max(dim(m))*max(D)*.Machine$double.eps)
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Details

The pseudoinverse has the property that the sum of the squares of all the entries in iM %*% M - I,
where I is an appropriate identity matrix, is minimized. For non-singular matrices the pseudoinverse
is equivalent to the standard inverse.

Value

A matrix (the pseudoinverse of m).

Author(s)

Korbinian Strimmer (https://strimmerlab.github.io).

See Also

solve, fast.svd

Examples

# load corpcor library
library("corpcor™)

# a singular matrix
m = rbind(

c(1,2),

c(1,2)

)

# not possible to invert exactly
try(solve(m))

# pseudoinverse
p = pseudoinverse(m)
p

# characteristics of the pseudoinverse

zapsmall( m %*% p %*% m ) == zapsmall( m )
zapsmall( p %*% m %x% p ) == zapsmall( p )
zapsmall( p %*% m ) == zapsmall( t(p %*% m ) )
zapsmall( m %*% p ) == zapsmall( t(m %*% p ) )

# example with an invertable matrix
m2 = rbind(

c(1,1),

c(1,0)

)

zapsmall( solve(m2) ) == zapsmall( pseudoinverse(m2) )


https://strimmerlab.github.io
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rank.condition Positive Definiteness of a Matrix, Rank and Condition Number

Description

is.positive.definite tests whether all eigenvalues of a symmetric matrix are positive.

make.positive.definite computes the nearest positive definite of a real symmetric matrix, using
the algorithm of NJ Higham (1988) <DOI:10.1016/0024-3795(88)90223-6>.

rank.condition estimates the rank and the condition of a matrix by computing its singular values
DI[i] (using svd). The rank of the matrix is the number of singular values D[i] > tol) and the
condition is the ratio of the largest and the smallest singular value.

The definition tol=max(dim(m))*max(D)*.Machine$double.eps is exactly compatible with the
conventions used in "Octave" or "Matlab".

Also note that it is not checked whether the input matrix m is real and symmetric.

Usage

is.positive.definite(m, tol, method=c("eigen”, "chol"))
make.positive.definite(m, tol)
rank.condition(m, tol)

Arguments
m a matrix (assumed to be real and symmetric)
tol tolerance for singular values and for absolute eigenvalues - only those with val-
ues larger than tol are considered non-zero (default: tol = max(dim(m))#*max(D)*.Machine$double.eps
method Determines the method to check for positive definiteness: eigenvalue computa-
tion (eigen, default) or Cholesky decomposition (chol).
Value

is.positive.definite returns alogical value (TRUE or FALSE).

rank.condition returns a list object with the following components:

rank Rank of the matrix.
condition Condition number.
tol Tolerance.

make.positive.definite returns a symmetric positive definite matrix.

Author(s)

Korbinian Strimmer (https://strimmerlab.github.io).
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See Also

svd, pseudoinverse.

Examples

# load corpcor library
library("corpcor™)

# Hilbert matrix
hilbert = function(n) { i = 1:n; 1 / outer(i - 1, i, "+") }

# positive definite ?
m = hilbert(8)
is.positive.definite(m)

# numerically ill-conditioned
m = hilbert(15)
rank.condition(m)

# make positive definite

m2 = make.positive.definite(m)
is.positive.definite(m2)
rank.condition(m2)

m2-m

rebuild.cov Rebuild and Decompose the (Inverse) Covariance Matrix

Description
rebuild.cov takes a correlation matrix and a vector with variances and reconstructs the corre-
sponding covariance matrix.
Conversely, decompose . cov decomposes a covariance matrix into correlations and variances.

decompose. invcov decomposes a concentration matrix (=inverse covariance matrix) into partial
correlations and partial variances.

rebuild.invcov takes a partial correlation matrix and a vector with partial variances and recon-
structs the corresponding concentration matrix.

Usage

rebuild.cov(r, v)
rebuild.invcov(pr, pv)
decompose.cov(m)
decompose.invcov(m)
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Arguments

r correlation matrix

v variance vector

pr partial correlation matrix

pv partial variance vector

m a covariance or a concentration matrix
Details

The diagonal elements of the concentration matrix (=inverse covariance matrix) are the precisions,
and the off-diagonal elements are the concentrations. Thus, the partial variances correspond to the
inverse precisions, and the partial correlations to the negative standardized concentrations.

Value

rebuild.cov and rebuild. invcov return a matrix.

decompose. cov and decompose. invcov return a list containing a matrix and a vector.

Author(s)

Korbinian Strimmer (https://strimmerlab.github.io).

See Also

cor, cov, pcor.shrink

Examples

#

load corpcor library

library("corpcor™)

< 3 =
1

o o0

#

a correlation matrix and some variances
= matrix(c(1, 1/2, 1/2, 1), nrow = 2, ncol=2)

c(2, 3)

construct the associated covariance matrix
= rebuild.cov(r, v)

decompose into correlations and variances

decompose. cov(c)

#

the corresponding concentration matrix

conc = pseudoinverse(c)
conc

#

decompose into partial correlation matrix and partial variances
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tmp = decompose.invcov(conc)

tmp

# note: because this is an example with two variables,
# the partial and standard correlations are identicall!

# reconstruct the concentration matrix from partial correlations and
# partial variances
rebuild.invcov(tmp$pr, tmp$pv)

shrink.intensity Estimation of Shrinkage Intensities

Description

The functions estimate.lambda and estimate.lambda.var shrinkage intensities used for corre-
lations and variances used in cor.shrink and var.shrink, respectively.

