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1 Introduction

Coding matrices are essentially a convenience for fitting linear models that involve factor
predictors. To a large extent, they are arbitrary, and the choice of coding matrix for the fac-
tors should not normally affect any substantive aspect of the analysis. Nevertheless some
users become very confused about this very marginal role of coding (and contrast) matrices.
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More pertinently, with Analysis of Variance tables that do not respect the marginality prin-
ciple, the coding matrices used do matter, as they define some of the hypotheses that are
implicitly being tested. In this case it is clearly vital to be clear on how the coding matrix
works.

My first attempt to explain the working of coding matrices was with the first edition of
MASS, (Venables and Ripley, 1992). It was very brief as neither my co-author or I could be-
lieve this was a serious issue with most people. It seems we were wrong. With the following
three editions of MASS the amount of space given to the issue generally expanded, but space
constraints precluded our giving it anything more than a passing discussion.

In this vignette I hope to give a better, more complete and simpler explanation of the con-
cepts. The package it accompanies, contrastMatrices offers replacement for the standard
coding function in the stats package, which I hope will prove a useful, if minor, contribution
to the R community.

2 Some theory

Consider a single classification model with p classes. Let the class means be µ1,µ2, . . . ,µp,
which under the outer hypothesis are allowed to be all different.

Let µ= (µ1,µ2, . . . ,µp)T be the vector of class means.

If the observation vector is arranged in class order, the incidence matrix, Xn×p is a binary
matrix with the following familiar structure:

Xn×p =


1n1 0 · · · 0
0 1n2 · · · 0
...

... . . . ...
0 0 · · · 1np

 (1)

where the class sample sizes are clearly n1,n2, . . . ,np and n = n1 +n2 + ·· ·+np is the total
number of observations.

Under the outer hypothesis1 the mean vector, η, for the entire sample can be written, in
matrix terms

η=Xµ (2)

Under the usual null hypothesis the class means are all equal, that is, µ1 =µ2 = ·· · =µp =µ.,
say. Under this model the mean vector may be written:

η= 1nµ. (3)

Noting that X is a binary matrix with a singly unity entry in each row, we see that, trivially:

1n =X1p (4)

This will be used shortly.
1Sometimes called the alternative hypothesis.
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2.1 Transformation to new parameters

Let Cp×p be a non-singular matrix, and rather than using µ as the parameters for our
model, we decide to use an alternative set of parameters defined as:

β=Cµ (5)

Since C is non-singular we can write the inverse transformation as

µ=C−1β=Bβ (6)

Where it is convenient to define B=C−1.

We can write our outer model, (2), in terms of the new parameters as

η=Xµ=XBβ (7)

So using X̃ = XB as our model matrix (in R terms) the regression coefficients are the new
parameters, β.

Notice that if we choose our transformation C in such a way to ensure that one of the
columns, say the first, of the matrix B = C−1 is a column of unities, 1p, we can separate
out the first column of this new model matrix as an intercept column.

Before doing so, it is convenient to label the components of β as

βT = (β0,β1,β2, . . . ,βp−1)= (β0,βT
⋆)

that is, the first component is separated out and labelled β0.

Assuming now that we can arrange for the first column of B to be a column of unities we
can write:

XBβ=X
[
1p B⋆

][
β0

β
(p−1)×1
⋆

]
=X

(
1pβ0 +B⋆β⋆

)
=X1pβ0 +XB⋆β⋆

= 1nβ0 +X⋆β⋆

(8)

Thus under this assumption we can express the model in terms of a separate intercept term,
and a set of coefficients β(p−1)×1

⋆ with the property that

The null hypothesis, µ1 = µ2 = ·· · = µp, is true if and only if β⋆ = 0p−1, that is,
all the components of β⋆ are zero.

The p× (p−1) matrix B⋆ is called a coding matrix. The important thing to note about it is
that the only restriction we need to place on it is that when a vector of unities is prepended,
the resulting matrix B= [1p B⋆] must be non-singular.

In R the familiar stats package functions contr.treatment, contr.poly, contr.sum and
contr.helmert all generate coding matrices, and not necessarily contrast matrices as the
names might suggest. We look at this in some detail in Section 3 on page 6, Examples.

The contr.* functions in R are based on the ones of the same name used in S and S-PLUS.
They were formally described in Chambers and Hastie (1992), although they were in use
earlier. (This was the same year as the first edition of MASS appeared as well.)
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2.2 Contrast and averaging vectors

We define

An averaging vector as any vector, cp×1, whose components add to 1, that is, cT1p = 1,
and

A contrast vector as any non-zero vector cp×1 whose components add to zero, that is,
cT1p = 0.

