Package 'conf'

May 5, 2024

Type Package

Title Visualization and Analysis of Statistical Measures of Confidence

Version 1.9.1

Maintainer Christopher Weld <ceweld241@gmail.com>

Imports graphics, stats, statmod, fitdistrplus, pracma, rootSolve, utils

Description Enables: (1) plotting two-dimensional confidence regions, (2) coverage analysis of confidence region simulations, (3) calculating confidence intervals and the associated actual coverage for binomial proportions, (4) calculating the support values and the probability mass function of the Kaplan-Meier product-limit estimator, and (5) plotting the actual coverage function associated with a confidence interval for the survivor function from a randomly right-censored data set. Each is given in greater detail next. (1) Plots the two-dimensional confidence region for probability distribution parameters (supported distribution suffixes: cauchy, gamma, invgauss, logis, llogis, lnorm, norm, unif, weibull) corresponding to a user-given complete or right-censored dataset and level of significance. The crplot() algorithm plots more points in areas of greater curvature to ensure a smooth appearance throughout the confidence region boundary. An alternative heuristic plots a specified number of points at roughly uniform intervals along its boundary. Both heuristics build upon the radial profile log-likelihood ratio technique for plotting confidence regions given by Jaeger (2016) <doi:10.1080/00031305.2016.1182946>, and are detailed in a publication by Weld et al. (2019) <doi:10.1080/00031305.2018.1564696>. (2) Performs confidence region coverage simulations for a random sample drawn from a userspecified parametric population distribution, or for a user-specified dataset and point of interest with coversim(). (3) Calculates confidence interval bounds for a binomial proportion with binomTest(), calculates the actual coverage with binomTestCoverage(), and plots the actual coverage with binomTestCoveragePlot(). Calculates confidence interval bounds for the binomial proportion using an ensemble of constituent confidence intervals with binomTestEnsemble(). Calculates confidence interval bounds for the binomial proportion using a complete enumeration of all possible transitions from one actual coverage acceptance curve to another which minimizes the root mean square error for $n \le 15$ and follows the transitions for well-known confidence intervals for n > 15 using binomTestMSE(). (4) The km.support() function calculates the support values of the Kaplan-Meier product-limit estimator for a given sample size n using an induction algorithm described in Qin et al. (2023) <doi:10.1080/00031305.2022.2070279>. The km.outcomes() function generates a matrix containing all possible outcomes (all possible sequences of failure times and right-censoring

times) of the value of the Kaplan-Meier product-limit estimator for a particular sample size n. The km.pmf() function generates the probability mass function for the support values of the Kaplan-Meier product-limit estimator for a particular sample size n, probability of observing a failure h at the time of interest expressed as the cumulative probability percentile associated with X = min(T, C), where T is the failure time and C is the censoring time under a random-censoring scheme. The km.surv() function generates multiple probability mass functions of the Kaplan-Meier product-limit estimator for the same arguments as those given for km.pmf(). (5) The km.coverage() function plots the actual coverage function associated with a confidence interval for the survivor function from a randomly right-censored data set for one or more of the following confidence intervals: Greenwood, log-minus-log, Peto, arcsine, and exponential Greenwood. The actual coverage function is plotted for a small number of items on test, stated coverage, failure rate, and censoring rate. The km.coverage() function can print an optional table containing all possible failure/censoring orderings, along with their contribution to the actual coverage function.

Depends R (>= 4.0.0)

License GPL (<= 2)

Encoding UTF-8

RoxygenNote 7.2.3

Suggests knitr, rmarkdown, spelling

VignetteBuilder knitr

Language en-US

NeedsCompilation no

Author Christopher Weld [aut, cre] (<https://orcid.org/0000-0001-5902-9738>),

Kexin Feng [aut], Hayeon Park [aut], Yuxin Qin [aut], Xingyu Wang [aut], Heather Sasinowska [aut], Lawrence Leemis [aut], Yuan Chang [ctb], Brock Crook [ctb], Chris Kuebler [ctb], Andrew Loh [ctb], Xin Zhang [ctb]

Repository CRAN

Date/Publication 2024-05-05 21:10:15 UTC

R topics documented:

 	 3
 	 4
 	 6
 	 8
 	 10
· · · · · · · · · · · · · · · · · · ·	

binomTest

conf				•	•	•	•	•	•	•		•		•								•	•					•			11
coversim																															13
crplot																															17
dinvgauss																															23
dllogis																															26
gammaMLE																															28
invgaussMLE .																															
km.coverage																															39
km.outcomes .																															42
km.pmf																															43
km.support																															
km.surv																															
llogisMLE		•			•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•			•	•	•	•	•	47
																															51
																															51

Index

binomTest

Confidence Intervals for Binomial Proportions

Description

Generates lower and upper confidence interval limits for a binomial proportion using different types of confidence intervals.

Usage

Arguments

n	sample size
х	number of successes
alpha	significance level for confidence interval
intervalType	type of confidence interval used; either "Clopper-Pearson", "Wald", "Wilson-Score", "Jeffreys", "Agresti-Coull", "Arcsine", or "Blaker"

Details

Generates a lower and upper confidence interval limit for a binomial proportion using

- various types of confidence intervals,
- various sample sizes, and
- various numbers of successes.

When the binomTest function is called, it returns a two-element vector in which

- the first element is the lower bound of the confidence interval, and
- the second element is the upper bound of the confidence interval.

This confidence interval is constructed by calculating lower and upper bounds associated with the confidence interval procedure specified by the intervalType argument. Lower bounds that are negative are set to 0 and upper bounds that are greater than 1 are set to 1.

Author(s)

Hayeon Park (<hpark031@gmail.com>), Larry Leemis (<leemis@math.wm.edu>)

See Also

dbinom

Examples

```
binomTest(10, 6)
binomTest(100, 30, intervalType = "Agresti-Coull")
```

binomTestCoverage Actual Coverage Calculation for Binomial Proportions

Description

Calculates the actual coverage of a confidence interval for a binomial proportion for a particular sample size n and a particular value of the probability of success p for several confidence interval procedures.

Usage

Arguments

n	sample size
р	population probability of success
alpha	significance level for confidence interval
intervalType	type of confidence interval used; either "Clopper-Pearson", "Wald", "Wilson-Score", "Jeffreys", "Agresti-Coull", "Arcsine", or "Blaker"

4

binomTestCoverage

Details

Calculates the actual coverage of a confidence interval procedure at a particular value of p for

- various types of confidence intervals,
- various probabilities of success p, and
- various sample sizes n.

The actual coverage for a particular value of p, the probability of success of interest, is

$$c(p) = \sum_{x=0}^{n} I(x, p) \binom{n}{x} p^{x} (1-p)^{n-x},$$

where I(x, p) is an indicator function that determines whether a confidence interval covers p when X = x (see Vollset, 1993).

The binomial distribution with arguments size = n and prob = p has probability mass function

$$p(x) = \binom{n}{x} p^x (1-p)^{n-x}$$

for $x = 0, 1, 2, \dots, n$.

The algorithm for computing the actual coverage for a particular probability of success begins by calculating all possible lower and upper bounds associated with the confidence interval procedure specified by the intervalType argument. The appropriate binomial probabilities are summed to determine the actual coverage at p.

Author(s)

Hayeon Park (<hpark031@gmail.com>), Larry Leemis (<leemis@math.wm.edu>)

References

Vollset, S.E. (1993). Confidence Intervals for a Binomial Proportion. Statistics in Medicine, 12, 809-824.

See Also

dbinom

Examples

```
binomTestCoverage(6, 0.4)
binomTestCoverage(n = 10, p = 0.3, alpha = 0.01, intervalType = "Wilson-Score")
```

binomTestCoveragePlot Coverage Plots for Binomial Proportions

Description

Generates plots for the actual coverage of a binomial proportion using various types of confidence intervals. Plots the actual coverage for a given sample size and stated nominal coverage 1- alpha.

Usage

```
binomTestCoveragePlot(n,
```

```
alpha = 0.05,
intervalType = "Clopper-Pearson",
plo = 0,
phi = 1,
clo = 1 - 2 * alpha,
chi = 1,
points = 5 + floor(250 / n),
showTrueCoverage = TRUE,
gridCurves = FALSE)
```

Arguments

n	sample size							
alpha	significance level for confidence interval							
intervalType	type of confidence interval used; either "Clopper-Pearson", "Wald", "Wilson-Score", "Jeffreys", "Agresti-Coull", "Arcsine", or "Blaker"							
plo	lower limit for percentile (horizontal axis)							
phi	upper limit for percentile (horizontal axis)							
clo	lower limit for coverage (vertical axis)							
chi	upper limit for coverage (vertical axis)							
points	number of points plotted in each segment of the plot; if default, varies with 'n' (see above)							
showTrueCoverage								
	logical; if TRUE (default), a solid red line will appear at $1-alpha$							
gridCurves	logical; if TRUE, display acceptance curves in gray							

Details

Generates an actual coverage plot for binomial proportions using

- · various types of confidence intervals, and
- various sample sizes.

When the function is called with default arguments,

- the horizontal axis is the percentile at which the coverage is evaluated,
- the vertical axis is the actual coverage percentage at each percentile, that is, the probability that the true value at a percentile is contained in the corresponding confidence interval, and
- the solid red line is the stated coverage of 1- alpha.

The actual coverage for a particular value of p, the percentile of interest, is

$$c(p) = \sum_{x=0}^{n} I(x, p) \binom{n}{x} p^{x} (1-p)^{n-x},$$

where I(x, p) is an indicator function that determines whether a confidence interval covers p when X = x (see Vollset, 1993).

The binomial distribution with arguments size = n and prob = p has probability mass function

$$p(x) = \binom{n}{x} p^x (1-p)^{n-x}$$

for x = 0, 1, ..., n.

The algorithm for plotting the actual coverage begins by calculating all possible lower and upper bounds associated with the confidence interval procedure specified by the intervalType argument. These values are concatenated into a vector which is sorted. Negative values and values that exceed 1 are removed from this vector. These values are the breakpoints in the actual coverage function. The points argument gives the number of points plotted on each segment of the graph of the actual coverage.

The plo and phi arguments can be used to expand or compress the plots horizontally.

The clo and chi arguments can be used to expand or compress the plots vertically.

By default, the showTrueCoverage argument plots a solid horizontal red line at the height of the stated coverage. The actual coverage is plotted with solid black lines for each segment of the actual coverage.

The gridCurves argument is assigned a logical value which indicates whether the acceptance curves giving all possible actual coverage values should be displayed as gray curves.

Author(s)

Hayeon Park (<hpark031@gmail.com>), Larry Leemis (<leemis@math.wm.edu>)

References

Vollset, S.E. (1993). Confidence Intervals for a Binomial Proportion. Statistics in Medicine, 12, 809–824.

See Also

dbinom

Examples

```
binomTestCoveragePlot(6)
binomTestCoveragePlot(10, intervalType = "Wilson-Score", clo = 0.8)
binomTestCoveragePlot(n = 100, intervalType = "Wald", clo = 0, chi = 1, points = 30)
```

binomTestEnsemble Ensemble Confidence Intervals for Binomial Proportions

Description

Generates lower and upper confidence interval limits for a binomial proportion using an ensemble of confidence intervals.

Usage

Arguments

n	sample size
x	number of successes
alpha	significance level for confidence interval
СР	logical; if TRUE (default), include Clopper-Pearson confidence interval proce- dure in the ensemble
WS	logical; if TRUE (default), include Wilson-Score confidence interval procedure in the ensemble
JF	logical; if TRUE (default), include Jeffreys confidence interval procedure in the ensemble
AC	logical; if TRUE (default), include Agresti-Coull confidence interval procedure in the ensemble
AR	logical; if TRUE (default), include Arcsine confidence interval procedure in the ensemble

8

Details

Generates lower and upper confidence interval limits for a binomial proportions using

- various sample sizes,
- · various numbers of successes, and
- various combinations of confidence intervals.

When the binomTestEnsemble function is called, it returns a two-element vector in which

- the first element is the lower bound of the Ensemble confidence interval, and
- the second element is the upper bound of the Ensemble confidence interval.

To construct an Ensemble confidence interval that attains an actual coverage that is close to the stated coverage, the five constituent confidence interval procedures can be combined. Since these intervals vary in width, the lower limits and the actual coverage of the constituent confidence intervals at the maximum likelihood estimator are calculated. Likewise, the upper limits and the actual coverage of the constituent confidence intervals at the maximum likelihood estimator are calculated. The centroids of the lower and upper constituent confidence intervals for points falling below and above the stated coverage are connected with a line segment. The point of intersection of these line segments and the stated coverage gives the lower and upper bound of the Ensemble confidence interval. Special cases to this approach are given in the case of (a) the actual coverages all fall above or below the stated coverage, and (b) the slope of the line connecting the centroids is infinite.

