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1 Introduction

This document is a user’s guide for the R1 package collin for the visualization of the effects of
collinearity in distributed lag models (DLNM). The package usage is based on two elements provided
by the user: a model including a crossbasis created with the dlnm (https://cran.r-project.
org/web/packages/dlnm/), and a set of hypothesized true effects. Then, collin performs a simula-
tion study and provides a visualization of results to assess whether the actual results of the study
could be driven by collinearity, as described in the original work by Basagaña and Barrera-Gómez [1].
The illustrative examples used there are reproduced here.

∗jose.barrera@isglobal.org
†xavier.basagana@isglobal.org
1R is a free and open source software and it is available at CRAN (http://cran.r-project.org/).
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2 Getting started

The last version released on CRAN can be installed directly within an R session by:

install.packages("collin")

A brief overview of the package is obtained by:

library(collin)

##

## This is collin 0.0.4. For details, use:

## > help(package = ’collin’) and browseVignettes(’collin’)

##

## To cite the methods in the package use:

## > citation(’collin’)

help(package = "collin")

Once the package has been installed, the vignettes, including the most recent version of this
document, as well as the corresponding R code, are available through

browseVignettes("collin")

3 How does the package work?

The package works in a two-step procedure.

In the first step, the collindlnm function is used to simulate results from a DLNM created
with the dlnm package [2] and a hypothetical effect pattern, both provided by the user. The main
arguments of the collindlnm function are:

• model: the fitted DLNM, which includes a crossbasis, to be evaluated. Currently, models
allowed are those of class glm (i.e. a generalized linear model) or lme (i.e. a linear mixed
effects model).

• x: a matrix or a vector, depending on whether the hypothetical effect to be explored is linear
or non-linear, including the values of the predictor under study.

• cb: an object of class crossbasis, included in the model under study (model).

• at: the increase(s) in the predictor under study to be considered to report the effects of the
variable. If the hypothetical effect to be analyzed is linear, then it must be a single number.
If the hypothetical effect to be analyzed is non-linear, it must be a vector with at least two
different values, in order to approximate the shape of the effect.

• cen: the reference value of the predictor of interest, used to calculate effects. If the effect is
linear, the value of cen is irrelevant (and it is internally set to 0).
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• effect: if the effect is linear, a vector of length (maximum(lag) + 1) including the linear effect
at each lag. If the effect is non-linear, a matrix including the effect at each lag (columns) for
each value provided in at (rows).

• type: if type = "coef" (default), the hypothetical effect is supposed to be in the linear
predictor scale (i.e. it is considered as values of regression coefficient in model). If type =

"risk", the effect is supposed to be in terms of relative risks (i.e. exp(coef), as ORs or RRs
in logistic or Poisson families, respectively). If model is of class lme, then it must be type =

"coef" (default).

• shape: the shape of the relationship between the linear predictor and the outcome. Default
is, "linear". The case shape = "nonlinear" is currently implemented only if model is of
class glm.

• nsim: the number of simulations. Default is 100.

• seed: the seed for reproducibility of results. Default is seed = NULL (no seed).

In the second step, a visualization of the simulation study is displayed using the specific plot()
method, which allows to assessing whether the results of the original fitted model are compatible
with collinearity problems observed when considering the alternative hypothetical effect pattern.
The arguments for plot() depend on the hypothetical effect pattern being linear or non-linear.

For the case of a linear effect, the plot() method requires only two arguments:

• x: a result of the collindlnm.

• lags: indicator of the lags where the results are displayed. Default is lags = NULL, in which
case all lags are displayed.

For the case of a non-linear effect, the plot() method requires three additional arguments to
allow the user to set how the plots associated at each value of at are shown:

• show: default option, show = "manual", requires the user to manually set the numbers of
rows and columns to arrange the plots in a single array of plot, using the par function and
setting the value of mfrow. This is the most flexible option to arrange the visualization in a
document. The option show = "auto" is the same than show = "manual" except that the
value of mfrow is automatically set by the package. The option show = "sequence" shows
the plots sequentially, waiting for the user’s input before moving to the next plot.

• addlegend and varlegend: to add a label indicating, in each plot, the name of the predictor
under analysis and the value of at.

4 Illustrative examples

For further details on the following illustrative examples, see the original work [1]. Data sets mempm25
and rhospno2, included in the collin package and used in sections 4.1 and 4.2 of this document, are
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synthetic data sets generated with the R package synthpop2, based on real data sets used in the orig-
inal work [1]. Hence, results shown in this document can (and should) differ from the original results.

First, we set the number of simulations and the seed that will be applied to all examples:

mynsim <- 100 # number of simulations

myseed <- 23984 # seed

Additional packages required for the examples are:

library(nlme) # lme

library(dlnm)

## This is dlnm 2.4.7. For details: help(dlnm) and vignette(’dlnmOverview’).

library(splines) # ns

4.1 Example 1: Windows of susceptibility in a cohort study

Here, we used data from a study by Rivas et al. [3], which aimed to estimate the association between
air pollution exposure (PM2.5, in µg/m3) during the prenatal period and the first seven postnatal
years on working memory tests taken at age 8 in a cohort of 2221 children. Exposure matrix contains
the exposure to PM2.5 at pregnancy, and from years 1 to 7.

