Package ‘cointmonitoR’

October 12, 2022
Type Package

Title Consistent Monitoring of Stationarity and Cointegrating
Relationships

Date 2016-06-14

Version 0.1.0

Description We propose a consistent monitoring procedure to detect a
structural change from a cointegrating relationship to a spurious
relationship. The procedure is based on residuals from modified least
squares estimation, using either Fully Modified, Dynamic or Integrated
Modified OLS. It is inspired by Chu et al. (1996) <DOI:10.2307/2171955> in
that it is based on parameter estimation on a pre-break ““calibration" period
only, rather than being based on sequential estimation over the full sample.
See the discussion paper <DOI:10.2139/ssrn.2624657> for further information.
This package provides the monitoring procedures for both the cointegration
and the stationarity case (while the latter is just a special case of the
former one) as well as printing and plotting methods for a clear
presentation of the results.

URL https://github.com/aschersleben/cointmonitoR

BugReports https://github.com/aschersleben/cointmonitoR/issues
License GPL-3

Depends cointReg (>=0.2.0)

Imports stats, graphics, matrixStats (>= 0.14.1)

RoxygenNote 5.0.1

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Philipp Aschersleben [aut, cre],
Martin Wagner [aut] (Author of underlying paper.),
Dominik Wied [aut] (Author of underlying paper.)

Maintainer Philipp Aschersleben <aschersleben@statistik.tu-dortmund.de>
Repository CRAN
Date/Publication 2016-06-14 20:34:46

https://doi.org/10.2307/2171955
https://doi.org/10.2139/ssrn.2624657
https://github.com/aschersleben/cointmonitoR
https://github.com/aschersleben/cointmonitoR/issues

2

cointmonitoR-package

R topics documented:

Index

cointmonitoR-package L 2
monitorCointegrationo e 3
monitorStationarity L. e e e e e e 5
plot.cointmonitoR L e 8
print.cointmonitoR oL 10

12

cointmonitoR-package The cointmonitoR package

Description

Consistent Monitoring of Stationarity and Cointegrating Relationships

Details

See the vignette:
vignette(”cointmonitoR")

See the DESCRIPTION:
help(package = cointmonitoR)

See the README:
https://github.com/aschersleben/cointmonitoR/blob/master/README . md

Open the package documentation page:
package?cointmonitoR

Further information and bug reporting:
https://github.com/aschersleben/cointmonitoR

Functions

monitorCointegration
This procedure is able to monitor a cointegration model for level or trend cointegration and
returns the corresponding break point, if available. It is based on parameter estimation on a
pre-break "calibration" period at the beginning of the sample that is known or assumed to be
free of structural change.

monitorStationarity
This procedure is a special case of monitorCointegration, since it’s able to monitor a one-
dimensional vector for level or trend stationarity.

print
Print clear results.

plot
Plot the test statitics and the values/residuals of a cointmonitoR model.

https://github.com/aschersleben/cointmonitoR/blob/master/README.md
https://github.com/aschersleben/cointmonitoR

monitorCointegration 3

Dependencies

This package mainly depends on our cointReg package.

monitorCointegration Procedure for Monitoring Level and Trend Cointegration

Description

This procedure is able to monitor a cointegration model for level or trend cointegration and returns
the corresponding break point, if available. It is based on parameter estimation on a pre-break
"calibration" period at the beginning of the sample that is known or assumed to be free of structural
change and can be specified exactly via the m argument (see Details for further information).

Usage

monitorCointegration(x, y, m = @.25, model = c("FM", "D", "IM"),
trend = FALSE, kernel = c("ba", "pa", "qgs", "tr"), bandwidth = c("and”,
"nw"), D.options = NULL, signif.level = 0.05, return.stats = TRUE,
return.input = TRUE, check = TRUE, ...)