If only one of the logical arguments is TRUE, the code returns a simple confidence interval of that one procedure.

The Wald confidence interval is omitted because it degenerates in actual coverage for x = 0 and x = n.

Author(s)

Hayeon Park (<hpark031@gmail.com>), Larry Leemis (<leemis@math.wm.edu>)

References

Park, H., Leemis, L. (2019), "Ensemble Confidence Intervals for Binomial Proportions", Statistics in Medicine, 38 (18), 3460-3475.

Examples

```
binomTestEnsemble(10, 3)
binomTestEnsemble(100, 82, CP = FALSE, AR = FALSE)
binomTestEnsemble(33, 1, CP = FALSE, JF = FALSE, AC = FALSE, AR = FALSE)
```

binomTestMSE

Description

Generates lower and upper confidence interval limits for a binomial proportion that minimizes the root mean square error (RMSE) of the actual coverage function.

Usage

Arguments

n	sample size
х	number of successes
alpha	significance level for confidence interval
smooth	smoothness index
showRMSE	a logical variable indicating whether to show the value of RSME
showAll	a logical variable indicating whether to show confidence intervals of all possible number of successes

Details

Generates lower and upper confidence interval limits for a binomial proportion for

- · various sample sizes,
- various numbers of successes.

When the binomTestMSE function is called, it returns a two-element vector in which

- the first element is the lower bound of the RMSE-minimizing confidence interval, and
- the second element is the upper bound of the RMSE-minimizing confidence interval.

An RMSE-minimizing two-sided 100 * (1 - alpha) percent confidence interval for p is constructed from a random sample of size n from a Bernoulli(p) population. The parameter x gives the number of successes in the n mutually independent Bernoulli trials. For n <= 15, all possible jumps between acceptance curves associated with the actual coverage function are enumerated based on their oneto-one relationship with the symmetric Dyck paths. For each sequence of jumps between acceptance curves, the confidence interval bounds that are returned are associated with discontinuities in the actual coverage function that together result in the lowest possible RMSE. A set of smoothness constraints that build on four existing non-conservative confidence intervals (Wilson-score,

conf

Jeffreys, Arcsine, and Agresti-Coull) is used if the smoothness index smooth is set to one. These constraints ensure that the RMSE-confidence interval achieves smoothness, a preferable property of the binomial confidence interval that is related to lower bound differences for adjacent values of x. There is a trade-off between the RMSE and the smoothness. For n > 100, smoothness is required. The RMSE usually increases if the smoothness constraints are used. For n > 15, only the symmetric Dyck paths associated with the Wilson–score, Jeffreys, Arcsine, and Agresti–Coull confidence interval procedures are used instead of enumerating because the computation time increases in a factorial fashion in n. The minimal RMSE is not guaranteed for n > 15 because another symmetric Dyck path other than those associated with the four existing confidence interval procedures might prove to be optimal. However, this procedure does ensure a lower RMSE than any of the four existing confidence intervals for all n.

Author(s)

Kexin Feng (<kfeng@caltech.edu>), Larry Leemis (<leemis@math.wm.edu>), Heather Sasinowska (<hdsasinowska@wm.edu>)

References

Feng, K., Sasinowska, H., Leemis, L. (2022), "RMSE-Minimizing Confidence Interval for the Binomial Parameter", Computational Statistics, 37 (4), 2022, 1855-1885.

Examples

binomTestMSE(10, 3)

conf

conf: Visualization and Analysis of Statistical Measures of Confidence

Description

Enables:

- 1. confidence region plots in two-dimensions corresponding to a user given dataset, level of significance, and parametric probability distribution (supported distribution suffixes: cauchy, gamma, invgauss, lnorm, llogis, logis, norm, unif, weibull),
- coverage simulations (if a point of interest is within or outside of a confidence region boundary) for either random samples drawn from a user-specified parametric distribution or for a user-specified dataset and point of interest,
- calculating confidence intervals and the associated actual coverage for binomial proportions, and
- 4. calculating the support values and the probability mass function of the Kaplan-Meier productlimit estimator.
- 5. plotting the actual coverage function for a randomly right-censored data set with exponential failure times and exponential censoring times.

Request from authors: Please properly cite any use of this package and/or its algorithms, which are detailed in the corresponding publication by Weld et al. (2018) <doi:10.1080/00031305.2018.1564696>, Park and Leemis (2019) <doi:10.1002/sim.8189>, Feng et al. (2022) <doi:10.1007/s00180-021-01183-3>, and Qin et al. (2023) <doi:10.1080/00031305.2022.2070279>. Additionally, we welcome and appreciate your feedback and insights as to how this resource is being leveraged to improve whatever it is you do. Please include your name and academic and/or business affiliation in your correspondence.

Details

This package includes the functions:

- confidence intervals for binomial proportions: binomTest,
- actual coverage calculation for binomial proportions: binomTestCoverage,
- actual coverage plots for binomial proportions: binomTestCoveragePlot,
- ensemble confidence intervals for binomial proportions: binomTestEnsemble,
- minimum root mean square confidence intervals for binomial proportions: binomTestMSE,
- confidence region coverage analysis: coversim,
- confidence region plots: crplot,
- actual coverage plot and table: km. coverage,
- enumeration of Kaplan-Meier product-limit estimator outcomes: km.outcomes,
- probability mass function of the Kaplan-Meier product-limit estimator: km.pmf,
- Kaplan-Meier product-limit estimator support values: km. support, and
- probability mass functions of the Kaplan-Meier product-limit estimator: km.surv.

Vignettes

The CRAN website https://CRAN.R-project.org/package=conf contains links for vignettes on the crplot, coversim, km.outcomes, km.pmf, km.support, and km.surv functions.

Acknowledgments

The lead author thanks The Omar Bradley Fellowship for Research in Mathematics for funding that partially supported this work.

Author(s)

Christopher Weld, Kexin Feng, Hayeon Park, Yuxin Qin, Xingyu Wang, Heather Sasinowska, Larry Leemis

Maintainer: Christopher Weld <ceweld241@gmail.com>

13

coversim

Description

Creates a confidence region and determines coverage results for a corresponding point of interest. Iterates through a user specified number of trials. Each trial uses a random dataset with user-specified parameters (default) or a user specified dataset matrix ('n' samples per column, 'iter' columns) and returns the corresponding actual coverage results. See the CRAN website https://CRAN.Rproject.org/package=conf for a link to a coversim vignette.

Usage

coversim(alpha, distn,

,	aistn,		
	n	=	NULL,
	iter	=	NULL,
	dataset	=	NULL,
	point	=	NULL,
	seed	=	NULL,
	а	=	NULL,
	b	=	NULL,
	kappa	=	NULL,
	lambda	=	NULL,
	mu	=	NULL,
	S	=	NULL,
	sigma	=	NULL,
	theta	=	NULL,
	heuristic	=	1,
	maxdeg	=	5,
	ellipse_n	=	4,
	pts	=	FALSE,
	mlelab	=	TRUE,
	sf	=	c(5, 5),
	mar	=	c(4, 4.5, 2, 1.5),
	xlab	=	11 II 2
	ylab	=	11 11 ,
	main	=	יי יי י
	xlas	=	0,
	ylas	=	0,
	origin	=	FALSE,
	xlim	=	NULL,
	ylim	=	NULL,
	tol	=	.Machine\$double.eps ^ 1,
	info	=	FALSE,
	returnsamp	C	= FALSE,
	returnquar	١t	= FALSE,
	repair	=	TRUE,

exact = FALSE, showplot = FALSE, delay = 0)

Arguments

alpha	significance level; scalar or vector; resulting plot illustrates a $100(1 - alpha)\%$ confidence region.
distn	distribution to fit the dataset to; accepted values: 'cauchy', 'gamma', 'invgauss', 'logis', 'llogis', 'lnorm', 'norm', 'unif', 'weibull'.
n	trial sample size (producing each confidence region); scalar or vector; needed if a dataset is not given.
iter	iterations (or replications) of individual trials per parameterization; needed if a dataset is not given.
dataset	a 'n' x 'iter' matrix of dataset values, or a vector of length 'n' (for a single iteration).
point	coverage is assessed relative to this point.
seed	random number generator seed.
а	distribution parameter (when applicable).
b	distribution parameter (when applicable).
kappa	distribution parameter (when applicable).
lambda	distribution parameter (when applicable).
mu	distribution parameter (when applicable).
S	distribution parameter (when applicable).
sigma	distribution parameter (when applicable).
theta	distribution parameter (when applicable).
heuristic	numeric value selecting method for plotting: 0 for elliptic-oriented point distri- bution, and 1 for smoothing boundary search heuristic.
maxdeg	maximum angle tolerance between consecutive plot segments in degrees.
ellipse_n	number of roughly equidistant confidence region points to plot using the elliptic- oriented point distribution (must be a multiple of four because its algorithm exploits symmetry in the quadrants of an ellipse).
pts	displays confidence region boundary points if TRUE (applies to confidence region plots in which showplot = TRUE).
mlelab	logical argument to include the maximum likelihood estimate coordinate point (default is TRUE, applies to confidence region plots when showplot = TRUE).
sf	significant figures in axes labels specified using $sf = c(x, y)$, where x and y represent the optional digits argument in the R function round as it pertains the horizontal and vertical labels.
mar	specifies margin values for par(mar = c()) (see mar in par).
xlab	string specifying the horizontal axis label (applies to confidence region plots when showplot = TRUE).

ylab	string specifying the vertical axis label (applies to confidence region plots when showplot = TRUE).
main	string specifying the plot title (applies to confidence region plots when showplot = TRUE).
xlas	numeric value of 0, 1, 2, or 3 specifying the style of axis labels (see las in par, applies to confidence region plots when showplot = TRUE).
ylas	numeric value of 0, 1, 2, or 3 specifying the style of axis labels (see las in par, applies to confidence region plots when showplot = TRUE).
origin	logical argument to include the plot origin (applies to confidence region plots when showplot = TRUE).
xlim	two element vector containing horizontal axis minimum and maximum values (applies to confidence region plots when showplot = TRUE).
ylim	two element vector containing vertical axis minimum and maximum values (applies to confidence region plots when showplot = TRUE).
tol	the uniroot parameter specifying its required accuracy.
info	logical argument to return coverage information in a list; includes alpha value(s), n value(s), coverage and error results per iteration, and returnsamp and/or returnquant when requested.
returnsamp	logical argument; if TRUE returns random samples used in a matrix with n rows, iter cols.
returnquant	logical argument; if TRUE returns random quantiles used in a matrix with n rows, iter cols.
repair	logical argument to repair regions inaccessible using a radial angle from its MLE (multiple root azimuths).
exact	logical argument specifying if alpha value is adjusted to compensate for negative coverage bias in order to achieve (1 - alpha) coverage probability using previously recorded Monte Carlo simulation results; available for limited values of alpha (roughly <= $0.2-0.3$), n (typically n = 4, 5,, 50) and distributions (distn suffixes: weibull, llogis, norm).
showplot	logical argument specifying if each coverage trial produces a plot.
delay	numeric value of delay (in seconds) between trials so its plot can be seen (applies when showplot = TRUE).

Details

Parameterizations for supported distributions are given following the default axes convention in use by crplot and coversim, which are:

	Horizontal	Vertical
Distribution	Axis	Axis
Cauchy	a	s
gamma	heta	κ
inverse Gaussian	μ	λ
log logistic	λ	κ

coversim

log normal	μ	σ
logistic	μ	σ
normal	μ	σ
uniform	a	b
Weibull	κ	λ

Each respective distribution is defined below.