# data summary:

summary(mempm25)

## id session school sex agecen

## 0001 : 4 1:2221 07 : 584 female:4280 Min. :-1.87694

## 0002 : 4 2:2221 17 : 496 male :4604 1st Qu.:-0.75990

## 0003 : 4 3:2221 25 : 472 Median :-0.06722

## 0004 : 4 4:2221 05 : 440 Mean : 0.00000

## 0005 : 4 32 : 420 3rd Qu.: 0.71306

## 0006 : 4 09 : 412 Max. : 3.16891

## (Other):8860 (Other):6060 NA's :13

## educ resses pm25y0

## university :5224 Min. :-0.385097 Min. : 7.169

## secondary :2628 1st Qu.:-0.159291 1st Qu.:14.731

## primary or less than primary: 988 Median : 0.034258 Median :16.113

## NA's : 44 Mean : 0.007765 Mean :16.423

## 3rd Qu.: 0.163290 3rd Qu.:17.932

## Max. : 0.550387 Max. :30.071

## NA's :44

## pm25y1 pm25y2 pm25y3 pm25y4

## Min. : 7.406 Min. : 7.897 Min. : 7.969 Min. : 7.574

## 1st Qu.:15.305 1st Qu.:15.815 1st Qu.:16.409 1st Qu.:16.205

## Median :16.564 Median :17.277 Median :18.134 Median :17.818

## Mean :16.879 Mean :17.604 Mean :18.388 Mean :18.088

2https://cran.r-project.org/web/packages/synthpop/index.html
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## 3rd Qu.:18.271 3rd Qu.:19.252 3rd Qu.:20.114 3rd Qu.:19.849

## Max. :30.235 Max. :31.536 Max. :35.157 Max. :31.832

##

## pm25y5 pm25y6 pm25y7 wei

## Min. : 6.272 Min. : 5.847 Min. : 5.428 Min. : 1.051

## 1st Qu.:14.856 1st Qu.:13.483 1st Qu.:12.055 1st Qu.: 1.108

## Median :16.664 Median :15.291 Median :13.701 Median : 1.145

## Mean :16.927 Mean :15.402 Mean :13.967 Mean : 1.329

## 3rd Qu.:18.761 3rd Qu.:17.104 3rd Qu.:15.611 3rd Qu.: 1.231

## Max. :32.536 Max. :27.203 Max. :32.461 Max. :26.104

##

## wmemo

## Min. :-183.43

## 1st Qu.: 58.83

## Median : 128.55

## Mean : 128.18

## 3rd Qu.: 189.82

## Max. : 391.99

## NA's :717

# exposure with lags matrix:

pm25lags <- 0:7

nlagspm25 <- length(pm25lags)

E <- paste0("pm25y", pm25lags)

Qpm25 <- as.matrix(mempm25[, E])

# exposure pairwise correlations:

corQpm25 <- cor(Qpm25, use = "complete.obs")

rownames(corQpm25) <- colnames(corQpm25) <- E

print(corQpm25, digits = 3)

Pregnancy Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7

Pregnancy 1.00 0.92 0.89 0.88 0.74 0.61 0.60 0.56
Year 1 0.92 1.00 0.96 0.92 0.79 0.67 0.65 0.62
Year 2 0.89 0.96 1.00 0.92 0.74 0.65 0.59 0.58
Year 3 0.88 0.92 0.92 1.00 0.82 0.61 0.69 0.56
Year 4 0.74 0.79 0.74 0.82 1.00 0.81 0.80 0.82
Year 5 0.61 0.67 0.65 0.61 0.81 1.00 0.76 0.91
Year 6 0.60 0.65 0.59 0.69 0.80 0.76 1.00 0.69
Year 7 0.56 0.62 0.58 0.56 0.82 0.91 0.69 1.00

Table 1: Correlation between PM2.5 concentrations at different lags.

The correlation between exposure to PM2.5 at different periods, shown in Table 1 is high, with
18% of values exceeding 0.9. Children took the working memory tests in four repeated occasions
throughout a year and children were nested in schools, so a 3-level mixed effects model framework
was used. We used the distributed lag nonlinear model framework to model the effect of PM2.5. We
reproduced the original analyses by considering a linear effect of PM2.5 and restricting the lagged
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effects with a quadratic b-spline with two equally-spaced internal knots. The model was further
adjusted for age, sex, maternal education and residential neighborhood socioeconomic status. First,
we start with the estimation from single-lag models.

# set the exposure increase:

pm25change <- 10

# data.frame to store effects and CI:

pm25effects <- data.frame(lower = rep(NA, nlagspm25),

estimate = rep(NA, nlagspm25),

upper = rep(NA, nlagspm25))

# fit models:

for (i in 1:nlagspm25) {
# select exposure lag:

Ei <- Qpm25[, i]

# fit model for that single lag:

modi <- lme(wmemo ~ Ei + sex + agecen + educ + resses,

data = mempm25,

weights = ~ wei,

random = ~ 1|school/id,

na.action = na.omit,

control = lmeControl(opt = "optim"))

# get effect estimate (for Echange units increase):

pm25effects[i, ] <- pm25change * intervals(modi)$fixed["Ei", ]

}
rm(Ei, modi)

A graphical representation of the effects under single-lag models is shown in Figure 1, which has
been generated with the following code:

par(las = 1)

xvalues <- 0:(nlagspm25 - 1)

with(pm25effects,

plot(xvalues, estimate, ylim = range(pm25effects), pch = 19,

xlab = "Year", ylab = "Change in mean working memory"))

with(pm25effects, segments(xvalues, lower, xvalues, upper))

abline(h = 0, lty = 2)

According to Figure 1, models including only PM2.5 from a single period showed negative as-
sociations between PM2.5 and working memory across all periods. Now, we fit the distributed lag
model:

# create crossbasis:

df <- 5

ekn <- equalknots(x = c(0, nlagspm25 - 1),

nk = NULL,

fun = "bs",

df = df,

degree = 2,

intercept = TRUE)
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Figure 1: Estimated effect and 95% confidence intervals of a 10 µg/m3 increase
in PM2.5 exposure in working memory score across the different time
periods, obtained from single-lag models.

cbpm25 <- crossbasis(x = Qpm25,

lag = c(0, nlagspm25 - 1),

argvar = list(fun = "lin"),

arglag = list(fun = "bs", degree = 2, df = df, knots = ekn))

# fit model:

modmempm25 <- lme(wmemo ~ cbpm25 + sex + agecen + educ + resses,

data = mempm25,

weights = ~ wei,

random = ~ 1|school/id,

na.action = na.exclude,

control = lmeControl(opt = "optim"))

