
Comparing Non-Identical Objects

Introducing the ‘compare’ package

by Paul Murrell

August 25, 2015

The compare package provides functions for comparing two R objects for
equality, while allowing for a range of “minor” differences. Objects may be
reordered, rounded, or resized, they may have names or attributes removed, or
they may even be coerced to a new class if necessary in order to achieve equality.

The results of comparisons report not just whether the objects are the same,
but also include a record of any modifications that were performed.

This package was developed for the purpose of partially automating the
marking of coursework involving R code submissions, so functions are also pro-
vided to convert the results of comparisons into numeric grades and to provide
feedback for students.

Motivation

STATS 220 is a second year university course run by the Department of Statistics
at the University of Auckland.1 The course covers a range of “Data Technolo-
gies”, including HTML, XML, databases, SQL, and, as a general purpose data
processing tool, R.

In addition to larger assignments, students in the course must complete short
exercises in weekly computer labs.

For the R section of the course, students must write short pieces of R code to
produce specific R objects. Figure 1 shows two examples of basic, introductory
exercises.

The students submit their answers to the exercises as a file containing R code,
which means that it is possible to recreate their answers by calling source() on
the submitted files.

At this point, the R objects generated by the students’ code can be compared
with a set of model R objects in order to establish whether the students’ answers
are correct.

How this comparison occurs is the focus of this article.

Black and white comparisons

The simplest and most strict test for equality between two objects in the base R
system (R Development Core Team, 2008) is provided by the function identical().

1http://www.stat.auckland.ac.nz/courses/stage2/#STATS220

1

http://www.stat.auckland.ac.nz/courses/stage2/#STATS220

1. Write R code to create the
three vectors and the factor
shown below, with names id,
age, edu, and class.

You should end up with ob-
jects that look like this:

> id

[1] 1 2 3 4 5 6

> age

[1] 30 32 28 39 20 25

> edu

[1] 0 0 0 0 0 0

> class

[1] poor poor poor middle

[5] middle middle

Levels: middle poor

2. Combine the objects from
Question 1 together to
make a data frame called
IndianMothers.

You should end up with an
object that looks like this:

> IndianMothers

id age edu class

1 1 30 0 poor

2 2 32 0 poor

3 3 28 0 poor

4 4 39 0 middle

5 5 20 0 middle

6 6 25 0 middle

Figure 1: Two simple examples of the exercises that STATS 220 students are
asked to perform.

This returns TRUE if the two objects are exactly the same, otherwise it returns
FALSE.

The problem with this function is that it is very strict indeed and will fail for
objects that are, for all practical purposes, the same. The classic example is the
comparison of two real (floating-point) values, as demonstrated in the following
code, where differences can arise simply due to the limitations of how numbers
are represented in computer memory (see R FAQ 7.31, Hornik, 2008).

> identical(0.3 - 0.2, 0.1)

[1] FALSE

Using the function to test for equality would clearly be unreasonably harsh when
marking any student answer that involves calculating a numeric result.

The identical() function, by itself, is not sufficient for comparing student
answers with model answers.

Shades of grey

The recommended solution to the problem mentioned above of comparing two
floating-point values is to use the all.equal() function. This function allows
for “insignificant” differences between numeric values, as shown below.

> all.equal(0.3 - 0.2, 0.1)

[1] TRUE

2

This makes all.equal() a much more appropriate function for comparing stu-
dent answers with model answers.

What is less well-known about the all.equal() function is that it also works
for comparing other sorts of R objects, besides numeric vectors, and that it does
more than just report equality between two objects.

If the objects being compared have differences, then all.equal() does not
simply return FALSE. Instead, it returns a character vector containing messages
that describe the differences between the objects. The following code gives a
simple example, where all.equal() reports that the two character vectors have
different lengths, and that, of the two pairs of strings that can be compared,
one pair of strings does not match.