• The Cauchy distribution for the real-numbered location parameter *a*, scale parameter *s*, and *x* is a real number, has the probability density function

$$1/(s\pi(1+((x-a)/s)^2))).$$

• The gamma distribution for shape parameter $\kappa > 0$, scale parameter $\theta > 0$, and x > 0, has the probability density function

$$1/(Gamma(\kappa)\theta^{\kappa})x^{(\kappa-1)}\exp(-x/\theta).$$

• The inverse Gaussian distribution for mean $\mu > 0$, shape parameter $\lambda > 0$, and x > 0, has the probability density function

$$\sqrt{(\lambda/(2\pi x^3))}\exp(-\lambda(x-\mu)^2/(2\mu^2 x)).$$

• The log logistic distribution for scale parameter $\lambda > 0$, shape parameter $\kappa > 0$, and x > 0, has a probability density function

$$(\kappa\lambda)(x\lambda)^{(\kappa-1)}/(1+(\lambda x)^{\kappa})^2.$$

• The log normal distribution for the real-numbered mean μ of the logarithm, standard deviation $\sigma > 0$ of the logarithm, and x > 0, has the probability density function

$$1/(x\sigma\sqrt{2\pi})\exp(-(\log x-\mu)^2/(2\sigma^2))$$

• The logistic distribution for the real-numbered location parameter μ , scale parameter σ , and x is a real number, has the probability density function

$$(1/\sigma) \exp((x-\mu)/\sigma)(1+\exp((x-\mu)/\sigma))^{-2}$$

• The normal distribution for the real-numbered mean μ , standard deviation $\sigma > 0$, and x is a real number, has the probability density function

$$1/\sqrt{2\pi\sigma^2} \exp(-(x-\mu)^2/(2\sigma^2)).$$

• The uniform distribution for real-valued parameters a and b where a < b and $a \le x \le b$, has the probability density function

$$1/(b-a).$$

• The Weibull distribution for scale parameter $\lambda > 0$, shape parameter $\kappa > 0$, and x > 0, has the probability density function

$$\kappa(\lambda^{\kappa})x^{(\kappa-1)}\exp(-(\lambda x)^{\kappa}).$$

crplot

Value

If the optional argument info = TRUE is included then a list of coverage results is returned. That list includes alpha value(s), n value(s), coverage and error results per iteration. Additionally, returnsamp = TRUE and/or returnquant = TRUE will result in an n row, iter column maxtix of sample and/or sample cdf values.

Author(s)

Christopher Weld (<ceweld241@gmail.com>)

Lawrence Leemis(<leemis@math.wm.edu>)

References

C. Weld, A. Loh, L. Leemis (2020), "Plotting Two-Dimensional Confidence Regions", The American Statistician, Volume 72, Number 2, 156–168.

See Also

crplot, uniroot

Examples

```
## assess actual coverage at various alpha = {0.5, 0.1} given n = 30 samples, completing
## 10 trials per parameterization (iter) for a normal(mean = 2, sd = 3) rv
coversim(alpha = c(0.5, 0.1), "norm", n = 30, iter = 10, mu = 2, sigma = 3)
```

show plots for 5 iterations of 30 samples each from a Weibull(2, 3)
coversim(0.5, "weibull", n = 30, iter = 5, lambda = 1.5, kappa = 0.5, showplot = TRUE,
origin = TRUE)

crplot

Plotting Two-Dimensional Confidence Regions

Description

Plotting a two-dimensional confidence region for probability distribution parameters (supported distribution suffixes: cauchy, gamma, invgauss, lnorm, llogis, logis, norm, unif, weibull) corresponding to a user given complete or right-censored dataset and level of significance. See the CRAN website https://CRAN.R-project.org/package=conf for a link to two crplot vignettes.

Usage

crplot

pts	= TRUE,	
mlelab	= TRUE,	
sf	= NULL,	
mar	= c(4, 4.5, 2, 1.5),	
xyswap	= FALSE,	
xlab	= "",	
ylab	= "",	
main	= "",	
xlas	= 0,	
ylas	= 0,	
origin	= FALSE,	
xlim	= NULL,	
ylim	= NULL,	
tol	<pre>= .Machine\$double.eps ^ 1,</pre>	
info	= FALSE,	
maxcount	= 30,	
repair	= TRUE,	
jumpshift	= 0.5,	
jumpuphill = min(alpha, 0.01),		
jumpinfo	= FALSE,	
showjump	= FALSE,	
showplot		
animate		
delay	= 0.5,	
exact		
	= FALSE)	
	•	

Arguments

dataset	a vector of n data values.
alpha	significance level; resulting plot illustrates a 100(1 - alpha)% confidence region.
distn	distribution to fit the dataset to; accepted values: 'cauchy', 'gamma', 'invgauss', 'logis', 'llogis', 'lnorm', 'norm', 'unif', 'weibull'.
cen	a vector of binary values specifying if the corresponding data values are right- censored (0), or observed (1, default); its length must match length(dataset).
heuristic	numeric value selecting method for plotting: 0 for elliptic-oriented point distribution, and 1 for smoothing boundary search heuristic.
maxdeg	maximum angle tolerance between consecutive plot segments in degrees.
ellipse_n	number of roughly equidistant confidence region points to plot using the elliptic- oriented point distribution (must be a multiple of four because its algorithm exploits symmetry in the quadrants of an ellipse).
pts	displays confidence region boundary points identified if TRUE.
mlelab	logical argument to include the maximum likelihood estimate coordinate point (default is TRUE).
sf	significant figures in axes labels specified using $sf = c(x, y)$, where x and y represent the optional digits argument in the R function round as it pertains to the horizontal and vertical labels.

crplot

mar	specifies margin values for par(mar = c()) (see mar in par).
xyswap	logical argument to switch the axes that the distribution parameter are shown.
xlab	string specifying the x axis label.
ylab	string specifying the y axis label.
main	string specifying the plot title.
xlas	numeric value of 0, 1, 2, or 3 specifying the style of axis labels (see las in par).
ylas	numeric value of 0, 1, 2, or 3 specifying the style of axis labels (see las in par).
origin	logical argument to include the plot origin (default is FALSE).
xlim	two-element vector containing horizontal axis minimum and maximum values.
ylim	two-element vector containing vertical axis minimum and maximum values.
tol	the uniroot parameter specifying its required accuracy.
info	logical argument to return plot information: MLE is returned as a list; (x, y) plot point coordinates and corresponding phi angles (with respect to MLE) are returned as a list.
maxcount	integer value specifying the number of smoothing search iterations before ter- minating with maxdeg not met.
repair	logical argument to repair regions inaccessible using a radial angle from its MLE due to multiple roots at select ϕ angles.
jumpshift	see vignette "conf Advanced Options" for details; location (as a fractional value between 0 and 1) along the vertical or horizontal "gap" (near an uncharted region) to locate a jump-center toward; can be either a scalar value (uniformly applied to all jump-centers) or vector of length four (with unique values for its respective quadrants, relative to the MLE).
jumpuphill	see vignette "conf Advanced Options" for details; significance level increase to alpha for the jump-center (corresponds to an "uphill" location on its likelihood function); can be either a scalar value (uniformly applied to all jump-centers) or vector of length four (with unique values for its respective quadrants, relative to the MLE).
jumpinfo	logical argument to return plot info (see info argument) and jump-center info; returned within 'repair' attribute are jumpuphill value, jumpshift value, " " or "-" gap type, jump-center(s) coordinates, and coordinates of points left & right of the inaccessible region.
showjump	logical argument specifying if jump-center repair reference points appear on the confidence region plot.
showplot	logical argument specifying if a plot is output; altering from its default of TRUE is only logical assuming crplot is run for its data only (see the info argument).
animate	logical argument specifying if an animated plot build will display; the annima- tion sequence is given in successive plots.
delay	numeric value of delay (in seconds) between successive plots when animate = TRUE.

exact	logical argument specifying if alpha value is adjusted to compensate for nega-
	tive coverage bias to achieve (1 - alpha) coverage probability using previously
	recorded Monte Carlo simulation results; available for limited values of alpha
	(roughly $\leq 0.2-0.3$), n (typically n = 4, 5,, 50) and distributions (distn suf-
	fixes: weibull, llogis, norm).
silent	logical argument specifying if console output should be suppressed.

Details

This function plots a confidence region for a variety of two-parameter distributions. It requires:

- a vector of dataset values,
- the level of significance (alpha), and
- a population distribution to fit the data to.

Plots display according to probability density function parameterization given later in this section. Two heuristics (and their associated combination) are available to plot confidence regions. Along with their descriptions, they are:

- 1. Smoothing Boundary Search Heuristic (default). This heuristic plots more points in areas of greater curvature to ensure a smooth appearance throughout the confidence region boundary. Its maxdeg parameter specifies the maximum tolerable angle between three successive points. Lower values of maxdeg result in smoother plots, and its default value of 5 degrees provides adequate smoothing in most circumstances. Values of maxdeg ≤ 3 are not recommended due to their complicating implications to trigonometric numerical approximations near 0 and 1; their use may result in plot errors.
- 2. Elliptic-Oriented Point Distribution. This heuristic allows the user to specify a number of points to plot along the confidence region boundary at roughly uniform intervals. Its name is derived from the technique it uses to choose these points—an extension of the Steiner generation of a non-degenerate conic section, also known as the parallelogram method—which identifies points along an ellipse that are approximately equidistant. To exploit the computational benefits of ellipse symmetry over its four quadrants, ellipse_n value must be divisible by four.

By default, crplot implements the smoothing boundary search heuristic. Alternatively, the user can plot using the elliptic-oriented point distribution algorithm, or a combination of them both. Combining the two techniques initializes the plot using the elliptic-oriented point distribution algorithm, and then subsequently populates additional points in areas of high curvature (those outside of the maximum angle tolerance parameterization) in accordance with the smoothing boundary search heuristic. This combination results when the smoothing boundary search heuristic is specified in conjunction with an ellipse_n value greater than four.

Both of the aforementioned heuristics use a radial profile log likelihood function to identify points along the confidence region boundary. It cuts the log likelihood function in a directional azimuth from its MLE, and locates the associated confidence region boundary point using the asymptotic results associated with the ratio test statistic $-2[\log L(\theta) - \log L(\hat{\theta})]$ which converges in distribution to the chi-square distribution with two degrees of freedom (for a two parameter distribution).

The default axes convention in use by crplot are

Horizontal Vertical

Axis	Axis
a	s
θ	κ
μ	λ
λ	κ
μ	σ
μ	σ
μ	σ
a	b
κ	λ
	$egin{array}{c} a \\ heta \\ \mu \\ \lambda \\ \mu \\ \mu \\ \mu \\ a \end{array}$

where each respective distribution is defined below.

• The Cauchy distribution for the real-numbered location parameter a, scale parameter s, and x is a real number, has the probability density function

$$1/(s\pi(1+((x-a)/s)^2)).$$

• The gamma distribution for shape parameter $\kappa > 0$, scale parameter $\theta > 0$, and x > 0, has the probability density function

$$1/(Gamma(\kappa)\theta^{\kappa})x^{(\kappa-1)}exp(-x/\theta).$$

• The inverse Gaussian distribution for mean $\mu > 0$, shape parameter $\lambda > 0$, and x > 0, has the probability density function

$$\sqrt{(\lambda/(2\pi x^3))}exp(-\lambda(x-\mu)^2/(2\mu^2 x)).$$

• The log logistic distribution for scale parameter $\lambda > 0$, shape parameter $\kappa > 0$, and $x \ge 0$, has a probability density function

$$(\kappa\lambda)(x\lambda)^{(\kappa-1)}/(1+(\lambda x)^{\kappa})^2.$$

• The log normal distribution for the real-numbered mean μ of the logarithm, standard deviation $\sigma > 0$ of the logarithm, and x > 0, has the probability density function

$$1/(x\sigma\sqrt{(2\pi)})exp(-(\log x-\mu)^2/(2\sigma^2)).$$

• The logistic distribution for the real-numbered location parameter μ , scale parameter σ , and x is a real number, has the probability density function

$$(1/\sigma)exp((x-\mu)/\sigma)(1+exp((x-\mu)/\sigma))^{-2}$$

• The normal distribution for the real-numbered mean μ , standard deviation $\sigma > 0$, and x is a real number, has the probability density function

$$1/\sqrt{(2\pi\sigma^2)}exp(-(x-\mu)^2/(2\sigma^2)).$$

• The uniform distribution for real-valued parameters a and b where a < b and $a \le x \le b$, has the probability density function

$$1/(b-a)$$
.

• The Weibull distribution for scale parameter $\lambda > 0$, shape parameter $\kappa > 0$, and x > 0, has the probability density function

$$\kappa(\lambda^{\kappa})x^{(\kappa-1)}exp(-(\lambda x)^{\kappa}).$$

Value

If the optional argument info = TRUE is included then a list is returned with:

- parm1*: a vector containing the associated confidence region boundary values for parameter 1
- parm2*: a vector containing the associated confidence region boundary values for parameter 2
- phi: a vector containing the angles used
- parm1hat*: the MLE for parameter 1
- parm2hat*: the MLE for parameter 2

*Note: "param1" and "param2" are placeholders that will be replaced with the appropriate parameter names based on the probability distribution.

