
More details about the compare package

Paul Murrell

August 25, 2015

This document provides more information about how the compare package works. It should
only be read after the accompanying vignette “Introduction to the compare package”.

We will look in more detail at how the compare() function works, plus we will explore some
of the lower-level functions that the compare() function calls.

The "comparison" class

The value returned by compare() is an object of class "comparison". Importantly, this is
not simply a logical value. In order to test whether the comparison was successful overall, for
example as the condition in an if statement, you must use the isTRUE() function.

> isTRUE(compare(1:10, 1:10))

[1] TRUE

>

The transforms() function can be used to extract the vector of transformations from a "com-

parison" object.

> obj1 <- c("a", "a", "b", "c")

> obj1

[1] "a" "a" "b" "c"

>

> obj2 <- factor(obj1)

> obj2

[1] a a b c

Levels: a b c

>

> transforms(compare(obj1, obj2[1:3], allowAll=TRUE))

[1] "coerced from <factor> to <character>"

[2] "shortened model"

>

1

Order and persistence of transformations

The compare() function performs transformations in a particular order.
Any rounding of numeric values, trimming or upper-casing of strings, sorting or dropping of

factor levels, reordering of dimensions for arrays, matrices, and tables, and reordering of data
frame columns or list components occurs as part of the test for equality. This means that these
transformations are only available if equal=TRUE, but also means that these transformations
will be applied again after every other transformation that is attempted.

The remaining transformations occur in the following order: coerce, shorten, ignore sort
order, ignore case of names, ignore names altogether, ignore attributes altogether. The justifi-
cation for this order is that sorting only makes sense once the objects are of the same class and
size, attributes are less fundamental than the core data structure so they should come later,
and names are just a special case of general attributes, so they should come earlier.

In general, a transformation is persistent. For example, if coercion has been attempted, but
the objects being compared are not the same after coercion, then sorting the objects will be
attempted and this sorting will occur on the coerced objects. The exception to this rule is that
any transformations applied during a test for equality are not persistent. This is because tests
for equality are repeated after every other transformation.

The following manufactured example demonstrates these rules about the order and persis-
tence of transformations. In this case, the comparison object is a different class from the model
object, the comparison is in a different order from the model, and the comparison needs to be
rounded to be equal to the model.

> compare(as.numeric(1:10),

+ as.character(10:1 + .1),

+ round=TRUE, coerce=TRUE, ignoreOrder=TRUE)

TRUE

coerced from <character> to <numeric>

sorted

rounded

>

First of all, the objects are tested for equality (equal=TRUE by default). In this case, despite
the fact that round=TRUE, no rounding occurs because the comparison is not numeric.

The objects are not the same, but coerce=TRUE so the comparison object is coerced to
a numeric object and the two objects are checked again for equality. Furthermore, because
round=TRUE, the coerced comparison values are rounded as well.

The objects are still not the same, but because ingoreOrder=TRUE the comparison object
is now sorted. This sorting occurs on the coerced but not rounded comparison object because
equality transformations are not persistent, but all other transformations are persistent. The
coerced and sorted comparison object is then tested for equality with the model object, which
again involves rounding the comparison object, and this time the objects are the same.

The overall result is success and the transformations that lead to success were coercion,
followed by sorting, followed by rounding.

If the order imposed by compare() is not appropriate, it is possible to resort to performing
the transformations individually (see the next section).

2

Extending the compare package

The compare() function is built on a set of functions that perform the individual transfor-
mations. This means that it should be relatively straightforward to produce an alternative to
compare() by simply reordering the calls to transform functions and it should be relatively easy
to extend the comparisons by writing new transformation functions.

Standalone comparisons

The compare() function is built upon a set of standalone comparison functions. Table 1 lists
the standalone functions currently available.

The compareIdentical() function is just a wrapper for identical() that returns a "com-

parison" object as the result (so that it can play nicely with the other comparison functions.
The compareEqual() function relaxes the comparison (depending on the arguments it is

given) and allows for minor differences.
All of the other comparison functions call compareIdentical(), and if that fails, and

equal=TRUE, they call compareEqual(). These functions allow individual transformations to be
attempted in isolation. A basic design feature of these functions is that they attempt to check
whether they need to perform their transformation before they do it so that only necessary or
potentially beneficial trasformations are attempted. For example, if two objects are of the same
class, compareCoerce() will not attempt to coerce the comparison object.

A more general design feature is that the transformations have been broken into separate
functions on the basis of orthogonality. Every effort is made to make the transformations
independent in the sense that one transformation does not make any subsequent transformation
impossible or nonsensical. As an example, a transformation that sorts objects is completely
compatible with later dropping the names attributes from the objects.

All of these comparison functions are generic so that appropriate methods can be written for
different classes. There are methods for the basic vector types and for arrays, matrices, tables,
data frames, and lists. By having them as standalone functions, new methods can easily be
developed and incorporated.

In general, comparisons involving recursive objects (data frames and lists) will transform
columns or components instead of or as well as transforming the overall object. For example,
compareCoerce().data.frame coerces the overall comparison object to a data frame and all
columns of the comparison to the same classes as the corresponding columns of the model data
frame.

These recursive comparison methods should provide the option of reordering the columns or
components by name before performing transformations on the columns or components.