> all.equal(c("a", "b", "c"), c("a", "B"))

[1] "Lengths (3, 2) differ (string compare on first 2)"

[2] "1 string mismatch"

This feature is actually very useful for marking student work. Information
about whether a student’s answer is correct is useful for determining a raw mark,
but it is also useful to have information about what the student did wrong. This
information can be used as the basis for assigning partial marks for an answer
that is close to the correct answer, and for providing feedback to the student
about where marks were lost.

The all.equal() function has some useful features that make it a helpful
tool for comparing student answers with model answers. However, there is an
approach that can perform better than this.

The all.equal() function looks for equality between two objects and, if
that fails, provides information about the sort of differences that exist. An
alternative approach, when two objects are not equal, is to try to transform the
objects to make them equal, and report on which transformations were necessary
in order to achieve equality.

As an example of the difference between these approaches, consider the two
objects below: a character vector and a factor.

> obj1 <- c("a", "a", "b", "c")

> obj1

[1] "a" "a" "b" "c"

> obj2 <- factor(obj1)

> obj2

[1] a a b c

Levels: a b c

The all.equal() function reports that these objects are different because they
differ in terms of their fundamental mode—one has attributes and the other
does not—and because each object is of a different class.

> all.equal(obj1, obj2)

[1] "Modes: character, numeric"

[2] "Attributes: < target is NULL, current is list >"

[3] "target is character, current is factor"

3

The alternative approach would be to allow various transformations of the
objects to see if they can be transformed to be the same. The following code
shows this approach, which reports that the objects are equal, if the second one
is coerced from a factor to a character vector. This is more information than
was provided by all.equal() and, in the particular case of comparing student
answers to model answers, it tells us a lot about how close the student got to
the right answer.

> library(compare)

> compare(obj1, obj2, allowAll=TRUE)

TRUE

coerced from <factor> to <character>

Another limitation of all.equal() is that it does not report on some other
possible differences between objects. For example, it is possible for a student to
have the correct values for an R object, but have the values in the wrong order.
Another common mistake is to get the case wrong in a set of string values (e.g.,
in a character vector or in the names attribute of an object).

In summary, while all.equal() provides some desirable features for com-
paring student answers to model answers, we can do better by allowing for a
wider range of differences between objects and by taking a different approach
that attempts to transform the student answer to be the same as the model
answer, if at all possible, while reporting which transformations were necessary.

The remainder of this article describes the compare package, which provides
functions for producing these sorts of comparisons.

The compare() function

The main function in the compare package is the compare() function. This
function checks whether two objects are the same and, if they are not, carries
out various transformations on the objects and checks them again to see if they
are the same after they have been transformed.

By default, compare() only succeeds if the two objects are identical (using
the identical() function) or the two objects are numeric and they are equal
(according to all.equal()). If the objects are not the same, no transformations
of the objects are considered. In other words, by default, compare() is simply
a convenience wrapper for identical() and all.equal(). As a simple exam-
ple, the following comparison takes account of the fact that the values being
compared are numeric and uses all.equal() rather than identical().

> compare(0.3 - 0.2, 0.1)

TRUE

Transformations

The more interesting uses of compare() involve specifying one or more of the
arguments that allow transformations of the objects that are being compared.
For example, the coerce argument specifies that the second argument may
be coerced to the class of the first argument. This allows for more flexible
comparisons such as between a factor and a character vector.

4

> compare(obj1, obj2, coerce=TRUE)

TRUE

coerced from <factor> to <character>

It is important to note that there is a definite order to the objects; the model
object is given first and the comparison object is given second. Transformations
attempt to make the comparison object like the model object, though in a num-
ber of cases (e.g., when ignoring the case of strings) the model object may also
be transformed. In the example above, the comparison object has been coerced
to be the same class as the model object. The following code demonstrates the
effect of reversing the order of the objects in the comparison. Now the character
vector is being coerced to a factor.