Author(s)

Christopher Weld (<ceweld241@gmail.com>)

Lawrence Leemis (<leemis@math.wm.edu>)

References

A. Jaeger (2016), "Computation of Two- and Three-Dimensional Confidence Regions with the Likelihood Ratio", The American Statistician, 49, 48–53.

C. Weld, A. Loh, L. Leemis (2020), "Plotting Two-Dimensional Confidence Regions", The American Statistician, Volume 72, Number 2, 156–168.

See Also

coversim, uniroot

Examples

next use the inverse Gaussian distribution and show no plot points

crplot(dataset = ballbearing, distn = "weibull", alpha = 0.05, maxdeg = 6, ellipse_n = 80, origin = TRUE)

dinvgauss

```
crplot(dataset = ballbearing, distn = "invgauss", alpha = 0.05,
    pts = FALSE)
```

dinvgauss

The Inverse Gaussian Distribution

Description

Density, distribution function, quantile function, and random generation for the inverse Gaussian distribution. The corresponding code for these functions as well as the manual information included here is attributed to Christophe Pouzat's STAR Package (archived 2022-05-23).

Usage

```
dinvgauss(x, mu = 1, sigma2 = 1, boundary = NULL, log = FALSE)
pinvgauss(q, mu = 1, sigma2 = 1, boundary = NULL, lower.tail = TRUE, log.p = FALSE)
qinvgauss(p, mu = 1, sigma2 = 1, boundary = NULL)
rinvgauss(n = 1, mu = 1, sigma2 = 1, boundary = NULL)
```

Arguments

x,q	vector of quantiles.
р	vector of probabilities.
n	number of observations. If $length(n) > 1$, the length is taken to be the number required.
mu	mean value of the distribution in the default parameterization, mean value / boundary otherwise. Can also be viewed as the inverse of the drift of the latent Brownian motion.
sigma2	variance of the latent Brownian motion. When this parameterization is used (the default) the distance between the "starting" point and the boundary ("absorbing barrier") is set to 1.
boundary	distance between the starting point and the "absorbing barrier" of the latent Brownian motion. When this parameterization is used, the Brownian motion variance is set to 1.
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$.
log, log.p	logical; if TRUE, probabilities p are given as log(p).

Details

With the default, "sigma2", parameterization (mu = m, sigma2 = s^2) the inverse Gaussian distribution has density:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2 x^3}} \exp(-\frac{1}{2} \frac{(x-\mu)^2}{x\sigma^2 \mu^2})$$

with $\sigma^2 > 0$. The theoretical mean is: μ and the theoretical variance is: $\mu^3 \sigma^2$. With the default, "boundary", parameterization (mu = m, boundary = b), the inverse Gaussian distribution has density:

$$f(x) = \frac{b}{\sqrt{2\pi x^3}} \exp(-\frac{1}{2} \frac{(x-b\mu)^2}{x\mu^2})$$

with $\sigma^2 > 0$. The theoretical mean is: μb and the theoretical variance is: $\mu^3 \sigma^2$. The latent Brownian motion is described in Lindsey (2004) pp 209-213, Whitemore and Seshadri (1987), Aalen and Gjessing (2001) and Gerstein and Mandelbrot (1964).

The expression for the distribution function is given in Eq. 4 of Whitemore and Seshadri (1987).

Initial guesses for the inversion of the distribution function used in qinvgauss are obtained with the transformation of Whitemore and Yalovsky (1978).

Random variates are obtained with the method of Michael et al (1976) which is also described by Devroye (1986, p 148) and Gentle (2003, p 193).

Value

dinvgauss gives the density, pinvgauss gives the distribution function, qinvgauss gives the quantile function and rinvgauss generates random deviates.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

References

Gerstein, George L. and Mandelbrot, Benoit (1964) Random Walk Models for the Spike Activity of a Single Neuron. *Biophys J.* **4**: 41–68.

Whitmore, G. A. and Yalovsky, M. (1978) A normalizing logarithmic transformation for inverse Gaussian random variables. *Technometrics* **20**: 207–208.

Whitmore, G. A. and Seshadri, V. (1987) A Heuristic Derivation of the Inverse Gaussian Distribution. *The American Statistician* **41**: 280–281.

Aalen, Odd O. and Gjessing, Hakon K. (2001) Understanding the Shape of the Hazard Rate: A Process Point of View. *Statistical Science* **16**: 1–14.

Lindsey, J.K. (2004) Introduction to Applied Statistics: A Modelling Approach. OUP.

Michael, J. R., Schucany, W. R. and Haas, R. W. (1976) Generating random variates using transformations with multiple roots. *The American Statistician* **30**: 88–90.

Devroye, L. (1986) Non-Uniform Random Variate Generation. Springer-Verlag.

Gentle, J. E. (2003) Random Number Generation and Monte Carlo Methods. Springer.

See Also

invgaussMLE

dinvgauss

Examples

```
## Not run:
## Start with the inverse Gauss
## Define standard mu and sigma
mu.true <- 0.075 ## a mean ISI of 75 ms
sigma2.true <- 3
## Define a sequence of points on the time axis
X <- seq(0.001, 0.3, 0.001)
## look at the density
plot(X, dinvgauss(X, mu.true, sigma2.true), type="1", xlab = "ISI (s)",ylab = "Density")
## Generate a sample of 100 ISI from this distribution
sampleSize <- 100</pre>
sampIG <- rinvgauss(sampleSize, mu = mu.true, sigma2 = sigma2.true)</pre>
## check out the empirical survival function (obtained with the Kaplan-Meier
## estimator) against the true one
library(survival)
sampIG.KMfit <- survfit(Surv(sampIG, 1 + numeric(length(sampIG))) ~1)</pre>
plot(sampIG.KMfit, log = TRUE)
lines(X, pinvgauss(X, mu.true, sigma2.true, lower.tail = FALSE), col = 2)
## Get a ML fit
sampIGmleIG <- invgaussMLE(sampIG)</pre>
## compare true and estimated parameters
rbind(est = sampIGmleIG$estimate, se = sampIGmleIG$se, true = c(mu.true, sigma2.true))
## plot contours of the log relative likelihood function
Mu <- seq(sampIGmleIG$estimate[1] - 3 * sampIGmleIG$se[1],</pre>
          sampIGmleIG$estimate[1] + 3 * sampIGmleIG$se[1],
          sampIGmleIG$se[1] / 10)
Sigma2 <- seq(sampIGmleIG$estimate[2] - 7 * sampIGmleIG$se[2],</pre>
              sampIGmleIG$estimate[2] + 7 * sampIGmleIG$se[2],
              sampIGmleIG$se[2] / 10)
sampIGmleIGcontour <- sapply(Mu, function(mu) sapply(Sigma2,</pre>
                            function(s2) sampIGmleIG$r(mu, s2)))
contour(Mu, Sigma2, t(sampIGmleIGcontour),
        levels=c(log(c(0.5, 0.1)), -0.5 * qchisq(c(0.95, 0.99), df = 2)),
        labels=c("log(0.5)",
          "log(0.1)",
          "-1/2 * P(Chi2 = 0.95)",
          "-1/2 * P(Chi2 = 0.99)"),
        xlab = expression(mu), ylab = expression(sigma^2))
points(mu.true, sigma2.true, pch = 16,col = 2)
## We can see that the contours are more parabola like on a log scale
contour(log(Mu),log(Sigma2),t(sampIGmleIGcontour),
        levels = c(log(c(0.5, 0.1)), -0.5 * qchisq(c(0.95, 0.99), df = 2)),
        labels = c("log(0.5)"),
          "log(0.1)",
          "-1/2 * P(Chi2 = 0.95)",
          "-1/2 * P(Chi2 = 0.99)"),
        xlab = expression(log(mu)), ylab = expression(log(sigma^2)))
points(log(mu.true), log(sigma2.true), pch = 16, col = 2)
## make a deviance test for the true parameters
```

```
pchisq(-2 * sampIGmleIG$r(mu.true, sigma2.true), df = 2)
## check fit with a QQ plot
qqDuration(sampIGmleIG, log = "xy")
## Generate a censored sample using an exponential distribution
sampEXP <- rexp(sampleSize, 1/(2 * mu.true))</pre>
sampIGtime <- pmin(sampIG,sampEXP)</pre>
sampIGstatus <- as.numeric(sampIG <= sampEXP)</pre>
## fit the censored sample
sampIG2mleIG <- invgaussMLE(sampIGtime, sampIGstatus)</pre>
## look at the results
rbind(est = sampIG2mleIG$estimate,
      se = sampIG2mleIG$se,
      true = c(mu.true,sigma2.true))
pchisq(-2 * sampIG2mleIG$r(mu.true, sigma2.true), df = 2)
## repeat the survival function estimation
sampIG2.KMfit <- survfit(Surv(sampIGtime, sampIGstatus) ~1)</pre>
plot(sampIG2.KMfit, log = TRUE)
lines(X, pinvgauss(X, sampIG2mleIG$estimate[1], sampIG2mleIG$estimate[2],
                  lower.tail = FALSE), col = 2)
```

End(Not run)

dllogis

The Log Logistic Distribution

Description

Density, distribution function, quantile function, and random generation for the log logistic distribution. The corresponding code for these functions as well as the manual information included here is attributed to Christophe Pouzat's STAR Package (archived 2022-05-23).

Usage

```
dllogis(x, location = 0, scale = 1, log = FALSE)
pllogis(q, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
qllogis(p, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
rllogis(n, location = 0, scale = 1)
```

Arguments

x,q	vector of quantiles.	
р	vector of probabilities.	
n	number of observations. If $length(n) > 1$, the length is taken to be the number required.	
location, scale		
	location and scale parameters (non-negative numeric).	
lower.tail	logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$.	
log, log.p	logical; if TRUE, probabilities p are given as log(p).	

26

dllogis

Details

If location or scale are omitted, they assume the default values of 0 and 1 respectively.

The log-logistic distribution with location = m and scale = s has distribution function

$$\mathbf{F}(x) = \frac{1}{1 + \exp(-\frac{\log(x) - m}{s})}$$

and density

$$f(x) = \frac{1}{sx} \frac{\exp(-\frac{\log(x) - m}{s})}{(1 + \exp(-\frac{\log(x) - m}{s}))^2}$$

Value

•

dllogis gives the density, pllogis gives the distribution function, qllogis gives the quantile function and rllogis generates random deviates.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

References

Lindsey, J.K. (2004) Introduction to Applied Statistics: A Modelling Approach. OUP. Lindsey, J.K. (2004) The Statistical Analysis of Stochastic Processes in Time. CUP.

See Also

llogisMLE.

Examples

```
## Not run:
tSeq <- seq(0.001,0.6,0.001)
location.true <- -2.7</pre>
scale.true <- 0.025</pre>
Yd <- dllogis(tSeq, location.true, scale.true)
Yh <- hllogis(tSeq, location.true, scale.true)</pre>
max.Yd <- max(Yd)
max.Yh <- max(Yh)</pre>
Yd <- Yd / max.Yd
Yh <- Yh / max.Yh
oldpar <- par(mar=c(5,4,4,4))
plot(tSeq, Yd, type="n", axes=FALSE, ann=FALSE,
     xlim=c(0,0.6), ylim=c(0,1))
axis(2,at=seq(0,1,0.2),labels=round(seq(0,1,0.2)*max.Yd,digits=2))
mtext("Density (1/s)", side=2, line=3)
axis(1,at=pretty(c(0,0.6)))
```

gammaMLE

```
mtext("Time (s)", side=1, line=3)
axis(4, at=seq(0,1,0.2), labels=round(seq(0,1,0.2)*max.Yh,digits=2))
mtext("Hazard (1/s)", side=4, line=3, col=2)
mtext("Log Logistic Density and Hazard Functions", side=3, line=2,cex=1.5)
lines(tSeq,Yd)
lines(tSeq,Yh,col=2)
par(oldpar)
## End(Not run)
```

gammaMLE

Maximum Likelihood Parameter Estimation of a Gamma Model with Possibly Censored Data

Description

Estimate gamma model parameters by the maximum likelihood method using possibly censored data. Two different parameterizations of the gamma distribution can be used. The corresponding code for this function as well as the manual information included here is attributed to Christophe Pouzat's STAR Package (archived 2022-05-23).

Usage

Arguments

yi	vector of (possibly binned) observations or a spikeTrain object.
ni	vector of counts for each value of yi; default: numeric(length(yi))+1.
si	vector of counts of <i>uncensored</i> observations for each value of yi; default: numeric(length(yi))+1.
scale	logical should the scale (TRUE) or the rate parameterization (FALSE) be used?