Essentially an averaging vector a kind of weighted mean2 and a contrast vector defines a
kind of comparison.

We will call the special case of an averaging vector with equal components:

ap×1 =
(

1
p , 1

p , . . . , 1
p

)T
(9)

a simple averaging vector.

Possibly the simplest contrast has the form:

c= (0, . . . ,0,1,0, . . . ,0,−1,0, . . . ,0)T

that is, with the only two non-zero components −1 and 1. Such a contrast is sometimes
called an elementary contrast. If the 1 component is at position i and the −1 at j, then the
contrast cTµ is clearly µi −µ j, a simple difference.

Two contrasts vectors will be called equivalent if one is a scalar multiple of the other, that
is, two contrasts c and d are equivalent if c=λd for some number λ.3

2.3 Choosing the transformation

Following on our discussion of transformed parameters, note that the matrix B has two roles

• It defines the original class means in terms of the new parameters: µ=Bβ and

• It modifies the original incidence design matrix, X , into the new model matrix XB.

Recall also that β= Cµ= B−1µ so the inverse matrix B−1 determines how the transformed
parameters relate to the original class means, that is, it determines what the interpretation
of the new parameters in terms of the primary ones.

Choosing a B matrix with an initial column of ones is the first desirable feature we want,
but we would also like to choose the transformation so that the parameters β have a ready
interpretation in terms of the class means.

2Note, however, that some of the components of an averaging vector may be zero or negative.
3If we augment the set of all contrast vectors of p components with the zero vector, 0p, the resulting set is

a vector space, C , of dimension p−1. The elementary contrasts clearly form a spanning set.
The set of all averaging vectors, a, with p components does not form a vector space, but the difference of any

two averaging vectors is either a contrast or zero, that is it is in the contrast space: c= a1 −a2 ∈C .
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Write the rows of C as cT0 ,cT1 , . . . ,cTp−1. Then

Ip =CB=


cT0
cT1
...
cTp−1

[
1p B⋆

]=


cT0 1p cT0 B⋆

cT1 1p cT1 B⋆
...

...
cT0 1p cTp−1B⋆

 (10)

Equating the first columns of both sides gives:
cT0 1p
cT1 1p
...
cT0 1p

=


1
0
...
0

 (11)

This leads to the important result that if B= [1p B⋆] then

• The first row of cT0 of C is an averaging vector and

• The remaining rows cT1 ,cT2 , . . . ,cTp−1 will be contrast vectors.

It will sometimes be useful to recognize this dichotomy my writing C in a way that partitions
off the first row. We then write:

C=
[
cTo
C⋆

T

]
(12)

Most importantly, since the argument is reversible, choosing C as a non-singular matrix in
this way, that is as an averaging vector for the first row and a linearly independent set of
contrasts vectors as the remaining rows, will ensure that B has the desired form B= [1p B⋆].

Note that

• How we choose the averaging vector c0 for the first row will determine the relationship
between the intercept coefficient, β0, and the class means, and

• How we choose the contrasts, C⋆ will determine the interpretation of the regression
coefficients β⋆ in terms of the class means.

Suppose we choose c0 as a simple averaging vector: c0 = 1
p1p. The first row of equation (10)

now shows that [
1 0Tp−1

]
=

[
1
p1Tp1p

1
p1TpB⋆

]
(13)

and hence 1TpB⋆ = 0Tp−1, which implies that in this special case the columns of the coding
matrix, B⋆ are also contrast vectors, (though not necessarily the same contrasts as, or even
equivalent to, those in the rows of C).

2.4 Orthogonal contrasts

A set of vectors c1, . . . ,cp−1 is called orthogonal if cTi c j = 0 if i ̸= j. Suppose now we choose
the C matrix with
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• The first row as a simple averaging vector, c0 = 1
p1p, and

• The remaining rows, c1, . . . ,cp−1 as a set of orthogonal contrasts.

A simple averaging vector is orthogonal to every contrast by the definition of contrast, so
in this case the rows of the matrix C are all orthogonal vectors. This implies that CTC is a
diagonal matrix:

CCT =



1
p2 1Tp1p 0 0 · · · 0

0 cT1 c1 0 · · · 0
0 0 cT2 c2 · · · 0
...

...
... . . . ...

0 0 0 · · · cTp−1cp−1

=D say. (14)

Noting that, trivially, Ip =CCT(CCT)−1 and since CB= Ip it follows that,

B=CT(CCT)−1 =CTD−1 (15)

Furthermore since in this case D−1 is a diagonal matrix, it follows that each of the columns
of B is a (strictly positive) scalar multiple of the corresponding row of C. So in particular
the contrasts in B and C are, one for one, equivalent.