> compare(obj2, obj1, coerce=TRUE)

TRUE

coerced from <character> to <factor>

Of course, transforming an object is not guaranteed to produce identical objects
if the original objects are genuinely different.

> compare(obj1, obj2[1:3], coerce=TRUE)

FALSE

coerced from <factor> to <character>

Notice, however, that even though the comparison failed, the result still reports
the transformation that was attempted. This result indicates that the compar-
ison object was converted from a factor (to a character vector), but it still did
not end up being the same as the model object.

A number of other transformations are available in addition to coercion. For
example, differences in length, like in the last case, can also be ignored.

> compare(obj1, obj2[1:3],

+ shorten=TRUE, coerce=TRUE)

TRUE

coerced from <factor> to <character>

shortened model

It is also possible to allow values to be sorted, or rounded, or to convert all
character values to upper case (i.e., ignore the case of strings).

Table 1 provides a complete list of the transformations that are currently
allowed (in version 0.2 of compare) and the arguments that are used to enable
them.

A further argument to the compare() function, allowAll, controls the de-
fault setting for most of these transformations, so specifying allowAll=TRUE is
a quick way of enabling all possible transformations. Specific transformations
can still be excluded by explicitly setting the appropriate argument to FALSE.

The equal argument is a bit of a special case because it is TRUE by default,
whereas almost all others are FALSE. The equal argument is also especially

5

Table 1: Arguments to the compare() function that control which transforma-
tions are attempted when comparing a model object to a comparison object.

Argument Meaning
equal Compare objects for “equality” as well

as “identity” (e.g., use all.equal() if
model object is numeric).

coerce Allow coercion of comparison object to
class of model object.

shorten Allow either the model or the compar-
ison to be shrunk so that the objects
have the same “size”.

ignoreOrder Ignore the original order of the compari-
son and model objects; allow both com-
parison object and model object to be
sorted.

ignoreNameCase Ignore the case of the names attribute
for both comparison and model objects;
the name attributes for both objects are
converted to upper case.

ignoreNames Ignore any differences in the names at-
tributes of the comparison and model
objects; any names attributes are
dropped.

ignoreAttrs Ignore all attributes of both the compar-
ison and model objects; all attributes
are dropped.

round∗ Allow numeric values to be rounded; ei-
ther FALSE (the default), or an inte-
ger value giving the number of decimal
places for rounding, or a function of one
argument, e.g., floor.

ignoreCase∗ Ignore the case of character vectors;
both comparison and model are con-
verted to upper case.

trim∗ Ignore leading and trailing spaces in
character vectors; leading and trailing
spaces are trimmed from both compari-
son and model.

ignoreLevelOrder∗ Ignore original order of levels of factor
objects; the levels of the comparison ob-
ject are sorted to the order of the levels
of the model object.

dropLevels∗ Ignore any unused levels in factors; un-
used levels are dropped from both com-
parison and model objects.

ignoreDimOrder Ignore the order of dimensions in array,
matrix, or table objects; the dimensions
are reordered by name.

ignoreColOrder Ignore the order of columns in data
frame objects; the columns in the com-
parison object are reordered to match
the model object.

ignoreComponentOrder Ignore the order of components in a list
object; the components are reordered by
name.

∗These transformations only occur if equal=TRUE

6

influential because objects are compared after every transformation and this
argument controls what sort of comparison takes place. Objects are always
compared using identical() first, which will only succeed if the objects have
exactly the same representation in memory. If the test using identical()

fails and equal=TRUE, then a more lenient comparison is also performed. By
default, this just means that numeric values are compared using all.equal(),
but various other arguments can extend this to allow things like differences in
case for character values (see the asterisked arguments in Table 1).

The round argument is also special because it always defaults to FALSE,
even if allowAll=TRUE. This means that the round argument must be specified
explicitly in order to enable rounding. The default is set up this way because
the value of the round argument is either FALSE or an integer value specifying
the number of decimal places to round to. For this argument, the value TRUE

corresponds to rounding to zero decimal places.
Finally, there is an additional argument colsOnly for comparing data frames.