All comparisons other than compareIdentical() and compareEqual() should return a
“partial” result as well as a full record of transformations and transformed objects. This partial
result will contain transformations and transformed objects from the primary transformation for
that function, but not any subsequent transformations due to compareEqual(). This allows for
calling a sequence of standalone comparison functions without repeatedly recording unsuccessful
transformations performed by compareEqual(). The utility function same() takes care of this
issue automatically.

More about the "comparison" class

In addition to the overall result and the transformations attempted during a comparison, the
"comparison" class also contains a copy of the transformed model and comparison objects.

3

Table 1: Standalone comparison functions upon which the compare() function is built.

Name Description
compareIdentical() Test whether two objects are identical.

compareEqual() Compare whether two objects are equal.
Rounds numeric values, trims leading and trailing whites-
pace and ignores case in strings, drops unused levels and
ignores level order in factors, ignores dimension order in
arrays (and matrices and tables), orders columns or com-
ponents by name (ignoring case) for lists and data frames.

compareCoerce() If necessary, coerce comparison object to class of model
object, then compare for equality.
Orders columns or components by name (ignoring case)
for lists and data frames.

compareShorten() If necessary, shorten the longer of the model and compar-
ison objects so that the two objects are the same “size”.
For arrays, drops entire dimensions, for matrices, forces
comparison to be two-dimensional, and for tables, col-
lapses (sums) across extra dimensions. For data frames
will drop columns and rows. Orders columns or compo-
nents by name (ignoring case) for lists and data frames.

compareIgnoreOrder() If necessary, sort both model and comparison objects,
then compare for equality.
Orders columns or components by name (ignoring case)
for lists and data frames.

compareIgnoreNameCase() If necessary, upper cases name attributes of both model
and comparison, then compare for equality.
For data frames, upper cases rownames as well as column
names. Orders columns or components by name (ignoring
case) for lists and data frames.

compareIgnoreNames() If necessary, drops name attributes from both model and
comparison then compare for equality.
Orders columns or components by name (ignoring case)
for lists and data frames.

compareIgnoreAttrs() If necessary, drop all attributes from both model and com-
parison, then compare for equality.

4

These objects provide a record of what the original objects look like after a successful transfor-
mation (i.e., when the transformed objects are equal).

In addition to this information, a set of “partial” results are also stored. These are the trans-
formations, plus the transformed model and comparison objects, without any transformations
that were carried out as part of the test for equality. These objects are useful following an
unsuccessful comparison, as the basis for further transformations.

Combining comparisons

The compare() function works by calling the standalone comparison functions in sequence until
a successful result is achieved (or all possible transformations have been attempted). The calls
are arranged in the following general format:

comp <- comparisonA(model, object, ...)

if (!comp$result && doComparisonB) {

comp <- comparisonB(comp$tMpartial,

comp$tCpartial,

comp$partialTransform,

...)

}

If the first comparison is successful, the full result is returned, so all transformations, includ-
ing anything by compareEqual() are reported. However, if the first comparison fails, only the
partial result is passed on; compareEqual() will be called again and will have another chance
to try all of its transformations.

This basic pattern can easily be implemented “by hand” to produce a specific subset and
a specific ordering of standalone comparisons, or as the basis of a variation on the compare()

function. It is also a simple pattern to follow if new transformations need to be inserted into or
added onto the current set available in compare().

A worked example

This section describes the addition of comparison methods for "list" objects to give an idea
of the design considerations that have gone into the existing code and as a template for the
possible addition of methods for further classes. This should be read in conjunction with the
relevant source code.

There is no need for an identical.list() method. The default, which calls identical()

works already for lists and does the appropriate thing; tests whether the model and comparison
objects are exactly the same.

The compareEqual() method differs from compareIdentical() because it allows the model
and comparison objects to have minor differences. In the case of a list, this means that we will
allow two lists to be the equal if they consist of the same number of components and the names
of the components are the same, even though they may be in a different order and they may even
differ in terms of case. Of course, the actual components themselves must also be equal, so this
function calls compareEqual() for each pair of model-component and comparison-component.
For additional flexibility, the argument recurseFun actually specifies which function is called on
the pairs of components. This allows compare() to specify itself as the recursion function. The
relaxation in terms of order and case of component names is not “on” by default; arguments are
provided to enable these relaxations. NOTE that the uppercasing of names and reordering of

5

names is NOT recorded in the partial results (i.e., these transformations are NOT persistent).
The result is a "multipleComparison", which includes not only the overall result, but also a
breakdown per component of which components were equal.

The first step in compareCoerce.list() is to make sure that the comparison object is a
list, coercing if necessary. After that, things run very similarly to compareEqual(); we reorder
components by name if possible and necessary, then we attempt to compare all components
of the model and comparison, coercing components as necessary. The one major difference is
that any transformations—coercion and reordering of components—are persistent this time, so
become part of the partial result.

The compareShorten() method starts to get a bit easier. Again, we reorder components if
necessary, but then all we need to do is drop any extra components and call the same() function
to do the identical/equal check on the resulting model and comparison (which are now of the
same length).

compareIgnoreOrder() is even easier; we just reorder the components as before, then call
same(). Likewise compareIgnoreNameCase. For compareIgnoreNames() there’s just the addi-
tional action of dropping names attributes after ordering by name (in case some names are in
common, but other names conflict).

The default compareIgnoreAttrs() will do for lists.
Finally, for the compare() function, we need to add the ignoreComponentOrder argument

so that this can be included in a general comparison, with this argument defaulting to the
current setting of allowAll.

6