# predict effects at different lags

predmempm25 <- crosspred(basis = cbpm25, model = modmempm25, cen = 0, at = pm25change)

A graphical representation of the effects under the previous distributed lag model is shown in
Figure 2, which has been generated with the following code:

par(las = 1)

plot(predmempm25, var = pm25change, xlim = c(0, nlagspm25 - 1), main = "",

xlab = "Year", ylab = "Change in mean working memory")

According to Figure 2, the distributed lag model estimates strong opposing effects. Next, we will
check if collinearity is a potential explanation for these results. We first try if the obtained pattern
is consistent with a constant effect that has the same cumulative effect than the one obtained. The
cumulative effect estimated by the fitted model is stored in the object allfit within the output
predmempm25, which was obtained using the crosspred function above. We just need to divide that
cumulative effect by the number of lags and use it as the common hypothetical effect at all lags:
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Figure 2: Estimated effect and 95% confidence intervals of a 10 µg/m3 increase
in PM2.5 exposure in working memory score across the different time
periods, obtained from a distributed lag model.

# constant effect (divide cumulative by number of lags):

(conseffpm25 <- rep(predmempm25$allfit / nlagspm25, nlagspm25))

## 10 10 10 10 10 10 10 10

## -3.620734 -3.620734 -3.620734 -3.620734 -3.620734 -3.620734 -3.620734 -3.620734

Now we will pass the hypothetical effect to the collindlnm function. Since crosspred above
was applied to a linear model (specifically, of class lme), the results of the crosspred function are
expressed in terms of the regression coefficients of the model. Hence, we need to use collindlnm

with type = "coef", which is the default option, so we don’t need to specify it. Also, we don’t
need to set the argument shape because in this case the hypothetical effect is linear, which is the
default option for shape. Hence, the first step of the procedure is:

simconseffpm25 <- collindlnm(model = modmempm25, # the original fitted model

x = Qpm25, # matrix with PM2.5 values at each lag

cb = cbpm25, # the crossbasis included in the model

at = pm25change, # increase in PM2.5 to compute effects

effect = conseffpm25, # hypothetical effect

nsim = mynsim,

seed = myseed)

## .........10.........20.........30.........40.........50

## .........60.........70.........80.........90.........100

##

## Simulations done.

The second step of the procedure uses the plot() method to visualize the results, as shown in
Figure 3 using the following call to the plot() method:
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par(las = 1)

plot(simconseffpm25, xlab = "Year", ylab = "Change in mean working memory")
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Figure 3: Estimated effect of a 10 µg/m3 increase in PM2.5 exposure across the
different time periods over 100 simulations. Estimates from the same
simulation run are connected with lines. The red thick line represents
the effects observed in the real data set (i.e. original fitted model).
Results obtained when simulating a constant effect across all lags, with
the cumulative effect being equal to the estimated using the real data.

According to Figure 3, the observed pattern is not consistent with a constant effect at all lags,
with the same cumulative effect.

We try now another pattern, in which PM2.5 only has a (negative) effect at years 1 and 6, and
has no effect at the other years. The effect is 1.5 times the observed cumulative effect:

lag1and6effpm25 <- rep(0, nlagspm25)

lag1and6effpm25[c(2, 7)] <- 1.5 * predmempm25$allfit

round(lag1and6effpm25, 2)

## [1] 0.00 -43.45 0.00 0.00 0.00 0.00 -43.45 0.00

New simulations under that hypothetical effect:

simlag1and6effpm25 <- collindlnm(model = modmempm25,

x = Qpm25,

cb = cbpm25,

at = pm25change,

effect = lag1and6effpm25,

nsim = mynsim,

seed = myseed)

## .........10.........20.........30.........40.........50
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## .........60.........70.........80.........90.........100

##

## Simulations done.

And the results, shown in Figure 4, are obtained using the plot() method:

par(las = 1)

plot(simlag1and6effpm25, xlab = "Year", ylab = "Change in mean working memory")
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Figure 4: Estimated effect of a 10 µg/m3 increase in PM2.5 exposure across the
different time periods over 100 simulations. Estimates from the same
simulation run are connected with lines. The red thick line represents
the effects observed in the real data set (i.e. original fitted model).
Results obtained when simulating a real effect of years 1 and 6 (1.5
times the size of the cumulative effect estimated by the original model)
and no effect of all other periods.

The resulting curves in Figure 4 are not consistent with the observed pattern either. Finally,
we try another pattern, one in which PM2.5 only has a (negative) effect at lag 5, and has no effect
on the other lags. The effect is four times the observed cumulative effect:

lag5seffpm25 <- rep(0, nlagspm25)

lag5seffpm25[6] <- 4 * predmempm25$allfit

round(lag5seffpm25, 2)

## [1] 0.00 0.00 0.00 0.00 0.00 -115.86 0.00 0.00

New simulations under that hypothetical effect:

simlag5effpm25 <- collindlnm(model = modmempm25,

x = Qpm25,

cb = cbpm25,

at = pm25change,
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effect = lag5seffpm25,

nsim = mynsim,

seed = myseed)

## .........10.........20.........30.........40.........50

## .........60.........70.........80.........90.........100

##

## Simulations done.

And the results, shown in Figure 5, are obtained using the plot() method:

par(las = 1)

plot(simlag5effpm25, xlab = "Year", ylab = "Change in mean working memory")
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Figure 5: Estimated effect of a 10 µg/m3 increase in PM2.5 exposure across the
different time periods over 100 simulations. Estimates from the same
simulation run are connected with lines. The red thick line represents
the effects observed in the real data set (i.e. original fitted model).
Results obtained when simulating a real effect of year 5 (four times the
size of the cumulative effect estimated by the original model) and no
effect of all other periods.