This argument controls whether transformations are only applied to columns
(and not to rows). For example, by default, a data frame will only allow columns
to be dropped, but not rows, if shorten=TRUE. Note, however, that ignoreOrder
means ignore the order of rows for data frames and ignoreColOrder must be
used to ignore the order of columns in comparisons involving data frames.

The compareName() function

The compareName() function offers a slight variation on the compare() function.
For this function, only the name of the comparison object is specified, rather

than an explicit object. The advantage of this is that it allows for variations
in case in the names of objects. For example, a student might create a vari-
able called indianMothers rather than the desired IndianMothers. This case-
insensitivity is enabled via the ignore.case argument.

Another advantage of this function is that it is possible to specify, via the
compEnv argument, a particular environment to search within for the comparison
object (rather than just the current workspace). This becomes useful when
checking the answers from several students because each student’s answers may
be generated within a separate environment in order to avoid any interactions
between code from different students.

The following code shows a simple demonstration of this function, where a
comparison object is created within a temporary environment and the name of
the comparison object is upper case when it should be lowercase.

> tempEnv <- new.env()

> with(tempEnv, X <- 1:10)

> compareName(1:10, "x", compEnv=tempEnv)

TRUE

renamed object

Notice that, as with the transformations in compare(), the compareName() func-
tion records whether it needed to ignore the case of the name of the comparison
object.

7

A pathological example

This section shows a manufactured example that demonstrates some of the
flexibility of the compare() function.

We will compare two data frames that have a number of simple differences.
The model object is a data frame with three columns: a numeric vector, a
character vector, and a factor.

> model <-

+ data.frame(x=1:26,

+ y=letters,

+ z=factor(letters),

+ row.names=letters,

+ stringsAsFactors=FALSE)

The comparison object contains essentially the same information, except that
there is an extra column, the column names are uppercase rather than lowercase,
the columns are in a different order, the y variable is a factor rather than a
character vector, and the z variable is a character variable rather than a factor.
The y variable and the row names are also uppercase rather than lowercase.

> comparison <-

+ data.frame(W=26:1,

+ Z=letters,

+ Y=factor(LETTERS),

+ X=1:26,

+ row.names=LETTERS,

+ stringsAsFactors=FALSE)

The compare() function can detect that these two objects are essentially the
same as long as we reorder the columns (ignoring the case of the column names),
coerce the y and z variables, drop the extra variable, ignore the case of the y

variable, and ignore the case of the row names.

> compare(model, comparison, allowAll=TRUE)

TRUE

renamed

reordered columns

[Y] coerced from <factor> to <character>

[Z] coerced from <character> to <factor>

shortened comparison

[Y] ignored case

renamed rows

Notice that we have used allowAll=TRUE to allow compare() to attempt all
possible transformations at its disposal.

Comparing files of R code

Returning now to the original motivation for the compare package, the compare()
function provides an excellent basis for determining not only whether a student’s

8

answers are correct, but also how much incorrect answers differ from the model
answer.

As described earlier, submissions by students in the STATS 220 course con-
sist of files of R code. Marking these submissions consists of using source() to
run the code, then comparing the resulting objects with model answer objects.
With approximately 100 students in the STATS 220 course, with weekly labs,
and with multiple questions per lab, each of which may contain more than one
R object, there is a reasonable marking burden. Consequently, there is a strong
incentive to automate as much of the marking process as possible.

The compareFile() function

The compareFile() function can be used to run R code from a specific file and
compare the results with a set of model answers. This function requires three
pieces of information: the name of a file containing the“comparison code”, which
is run within a local environment, using source(), to generate the comparison
values; a vector of “model names”, which are the names of the objects that will
be looked for in the local environment after the comparison code has been run;
and the model answers, either as the name of a binary file to load(), or as
the name of a file of R code to source(), or as a list object containing the
ready-made model answer objects.