Details

There is no closed form expression for the MLE of a gamma distribution. The numerical method implemented here uses the profile likelihood described by Monahan (2001) pp 210-216.

In order to ensure good behavior of the numerical optimization routines, optimization is performed on the log of the parameters (shape and scale or rate).

Standard errors are obtained from the inverse of the observed information matrix at the MLE. They are transformed to go from the log scale used by the optimization routine to the parameterization requested.

28

gammaMLE

Value

A list of class durationFit with the following components:

estimate	the estimated parameters, a named vector.
se	the standard errors, a named vector.
logLik	the log likelihood at maximum.
r	a function returning the log of the relative likelihood function.
mll	a function returning the opposite of the log likelihood function using the log of the parameters.
call	the matched call.

Note

The returned standard errors (component se) are valid in the asymptotic limit. You should plot contours using function r in the returned list and check that the contours are reasonably close to ellipses.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

References

Monahan, J. F. (2001) *Numerical Methods of Statistics*. CUP. Lindsey, J.K. (2004) *Introduction to Applied Statistics: A Modelling Approach*. OUP.

See Also

invgaussMLE

Examples

```
## Not run:
## Simulate sample of size 100 from a gamma distribution
set.seed(1102006, "Mersenne-Twister")
sampleSize <- 100</pre>
shape.true <- 6</pre>
scale.true <- 0.012</pre>
sampGA <- rgamma(sampleSize, shape=shape.true, scale=scale.true)</pre>
sampGAmleGA <- gammaMLE(sampGA)</pre>
rbind(est = sampGAmleGA$estimate,se = sampGAmleGA$se,true = c(shape.true,scale.true))
## Estimate the log relative likelihood on a grid to plot contours
Shape <- seq(sampGAmleGA$estimate[1]-4*sampGAmleGA$se[1],</pre>
                sampGAmleGA$estimate[1]+4*sampGAmleGA$se[1],
                sampGAmleGA$se[1]/10)
Scale <- seq(sampGAmleGA$estimate[2]-4*sampGAmleGA$se[2],</pre>
             sampGAmleGA$estimate[2]+4*sampGAmleGA$se[2],
             sampGAmleGA$se[2]/10)
```

```
sampGAmleGAcontour <- sapply(Shape, function(sh) sapply(Scale, function(sc) sampGAmleGA$r(sh,sc)))</pre>
## plot contours using a linear scale for the parameters
## draw four contours corresponding to the following likelihood ratios:
## 0.5, 0.1, Chi2 with 2 df and p values of 0.95 and 0.99
X11(width=12,height=6)
layout(matrix(1:2,ncol=2))
contour(Shape,Scale,t(sampGAmleGAcontour),
        levels=c(log(c(0.5,0.1)),-0.5*qchisq(c(0.95,0.99),df=2)),
        labels=c("log(0.5)",
          "log(0.1)",
          "-1/2*P(Chi2=0.95)",
          "-1/2*P(Chi2=0.99)"),
        xlab="shape",ylab="scale"
        main="Log Relative Likelihood Contours"
        )
points(sampGAmleGA$estimate[1], sampGAmleGA$estimate[2], pch=3)
points(shape.true,scale.true,pch=16,col=2)
## The contours are not really symmetrical about the MLE we can try to
## replot them using a log scale for the parameters to see if that improves
## the situation
contour(log(Shape),log(Scale),t(sampGAmleGAcontour),
        levels=c(log(c(0.5,0.1)),-0.5*qchisq(c(0.95,0.99),df=2)),
        labels="".
        xlab="log(shape)",ylab="log(scale)",
        main="Log Relative Likelihood Contours",
        sub="log scale for the parameters")
points(log(sampGAmleGA$estimate[1]),log(sampGAmleGA$estimate[2]),pch=3)
points(log(shape.true),log(scale.true),pch=16,col=2)
## make a parametric boostrap to check the distribution of the deviance
nbReplicate <- 10000
sampleSize <- 100
system.time(
            devianceGA100 <- replicate(nbReplicate,{</pre>
                           sampGA <- rgamma(sampleSize, shape=shape.true, scale=scale.true)</pre>
                              sampGAmleGA <- gammaMLE(sampGA)</pre>
                              -2*sampGAmleGA$r(shape.true,scale.true)
                            }
                                        )
            )[3]
## Get 95 and 99% confidence intervals for the QQ plot
ci <- sapply(1:nbReplicate,</pre>
                 function(idx) qchisq(qbeta(c(0.005,0.025,0.975,0.995),
                                             idx,
                                             nbReplicate-idx+1),
                                       df=2)
             )
## make QQ plot
X <- qchisq(ppoints(nbReplicate),df=2)</pre>
Y <- sort(devianceGA100)
X11()
plot(X,Y,type="n",
```

invgaussMLE

```
xlab=expression(paste(chi[2]^2," quantiles")),
ylab="MC quantiles",
main="Deviance with true parameters after ML fit of gamma data",
sub=paste("sample size:", sampleSize,"MC replicates:", nbReplicate)
)
abline(a=0,b=1)
lines(X,ci[1,],lty=2)
lines(X,ci[2,],lty=2)
lines(X,ci[3,],lty=2)
lines(X,ci[4,],lty=2)
lines(X,Y,col=2)
## End(Not run)
```

invgaussMLE

Maximum Likelihood Parameter Estimation of an Inverse Gaussian Model with Possibly Censored Data

Description

Estimate inverse Gaussian model parameters by the maximum likelihood method using possibly censored data. Two different parameterizations of the inverse Gaussian distribution can be used. The corresponding code for this function as well as the manual information included here is attributed to Christophe Pouzat's STAR Package (archived 2022-05-23).

Usage

Arguments

yi	vector of (possibly binned) observations or a spikeTrain object.
ni	vector of counts for each value of yi; default: numeric(length(yi))+1.
si	vector of counts of <i>uncensored</i> observations for each value of yi; default: numeric(length(yi))+1.

parameterization

parameterization used, "sigma2" (default) of "boundary".

Details

The two different parameterizations of the inverse Gaussian distribution are discussed in the manual of dinvgauss.

In the absence of censored data the ML estimates are available in closed form (Lindsey, 2004, p 212) together with the Hessian matrix at the MLE. In presence of censored data an initial guess for the parameters is obtained using the uncensored data before maximizing the likelihood function to the full data set using optim with the BFGS method. ML estimation is always performed with the

"sigma2" parameterization. Parameters and variance-covariance matrix are transformed at the end if the "boundary" parameterization is requested.

In order to ensure good behavior of the numerical optimization routines, optimization is performed on the log of the parameters (mu and sigma2).

Standard errors are obtained from the inverse of the observed information matrix at the MLE. They are transformed to go from the log scale used by the optimization routine, when the latter is used (ie, for censored data) to the parameterization requested.

Value

A list of class durationFit with the following components:

estimate	the estimated parameters, a named vector.
se	the standard errors, a named vector.
logLik	the log likelihood at maximum.
r	a function returning the log of the relative likelihood function.
mll	a function returning the opposite of the log likelihood function using the log of the parameters.
call	the matched call.

Note

The returned standard errors (component se) are valid in the asymptotic limit. You should plot contours using function r in the returned list and check that the contours are reasonably close to ellipses.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

References

Lindsey, J.K. (2004) Introduction to Applied Statistics: A Modelling Approach. OUP.

See Also

dinvgauss, gammaMLE, llogisMLE

Examples

```
## Simulate sample of size 100 from an inverse Gaussian
## distribution
set.seed(1102006,"Mersenne-Twister")
sampleSize <- 100
mu.true <- 0.075
sigma2.true <- 3
sampleSize <- 100
sampIG <- rinvgauss(sampleSize,mu=mu.true,sigma2=sigma2.true)
## Make a maximum likelihood fit</pre>
```