We may summarise this by noting that

• The columns of the coding matrix, B⋆, are contrast vectors if and only if the averaging
vector c0 is a simple averaging vector, and

• In addition, the corresponding contrast vectors in the columns of B and in the rows of
C are equivalent, if and only if either of them form an orthogonal set.

3 Examples

Note on numerical displays: This section will display a number of patterned matrices and
to make the patterns more visible we use the fractional package to replace the numbers
by vulgar fractions and any zeros by dots.

We also use the package dplyr but mostly just for the pipe operator %>%, to simplify the
appearance of the code.

library(dplyr)

library(fractional)

To see the effect compare the two displays of the same matrix shown in Figure 1 on the next
page.
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M <- (cbind(diag(4), 0)/7 - cbind(0, diag(4))/3) %>% print

[,1] [,2] [,3] [,4] [,5]

[1,] 0.1428571 -0.3333333 0.0000000 0.0000000 0.0000000

[2,] 0.0000000 0.1428571 -0.3333333 0.0000000 0.0000000

[3,] 0.0000000 0.0000000 0.1428571 -0.3333333 0.0000000

[4,] 0.0000000 0.0000000 0.0000000 0.1428571 -0.3333333

M <- (cbind(diag(4), 0)/7 - cbind(0, diag(4))/3) %>% fractional %>% print

[,1] [,2] [,3] [,4] [,5]

[1,] 1/7 -1/3 . . .

[2,] . 1/7 -1/3 . .

[3,] . . 1/7 -1/3 .

[4,] . . . 1/7 -1/3

Figure 1: Effect of using the fractional package on displays

3.1 Control versus treatments contr.treatment and code_control

The default coding matrix for “unordered” factors is given by the stats package function
contr.treatment. We can see what the matrix looks like by an example.

levs <- letters[1:5]

Bstar <- contr.treatment(levs) %>% fractional %>% print

b c d e

a . . . .

b 1 . . .

c . 1 . .

d . . 1 .

e . . . 1

To see what the implied regression coefficients mean we look at the C matrix. The columns
of B⋆ are clearly not contrasts, so we expect that the correspond averaging vector will not
be a simple averaging vector.

B <- cbind(Ave = 1, Bstar) %>% fractional %>% print

Ave b c d e

a 1 . . . .

b 1 1 . . .

c 1 . 1 . .

d 1 . . 1 .

e 1 . . . 1

C <- solve(B) %>% fractional %>% print

a b c d e

Ave 1 . . . .

b -1 1 . . .

c -1 . 1 . .
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d -1 . . 1 .

e -1 . . . 1

Hence the regression coefficients, including the intercept, are

β0 =µ1, β1 =µ2 −µ1, β2 =µ3 −µ1, . . . ,βp−1 =µp −µ1

So the contrasts are all elementary contrasts of the succeeding class means with the first.

The convenience function, mean_contrasts, provides this kind of information more directly:

mean_contrasts(contr.treatment(levs))

m1 m2 m3 m4 m5

Ave 1 . . . .

b -1 1 . . .

c -1 . 1 . .

d -1 . . 1 .

e -1 . . . 1

The package alternative to contr.treatment is code_control. It generates a very different
coding matrix, but the contrasts are the same. The averaging vector, however is now simple,
that is, with equal weights:

Bstar <- code_control(levs) %>% fractional %>% print

b-a c-a d-a e-a

1 -1/5 -1/5 -1/5 -1/5

2 4/5 -1/5 -1/5 -1/5

3 -1/5 4/5 -1/5 -1/5

4 -1/5 -1/5 4/5 -1/5

5 -1/5 -1/5 -1/5 4/5

mean_contrasts(Bstar)

m1 m2 m3 m4 m5

Ave 1/5 1/5 1/5 1/5 1/5

b-a -1 1 . . .

c-a -1 . 1 . .

d-a -1 . . 1 .

e-a -1 . . . 1

Hence the intercept term will now be the average of the class means, but the remaining
coefficients will be the same.