Any argument to compare() may also be included in the call.
Once the comparison code has been run, compareName() is called for each

of the model names and the result is a list of "comparison" objects.
As a simple demonstration, consider the basic questions shown in Figure 1.

The model names in this case are the following:

> modelNames <- c("id", "age",

+ "edu", "class",

+ "IndianMothers")

One student’s submission for this exercise is in a file called student1.R, within
a directory called Examples. The model answer is in a file called model.R in
the same directory. We can evaluate this student’s submission and compare it
to the model answer with the following code:

> compareFile(file.path("Examples",

+ "student1.R"),

+ modelNames,

+ file.path("Examples",

+ "model.R"))

$id

TRUE

$age

TRUE

$edu

TRUE

9

$class

FALSE

$IndianMothers

FALSE

object not found

This provides a strict check and shows that the student got the first three
problems correct, but the last two wrong. In fact, the student’s code completely
failed to generate an object with the name IndianMothers.

We can provide extra arguments to allow transformations of the student’s
answers, as in the following code:

> compareFile(file.path("Examples",

+ "student1.R"),

+ modelNames,

+ file.path("Examples",

+ "model.R"),

+ allowAll=TRUE)

$id

TRUE

$age

TRUE

$edu

TRUE

$class

TRUE

reordered levels

$IndianMothers

FALSE

object not found

This shows that, although the student’s answer for the class object was not
perfect, it was pretty close; it just had the levels of the factor in the wrong
order.

The compareFiles() function

The compareFiles() function builds on compareFile() by allowing a vector
of comparison file names. This allows a whole set of student submissions to
be tested at once. The result of this function is a list of lists of "comparison"
objects and a special print method provides a simplified view of this result.

Continuing the example from above, the Examples directory contains sub-
missions from a further four students. We can compare all of these submissions
with the model answers and produce a summary of the results with a single call
to compareFiles(). The appropriate code and output are shown in Figure 2.

10

> files <- list.files("Examples",

+ pattern="^student[0-9]+[.]R$",

+ full.names=TRUE)

> results <- compareFiles(files,

+ modelNames,

+ file.path("Examples", "model.R"),

+ allowAll=TRUE,

+ resultNames=gsub("Examples.|[.]R", "", files))

> results

id age edu class IndianMothers

student1 TRUE TRUE TRUE TRUE reordered levels FALSE object not found

student2 TRUE TRUE TRUE TRUE TRUE

student3 TRUE TRUE TRUE TRUE coerced from <character> to <factor> FALSE object not found

student4 TRUE TRUE TRUE TRUE coerced from <character> to <factor> TRUE renamed object

student5 TRUE TRUE TRUE FALSE object not found FALSE object not found

Figure 2: Using the compareFiles() function to run R code from several files
and compare the results to model objects. The result of this sort of compar-
ison can easily get quite wide, so it is often useful to print the result with
options(width) set to some large value and using a small font, as has been
done here.

The results show that most students got the first three problems correct.
They had more trouble getting the fourth problem right, with one getting the
factor levels in the wrong order and two others producing a character vector
rather than a factor. Only one student, student2, got the final problem exactly
right and only one other, student4, got essentially the right answer, though
this student spelt the name of the object wrong.

Assigning marks and
giving feedback

The result returned by compareFiles() is a list of lists of comparison results,
where each result is itself a list of information including whether two objects
are the same and a record of how the objects were transformed during the
comparison. This represents a wealth of information with which to assess the
performance of students on a set of R exercises, but it can be a little unwieldly
to deal with.

The compare package provides further functions that make it easier to deal
with this information for the purpose of determining a final mark and for the
purpose of providing comments for each student submission.

In order to determine a final mark, we use the questionMarks() function
to specify which object names are involved in a particular question, to provide
a maximum mark for the question, and to specify a set of rules that determine
how many marks should be deducted for various deviations from the correct
answers.