32

```
sampIGmleIG <- invgaussMLE(sampIG)</pre>
## Compare estimates with actual values
rbind(est = coef(sampIGmleIG),se = sampIGmleIG$se,true = c(mu.true,sigma2.true))
## In the absence of censoring the MLE of the inverse Gaussian is available in a
## closed form together with its variance (ie, the observed information matrix)
## we can check that we did not screw up at that stage by comparing the observed
## information matrix obtained numerically with the analytical one. To do that we
## use the MINUS log likelihood function returned by invgaussMLE to get a numerical
## estimate
detailedFit <- optim(par=as.vector(log(sampIGmleIG$estimate)),</pre>
                      fn=sampIGmleIG$mll,
                     method="BFGS",
                     hessian=TRUE)
## We should not forget that the "mll" function uses the log of the parameters while
## the "se" component of sampIGmleIG list is expressed on the linear scale we must therefore
## transform one into the other as follows (Kalbfleisch, 1985, p71):
## if x = exp(u) and y = exp(v) and if we have the information matrix in term of
## u and v (that's the hessian component of list detailedFit above), we create matrix:
##
        du/dx du/dy
## Q =
##
        dv/dx dv/dy
## and we get I in term of x and y by the following matrix product:
## I(x,y) <- t(Q) %*% I(u,v) %*% Q</pre>
## In the present case:
## du/dx = 1/exp(u), du/dy = 0, dv/dx = 0, dv/dy = 1/exp(v)
## Therefore:
Q <- diag(1/exp(detailedFit$par))</pre>
numericalI <- t(Q) %*% detailedFit$hessian %*% Q</pre>
seComp <- rbind(sampIGmleIG$se, sqrt(diag(solve(numericalI))))</pre>
colnames(seComp) <- c("mu","sigma2")</pre>
rownames(seComp) <- c("analytical", "numerical")</pre>
seComp
## We can check the relative differences between the 2
apply(seComp,2,function(x) abs(diff(x))/x[1])
## Not run:
## Estimate the log relative likelihood on a grid to plot contours
Mu <- seq(coef(sampIGmleIG)[1]-4*sampIGmleIG$se[1],</pre>
          coef(sampIGmleIG)[1]+4*sampIGmleIG$se[1],
          sampIGmleIG$se[1]/10)
Sigma2 <- seq(coef(sampIGmleIG)[2]-4*sampIGmleIG$se[2],</pre>
              coef(sampIGmleIG)[2]+4*sampIGmleIG$se[2],
              sampIGmleIG$se[2]/10)
sampIGmleIGcontour <- sapply(Mu, function(mu) sapply(Sigma2, function(s2) sampIGmleIG$r(mu,s2)))</pre>
## plot contours using a linear scale for the parameters
## draw four contours corresponding to the following likelihood ratios:
## 0.5, 0.1, Chi2 with 2 df and p values of 0.95 and 0.99
X11(width=12,height=6)
layout(matrix(1:2,ncol=2))
contour(Mu,Sigma2,t(sampIGmleIGcontour),
        levels=c(log(c(0.5,0.1)),-0.5*qchisq(c(0.95,0.99),df=2)),
        labels=c("log(0.5)",
          "log(0.1)",
```

```
"-1/2*P(Chi2=0.95)",
          "-1/2*P(Chi2=0.99)"),
        xlab=expression(mu),ylab=expression(sigma^2),
        main="Log Relative Likelihood Contours"
        )
points(coef(sampIGmleIG)[1],coef(sampIGmleIG)[2],pch=3)
points(mu.true,sigma2.true,pch=16,col=2)
## The contours are not really symmetrical about the MLE we can try to
## replot them using a log scale for the parameters to see if that improves
## the situation
contour(log(Mu),log(Sigma2),t(sampIGmleIGcontour),
        levels=c(log(c(0.5,0.1)),-0.5*qchisq(c(0.95,0.99),df=2)),
        labels="",
        xlab=expression(log(mu)),ylab=expression(log(sigma^2)),
        main="Log Relative Likelihood Contours",
        sub="log scale for the parameters")
points(log(coef(sampIGmleIG)[1]),log(coef(sampIGmleIG)[2]),pch=3)
points(log(mu.true),log(sigma2.true),pch=16,col=2)
## Even with the log scale the contours are not ellipsoidal, so let us compute profiles
## For that we are going to use the returned MINUS log likelihood function
logMuProfFct <- function(logMu,...) {</pre>
 myOpt <- optimise(function(x) sampIGmleIG$mll(c(logMu,x))+logLik(sampIGmleIG),...)</pre>
 as.vector(unlist(myOpt[c("objective", "minimum")]))
3
logMuProfCI <- function(logMu,</pre>
                         CI.
                         a=logS2Seq[1],
                b=logS2Seq[length(logS2Seq)]) logMuProfFct(logMu,c(a,b))[1] - qchisq(CI,1)/2
logS2ProfFct <- function(logS2,...) {</pre>
 myOpt <- optimise(function(x) sampIGmleIG$mll(c(x,logS2))+logLik(sampIGmleIG),...)</pre>
 as.vector(unlist(myOpt[c("objective", "minimum")]))
}
logS2ProfCI <- function(logS2, CI,</pre>
                         a=logMuSeq[1],
                b=logMuSeq[length(logMuSeq)]) logS2ProfFct(logS2,c(a,b))[1] - qchisq(CI,1)/2
## We compute profiles (on the log scale) eploxing +/- 3 times
## the se about the MLE
logMuSE <- sqrt(diag(solve(detailedFit$hessian)))[1]</pre>
logMuSeq <- seq(log(coef(sampIGmleIG)[1])-3*logMuSE,</pre>
                log(coef(sampIGmleIG)[1])+3*logMuSE,
                logMuSE/10)
logS2SE <- sqrt(diag(solve(detailedFit$hessian)))[2]</pre>
logS2Seq <- seq(log(coef(sampIGmleIG)[2])-3*logS2SE,</pre>
                log(coef(sampIGmleIG)[2])+3*logS2SE,
                logS2SE/10)
logMuProf <- sapply(logMuSeq,logMuProfFct,</pre>
                     lower=logS2Seq[1],
                     upper=logS2Seq[length(logS2Seq)])
## Get 95
```

```
logMuCI95 <- c(uniroot(logMuProfCI,</pre>
                        interval=c(logMuSeq[1],log(coef(sampIGmleIG)[1])),
                        CI=0.95)$root,
               uniroot(logMuProfCI,
                        interval=c(log(coef(sampIGmleIG)[1]), logMuSeq[length(logMuSeq)]),
                        CI=0.95)$root
               )
logMuCI99 <- c(uniroot(logMuProfCI,</pre>
                        interval=c(logMuSeq[1],log(coef(sampIGmleIG)[1])),
                        CI=0.99)$root,
               uniroot(logMuProfCI,
                        interval=c(log(coef(sampIGmleIG)[1]),logMuSeq[length(logMuSeq)]),
                        CI=0.99)$root
               )
logS2Prof <- sapply(logS2Seq,logS2ProfFct,</pre>
                     lower=logMuSeq[1],
                    upper=logMuSeq[length(logMuSeq)])
## Get 95
logS2CI95 <- c(uniroot(logS2ProfCI,</pre>
                        interval=c(logS2Seq[1],log(coef(sampIGmleIG)[2])),
                        CI=0.95)$root,
               uniroot(logS2ProfCI,
                        interval=c(log(coef(sampIGmleIG)[2]),logS2Seq[length(logS2Seq)]),
                        CI=0.95)$root
               )
logS2CI99 <- c(uniroot(logS2ProfCI,</pre>
                        interval=c(logS2Seq[1],log(coef(sampIGmleIG)[2])),
                        CI=0.99)$root,
               uniroot(logS2ProfCI,
                       interval=c(log(coef(sampIGmleIG)[2]),logS2Seq[length(logS2Seq)]),
                        CI=0.99)$root
               )
## Add profiles to the previous plot
lines(logMuSeq,logMuProf[2,],col=2,lty=2)
lines(logS2Prof[2,],logS2Seq,col=2,lty=2)
## We can now check the deviations of the (profiled) deviances
## from the asymptotic parabolic curves
X11()
layout(matrix(1:4,nrow=2))
oldpar <- par(mar=c(4,4,2,1))
logMuSeqOffset <- logMuSeq-log(coef(sampIGmleIG)[1])</pre>
logMuVar <- diag(solve(detailedFit$hessian))[1]</pre>
plot(logMuSeq,2*logMuProf[1,],type="1",xlab=expression(log(mu)),ylab="Deviance")
lines(logMuSeq,logMuSeqOffset^2/logMuVar,col=2)
points(log(coef(sampIGmleIG)[1]),0,pch=3)
abline(h=0)
abline(h=qchisq(0.95,1),lty=2)
abline(h=qchisq(0.99,1),lty=2)
lines(rep(logMuCI95[1],2),c(0,qchisq(0.95,1)),lty=2)
```

```
lines(rep(logMuCI95[2],2),c(0,qchisq(0.95,1)),lty=2)
lines(rep(logMuCI99[1],2),c(0,qchisq(0.99,1)),lty=2)
lines(rep(logMuCI99[2],2),c(0,qchisq(0.99,1)),lty=2)
## We can also "linearize" this last graph
plot(logMuSeq,
     sqrt(2*logMuProf[1,])*sign(logMuSeqOffset),
     type="1",
     xlab=expression(log(mu)),
     ylab=expression(paste("signed ",sqrt(Deviance)))
     )
lines(logMuSeq,
      sqrt(logMuSeqOffset^2/logMuVar)*sign(logMuSeqOffset),
      col=2)
points(log(coef(sampIGmleIG)[1]),0,pch=3)
logS2SeqOffset <- logS2Seq-log(coef(sampIGmleIG)[2])</pre>
logS2Var <- diag(solve(detailedFit$hessian))[2]</pre>
plot(logS2Seq,2*logS2Prof[1,],type="1",xlab=expression(log(sigma^2)),ylab="Deviance")
lines(logS2Seq,logS2SeqOffset^2/logS2Var,col=2)
points(log(coef(sampIGmleIG)[2]),0,pch=3)
abline(h=0)
abline(h=qchisq(0.95,1),lty=2)
abline(h=qchisq(0.99,1),lty=2)
lines(rep(logS2CI95[1],2),c(0,qchisq(0.95,1)),lty=2)
lines(rep(logS2CI95[2],2),c(0,qchisq(0.95,1)),lty=2)
lines(rep(logS2CI99[1],2),c(0,qchisq(0.99,1)),lty=2)
lines(rep(logS2CI99[2],2),c(0,qchisq(0.99,1)),lty=2)
## We can also "linearize" this last graph
plot(logS2Seq,
     sqrt(2*logS2Prof[1,])*sign(logS2SeqOffset),
     type="1",
     xlab=expression(log(sigma^2)),
     ylab=expression(paste("signed ",sqrt(Deviance)))
     )
lines(logS2Seq,
      sqrt(logS2SeqOffset^2/logS2Var)*sign(logS2SeqOffset),
      col=2)
points(log(coef(sampIGmleIG)[2]),0,pch=3)
par(oldpar)
## make a parametric boostrap to check the distribution of the deviance
nbReplicate <- 1000 #10000
sampleSize <- 100</pre>
system.time(
devianceIG100 <- lapply(1:nbReplicate,</pre>
                         function(idx) {
                           if ((idx
                           sampIG <- rinvgauss(sampleSize,mu=mu.true,sigma2=sigma2.true)</pre>
                           sampIGmleIG <- invgaussMLE(sampIG)</pre>
                           Deviance <- -2*sampIGmleIG$r(mu.true,sigma2.true)</pre>
                           logPara <- log(coef(sampIGmleIG))</pre>
                           logParaSE <- sampIGmleIG$se/coef(sampIGmleIG)</pre>
                           intervalMu <- function(n) c(-n,n)*logParaSE[1]+logPara[1]</pre>
```

36
```
intervalS2 <- function(n) c(-n,n)*logParaSE[2]+logPara[2]</pre>
logMuProfFct <- function(logMu,...) {</pre>
 optimise(function(x)
sampIGmleIG$mll(c(logMu,x))+logLik(sampIGmleIG),...)$objective
}
logMuProfCI <- function(logMu,</pre>
                         CI,
                         a=intervalS2(4)[1],
                         b=intervalS2(4)[2])
 logMuProfFct(logMu,c(a,b)) - qchisq(CI,1)/2
logS2ProfFct <- function(logS2,...) {</pre>
 optimise(function(x)
sampIGmleIG$mll(c(x,logS2))+logLik(sampIGmleIG),...)$objective
}
logS2ProfCI <- function(logS2, CI,</pre>
                         a=intervalMu(4)[1],
                         b=intervalMu(4)[2])
 logS2ProfFct(logS2,c(a,b)) - qchisq(CI,1)/2
factor <- 4
while((logMuProfCI(intervalMu(factor)[2],0.99) *
       logMuProfCI(logPara[1],0.99) >= 0) ||
      (logMuProfCI(intervalMu(factor)[1],0.99) *
       logMuProfCI(logPara[1],0.99) >= 0)
     ) factor <- factor+1
##browser()
logMuCI95 <- c(uniroot(logMuProfCI,</pre>
                 interval=c(intervalMu(factor)[1],logPara[1]),
                       CI=0.95)$root,
               uniroot(logMuProfCI,
                 interval=c(logPara[1], intervalMu(factor)[2]),
                       CI=0.95)$root
               )
logMuCI99 <- c(uniroot(logMuProfCI,</pre>
                 interval=c(intervalMu(factor)[1],logPara[1]),
                        CI=0.99)$root,
               uniroot(logMuProfCI,
                 interval=c(logPara[1], intervalMu(factor)[2]),
                       CI=0.99)$root
               )
factor <- 4
while((logS2ProfCI(intervalS2(factor)[2],0.99) *
       logS2ProfCI(logPara[2],0.99) >= 0) ||
      (logS2ProfCI(intervalS2(factor)[1],0.99) *
       logS2ProfCI(logPara[2],0.99) >= 0)
      ) factor <- factor+1
logS2CI95 <- c(uniroot(logS2ProfCI,</pre>
                 interval=c(intervalS2(factor)[1],logPara[2]),
                       CI=0.95)$root,
               uniroot(logS2ProfCI,
                 interval=c(logPara[2], intervalS2(factor)[2]),
                       CI=0.95)$root
```

```
)
                            logS2CI99 <- c(uniroot(logS2ProfCI,</pre>
                                              interval=c(intervalS2(factor)[1],logPara[2]),
                                                     CI=0.99)$root,
                                            uniroot(logS2ProfCI,
                                              interval=c(logPara[2], intervalS2(factor)[2]),
                                                     CI=0.99)$root
                                            )
                            list(deviance=Deviance,
                                 logMuCI95=logMuCI95,
                                logMuNorm95=qnorm(c(0.025,0.975),logPara[1],logParaSE[1]),
                                 logMuCI99=logMuCI99,
                                logMuNorm99=qnorm(c(0.005,0.995),logPara[1],logParaSE[1]),
                                 logS2CI95=logS2CI95,
                                logS2Norm95=qnorm(c(0.025,0.975),logPara[2],logParaSE[2]),
                                 logS2CI99=logS2CI99,
                                logS2Norm99=qnorm(c(0.005,0.995),logPara[2],logParaSE[2]))
                          }
                          )
            )[3]
## Find out how many times the true parameters was within the computed CIs
nLogMuCI95 <- sum(sapply(devianceIG100,</pre>
                           function(1) l$logMuCI95[1] <= log(mu.true) &&</pre>
                           log(mu.true)<= l$logMuCI95[2]</pre>
                           )
                   )
nLogMuNorm95 <- sum(sapply(devianceIG100,</pre>
                             function(1) l$logMuNorm95[1] <= log(mu.true) &&</pre>
                             log(mu.true)<= 1$logMuNorm95[2]</pre>
                             )
                     )
nLogMuCI99 <- sum(sapply(devianceIG100,</pre>
                           function(1) l$logMuCI99[1] <= log(mu.true) &&</pre>
                           log(mu.true)<= l$logMuCI99[2]</pre>
                           )
                   )
nLogMuNorm99 <- sum(sapply(devianceIG100,</pre>
                             function(1) l$logMuNorm99[1] <= log(mu.true) &&</pre>
                             log(mu.true)<= 1$logMuNorm99[2]</pre>
                             )
                     )
## Check if these counts are compatible with the nominal CIs
c(prof95Mu=nLogMuCI95,norm95Mu=nLogMuNorm95)
qbinom(c(0.005,0.995),nbReplicate,0.95)
c(prof95Mu=nLogMuCI99,norm95Mu=nLogMuNorm99)
qbinom(c(0.005,0.995),nbReplicate,0.99)
nLogS2CI95 <- sum(sapply(devianceIG100,</pre>
                           function(1) l$logS2CI95[1] <= log(sigma2.true) &&</pre>
                           log(sigma2.true)<= l$logS2CI95[2]</pre>
                           )
                   )
nLogS2Norm95 <- sum(sapply(devianceIG100,</pre>
```