Based on the observed results, this is a non-intuitive scenario. It was obtained after exploring
all possibilities in which there is an effect only in one of the periods. The scenario with an effect
only at year 5 (Figure 5) reproduced the most similar pattern to the observed one. This is an
interesting scenario because fitting the specified distributed lag model generates positive estimates
at years 3 and 4. The magnitude of the simulated effect (four times the observed cumulative effect)
was important, as only with large effects were we able to observe large deviations in the opposite
direction. However, even this scenario that generated similar curves to the observed pattern did
not generate curves as extreme as the observed one. Thus, we should conclude that this particular
alternative scenario is not compatible with the data.

Still, the example in Figure 5 shows a scenario in which a poor choice of function to constrain
lagged associations (smoothed lagged effects are not a good choice if exposure is associated with the
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outcome at only one period) in combination with the correlation between exposure at different times
(collinearity) and strong signal to noise ratio will lead to estimates that would report non-existent
negative effects at some years. Given the direction and magnitude of those biases, one could not
discard the possibility that a bad choice of constraining functions combined with collinearity may
have a role in explaining the unexpected positive results.

In reality, however, no one knows the true data generating mechanism, which makes the choice
of the appropriate lag function difficult.

4.2 Example 2: Time series study with linear effects

In this example, we analyzed the relationship between the daily number of hospital admissions for
respiratory causes and ambient NO2 concentrations (in µg/m3) in the city of Barcelona (Spain) for
years 2006-2015:

summary(rhospno2)

## date t year dow

## Min. :2006-01-01 Min. : 366 Min. :2006 Sunday :522

## 1st Qu.:2008-07-01 1st Qu.:1279 1st Qu.:2008 Monday :522

## Median :2010-12-31 Median :2192 Median :2010 Tuesday :522

## Mean :2010-12-31 Mean :2192 Mean :2010 Wednesday:522

## 3rd Qu.:2013-07-01 3rd Qu.:3104 3rd Qu.:2013 Thursday :522

## Max. :2015-12-31 Max. :4017 Max. :2015 Friday :521

## Saturday :521

## temp no2 hresp

## Min. : 1.40 Min. : 3.00 Min. : 8.00

## 1st Qu.:11.78 1st Qu.: 46.00 1st Qu.: 26.00

## Median :16.80 Median : 60.00 Median : 34.00

## Mean :16.96 Mean : 61.34 Mean : 35.88

## 3rd Qu.:22.40 3rd Qu.: 74.00 3rd Qu.: 43.00

## Max. :30.40 Max. :159.00 Max. :103.00

## NA's :77

We used the DLNM framework with a generalized linear model with the quasi-Poisson family
to allow for overdispersion. In particular, we assumed the effect of NO2 to be linear (in the log
scale), explored lagged effects of up to 14 days, and constrained the lag function to follow a natural
spline with three internal knots equally-spaced in the log scale. The model was further adjusted
for day of the week, temperature (using a crossbasis with a natural spline with 4 equally-spaced
internal knots to model the non-linear effects of temperature, and a natural spline with 3 internal
knots equally-spaced on the log scale to model the lag structure up to lag 21), and for trend and
seasonality (using a natural spline of time with 7 degrees of freedom per year).

First, we need to create the matrix of the lagged values of the exposure, which can be done
using the lagpad function. This function has two arguments: x, the numeric vector to be lagged,
and k, the number of lags to be applied:

# create matrix with lagged data:

nlagsno2 <- 15 # number of lags considered (14 + 1)
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Qno2 <- matrix(NA, nrow = dim(rhospno2)[1], ncol = nlagsno2)

for (i in 1:nlagsno2)

Qno2[, i] <- lagpad(x = rhospno2$no2, k = i - 1)

# correlation betweeen exposures:

corQno2 <- cor(Qno2, use = "complete.obs")

rownames(corQno2) <- colnames(corQno2) <- paste0("lag", 0:(nlagsno2 - 1))

print(corQno2, digits = 2)

Given day -1 d. -2 d. -3 d. -4 d. -5 d. -6 d. -7 d. -8 d. -9 d. -10 d. -11 d. -12 d. -13 d. -14 d.

Given day 1.00 0.62 0.33 0.22 0.18 0.21 0.30 0.38 0.27 0.13 0.08 0.09 0.12 0.23 0.32
-1 d. 0.62 1.00 0.62 0.33 0.22 0.19 0.21 0.31 0.38 0.27 0.14 0.09 0.09 0.13 0.24
-2 d. 0.33 0.62 1.00 0.62 0.34 0.23 0.19 0.21 0.31 0.39 0.28 0.14 0.09 0.09 0.13
-3 d. 0.22 0.33 0.62 1.00 0.62 0.34 0.23 0.20 0.22 0.31 0.39 0.28 0.15 0.10 0.10
-4 d. 0.18 0.22 0.34 0.62 1.00 0.62 0.34 0.23 0.20 0.22 0.31 0.40 0.29 0.15 0.11
-5 d. 0.21 0.19 0.23 0.34 0.62 1.00 0.62 0.35 0.23 0.20 0.22 0.32 0.40 0.29 0.16
-6 d. 0.30 0.21 0.19 0.23 0.34 0.62 1.00 0.62 0.35 0.23 0.20 0.22 0.32 0.40 0.30
-7 d. 0.38 0.31 0.21 0.20 0.23 0.35 0.62 1.00 0.62 0.35 0.24 0.20 0.23 0.33 0.41
-8 d. 0.27 0.38 0.31 0.22 0.20 0.23 0.35 0.62 1.00 0.62 0.34 0.23 0.20 0.23 0.33
-9 d. 0.13 0.27 0.39 0.31 0.22 0.20 0.23 0.35 0.62 1.00 0.62 0.34 0.23 0.20 0.23

-10 d. 0.08 0.14 0.28 0.39 0.31 0.22 0.20 0.24 0.34 0.62 1.00 0.62 0.35 0.23 0.20
-11 d. 0.09 0.09 0.14 0.28 0.40 0.32 0.22 0.20 0.23 0.34 0.62 1.00 0.63 0.35 0.24
-12 d. 0.12 0.09 0.09 0.15 0.29 0.40 0.32 0.23 0.20 0.23 0.35 0.63 1.00 0.63 0.35
-13 d. 0.23 0.13 0.09 0.10 0.15 0.29 0.40 0.33 0.23 0.20 0.23 0.35 0.63 1.00 0.63
-14 d. 0.32 0.24 0.13 0.10 0.11 0.16 0.30 0.41 0.33 0.23 0.20 0.24 0.35 0.63 1.00

Table 2: Correlation between NO2 concentrations at different lags.