We can verify this by a small example.

geno <- MASS::genotype

ggplot(geno) + aes(x = Mother, y = Wt) + ylab("Mean litter weight (gms)") +

geom_boxplot(fill = "sky blue", col = "navy") + xlab("Mother genotype")
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Mmeans <- with(geno, tapply(Wt, Mother, mean))

rbind(Means = Mmeans) %>% booktabs

A B I J

Means 55.40 58.70 53.36 48.68

m1 <- aov(Wt ~ Mother, geno)

rbind("From m1:" = coef(m1),

"By hand:" = c(Mmeans[1], Mmeans[-1] - Mmeans[1])) %>% booktabs

(Intercept) MotherB MotherI MotherJ

From m1: 55.40 3.30 -2.04 -6.72
By hand: 55.40 3.30 -2.04 -6.72

Changing to the alternative coding function gives a different intercept term, but the same
contrasts:

m2 <- update(m1, contrasts = list(Mother = "code_control"))

rbind("From m2:" = coef(m2),

"By hand:" = c(mean(Mmeans), Mmeans[-1] - Mmeans[1])) %>% booktabs

(Intercept) MotherB-A MotherI-A MotherJ-A

From m2: 54.04 3.30 -2.04 -6.72
By hand: 54.04 3.30 -2.04 -6.72

Notice that the intercept term is the average of the class means, which is different from the
overall mean in this case, since the class sizes are not equal:

rbind("Comparison:" = c(coef(m2)[1], "Grand mean" = mean(geno$Wt))) %>% booktabs
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(Intercept) Grand mean

Comparison: 54.04 53.97

3.1.1 Difference contrasts

A variant of the control versus treatment contrast scheme is what we call “difference” con-
trasts in Venables and Ripley (2002). Rather than compare each mean with the first, under
this scheme each class mean is compared to the one preceding sit, as in a table of differences.
The package provides two two versions. The first, contr.diff is like contr.treatment in
that the averaging vector is just the first mean:

mean_contrasts(contr.diff(5))

m1 m2 m3 m4 m5

Ave 1 . . . .

2-1 -1 1 . . .

3-2 . -1 1 . .

4-3 . . -1 1 .

5-4 . . . -1 1

The second, code_diff is like code_control with a simple average vector:

mean_contrasts(code_diff(5))

m1 m2 m3 m4 m5

Ave 1/5 1/5 1/5 1/5 1/5

2-1 -1 1 . . .

3-2 . -1 1 . .

4-3 . . -1 1 .

5-4 . . . -1 1

We suggest these might be useful for ordered factors as they would show, for example, if the
means were monotonic in factor level order.

The default coding function for ordered factors is contr.poly, which envisages the levels of
the factor as corresponding to equally spaced values of an underlying continuous covariate.
This assumption is not always met, however.

3.2 Deviation contrasts, code_deviation and contr.sum

These two functions essentially do the same job apart from a minor change to labelling of
the result.

The pattern in the coding matrix is as follows:

Bstar <- code_deviation(levs) %>% fractional %>% print

MD1 MD2 MD3 MD4

1 1 . . .
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2 . 1 . .

3 . . 1 .

4 . . . 1

5 -1 -1 -1 -1

Note that these columns now are contrast vectors. They are linearly independent but they
are not orthogonal. Hence we can conclude that it leads to a simple averaging vector. The
contrast pattern is shown as follows:

mean_contrasts(Bstar)

m1 m2 m3 m4 m5

Ave 1/5 1/5 1/5 1/5 1/5

MD1 4/5 -1/5 -1/5 -1/5 -1/5

MD2 -1/5 4/5 -1/5 -1/5 -1/5

MD3 -1/5 -1/5 4/5 -1/5 -1/5

MD4 -1/5 -1/5 -1/5 4/5 -1/5

The general pattern is now clear. We have for the regression coefficients in terms of the
class means the following:

β0 = 1
p

∑p
j=1µ j = µ̄, β1 =µ1 − µ̄, β2 =µ2 − µ̄, . . . , βp−1 =µp−1 − µ̄

So if we add a final coefficient βp = µp − µ̄ to make a symmetric arrangement, the model for
the class means can be written as

µ j =β0 +β j, j = 1, . . . , p, with
∑p

j=1β j = 0

The induced constraint is usually described by saying that the “effects” sum to zero, and
hence the name contr.sum. The alternative description is that the contrasts are the devia-
tions of the means from their simple average.

3.3 Helmert contrasts, contr.helmert and code_helmert

Helmert coding matrices were the original default codings in the early releases of R and
indeed in S-PLUS and S beforehand. As hardly anyone understood what they were they
were immensely unpopular and were eventually democratically overthrown and replaced
by control versus treatment contrasts, which everyone believed that they did understand,
even if this were not entirely true.

Before outlining the likely original reasoning behind their original adoption, we need to see
what they were. The standard function gives a simple pattern of codings:

Bstar0 <- contr.helmert(levs) %>% fractional %>% print

[,1] [,2] [,3] [,4]

a -1 -1 -1 -1

b 1 -1 -1 -1

c . 2 -1 -1
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d . . 3 -1

e . . . 4

Note that the columns of this coding matrix are not just contrasts but orthogonal contrasts.