km.coverage

```
function(1) l$logS2Norm95[1] <= log(sigma2.true) &&</pre>
                             log(sigma2.true)<= 1$logS2Norm95[2]</pre>
                             )
                     )
nLogS2CI99 <- sum(sapply(devianceIG100,</pre>
                           function(1) l$logS2CI99[1] <= log(sigma2.true) &&</pre>
                           log(sigma2.true)<= l$logS2CI99[2]</pre>
                           )
                   )
nLogS2Norm99 <- sum(sapply(devianceIG100,</pre>
                             function(1) l$logS2Norm99[1] <= log(sigma2.true) &&</pre>
                             log(sigma2.true)<= 1$logS2Norm99[2]</pre>
                             )
                     )
## Check if these counts are compatible with the nominal CIs
c(prof95S2=nLogS2CI95,norm95S2=nLogS2Norm95)
qbinom(c(0.005,0.995),nbReplicate,0.95)
c(prof95S2=nLogS2CI99,norm95S2=nLogS2Norm99)
qbinom(c(0.005,0.995),nbReplicate,0.99)
## Get 95 and 99% confidence intervals for the QQ plot
ci <- sapply(1:nbReplicate,</pre>
                  function(idx) qchisq(qbeta(c(0.005,0.025,0.975,0.995),
                                               idx,
                                               nbReplicate-idx+1),
                                        df=2)
              )
## make QQ plot
X <- qchisq(ppoints(nbReplicate),df=2)</pre>
Y <- sort(sapply(devianceIG100,function(l) l$deviance))</pre>
X11()
plot(X,Y,type="n",
     xlab=expression(paste(chi[2]^2," quantiles")),
     ylab="MC quantiles",
     main="Deviance with true parameters after ML fit of IG data",
     sub=paste("sample size:", sampleSize,"MC replicates:", nbReplicate)
     )
abline(a=0,b=1)
lines(X,ci[1,],lty=2)
lines(X,ci[2,],lty=2)
lines(X,ci[3,],lty=2)
lines(X,ci[4,],lty=2)
lines(X,Y,col=2)
## End(Not run)
```

km.coverage

Actual Coverage Plots for Several Confidence Interval Procedures for the Survivor Function for Randomly Right-Censored Data

Description

This function calculates and plots the actual coverage functions associated with five confidence interval procedures associated with the Kaplan–Meier product–limit estimator (KMPLE) for a randomly right-censored data set with exponential failure times and exponential censoring times.

Usage

Arguments

n	Sample size; must be between 1 to 15.
lambdaT	Lambda for the exponential failure time distribution.
lambdaC	Lambda for the exponential censoring time distribution.
alpha	Significance level for confidence interval; if equals to 0.1, for example, it indi- cates a 90 percent confidence interval.
interval	Type of confidence interval used; supported types are "Greenwood", "Exp-Greenwood", "Log-Log", "Arcsine", and "Peto". This parameter can be a vector containing one or more interval types.
show	A logical value indicating whether to display additional potential Probability Mass Function (PMF) lines in gray. When set to TRUE, the function will plot these gray lines, representing potential curves that the coverage lines could fol- low. This feature adds a visual layer to the plot, helping to illustrate the range of possible actual coverage values.
table	Logical value. If TRUE, a table of outcomes is printed. The table aids in under- standing how the plot is generated.
value	A specific value of p for generating the table.

Details

The Kaplan–Meier product–limit estimator provides a point estimator for a data set of randomly right-censored observations. The km.coverage function computes the actual coverage function of up to five different types of confidence interval procedures for the survivor function for various values of its arguments when failure times are IID exponential random variables with failure rate lambdaT and censoring times are IID exponential random variables with censoring rate lambdaC. The km.coverage function provides options for plotting and tabular display of the outcomes.

Depending on the interval type, km.coverage calls internal plotting functions: plot_Greenwood, plot_ExpGreenwood, plot_LogLog, plot_Arcsine, and plot_Peto.

When km. coverage is called, it generates an actual coverage graph (and a table) based on

- various types of confidence intervals,
- various sample sizes,
- various failure / censoring distributions (exponential)

km.coverage

• if the "table" argument is set to TRUE, it shows the corresponding contribution table at the specified value of p.

The 'interval' argument can be one of the character strings "Greenwood", "Exp-Greenwood", "Log-Log", "Arcsine", and "Peto", or it can be a vector of the confidence interval procedure names, or it can be the character string "all", which will plot all five actual coverage functions. The order in which the actual coverage functions fall in the vector controls the order in which the actual coverage functions are plotted. The order is significant because it is often the case that one of the actual coverage functions obscures part of another actual coverage function on the plot. For example, the first listed interval in the vector is plotted first. Therefore, it may be covered up by the plots of subsequent intervals in the vector.

This actual coverage plot is constructed by calculating lower and upper bounds associated with the confidence interval procedure at various permutations of the failure/censoring ordering for a particular n, the number of objects on test. We calculate the contribution to the actual coverage of each permutation case based on the probability mass function of the KMPLE. At each value of p corresponding to S(t), we sum up the contributions which correspond to lower bounds and upper bounds covering p. These sums give the actual coverage curves.

Value

This function primarily generates plots illustrating the coverage function for various Kaplan-Meier product-limit confidence intervals. If the table argument is set to TRUE, it additionally prints a detailed table of outcomes corresponding to the plot. The table includes calculated coverage values for a specified value of p, providing a complete explanation of how plots are generated. For example, for a value of p along the horizontal axis, the rows of the table show all possible failure/censoring orderings, along with the associated contributions. Adding up the contributions from each row in which the interval covers p gives the point on the plot at p.

When there is more than one interval, the table option is disabled.

Author(s)

Xingyu Wang (<xingyu.wang@yahoo.com>),

Larry Leemis (<lmleem@wm.edu>)

Heather Sasinowska (<hdsasinowska@wm.edu>)

Examples

km.coverage(5, 0.5, 1, 0.1, "Greenwood")
km.coverage(5, 0.5, 1, 0.1, "Greenwood", FALSE)
km.coverage(5, 0.5, 1, 0.1, "Arcsine", FALSE, TRUE, 0.3)
km.coverage(5, 0.5, 1, 0.1, "all")
km.coverage(5, 0.5, 1, 0.1, c("Arcsine", "Greenwood", "Exp-Greenwood"))

km.outcomes

Description

Generates a matrix containing all possible outcomes (all possible sequences of failure times and right-censoring times) of the value of the Kaplan-Meier product-limit estimator for a particular sample size n.

Usage

km.outcomes(n)

Arguments

n sample size

Details

The Kaplan-Meier product-limit estimator is used to estimate the survivor function for a data set of positive values in the presence of right censoring. The km.outcomes function generates a matrix with all possible combinations of observed failures and right censored values and the resulting support values for the Kaplan-Meier product-limit estimator for a sample of size n.

The n argument must be a positive integer denoting the sample size. Allowable limits are from 1 to 24. Larger values of n are not allowed because of CPU and memory limitations.

In order to keep the support values as exact fractions, the numerators and denominators are stored separately in the a matrix in the columns named num and den. The support values are stored as numeric values in the column named S(t).

Value

The km.outcomes function returns a matrix with $2^{n+1} - 1$ rows and n + 4 columns. The location 1 indicates the position where the time of interest falls within the observed events. The meaning of the columns is as follows.

- 1: number of observed events (failures times or censoring times) between times 0 and the observation time;
- d1, d2, ..., dn: equals 0 if the event corresponds to a censored observation, equals 1 if the event corresponds to a failure;
- S(t): numeric value of the associated support value;
- num: numerator of the support value as a fraction;
- den: denominator of the support value as a fraction.

Author(s)

Yuxin Qin (<yqin08@wm.edu>), Heather Sasinowska (<hdsasinowska@wm.edu>), Larry Leemis (<leemis@math.wm.edu>)

km.pmf

References

Qin, Y., Sasinowska, H., Leemis, L. (2023), "The Probability Mass Function of the Kaplan-Meier Product-Limit Estimator", *The American Statistician*, Volume 77, Number 1, 102-110.

See Also

survfit

Examples

km.outcomes(3)

km.pmf

Probability Mass Function for the support of the Kaplan-Meier product-limit estimator

Description

Generates the probability mass function for the support values of the Kaplan-Meier product-limit estimator for a particular sample size n, probability of observing a failure h at the time of interest expressed as the cumulative probability perc associated with X = min(T, C), where T is the failure time and C is the censoring time under a random-censoring scheme.

Usage

km.pmf(n, h, perc, plot, sep, xfrac, cex.lollipop)

Arguments

n	sample size
h	probability of observing a failure, in other words, P(X = T)
perc	cumulative probability associated with X = min(T, C)
plot	option to plot the probability mass function (default is TRUE)
sep	option to show the breakdown of the probability for each support value (see function km.outcomes for details on the breakdown) (default is TRUE)
xfrac	option to label support values on the x-axis as exact fractions (default is TRUE)
cex.lollipop	size of the dots atop the spikes

Details

The Kaplan-Meier product-limit estimator is used to estimate the survivor function for a data set of positive values in the presence of right censoring. The km.pmf function generates the probability mass function for the support values of the Kaplan-Meier product-limit estimator for a particular sample size n, probability of observing a failure h at the time of interest expressed as the cumulative probability perc associated with X = min(T, C), where T is the failure time and C is the censoring time under a random-censoring scheme.

The n argument must be a positive integer denoting the sample size. Allowable limits are from 1 to 23. Larger values of n are not allowed because of CPU and memory limitations.

For larger sample size n, it is recommended to set sep = FALSE, xfrac = FALSE, and cex.lollipop = 0.01 for a better visual effect.

Value

The km. pmf function returns a dataframe with 2 columns. The column named S stores all the support values for the Kaplan-Meier product-limit estimator with sample size n, including NA. The column named P stores the associated probabilities.

Author(s)

Yuxin Qin (<yqin08@wm.edu>), Heather Sasinowska (<hdsasinowska@wm.edu>), Larry Leemis (<leemis@math.wm.edu>)

References

Qin, Y., Sasinowska, H., Leemis, L. (2023), "The Probability Mass Function of the Kaplan-Meier Product-Limit Estimator", *TheAmericanStatistician*, Volume 77, Number 1, 102-110.

See Also

survfit

Examples

```
km.pmf(4, 1/3, 0.75)
```

```
km.pmf(8, 1/2, 0.75, sep = FALSE, xfrac = FALSE, cex.lollipop = 0.01)
```

km.support

Support values for the Kaplan-Meier product-limit estimator

Description

Calculate the support values for the Kaplan-Meier product-limit estimator for a particular sample size n using an induction algorithm.

44

km.support

Usage

km.support(n)

Arguments

n sample size

Details

The Kaplan-Meier product-limit estimator is used to estimate the survivor function for a data set of positive values in the presence of right censoring. The km.support function calculates the support values for the Kaplan-Meier product-limit estimator for a sample of size n using an induction algorithm described in Qin et al. (2023).

The n argument must be a positive integer denoting the sample size. Allowable limits are from 1 to 35. Larger values of n are not allowed because of CPU and memory limitations.

The numerators and denominators are temporarily converted to complex numbers within the km. support function in order to eliminate duplicate support values using the unique function.

Value

The km. support function returns a list with two components.

- num: a vector of integers containing the numerators of the support values
- · den: a vector of integers containing the associated denominators of the support values

The support values are not returned in sorted order. Zero and one, which are always a part of the support, are given as 0/1 and 1/1.

Author(s)

Yuxin Qin (<yqin08@wm.edu>), Heather Sasinowska (<hdsasinowska@wm.edu>), Larry Leemis (<leemis@math.wm.edu>)

References

Qin, Y., Sasinowska, H., Leemis, L. (2023), "The Probability Mass Function of the Kaplan-Meier Product-Limit Estimator", *TheAmericanStatistician*, Volume 77, Number 1, 102-110.

See Also

survfit

Examples

```
# display unsorted numerators and denominators of support values for n = 4
km.support(4)
# display sorted support values for n = 4 as exact fractions
n <- 4
s <- km.support(n)
i <- order(s$num / s$den)</pre>
```

```
m <- length(s$num)
f <- ""
for (j in i[2:(m - 1)]) f <- paste(f, s$num[j], "/", s$den[j], ", ", sep = "")
cat(paste("The ", m, " support values for n = ", n, " are: 0, ", f, "1.\n", sep = ""))
# print sorted support values for n = 4 as numerics
print(s$num[i] / s$den[i])</pre>
```

km.	surv
-----	------

Probability Mass Functions for the support of the Kaplan-Meier product-limit estimator for various cumulative probabilities associated with λ

Description

Plot the probability mass functions for the support values of the Kaplan-Meier product-limit estimator for a given sample size n with a probability of observing a failure h at various times of interest expressed as the cumulative probability perc associated with X = min(T, C), where T is the failure time and C is the censoring time, under a random-censoring scheme.