Arguments

X [numeric Imatrix | data.frame]
Data on which to apply the monitoring procedure (RHS).

y [numeric Imatrix | data.frame]
Data on which to apply the monitoring procedure (LHS). Has to be one-dimensional.
If matrix, it may have only one row or column, if data. frame just one column.

m [numeric(1)]
Length of calibration period as fraction of the data’s length (between 0.1 and
0.9) or as number of observations (see Details).

model [character(1)]
The model to be used for modified OLS calculations. Should be one of FM-OLS
("FM™), D-OLS ("D") or IM-OLS ("IM").

trend [logical]
Should an intercept and a linear trend be included? If FALSE (default), only an
intercept is included.

kernel [character(1)]
The kernel function to use for calculating the long-run variance. Default is
Bartlett kernel ("ba"), see Details for alternatives.

bandwidth [character(1) | numeric(1)]
The bandwidth to use for calculating the long-run variance. Default is Andrews
(1991) ("and"), an alternative is Newey West (1994) ("nw"). You can also set
the bandwidth manually.

https://cran.r-project.org/package=cointReg

4 monitorCointegration

D.options [1ist INULL]
Options for the D-OLS calculations. A list with elements n.lead, n.lag, kmax
and info.crit —or NULL (then default arguments are the same as in cointRegD.
See that help page for further information.) Missing list elements will be re-
placed automatically.

signif.level [numeric(1)]
Level of significance (between 0.01 and 0.1). Detection time will be calculated
only if the estimated p-value is smaller than signif.level. Default is 0.05.

return.stats [logical]
Whether to return all test statistics. Default is TRUE.

return.input [logical]
Whether to return the input data, default is TRUE.

check [logical]
Wheather to check (and if necessary convert) the arguments. See checkVars for
further information.

Arguments passed to getBandwidthNW (inter, weights), if bandwidth = "nw".

Details

The calibration period can be set by setting the argument m to the number of the last observation,
that should be inside this period. The corresponding fraction of the data’s length will be calculated
automatically. Alternatively you can set m directly to the fitting fraction value, but you should
pay attention to the fact, that the calibration period may become smaller than intended: The last
observation is calculated as floor (m % N) (with N the length of x).
The kernel that is used for calculating the long-run variance can be one of the following:

* "ba": Bartlett kernel

e "pa": Parzen kernel

° Ilqs
e "tr": Truncated kernel

n

: Quadratic Spectral kernel

Value

cointmonitoR object with components:

Hsm [numeric (1)] value of the test statistic

time [numeric(1)] detected time of structural break

p.value [numeric(1)] estimated p-value of the test (between 0.01 and 0.1)
cv [numeric(1)] critical value of the test

sig [numeric(1)] significance level used for the test

residuals [numeric] residuals of the modified OLS model to be used for calculating the test
statistics

model [character (1)] cointOLS model ("FM", "D", or "IM")

trend [character(1)] trend model ("level" or "trend")

monitorStationarity 5

name [character (1)] name(s) of data

m[list(2)] list with components:
$m. frac [numeric(1)]: calibration period (fraction)
$m. index [numeric(1)]: calibration period (length)

kernel [character(1)] kernel function

bandwidth [1ist(2)] $name [character(1)]: bandwidth function (name)
$number [numeric(1)]: bandwidth

statistics [numeric] values of test statistics with the same length as data, but NA during calibra-
tion period (available if return.stats = TRUE)

input [numeric Imatrix | data.frame] copy of input data (available if return.stats = TRUE)

D.options [list]information about further parameters (available if model = "D")

References

* Wagner, M. and D. Wied (2015): "Monitoring Stationarity and Cointegration," Discussion
Paper, DOI:10.2139/ssrn.2624657.

See Also

Other cointmonitoR: monitorStationarity, plot.cointmonitoR, print.cointmonitoR

Examples

set.seed(42)

x = data.frame(x1 = cumsum(rnorm(200)), x2 = cumsum(rnorm(200)))
eps1 = rnorm(200, sd = 2)

eps2 = c(eps1[1:100], cumsum(eps1[101:200]))

y = x$x1 - x$x2 + 10 + eps]
monitorCointegration(x = x, y =y, m = 0.5, model = "FM")

y2 =y + seq(1, 30, length = 200)

monitorCointegration(x = x, y = y2, m = 0.5, model = "FM")
monitorCointegration(x = x, y = y2, m = 0.5, trend = TRUE, model = "FM")
y3 = x$x1 - x$x2 + 10 + eps2

monitorCointegration(x = x, y = y3, m = 0.5, model = "FM")
monitorCointegration(x = x, y = y3, m = 0.5, model = "D")
monitorCointegration(x = x, y = y3, m = 0.5, model = "IM")

monitorStationarity Procedure for Monitoring Level and Trend Stationarity

http://dx.doi.org/10.2139/ssrn.2624657

6 monitorStationarity

Description

This procedure is able to monitor a one-dimensional vector for level or trend stationarity and returns
the corresponding break point, if available. It is based on parameter estimation on a pre-break
"calibration" period at the beginning of the sample that is known or assumed to be free of structural
change and can be specified exactly via the m argument (see Details for further information).