The correlation between NO2 concentrations at different lags, shown in Table 2, were lower than
in the previous example (Table 1), with highest values around 0.6 for adjacent days.

Now, we start the modelling with the estimates when including single lags in the model:

# crossbasis for temperature

# Fixing the knots at equally spaced values of temperature and at equally spaced

# log-values of lag. From:

# https://github.com/gasparrini/2010_gasparrini_StatMed_Rcode/blob/master/Rcode.R

ktemp <- equalknots(rhospno2$temp, nk = 4)

nlagstemp <- 22 # maximum lag for temperature + 1

klag <- logknots(nlagstemp - 1, nk = 3)

cbtemp <- crossbasis(x = rhospno2$temp,

argvar = list(knots = ktemp),

arglag = list(knots = klag),

lag = nlagstemp - 1)

# number of years for the time spline:

nyears <- diff(range(rhospno2$year)) + 1

# get beta coefficients and CI for each model:

coefsno2single <- data.frame(estimate = rep(NA, nlagsno2),
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lower = rep(NA, nlagsno2),

upper = rep(NA, nlagsno2))

for (i in 1:nlagsno2) {
# select exposure lag:

Ei <- Qno2[, i]

# fit model:

modi <- glm(hresp ~ Ei + cbtemp + ns(t, 7 * nyears) + dow,

data = rhospno2,

family = quasipoisson,

na.action = na.exclude)

# get beta estimates and CI:

ints <- confint.default(modi)

coefsno2single$lower[i] <- ints["Ei", "2.5 %"]

coefsno2single$estimate[i] <- summary(modi)$coefficients["Ei", "Estimate"]

coefsno2single$upper[i] <- ints["Ei", "97.5 %"]

}

# set the exposure increase:

no2change <- 10

# compute effects (RRs):

effectno2single <- exp(no2change * coefsno2single)

A graphical representation of the effects under single-lag models is shown in Figure 6, which has
been generated with the following code:

par(las = 1)

xvalues <- 0:(nlagsno2 - 1)

with(effectno2single,

plot(xvalues, estimate, ylim = range(effectno2single), pch = 19, xlab = "Lag", ylab = "RR"))

with(effectno2single, segments(xvalues, lower, xvalues, upper))

abline(h = 1, lty = 2)

According to Figure 6, single-lag models showed significant increases in risk of respiratory hospi-
tal admission (i.e. relative risk, RR > 1) at lags 0 and 6, other periods with elevated non-significant
RRs, and a non-significant RR < 1 at lags 1 and 2. Now, we fit the distributed lag model to the
data:

# crossbasis for NO2 (linear effect):

lagknots <- logknots(nlagsno2 - 1, nk = 3)

cbno2 <- crossbasis(x = rhospno2$no2,

lag = c(0, (nlagsno2 - 1)),

argvar = list(fun = "lin"),

arglag = list(fun = "ns", knots = lagknots))

In this case in which we are going to include two crossbases in the model that will be passed to
collindlnm, it gives problems because of the names:
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Figure 6: Estimated relative risk (RR) and 95% confidence intervals of hospital
admission for respiratory causes for a 10 µg/m3 increase in ambient NO2

concentration across the different time periods, obtained from single-lag
models.

colnames(cbtemp)

## [1] "v1.l1" "v1.l2" "v1.l3" "v1.l4" "v1.l5" "v2.l1" "v2.l2" "v2.l3" "v2.l4"

## [10] "v2.l5" "v3.l1" "v3.l2" "v3.l3" "v3.l4" "v3.l5" "v4.l1" "v4.l2" "v4.l3"

## [19] "v4.l4" "v4.l5" "v5.l1" "v5.l2" "v5.l3" "v5.l4" "v5.l5"

colnames(cbno2)

## [1] "v1.l1" "v1.l2" "v1.l3" "v1.l4" "v1.l5"

all(colnames(cbno2) %in% colnames(cbtemp))

## [1] TRUE

To solve it, we need to change the names of one of the crossbasis:

# change the names of the crossbassis for temperature:

aux <- as.data.frame(cbtemp)

ncbtemp <- dim(cbtemp)[2]

crosstempnames <- paste0("crosstemp", 1:ncbtemp)

names(aux) <- crosstempnames

rhospno2 <- cbind(rhospno2, aux)

rm(aux)

names(rhospno2)

## [1] "date" "t" "year" "dow" "temp"

## [6] "no2" "hresp" "crosstemp1" "crosstemp2" "crosstemp3"

## [11] "crosstemp4" "crosstemp5" "crosstemp6" "crosstemp7" "crosstemp8"
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## [16] "crosstemp9" "crosstemp10" "crosstemp11" "crosstemp12" "crosstemp13"

## [21] "crosstemp14" "crosstemp15" "crosstemp16" "crosstemp17" "crosstemp18"

## [26] "crosstemp19" "crosstemp20" "crosstemp21" "crosstemp22" "crosstemp23"

## [31] "crosstemp24" "crosstemp25"

Now we can fit the model with the two crossbases:

# model formula:

formhosp <- paste0("hresp ~ cbno2 + ",

paste(crosstempnames, collapse = " + "),

" + ns(t, 7 * nyears) + dow")

(formhosp <- as.formula(formhosp))