Usage

```
km.surv(n, h, lambda, ev, line, graydots, gray.cex,
      gray.outline, xfrac)
```

Arguments

n	sample size
h	probability of observing a failure
lambda	plotting frequency of the probability mass functions (default is 10)
ev	option to plot the expected values of the support values (default is FALSE)
line	option to connect the expected values with lines (default is FALSE)
graydots	option to express the weight of the support values using grayscale (default is FALSE)
gray.cex	option to change the size of the gray dots (default is 1)
gray.outline	option to display outlines of the gray dots (default is TRUE)
xfrac	option to label support values on the y-axis as exact fractions (default is TRUE)

Details

The Kaplan-Meier product-limit estimator is used to estimate the survivor function for a data set of positive values in the presence of right censoring. The km. surv function plot the probability mass functions for the support values of the Kaplan-Meier product-limit estimator for a given sample size n with a probability of observing a failure h at various times of interest expressed as the cumulative probability perc associated with X = min(T, C), where T is the failure time and C is the censoring time, under a random-censoring scheme.

46

llogisMLE

The n argument must be a positive integer denoting the sample size. Allowable limits are from 1 to 23. Larger values of n are not allowed because of CPU and memory limitations.

The default method to plot the probability mass functions uses the area of a dot to indicate the relative probability of a support value. An alternative is to plot the probability mass functions using grayscales (by setting graydots = TRUE). One of the two approaches might work better in different scenarios.

The expected values are calculated by removing the probability of NA and normalizing the rest of the probabilities.

Value

The km. surv function doesn't return any value.

Author(s)

Yuxin Qin (<yqin08@wm.edu>), Heather Sasinowska (<hdsasinowska@wm.edu>), Larry Leemis (<leemis@math.wm.edu>)

References

Qin, Y., Sasinowska, H., Leemis, L. (2023), "The Probability Mass Function of the Kaplan-Meier Product-Limit Estimator", *TheAmericanStatistician*, Volume 77, Number 1, 102-110.

See Also

survfit

Examples

```
km.surv(n = 4, h = 2/3, lambda = 100, ev = TRUE, line = TRUE)
km.surv(n = 5, h = 3/4, lambda = 50, graydots = TRUE, gray.cex = 0.6, gray.outline = FALSE)
km.surv(n = 7, h = 1/5, lambda = 30, graydots = TRUE, gray.cex = 0.6, xfrac = FALSE)
```

```
llogisMLE
```

Maximum Likelihood Parameter Estimation of a Log Logistic Model with Possibly Censored Data

Description

Estimate log logistic model parameters by the maximum likelihood method using possibly censored data. The corresponding code for this function as well as the manual information included here is attributed to Christophe Pouzat's STAR Package (archived 2022-05-23).

Usage

llogisMLE

Arguments

yi	vector of (possibly binned) observations or a spikeTrain object.
ni	vector of counts for each value of yi; default: numeric(length(yi))+1.
si	vector of counts of <i>uncensored</i> observations for each value of yi; default: numeric(length(yi))+1

Details

The MLE for the log logistic is not available in closed formed and is therefore obtained numerically obtained by calling optim with the BFGS method.

In order to ensure good behavior of the numerical optimization routines, optimization is performed on the log of parameter scale.

Standard errors are obtained from the inverse of the observed information matrix at the MLE. They are transformed to go from the log scale used by the optimization routine to the requested parameterization.

Value

A list of class durationFit with the following components:

estimate	the estimated parameters, a named vector.
se	the standard errors, a named vector.
logLik	the log likelihood at maximum.
r	a function returning the log of the relative likelihood function.
mll	a function returning the opposite of the log likelihood function using the log of parameter sdlog.
call	the matched call.

Note

The returned standard errors (component se) are valid in the asymptotic limit. You should plot contours using function r in the returned list and check that the contours are reasonably close to ellipses.

Author(s)

Christophe Pouzat <christophe.pouzat@gmail.com>

References

Lindsey, J.K. (2004) Introduction to Applied Statistics: A Modelling Approach. OUP. Lindsey, J.K. (2004) The Statistical Analysis of Stochastic Processes in Time. CUP.

See Also

dllogis, invgaussMLE, gammaMLE.

llogisMLE

Examples

```
## Not run:
## Simulate sample of size 100 from a log logisitic
## distribution
set.seed(1102006, "Mersenne-Twister")
sampleSize <- 100</pre>
location.true <- -2.7
scale.true <- 0.025</pre>
sampLL <- rllogis(sampleSize,location=location.true,scale=scale.true)</pre>
sampLLmleLL <- llogisMLE(sampLL)</pre>
rbind(est = sampLLmleLL$estimate,se = sampLLmleLL$se,true = c(location.true,scale.true))
## Estimate the log relative likelihood on a grid to plot contours
Loc <- seq(sampLLmleLL$estimate[1]-4*sampLLmleLL$se[1],</pre>
               sampLLmleLL$estimate[1]+4*sampLLmleLL$se[1],
               sampLLmleLL$se[1]/10)
Scale <- seq(sampLLmleLL$estimate[2]-4*sampLLmleLL$se[2],</pre>
             sampLLmleLL$estimate[2]+4*sampLLmleLL$se[2],
             sampLLmleLL$se[2]/10)
sampLLmleLLcontour <- sapply(Loc, function(m) sapply(Scale, function(s) sampLLmleLL$r(m,s)))</pre>
## plot contours using a linear scale for the parameters
## draw four contours corresponding to the following likelihood ratios:
## 0.5, 0.1, Chi2 with 2 df and p values of 0.95 and 0.99
X11(width=12,height=6)
layout(matrix(1:2,ncol=2))
contour(Loc,Scale,t(sampLLmleLLcontour),
        levels=c(log(c(0.5,0.1)),-0.5*qchisq(c(0.95,0.99),df=2)),
        labels=c("log(0.5)",
          "log(0.1)",
          "-1/2*P(Chi2=0.95)",
          "-1/2*P(Chi2=0.99)"),
        xlab="Location",ylab="Scale",
        main="Log Relative Likelihood Contours"
points(sampLLmleLL$estimate[1], sampLLmleLL$estimate[2], pch=3)
points(location.true,scale.true,pch=16,col=2)
## The contours are not really symmetrical about the MLE we can try to
## replot them using a log scale for the parameters to see if that improves
## the situation
contour(Loc,log(Scale),t(sampLLmleLLcontour),
        levels=c(log(c(0.5,0.1)),-0.5*qchisq(c(0.95,0.99),df=2)),
        labels="",
        xlab="log(Location)",ylab="log(Scale)",
        main="Log Relative Likelihood Contours",
        sub="log scale for parameter: scale")
points(sampLLmleLL$estimate[1],log(sampLLmleLL$estimate[2]),pch=3)
points(location.true,log(scale.true),pch=16,col=2)
## make a parametric boostrap to check the distribution of the deviance
nbReplicate <- 10000
sampleSize <- 100</pre>
system.time(
```

```
devianceLL100 <- replicate(nbReplicate,{</pre>
               sampLL <- rllogis(sampleSize,location=location.true,scale=scale.true)</pre>
              sampLLmleLL <- llogisMLE(sampLL)</pre>
              -2*sampLLmleLL$r(location.true,scale.true)
            }
                                         )
            )[3]
## Get 95 and 99
ci <- sapply(1:nbReplicate,</pre>
                  function(idx) qchisq(qbeta(c(0.005,0.025,0.975,0.995),
                                              idx,
                                              nbReplicate-idx+1),
                                        df=2)
             )
## make QQ plot
X <- qchisq(ppoints(nbReplicate),df=2)</pre>
Y <- sort(devianceLL100)
X11()
plot(X,Y,type="n",
     xlab=expression(paste(chi[2]^2," quantiles")),
     ylab="MC quantiles",
     main="Deviance with true parameters after ML fit of log logistic data",
     sub=paste("sample size:", sampleSize,"MC replicates:", nbReplicate)
     )
abline(a=0,b=1)
lines(X,ci[1,],lty=2)
lines(X,ci[2,],lty=2)
lines(X,ci[3,],lty=2)
lines(X,ci[4,],lty=2)
lines(X,Y,col=2)
```

End(Not run)

Index

* Agresti-Coull binomTest.3 binomTestCoverage, 4 binomTestCoveragePlot, 6 binomTestEnsemble, 8 * Arcsine binomTest.3 binomTestCoverage, 4 binomTestCoveragePlot, 6 binomTestEnsemble, 8 * Blaker binomTest.3 binomTestCoverage, 4 binomTestCoveragePlot, 6 * Clopper-Pearson binomTest, 3 binomTestCoverage, 4 binomTestCoveragePlot, 6 binomTestEnsemble, 8 * Dyck words binomTestMSE, 10 * Ensemble binomTestEnsemble, 8 * Greenwood's Formula km.coverage, 39 * Jeffrevs binomTest, 3 binomTestCoverage, 4 binomTestCoveragePlot, 6 binomTestEnsemble, 8 * Kaplan Meier Estimator km.coverage, 39 * Kaplan-Meier estimator km.outcomes, 42 km.pmf, 43km.support,44 km.surv,46 * Kaplan-Meier product-limit estimator support values

km.outcomes, 42 km.pmf, 43km.support,44 km.surv, 46 * Nonparametric Methods km.coverage, 39 * RMSE binomTestMSE, 10 * Right Censoring km.coverage, 39 * Survival Analysis km.coverage, 39 * Wald binomTest.3 binomTestCoverage, 4 binomTestCoveragePlot, 6 binomTestEnsemble, 8 * Wilson-Score binomTest.3 binomTestCoverage, 4 binomTestCoveragePlot, 6 binomTestEnsemble. 8 * actual coverage function binomTestMSE, 10 * actual coverage binomTestCoverage, 4 * binomial distribution binomTest, 3 binomTestCoverage, 4 binomTestCoveragePlot, 6 binomTestEnsemble, 8 * binomial proportion binomTest, 3 binomTestCoverage, 4 binomTestCoveragePlot, 6 binomTestEnsemble, 8 binomTestMSE.10 * confidence intervals for binomial proportions

INDEX

binomTest, 3 binomTestCoverage, 4 binomTestCoveragePlot, 6 binomTestEnsemble, 8 binomTestMSE, 10 * confidence interval binomTest.3 binomTestCoverage, 4 binomTestCoveragePlot, 6 binomTestEnsemble, 8 binomTestMSE. 10 * confidence region plot graphics visualization coverage parameter estimation coversim. 13 crplot, 17 * distribution coversim. 13 crplot, 17 dinvgauss, 23 dllogis, 26 gammaMLE, 28 invgaussMLE, 31 llogisMLE, 47 * models coversim. 13 crplot, 17 * nonparametric methods km.outcomes, 42km.pmf, 43km.support,44 km.surv,46 * product-limit estimator km.outcomes, 42km.pmf, 43km.support,44 km.surv,46 * right censoring km.outcomes, 42km.pmf, 43km.support,44 km.surv,46 * right-censored data km.outcomes, 42 km.pmf, 43km.support,44 km.surv,46 * ts

```
dinvgauss, 23
    dllogis, 26
    gammaMLE, 28
    invgaussMLE, 31
    llogisMLE, 47
* univar
    coversim, 13
    crplot, 17
binomTest, 3, 12
binomTestCoverage, 4, 12
binomTestCoveragePlot, 6, 12
binomTestEnsemble, 8, 12
binomTestMSE, 10, 12
conf, 11
conf-package (conf), 11
coversim, 12, 13, 22
crplot, 12, 17, 17
dbinom, 4, 5, 7
dinvgauss, 23, 31, 32
dllogis, 26, 48
gammaMLE, 28, 32, 48
invgaussMLE, 24, 29, 31, 48
km.coverage, 12, 39
km.outcomes, 12, 42
km.pmf, 12, 43
km.support, 12, 44
km.surv, 12, 46
llogisMLE, 27, 32, 47
optim, 31, 48
par, 14, 15, 19
pinvgauss (dinvgauss), 23
pllogis (dllogis), 26
qinvgauss (dinvgauss), 23
qllogis (dllogis), 26
rinvgauss (dinvgauss), 23
rllogis (dllogis), 26
round, 14, 18
survfit, 43-45, 47
uniroot, 15, 17, 19, 22
```

52