The alternative coding we propose gives a set differently scaled contrast vectors, but equiv-
alent to the standard coding set:

Bstar1 <- code_helmert(levs) %>% fractional %>% print

H2 H3 H4 H5

1 -1/2 -1/3 -1/4 -1/5

2 1/2 -1/3 -1/4 -1/5

3 . 2/3 -1/4 -1/5

4 . . 3/4 -1/5

5 . . . 4/5

The standard version leads to the contrast matrix:

mean_contrasts(Bstar0)

m1 m2 m3 m4 m5

Ave 1/5 1/5 1/5 1/5 1/5

-1/2 1/2 . . .

-1/6 -1/6 1/3 . .

-1/12 -1/12 -1/12 1/4 .

-1/20 -1/20 -1/20 -1/20 1/5

and since the columns of Bstar0 were orthogonal, the mean contrasts are equivalent to
them, that is, essentially the same apart from scaling.

The alternative coding leads to the mean contrast pattern:

mean_contrasts(Bstar1)

m1 m2 m3 m4 m5

Ave 1/5 1/5 1/5 1/5 1/5

H2 -1 1 . . .

H3 -1/2 -1/2 1 . .

H4 -1/3 -1/3 -1/3 1 .

H5 -1/4 -1/4 -1/4 -1/4 1

which is slightly easier to describe. The intercept term is again a simple average of the class
means. The regression coefficient β j, j > 0 represent a comparison of µ j+1 with the average
of all the means preceding it in the levels order:

β j =
{ 1

p
∑p

j=1µ j =µ1:p for j = 0

µ j+1 − 1
j
∑ j

k=1µk =µ j+1 −µ1: j for j = 1,2, . . . , (p−1)
(16)

The reason Helmert codings were originally chosen is not clear (to me) although I suspect
something like the following reasoning took place.
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• Coding matrices with contrast vectors as their columns had the advantage of giving an
intercept the simple average of the class means. While this is not important in simple
one-factor models, it does become more slightly important with multi-factor models
(as we shall see in a later section).

• Matrices with orthogonal columns are, in general, numerically very stable even for
large cases, and were very quick and easy to invert.

• Coding matrices with orthogonal contrast columns provided the user, (should they care
to look at them), with a vies of the mean contrasts that result, up to equivalence.

• For standard analysis of variance problems the coding matrix used would not normally
influence the inferential outcome, anyway, so interpretability per se has low priority.

None of these is particularly convincing, which is probably why they were eventually re-
placed by treatment versus control contrasts in response to the popular prejudice.

4 The double classification

4.1 Incidence matrices

A double classification is defined by two factors, say f and g. Suppose they have p and
q levels respectively. A model specified in R terms as ~ f*G is essentially equivalent to
a single classification model with pq classes defined by the distinct combinations of f and
g. We can generate the incidence matrix explicitly using a formula such as ~ 0+f:g. An
example is as follows.

dat <- data.frame(f = rep(letters[1:3], each = 4),

g = rep(LETTERS[1:2], each = 2, length.out = 12))

cbind(model.matrix(~0+f, dat), "----" = 0,

model.matrix(~0+g, dat), "----" = 0,

model.matrix(~ 0 + f:g, dat)) %>% fractional

fa fb fc ---- gA gB ---- fa:gA fb:gA fc:gA fa:gB fb:gB fc:gB

1 1 . . . 1 . . 1 . . . . .

2 1 . . . 1 . . 1 . . . . .

3 1 . . . . 1 . . . . 1 . .

4 1 . . . . 1 . . . . 1 . .

5 . 1 . . 1 . . . 1 . . . .

6 . 1 . . 1 . . . 1 . . . .

7 . 1 . . . 1 . . . . . 1 .

8 . 1 . . . 1 . . . . . 1 .

9 . . 1 . 1 . . . . 1 . . .

10 . . 1 . 1 . . . . 1 . . .

11 . . 1 . . 1 . . . . . . 1

12 . . 1 . . 1 . . . . . . 1
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If X f and Xg are the incidence matrices for f and g respectively, and X f g the incidence
matrix for the subclasses, notice that X f g can be generated by taking X f and multiplying
it, componentwise, by each column of Xg in turn and joining the results as the partitions to
form a n× pq matrix, namely X f g. More formally:

• If fT is the i−th row of X f and

• If gT is the i−th row of Xg,

• The i−th row of X f g is their Kronecker product gT⊗ fT. (Note the reversed order.)