## hresp ~ cbno2 + crosstemp1 + crosstemp2 + crosstemp3 + crosstemp4 +

## crosstemp5 + crosstemp6 + crosstemp7 + crosstemp8 + crosstemp9 +

## crosstemp10 + crosstemp11 + crosstemp12 + crosstemp13 + crosstemp14 +

## crosstemp15 + crosstemp16 + crosstemp17 + crosstemp18 + crosstemp19 +

## crosstemp20 + crosstemp21 + crosstemp22 + crosstemp23 + crosstemp24 +

## crosstemp25 + ns(t, 7 * nyears) + dow

# fit model:

modrhospno2 <- glm(formhosp, family = quasipoisson, na.action = na.exclude, data = rhospno2)

# predict effects at different lags:

predrhospno2 <- crosspred(basis = cbno2, model = modrhospno2, cen = 0, at = no2change)

A graphical representation of the effects under the previous distributed lag model is shown in
Figure 7, which has been generated with the following code:

par(las = 1)

plot(predrhospno2, var = no2change, xlim = c(0, nlagsno2 - 1), main = "", xlab = "Day",

ylab = "RR of hospital admission")

According to Figure 7, when fitting the distributed lag model, there was a statistically signifi-
cant increase in respiratory hospital admissions associated with levels of NO2 at lag 0, followed by
a statistically significant decreased risk at lags 1 and 2, and a subsequent statistically significant
increase around lag 5. The decrease in risk at lags 1 and 2 could be consistent with the harvesting
or short-term mortality displacement phenomenon (details in the original work [1]). However, there
is also the possibility that this decrease in risk and the subsequent increases around lag 5 could be
explained by collinearity since, as we showed above, collinearity can induce estimates with opposing
signs. To explore its plausibility, we will analyze a hypothetical truth in which the real effect exists
only at lag 0, with the same size as the estimated by the fitted model.

# Effect (RRs) only at lags 0, same as observed

RRveclag0 <- rep(1, nlagsno2)

RRveclag0[1] <- predrhospno2$matRRfit[, "lag0"]

RRveclag0

## [1] 1.006564 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

## [9] 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
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Figure 7: Estimated relative risk (RR) and 95% confidence intervals of hospital
admission for respiratory causes for a 10 µg/m3 increase in ambient
NO2 concentration across the different time periods, obtained from a
distributed lag model.

Now we pass the hypothetical effect to collindlnm. Since it is given as RRs, we need to set type
= "risk":

simlag0effno2 <- collindlnm(model = modrhospno2,

x = Qno2,

cb = cbno2,

at = no2change,

effect = RRveclag0,

type = "risk",

nsim = mynsim,

seed = myseed)

## .........10.........20.........30.........40.........50

## .........60.........70.........80.........90.........100

##

## Simulations done.

The results, shown in Figure 8, are obtained using the plot() method:

par(las = 1)

plot(simlag0effno2, xlab = "Day", ylab = "RR of hospital admission")

Results displayed in Figure 8 show that, under a hypothetical truth in which only lag 0 has a
real effect, the pattern of the estimated effects bear some similarity to those obtained with the real
data (red line), so that collinearity could be involved in these results. I.e. even under the situation
in which only lag 0 has a real effect, distributed lag models can suggest a reduction in risk at lags
1-2 and subsequent increases in risk around lag 5. It is important to note that the observed pattern
is compatible with many real scenarios, and in particular it is also compatible with a scenario with
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Figure 8: Estimated relative risk (RR) of hospital admission for respiratory cause
for a 10 µg/m3 increase in ambient NO2 concentration across different
lags, obtained from a distributed lag model, over 100 simulations. Es-
timates from the same simulation run are connected with lines. The
results were obtained when simulating an effect only at lag 0 and of the
same magnitude as the estimated with the real data. The red thick line
represents the RRs estimated with the real data set.

a real increase in risk at lag 0 and a real decrease in risk at lag 2 (e.g. because of the harvesting
phenomenon) (details in the original work [1]).

4.3 Example 3: Time series study with nonlinear effects

In this example, we analyzed the relationship between daily mortality and ambient temperature in
Chicago from 1987 to 2000. These data are available as part of the R package dlnm:

chica <- chicagoNMMAPS[, c("date", "time", "year", "dow", "death", "temp", "pm10")]

summary(chica)

## date time year dow

## Min. :1987-01-01 Min. : 1 Min. :1987 Sunday :731

## 1st Qu.:1990-07-02 1st Qu.:1279 1st Qu.:1990 Monday :730

## Median :1993-12-31 Median :2558 Median :1994 Tuesday :730

## Mean :1993-12-31 Mean :2558 Mean :1994 Wednesday:730

## 3rd Qu.:1997-07-01 3rd Qu.:3836 3rd Qu.:1997 Thursday :731

## Max. :2000-12-31 Max. :5114 Max. :2000 Friday :731

## Saturday :731

## death temp pm10

## Min. : 69.0 Min. :-26.667 Min. : -3.05

## 1st Qu.:105.0 1st Qu.: 1.667 1st Qu.: 20.77

## Median :114.0 Median : 10.556 Median : 30.25

## Mean :115.4 Mean : 10.107 Mean : 33.74

## 3rd Qu.:124.0 3rd Qu.: 19.444 3rd Qu.: 42.42
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## Max. :411.0 Max. : 33.333 Max. :356.18

## NA's :251

First, we calculate the matrix of lagged values of temperature:

# create matrix with lagged data:

nlagstemp <- 31 # number of lags considered (30 + 1)

Qtemp <- matrix(NA, nrow = dim(chica)[1], ncol = nlagstemp)

for (i in 1:nlagstemp) {
Qtemp[, i] <- lagpad(x = chica$temp, k = i - 1)

}
colnames(Qtemp) <- paste0("lag", 0:(nlagstemp - 1))

# correlation betweeen exposures

corQtemp <- cor(Qtemp, use = "complete.obs")

rownames(corQtemp) <- colnames(corQtemp) <- paste0("lag", 0:(nlagstemp - 1))

The correlation between temperature in two consecutive days is 0.94, the correlation is still
greater than 0.8 for days separated by 8 days or less, and it is around 0.7 for a 30-day separa-
tion. We used the distributed lag nonlinear model framework, with the same specifications used in
the vignette of the dlnm package, to model the association between mortality and temperature. [2]

Namely, we used a crossbasis for temperature, using a quadratic b-spline with 3 equally-spaced in-
ternal knots to model the exposure-response association, and a natural spline with 3 equally-spaced
internal knots in the log space to model the lagged association up to lag 30. The quasi-Poisson
regression model included as additional covariates day of the week, PM10 concentrations (modeled
with a crossbasis assuming linear effects and a strata lag structure up to lag 1), and a control for
trends and seasonality with a natural spline of time with 7 degrees of freedom per year.