Usage

estimate.lambda(x, w, verbose=TRUE)
estimate.lambda.var(x, w, verbose=TRUE)

Arguments
a data matrix
w optional: weights for each data point - if not specified uniform weights are as-
sumed (w=rep(1/n, n) with n = nrow(x)).
verbose report shrinkage intensities (default: TRUE)
Details

var.shrink computes the empirical variance of each considered random variable, and shrinks them
towards their median. The corresponding shrinkage intensity lambda. var is estimated using

P
Noar = Z Var(skk) /Z spx — median(s))?
k=1

where median(s) denotes the median of the empirical variances (see Opgen-Rhein and Strimmer
2007).

Similarly, cor.shrink computes a shrinkage estimate of the correlation matrix by shrinking the
empirical correlations towards the identity matrix. In this case the shrinkage intensity lambda equals

Y= Z Var(re)/ Zr,%l

k#l k#l
(Sch\"afer and Strimmer 2005).

Ahdesm\"aki suggested (2012) a computationally highly efficient algorithm to compute the shrink-
age intensity estimate for the correlation matrix (see the R code for the implementation).
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Value

estimate.lambda and estimate.lambda. var returns a number between 0 and 1.

Author(s)

Juliane Sch\"afer, Rainer Opgen-Rhein, Miika Ahdesm\"aki and Korbinian Strimmer (https://
strimmerlab.github.io).

References

Opgen-Rhein, R., and K. Strimmer. 2007. Accurate ranking of differentially expressed genes by a
distribution-free shrinkage approach. Statist. Appl. Genet. Mol. Biol. 6:9. <DOI:10.2202/1544-
6115.1252>

Sch\"afer, J., and K. Strimmer. 2005. A shrinkage approach to large-scale covariance estimation and
implications for functional genomics. Statist. Appl. Genet. Mol. Biol. 4:32. <DOI:10.2202/1544-
6115.1175>

See Also

cor.shrink, var.shrink.

Examples

# load corpcor library
library("corpcor™)

# small n, large p
p = 100
n = 20

# generate random pxp covariance matrix
sigma = matrix(rnorm(p*p),ncol=p)
sigma = crossprod(sigma)+ diag(rep(@.1, p))

# simulate multinormal data of sample size n
sigsvd = svd(sigma)

Y = t(sigsvd$v %*% (t(sigsvd$u) * sqrt(sigsvd$d)))
X = matrix(rnorm(n * ncol(sigma)), nrow = n) %x% Y

# correlation shrinkage intensity
estimate.lambda(X)
c = cor.shrink(X)
attr(c, "lambda")

# variance shrinkage intensity
estimate.lambda.var(X)

v = var.shrink(X)

attr(v, "lambda.var")
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smtools Some Tools for Handling Symmetric Matrices

Description

sm2vec takes a symmetric matrix and puts the lower triagonal entries into a vector (cf. lower. tri).
sm. index lists the corresponding x-y-indices for each entry in the vector produced by sm2vec.

vec2sm reverses the operation by sm2vec and converts the vector back to a symmetric matrix. If
diag=FALSE the diagonal of the resulting matrix will consist of NAs. If order is supplied then the
input vector vec will first be rearranged accordingly.

Usage
sm2vec(m, diag = FALSE)

sm.index(m, diag = FALSE)
vec2sm(vec, diag = FALSE, order = NULL)

Arguments
m symmetric matrix
diag logical. Should the diagonal be included in the conversion to and from a vector?
vec vector of unique elements from a symmetric matrix
order order of the entries in vec
Value

A vector (sm2vec), a two-column matrix with indices (sm. index), or a symmetric matrix (vec2sm).

Author(s)

Korbinian Strimmer (https://strimmerlab.github.io/).

See Also

lower.tri.

Examples

# load corpcor library
library("corpcor™)

# a symmetric matrix
m = rbind(
c(3,1,1,0),
c(1,3,0,1),
c(1,0,2,0),
c(0,1,0,2)


https://strimmerlab.github.io/

wt.scale 25

# convert into vector (including the diagonals)
v = sm2vec(m, diag=TRUE)

v.idx = sm.index(m, diag=TRUE)

v

v

.idx

# put back to symmetric matrix
vec2sm(v, diag=TRUE)

# convert from vector with specified order of the elements
sv = sort(v)

sV

ov = order(v)

ov

vec2sm(sv, diag=TRUE, order=ov)

wt.scale Weighted Expectations and Variances

Description

wt.var estimate the unbiased variance taking into account data weights.
wt.moments produces the weighted mean and weighted variance for each column of a matrix.

wt.scale centers and standardized a matrix using the weighted means and variances.

Usage

wt.var(xvec, w)
wt.moments(x, w)
wt.scale(x, w, center=TRUE, scale=TRUE)

Arguments
xvec a vector
X a matrix
w data weights
center logical value
scale logical value
Value

A rescaled matrix (wt.scale), a list containing the column means and variances (wt.moments), or
single number (wt.var)
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Author(s)

Korbinian Strimmer (https://strimmerlab.github.io).

See Also

weighted.mean, cov.wt.

Examples

# load corpcor library
library("corpcor™)

# generate some data

p=>5

n=>5

X = matrix(rnorm(n*p), nrow = n, ncol = p)
w=c(1,1,1,3,3)/9

# standardize matrix

scale(X)

wt.scale(X)

wt.scale(X, w) # take into account data weights
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