Usage

monitorStationarity(x, m = 0.25, trend = FALSE, kernel = c("ba", "pa",
"gs", "tr"), bandwidth = c("and”, "nw"), signif.level = 0.05,
return.stats = TRUE, return.input = TRUE, check = TRUE, ...)

Arguments

X [numeric Imatrix | data.frame]
Data on which to apply the monitoring procedure. If matrix, it may have only
one row or column, if data. frame just one column.

m [numeric(1)]
Length of calibration period as fraction of the data’s length (between 0.1 and
0.9) or as number of observations (see Details).

trend [logical]
Should an intercept and a linear trend be included? If FALSE (default), only an
intercept is included.

kernel [character(1)]
The kernel function to use for calculating the long-run variance. Default is
Bartlett kernel ("ba"), see Details for alternatives.

bandwidth [character(1) | numeric(1)]
The bandwidth to use for calculating the long-run variance. Default is Andrews
(1991) ("and"), an alternative is Newey West (1994) ("nw"). You can also set
the bandwidth manually.

signif.level [numeric(1)]
Level of significance (between 0.01 and 0.1). Detection time will be calculated
only if the estimated p-value is smaller than signif.level. Default is 0.05.

return.stats [logical]
Whether to return all test statistics. Default is TRUE.

return.input [logical]
Whether to return the input data, default is TRUE.

check [logical]
Wheather to check (and if necessary convert) the arguments. See checkVars for
further information.

Arguments passed to getBandwidthNW (inter, weights), if bandwidth = "nw".

Details

The calibration period can be specified by setting the argument m to the number of its last observa-
tion. The corresponding fraction of the data’s length will be calculated automatically. Alternatively

monitorStationarity 7

you can set m directly to the fitting fraction value. Attention: The calibration period may become
smaller than intended: The last observation is calculated as floor(m * N) (with N = length of x).

The kernel that is used for calculating the long-run variance can be one of the following:

e "ba": Bartlett kernel

n n

e "pa": Parzen kernel

n n

gs": Quadratic Spectral kernel

e "tr": Truncated kernel

Value

cointmonitoR object with components:

Hsm [numeric (1)] value of the test statistic

time [numeric(1)] detected time of structural break

p.value [numeric(1)] estimated p-value of the test (between 0.01 and 0.1)
cv [numeric(1)] critical value of the test

sig [numeric(1)] significance level used for the test

trend [character(1)] trend model ("level” or "trend")

name [character (1)] name(s) of data

m[list(2)] list with components:
$m. frac [numeric(1)]: calibration period (fraction)
$m. index [numeric(1)]: calibration period (length)

kernel [character(1)] kernel function

bandwidth [1ist(2)] $name [character(1)]: bandwidth function (name)
$number [numeric(1)]: bandwidth

statistics [numeric] values of test statistics with the same length as data, but NA during calibra-
tion period (available if return.stats = TRUE)

input [numeric I matrix | data.frame] copy of input data (available if return.stats = TRUE)

References
* Wagner, M. and D. Wied (2015): "Monitoring Stationarity and Cointegration," Discussion
Paper, DOI:10.2139/ssrn.2624657.
See Also

Other cointmonitoR: monitorCointegration, plot.cointmonitoR, print.cointmonitoR

http://dx.doi.org/10.2139/ssrn.2624657

8 plot.cointmonitoR

Examples

set.seed(1909)
X <= rnorm(200)
x2 <= c(x[1:100], cumsum(x[101:200]1) / 2)

Specify the calibration period

as fraction of the total length of x:
monitorStationarity(x, m = 0.25)
monitorStationarity(x2, m = 0.465)

Specify the calibration period

by setting its last observation exactly:
monitorStationarity(x, m = 50)
monitorStationarity(x2, m = 93)

plot.cointmonitoR Plot Method for Monitoring Procedures.

Description

Plotting objects of class "cointmonitoR".