First, we create the crossbasis for PM10:

# crossbasis for PM10:

cbpm10 <- crossbasis(x = chica$pm10,

lag = 1,

argvar = list(fun = "lin"),

arglag = list(fun = "strata"))

# problems with models with 2 crossbases because of names. Rename:

chica$baspm <- cbpm10

rm(cbpm10)

Now, we start the modelling with the estimates when including single lags in the model:

# reference value of temperature for effects calculation:

centemp <- 21

# evaluation points (values of temperature):

attemp <- c(-20, 0, 33)
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# get beta coefficients and CI for each model:

coefs <- lower <- upper <- matrix(NA, nrow = dim(Qtemp)[2], ncol = length(attemp))

# number of years for time spline:

nyearschica <- diff(range(chica$year, na.rm = TRUE)) + 1

for (i in 1:nlagstemp) {
Ei <- Qtemp[, i]

# crossbasis for lag i of temperature:

cbi <- onebasis(Ei, fun = "bs", knots = ktemp, degree = 2)

# fit model:

modi <- glm(death ~ cbi + baspm + ns(time, 7 * nyearschica) + dow,

data = chica,

family = quasipoisson)

# get effect estimates and CI:

predi <- crosspred(basis = cbi, model = modi, at = attemp, cen = centemp)

lower[i, ] <- t(predi$matRRlow)

coefs[i, ] <- t(predi$matRRfit)

upper[i, ] <- t(predi$matRRhigh)

}

A graphical representation of the effects under single-lag models is shown in Figure 9, which has
been generated with the following code:

par(las = 1, mfrow = c(3, 1), mar = c(4, 4, 0, 2) + 0.1)

for (i in 1:length(attemp)) {
plot(0:(nlagstemp - 1), coefs[, i], pch = 19, ylim = c(min(lower[, i]), max(upper[, i])),

xlab = "", ylab = "RR")

segments(0:(nlagstemp - 1), lower[, i], 0:(nlagstemp - 1), upper[, i])

abline(h = 1, lty = 2)

legend("topright", paste0("Temp = ", attemp[i]))

mtext("Lag", side = 1, line = 2, cex = 0.7)

}

Figure 9 shows that mortality risk increased with cold temperatures for lags < 10 days, except
for lag 0, which even showed a protective effect at 0◦C (compared to 21◦C). For heat, increased
risks during the first four days were observed, followed by some lags with protective effects. Now
fit the distributed lag model to the data:

# fixing the knots at equally spaced log values of lag:

klag <- logknots(nlagstemp - 1, nk = 3)

# crossbasis matrix for temperature:

cbtemp <- crossbasis(x = chica$temp,

argvar = list(fun = "bs", knots = ktemp),

arglag = list(knots = klag),

lag = nlagstemp - 1)

# fit model:
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Figure 9: Relative risks (RR) and 95% confidence intervals for the associations
between temperature and mortality by lag, using single-lag models.
Results are presented for temperatures -20◦C, 0◦C, 33◦C, taking 21◦C
as a reference. The effect of temperature was modeled using a quadratic
b-spline with 3 equally-spaced internal knots.

modtemp <- glm(death ~ cbtemp + baspm + ns(time, 7 * nyearschica) + dow,

data = chica,

family = quasipoisson)

# effect estimates:

predtemp <- crosspred(basis = cbtemp, model = modtemp, at = attemp, cen = centemp)

A graphical representation of the effects under the previous distributed lag model is shown in
Figure 10, which has been generated with the following code:

par(las = 1, mfrow = c(3, 1), mar = c(4, 4, 0, 2) + 0.1)

plot(predtemp, var = attemp[1])

legend("topright", paste0("Temp = ", attemp[1]))

plot(predtemp, var = attemp[2], yaxt = "n", ylim = c(0.94, 1.05))

axis(2, at = c(0.96, 0.98, 1, 1.02, 1.04))

legend("topright", paste0("Temp = ", attemp[2]))
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plot(predtemp, var = attemp[3])

legend("topright", paste0("Temp = ", attemp[3]))
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Figure 10: Relative risks (RR) and 95% confidence intervals for the associations
between temperature and mortality by lag, using a distributed lag
model. Results are presented for temperatures -20◦C, 0◦C, 33◦C, tak-
ing 21◦C as a reference. The effect of temperature was modeled using
a crossbasis with a quadratic b-spline with 3 equally-spaced internal
knots for the exposure-response association and a natural spline with
3 equally-spaced internal knots in the log space to model the lagged
association.