It is useful to note that the X f and Xg can be recovered from X f g by adding selected columns
together, as well as the intercept term. The relevant relations are

X f =X f g (
1q ⊗Ip

)
Xg =X f g (

Iq ⊗1p
)

1n =X f g (
1q ⊗1p

)=X f g1pq

An easily proved mild generalization of these relations, namely:

X f B=X f g (
1q ⊗B

)
XgD=X f g (

D⊗1p
) (17)

(for any multiplicatively coherent matrices B and D) will be useful later.

4.2 Transformations of the mean

Although the full model for a double classification can be regarded as a single classification,
the customary transformations of the mean are in practice restricted to those which respect
its two-factor origins.

For simplicity we assume that all cells are filled, so under the full model all cell means are
estimable. Under this assumption we can write the pq cell means in as a p× q matrix, µ••.
When we deal with the subclass means as a vector, µ (got by stacking each column of µ••
underneath each other—the vec operation), the bullet subscripts will be omitted.

µp×q
•• =


µ11 µ12 · · · µ1q
µ21 µ22 · · · µ2q

...
... . . . ...

µp1 µp2 · · · µpq

 , µpq×1 = vec(µ••) (18)

Let C f and Cg be the contrast matrices corresponding to the full coding matrices B f and Bg

respectively. That is:

B f =
[
1p B f

⋆

]
=C f −1

Bg = [
1q Bg

⋆

]=Cg−1
(19)
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with the inverse relations:

C f =
c f

0
T

C f
⋆

T

=B f −1

Cg =
[

cg
0
T

Cg
⋆
T

]
=Bg−1

(20)

Linear transformations that respect the two-factor structure are of the form:

β•• =C fµ••C
gT or in vector terms β=

(
Cg ⊗C f

)
µ (21)

The inverse relationship is then:

µ•• =B fβ••B
gT and in vector terms µ=

(
Bg ⊗B f

)
β (22)

First consider the transformations of the mean, Equation 21. We partition the matrix as:

β•• =C fµ••C
gT =

c f
0
T

C f
⋆

T

µ••
[
cg

0 Cg
⋆

]=
c f

0
T
µ••c

g
0 c f

0
T
µ••C

g
⋆

C f
⋆

T
µ••c

g
0 C f

⋆

T
µ••C

g
⋆

=
β00 βT

0⋆

β⋆0 β⋆⋆

 (23)

With this notation:

• β00 will be the intercept coefficient

• β⋆0 and β0⋆ are called the f and g main effects, respectively, and

• β⋆⋆ is the f×g interaction

It is important to note that the the main effects, β0⋆ and β⋆0, are defined from
the subclass means, µ•• by

• Averaging over the levels of the other factor using the averaging vector for
its contrast matrix and

• Taking contrasts of the averages using the contrast vectors for the given
factor.

The operations commute, so they can be done in either order.

The consequences of this simple result are often overlooked. So, for example,

• if f has a coding matrix giving a simple averaging vector, (e.g. using contr.helmert

or contr.sum), the main effect for g represents contrasts between the levels of g for a
simple average of the means over all the levels of f, but

• if f has a coding matrix giving an averaging vector that selects the first mean, (e.g.
using contr.treatment or our contr.diff), the main effect for g represents contrasts
between the levels of g for the means in just the first level of f.

If the model does not allow for interactions, such as an additive model, ~ f + g, then the
two are identical. However if the model does allow for interactions, such as ~ f*g, then
the two are likely to be different. So testing a main effect in the presence of interactions
involving it does require some careful consideration of what you are exactly testing, and
that in turn depends on the averaging vectors implied by the coding vectors you are using.
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4.3 Model matrices

The full double classification mean vector can, by definition, be written as

η=X f gµ=X f g
(
Bg ⊗B f

)
β=X f g

(
[1q Bg

⋆]⊗ [1p B f
⋆]

)
β

If we re-arrange the components of β in the order

[β00, β⋆0, β0⋆, β⋆⋆]T

the transformed model matrix, X f g
(
[1q Bg

⋆]⊗ [1p B f
⋆]

)
can be re-arranged into four parti-

tions, namely:[
1n X f B f

⋆ XgBg
⋆ X f g

(
Bg
⋆⊗B f

⋆

)]
=

[
1n X f

⋆ Xg
⋆ X f g

⋆⋆

]
, say. (24)

The sizes of these partitions are, respectively, n×1, n×(p−1), n×(q−1) and n×(p−1)(q−1).

Notice that X f g
⋆⋆ can also be obtained from X f

⋆ and Xg
⋆ by taking X f

⋆ and multiplying it,
componentwise, by each of the columns of Xg

⋆ and arranging the results in a partitioned
matrix.