The rule() function is used to define a marking rule. It takes an object
name, a number of marks to deduct if the comparison for that object is FALSE,

11

plus any number of transformation rules. The latter are generated using the
transformRule() function, which associates a regular expression with a num-
ber of marks to deduct. If the regular expression is matched in the record of
transformations for a comparison, then the appropriate number of marks are
deducted.

A simple example, based on the second question in Figure 1, is shown below.
This specifies that the question only involves an object named IndianMothers,
that there is a maximum mark of 1 for this question, and that 1 mark is deducted
if the comparison is FALSE.

> q2 <-

+ questionMarks("IndianMothers",

+ maxMark=1,

+ rule("IndianMothers", 1))

The first question from Figure 1 provides a more complex example. In this
case, there are four different objects involved and the maximum mark is 2.
The rules below specify that any FALSE comparison drops a mark and that,
for the comparison involving the object named "class", a mark should also be
deducted if coercion was necessary to get a TRUE result.

> q1 <-

+ questionMarks(

+ c("id", "age", "edu", "class"),

+ maxMark=2,

+ rule("id", 1),

+ rule("age", 1),

+ rule("edu", 1),

+ rule("class", 1,

+ transformRule("coerced", 1)))

Having set up this marking scheme, marks are generated using the markQuestions()
function, as shown by the following code.

> markQuestions(results, q1, q2)

id-age-edu-class IndianMothers

student1 2 0

student2 2 1

student3 1 0

student4 1 1

student5 1 0

For the first question, the third and fourth students lose a mark because of the
coercion, and the fifth student loses a mark because he has not generated the
required object.

A similar suite of functions are provided to associate comments, rather than
mark deductions, with particular transformations. The following code provides
a simple demonstration.

> q1comments <-

+ questionComments(

12

+ c("id", "age", "edu", "class"),

+ comments(

+ "class",

+ transformComment(

+ "coerced",

+ "'class' is a factor!")))

> commentQuestions(results, q1comments)

id-age-edu-class

student1 ""

student2 ""

student3 "'class' is a factor!"

student4 "'class' is a factor!"

student5 ""

In this case, we have just generated feedback for the students who generated a
character vector instead of the desired factor in Question 1 of the exercise.

Summary, discussion, and
future directions

The compare package is based around the compare() function, which compares
two objects for equality and, if they are not equal, attempts to transform the
objects to make them equal. It reports whether the comparison succeeded overall
and provides a record of the transformations that were attempted during the
comparison.

Further functions are provided on top of the compare() function to facilitate
marking exercises where students in a class submit R code in a file to create a
set of R objects.

This article has given some basic demonstrations of the use of the compare()
package for comparing objects and marking student submissions. The package
could also be useful for the students themselves, both to check whether they have
the correct answer and to provide feedback about how their answer differs from
the model answer. More generally, the compare() function may have application
wherever the identical() and all.equal() functions are currently in use. For
example, it may be useful when debugging code and for performing regression
tests as part of a quality control process.

Obvious extensions of the compare package include adding new transfor-
mations and providing comparison methods for other classes of objects. More
details about how the package works and how these extensions might be devel-
oped are discussed in the vignette, “Fundamentals of the Compare Package”,
which is installed as part of the compare package.

Acknowledgements

Many thanks to the editors and anonymous reviewers for their useful comments
and suggestions, on both this article and the compare package itself.

13

References

K.˜Hornik. The R FAQ, 2008. URL http://CRAN.R-project.org/doc/FAQ/

R-FAQ.html. ISBN 3-900051-08-9.

R Development Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria, 2008.
URL http://www.R-project.org. ISBN 3-900051-07-0.

14

http://CRAN.R-project.org/doc/FAQ/R-FAQ.html
http://CRAN.R-project.org/doc/FAQ/R-FAQ.html
http://www.R-project.org