According to Figure 10, associations were similar but more precise than those from single-lag
models (Figure 9). A protective association at lag 0 was detected at both -20◦C and 0◦C. Now, we
analyze the scenario in which there were no true RRs below one:

RRmattemp <- predtemp$matRRfit

round(RRmattemp, 2)

## lag0 lag1 lag2 lag3 lag4 lag5 lag6 lag7 lag8 lag9 lag10 lag11 lag12 lag13

## -20 0.93 1.01 1.05 1.05 1.03 1.02 1.02 1.01 1.01 1.01 1.01 1.01 1.01 1

## 0 0.95 1.00 1.02 1.02 1.02 1.01 1.01 1.01 1.00 1.00 1.00 1.00 1.00 1

## 33 1.20 1.50 1.55 1.39 1.23 1.13 1.06 1.03 1.01 1.00 1.00 1.00 1.00 1

22



## lag14 lag15 lag16 lag17 lag18 lag19 lag20 lag21 lag22 lag23 lag24 lag25

## -20 1 1 1 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

## 0 1 1 1 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

## 33 1 1 1 1 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01

## lag26 lag27 lag28 lag29 lag30

## -20 1.00 1.00 1.00 1.00 1.00

## 0 1.00 1.00 1.00 1.00 1.00

## 33 1.01 1.01 1.01 1.01 1.01

attempc <- as.character(attemp)

attempc

## [1] "-20" "0" "33"

# all effects null from lag 8 included

RRmattemp[, paste0("lag", 6:(nlagstemp - 1))] <- 1

# at temp 1:

RRmattemp[attempc[1], paste0("lag", 0:2)] <- 1

RRmattemp[attempc[1], paste0("lag", 3:5)] <- c(1.07, 1.12, 1.06)

# at temp 2:

RRmattemp[attempc[2], paste0("lag", 0:2)] <- 1

RRmattemp[attempc[2], paste0("lag", 3:5)] <- c(1.08, 1.03, 1.01)

# at temp 3:

RRmattemp[attempc[3], paste0("lag", 0:5)] <- c(1.15, 1.20, 1.22, 1.15, 1.10, 1.04)

RRmattemp

## lag0 lag1 lag2 lag3 lag4 lag5 lag6 lag7 lag8 lag9 lag10 lag11 lag12 lag13

## -20 1.00 1.0 1.00 1.07 1.12 1.06 1 1 1 1 1 1 1 1

## 0 1.00 1.0 1.00 1.08 1.03 1.01 1 1 1 1 1 1 1 1

## 33 1.15 1.2 1.22 1.15 1.10 1.04 1 1 1 1 1 1 1 1

## lag14 lag15 lag16 lag17 lag18 lag19 lag20 lag21 lag22 lag23 lag24 lag25

## -20 1 1 1 1 1 1 1 1 1 1 1 1

## 0 1 1 1 1 1 1 1 1 1 1 1 1

## 33 1 1 1 1 1 1 1 1 1 1 1 1

## lag26 lag27 lag28 lag29 lag30

## -20 1 1 1 1 1

## 0 1 1 1 1 1

## 33 1 1 1 1 1

Now we need to set type = "risk" (because we have RRs) and shape = "nonlinear":

simchicalag0null <- collindlnm(model = modtemp,

x = chica$temp,

cb = cbtemp,

at = attemp,

cen = centemp,

effect = RRmattemp,
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type = "risk",

shape = "nonlinear",

nsim = mynsim,

seed = myseed)

## .........10.........20.........30.........40.........50

## .........60.........70.........80.........90.........100

##

## Simulations done.

The results, shown in Figure 11, are obtained using the plot() method:

par(las = 1, mfrow = c(3, 1), mar = c(4, 4, 2, 2))

plot(simchicalag0null, varlegend = "Temperature")

The plot() method also allows the user to select a subset of lags to be shown, using the
argument lags (by default, all lags are shown). Also, we can set show = "auto" to let the grid
plot be arranged automatically. For instance, the following code produces Figure 12:

par(las = 1)

plot(simchicalag0null, lags = 0:8, show = "auto", varlegend = "Temperature")

The gray lines in Figure 11 show the results obtained when data were simulated from a scenario
in which there were no true RRs below one. Hence, results obtained in that scenario could be com-
patible with the estimated effects using the real data, i.e. RR < 1 at lag 0 for cold temperatures
and RR < 1 at the second week for hot temperatures. Still, even after exploring several potential
scenarios, the observed results lay at the extreme of the obtained distribution. This, and the fact
that single-lag models also show RR < 1 at lag 0 for cold temperatures, suggest that there might
be other explanations for this result.
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Figure 11: Estimated relative risks (RR) for mortality as a function of tempera-
ture obtained from distributed lag models, over 100 simulations. Es-
timates from the same simulation run are connected with gray lines.
The red thick line represents the RRs observed in the real data set.
Results are presented for temperatures -20◦C, 0◦C, 33◦C, taking 21◦C
as a reference. The results were obtained when simulating data with
the following RRs: At temperature -20◦C: RR = 1 at lags 0-2, and
6-30, RR = 1.07 at lag 3, RR = 1.12 at lag 4 and RR = 1.06 at lag 5;
at temperature 0◦C: RR = 1 for lags 0-2 and 6-30, RR = 1.08 at lag
3, RR = 1.03 at lag 4, RR 1.01 at lag 5; at temperature 33◦C: RR =
1.15 at lag 0, RR = 1.2 at lag 1, RR 1.22 at lag 2, RR = 1.15 at lag
3, RR = 1.10 at lag 4, RR = 1.04 at lag 5 and RR = 1 at lags 6-30.
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Figure 12: (Same than Figure 11 but showing until lag 10). Estimated relative
risks (RR) for mortality as a function of temperature obtained from
distributed lag models, over 100 simulations. Estimates from the same
simulation run are connected with gray lines. The red thick line rep-
resents the RRs observed in the real data set. Results are presented
for temperatures -20◦C, 0◦C, 33◦C, taking 21◦C as a reference. The
results were obtained when simulating data with the following RRs:
At temperature -20◦C: RR = 1 at lags 0-2, and 6-30, RR = 1.07 at
lag 3, RR = 1.12 at lag 4 and RR = 1.06 at lag 5; at temperature
0◦C: RR = 1 for lags 0-2 and 6-30, RR = 1.08 at lag 3, RR = 1.03
at lag 4, RR 1.01 at lag 5; at temperature 33◦C: RR = 1.15 at lag 0,
RR = 1.2 at lag 1, RR 1.22 at lag 2, RR = 1.15 at lag 3, RR = 1.10
at lag 4, RR = 1.04 at lag 5 and RR = 1 at lags 6-30.
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