Putting this together we see that, if P is the permutation matrix that affects this re-
ordering:

η=X f g
(
[1q Bg

⋆]⊗ [1p B f
⋆]

)
β

=X f g
(
[1q Bg

⋆]⊗ [1p B f
⋆]

)
PTPβ

=
[
1n X f

⋆ Xg
⋆ X f g

⋆⋆

]
β00
β⋆0
β0⋆
β⋆⋆


=⇒ η= 1nβ00 +X f

⋆β⋆0 +Xg
⋆β0⋆+X f g

⋆⋆β⋆⋆

(25)

Compare this with the simpler expression for the single classification in Equation 8 on
page 3.

5 Synopsis and higher way extensions

It is important to recognise the essential simplicity of what is going on here.

Setting up the model matrices involves only the coding matrices for the factors involved.

• For a single classification, ~ f, the model matrix is obtained by coding the incidence
matrix, and joining it to an intercept term, i.e.

M=
[
1n X f

⋆

]
16



• To extend this to a double classification, ~ f*g, take the coded incidence matrix for g,
Xg
⋆, and multiply it, column by column, with each of the partitions already present,

and add them to the single classification. I.e. 1n ·Xg
⋆ → Xg

⋆ and X f
⋆ ·Xg

⋆ → X f t
⋆⋆ so the

model matrix becomes:
M=

[
1n X f

⋆ Xg
⋆ X f g

⋆⋆

]
• For higher way models the process of constructing the model matrix, for the complete

model, follows in the same way. Each new factor generates a new coded incidence
matrix, X⋆. Multiply this, columnwise, with each of the partitions of the model matrix
already there and add the extra partitions to the model matrix. Thus each factor
doubles the number of partitions, (or terms). So for a 3-factor model, ~ f*g*h:

M=
[
1n X f

⋆ Xg
⋆ X f g

⋆⋆ Xh
⋆ X f h

⋆ Xgh
⋆⋆ X f gh

⋆⋆⋆

]
In practice, of course, the terms would be arranged according to the order of the inter-
actions.

To interpret the regression coefficients resulting from a linear model fitted with such a
design, however, requires the contrast matrices C = B−1, of which the first row, cT0 , is the
all-important averaging vector.

• By an interpretation of the regression coefficients β we mean relating them to the
subclass means, µ, which have a natural, unequivocal interpretation.

• For interpretative purposes, it is helpful to think of the subclass means as arranged in
an n−way array, µ••...•.

– The intercept coefficient, β00...0 is got from the means array by averaging over all
dimensions using the averaging vectors for the codings of each factor in turn.

– The main effects are got by averaging with respect to all factors not involved, and
taking contrasts with respect to the dimension of the factor itself.

– In general, an interaction of any order is got by averaging over all dimensions
in this way for the factors not involved, and taking contrasts for the factors that
are.

• It is also important to note that for an interpretation of the sums of squares in an
analysis of variance table, an understanding of what coding matrices are used, par-
ticularly if the table is non-standard such as in the case of the egregious “Type III”
sums of squares, when testing marginal effects, such as main effects when interac-
tions involving them are present in the model. The hypothesis being tested depends
on precisely how the main effect is defined, which in turn depends on the averaging
vector for the other factor. (See Venables (1998) for a polemical discussion, now some-
what dated.)

5.1 The genotype example, continued

The genotype data used in the example in Section 3 on page 6 has a single response, Wt,
and two factor predictors Litter and Mother, each with four levels labelled by A, B, I, J.
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Figure 2 shows the mean profiles for the four Litter genotypes across Mother types.
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Figure 2: Mean profiles for the genotype data

The sequential ANOVA tables show some variation in sums of squares depending on the or-
der in which the terms are introduced, as would have been expected as the subclass numbers
are unequal to some degree, but the overall message is clear from either analysis.

m2 <- aov(Wt ~ Litter*Mother, geno)

anova(m2) %>% booktabs

Df Sum Sq Mean Sq F value Pr(>F)

Litter 3 60.16 20.05 0.37 0.7752
Mother 3 775.08 258.36 4.76 0.0057
Litter:Mother 9 824.07 91.56 1.69 0.1201
Residuals 45 2440.82 54.24

anova(update(m2, . ~ Mother*Litter)) %>% booktabs

Df Sum Sq Mean Sq F value Pr(>F)

Mother 3 771.61 257.20 4.74 0.0059
Litter 3 63.63 21.21 0.39 0.7600
Mother:Litter 9 824.07 91.56 1.69 0.1201
Residuals 45 2440.82 54.24

To explore the non-standard versions of ANOVA we use John Fox’s4 car package, (Fox and

4John, in his engaging and very pragmatic way provides the technology for generating “Type II” and “Type
III” ANOVA tables, but the help information firmly recommends that users do not use “Type III” unless they
fully understand what they mean—and there is a not very subtle implication that he expects most will not.
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Weisberg, 2011), which has an Anova function for the purpose.