Usage

S3 method for class 'cointmonitoR'
plot(x, what = "test”, type, main, xlab, ylab,
axes = TRUE, legend = TRUE, main.val, xlab.val, ylab.val, lines = TRUE,

.
Arguments
X [cointmonitoR]
Object of class "cointmonitoR", i.e. the result of monitorStationarity or
monitorCointegration.
what [character]
Whether to plot test statistics ("test”) (default) or the values/residuals of the
tested time series ("values” or "residuals”) or "both"”. Works only, if return.stats
= TRUE in the called function that to get x (default setting).
type [character]

Plot type (from plot). Defaultis "1".
main, xlab, ylab
[character]
Title and axis titles (from plot). Default values will be generated from the
contents of x.
axes, legend [logical]
Whether to add axes (from plot) and a legend to the plot.

plot.cointmonitoR 9

main.val, xlab.val, ylab.val
[character]
Title and axis titles (from plot) for the second plot, if generating both plots
in one step (see argument what). Default values will be generated from the
contents of x.

lines [logical]
Whether to add lines and annotations to the plot. Default is TRUE.

[any]
Further arguments passed to plot.

See Also

Other cointmonitoR: monitorCointegration, monitorStationarity, print.cointmonitoR

Examples

Monitoring stationarity (no break):
set.seed(1909)

X = rnorm(200)

test = monitorStationarity(x, m = @.5)
plot(test)

oldpar = par(mfrow = c(2, 1), mar = c(4, 4, 1, 1))
plot(test, what = "both"”, legend = FALSE, main = "", main.val = "")
par(oldpar)

Monitoring stationarity (break):

x = c¢(x[1:100], cumsum(rnorm(100, sd = 0.5)) + x[101:200])
test2 = monitorStationarity(x, m = 0.5)

plot(test2)

oldpar = par(mfrow = c(2, 1), mar = c(4, 4, 1, 1))
plot(test2, what = "both”, legend = FALSE, main = "", main.val = "")
par(oldpar)

Monitoring cointegration (no break):

set.seed(42)

x = data.frame(x1 = cumsum(rnorm(200)), x2 = cumsum(rnorm(200)))
eps1 = rnorm(200, sd = 2)

y = x$x1 - x$x2 + 10 + eps]

test3 = monitorCointegration(x = x, y =y, m = 0.5, model = "FM")
plot(test3)

oldpar = par(mfrow = c(2, 1), mar = c(4, 4, 1, 1))
plot(test3, what = "both”, legend = FALSE, main = "", main.val = "")
par (oldpar)

Monitoring cointegration (break):
eps2 = c(eps1[1:100], cumsum(eps1[101:200]))

10 print.cointmonitoR

y = x$x1 - x$x2 + 10 + eps2
test4 = monitorCointegration(x = x, y =y, m = 0.5, model = "FM")
plot(test4)

oldpar = par(mfrow = c(2, 1), mar = c(4, 4, 1, 1))

plot(test4, what = "both”, legend = FALSE, main = "", main.val = "")
par(oldpar)
print.cointmonitoR Print Method for Monitoring Procedures.
Description

Printing objects of class "cointmonitoR".

Usage
S3 method for class 'cointmonitoR'
print(x, ..., digits = getOption("digits"))
Arguments
X [cointmonitoR]

Object of class "cointmonitoR", i.e. the result of monitorStationarity() or
monitorCointegration().

ignored

digits [numeric]
Number of significant digits to be used.

Value

The invisible x object.

See Also

Other cointmonitoR: monitorCointegration, monitorStationarity, plot.cointmonitoR

Examples

set.seed(42)
test = monitorStationarity(rnorm(100), m = 0.5)
print(test)

x = data.frame(x1 = cumsum(rnorm(200)), x2 = cumsum(rnorm(200)))
eps1 = rnorm(200, sd = 2)

eps2 = c(eps1[1:100], cumsum(eps1[101:200]))

y1 = x$x1 - x$x2 + 10 + epsl

print.cointmonitoR

y2 = x$x1 - x$x2 + 10 + eps2
testl = monitorCointegration(x
print(test1)

test2 = monitorCointegration(x
print(test2)

=yl, m

=y2, m=

0.5, model

0.5, model

"EM™)

n FMH)

11

Index

checkVars, 4, 6
cointmonitoR-package, 2
cointRegD, 4

getBandwidthNW, 4, 6

monitorCointegration, 2, 3, 7-10
monitorStationarity, 2, 5, 5, 8-10

plot, 2,8, 9
plot.cointmonitoR, 5, 7, 8, 10
print, 2
print.cointmonitoR, 5,7, 9, 10

12

	cointmonitoR-package
	monitorCointegration
	monitorStationarity
	plot.cointmonitoR
	print.cointmonitoR
	Index