First consider “Type II”, which observes the marginality principle and hence the results do
not depend on the choice of coding function:

car::Anova(m2, type = "II") %>% booktabs

Sum Sq Df F value Pr(>F)

Litter 63.63 3 0.39 0.7600
Mother 775.08 3 4.76 0.0057
Litter:Mother 824.07 9 1.69 0.1201
Residuals 2440.82 45

In this case the result is a composite table formed by taking the main effect from the se-
quential table where it was introduced last. The two-factor interaction is introduced last in
both sequential tables and hence is the same for both. It is the only non-marginal term in
this case for the full model.

For Type III sums of squares, the protocol is different. The full model is fitted and each term
is dropped separately, while leaving the remainder of the model matrix intact. In this case
this makes what is actually being tested under the name of a main effect unclear as the
definition is critically dependent on the coding matrices being used.

A couple of examples illustrate the point. In the first case the standard contr.treatment

coding matrices are used, meaning the main effect of one factor is defined by contrasts in
the means for the first level only of the other factor.

car::Anova(m2, type = "III") %>% booktabs

Sum Sq Df F value Pr(>F)

(Intercept) 20275.71 1 373.81 0.0000
Litter 591.69 3 3.64 0.0197
Mother 582.25 3 3.58 0.0210
Litter:Mother 824.07 9 1.69 0.1201
Residuals 2440.82 45

Now the main effect of Litter seems important, simply because from Figure 2 on the pre-
ceding page that looking only at Mother level A, the Litter means do indeed appear to vary
quite considerably.

If we change the reference level for Mother from the first to the last, however, we would ex-
pect from the same diagram the Litter would become non-significant. The coding function
contr.SAS, somewhat ominously, does this switch from first to last levels.

car::Anova(update(m2, contrasts = list(Mother = "contr.SAS")), type = "III") %>%

booktabs
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Sum Sq Df F value Pr(>F)

(Intercept) 11985.41 1 220.97 0.0000
Litter 18.27 3 0.11 0.9525
Mother 582.25 3 3.58 0.0210
Litter:Mother 824.07 9 1.69 0.1201
Residuals 2440.82 45

And indeed it does so appear. If we vary the Litter contrasts also to the same form, the
Mother term changes as well.

car::Anova(update(m2, contrasts = list(Mother = "contr.SAS",

Litter = "contr.SAS")),

type = "III") %>% booktabs

Sum Sq Df F value Pr(>F)

(Intercept) 12034.42 1 221.87 0.0000
Litter 18.27 3 0.11 0.9525
Mother 120.78 3 0.74 0.5325
Litter:Mother 824.07 9 1.69 0.1201
Residuals 2440.82 45

There is really no paradox here. We have chosen coding matrices which produce an av-
eraging vector whose effect is to choose just one level from the set as the ‘average’. For
contr.treatment is is the first level and for contr.SAS it is the last. And it so happens that
for this data the means for either factor are least variable within the last level of the other
factor.

Hence with contr.treatment in force both main effects appear to be clearly significant, and
with contr.SAS both appear to be entirely non-significant. This is simply because they are
using different definition of “main effect”.

The most commonly advocated resolution of this essential arbitrariness is to recommend
using coding schemes for which the averaging vector is a simple average, only.

Schemes that conform are contr.helmert, contr.sum and contr.poly from the stats

package and all the code_* functions from the present package.

Those that do not conform are contr.treatment and contr.SAS from the stats package
and contr.diff from the present package.

We finish by checking that different coding schemes, but each having a simple average as
the averaging vector, produce the same Type III ANOVA table:

car::Anova(update(m2, contrasts = list(Mother = "contr.sum",

Litter = "contr.poly")),

type = "III") %>% booktabs
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Sum Sq Df F value Pr(>F)

(Intercept) 163782.09 1 3019.56 0.0000
Litter 27.66 3 0.17 0.9161
Mother 671.74 3 4.13 0.0114
Litter:Mother 824.07 9 1.69 0.1201
Residuals 2440.82 45

car::Anova(update(m2, contrasts = list(Mother = "code_diff",

Litter = "code_helmert")),

type = "III") %>% booktabs

Sum Sq Df F value Pr(>F)

(Intercept) 163782.09 1 3019.56 0.0000
Litter 27.66 3 0.17 0.9161
Mother 671.74 3 4.13 0.0114
Litter:Mother 824.07 9 1.69 0.1201
Residuals 2440.82 45
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