Package ‘coala’

March 4, 2024

Version 0.7.2
License MIT + file LICENSE
Title A Framework for Coalescent Simulation

Author Paul Staab [aut],
Dirk Metzler [aut, ths, cre],
Jorge E. Amaya Romero [ctb]

BugReports https://github.com/statgenlmu/coala/issues

URL https://github.com/statgenlmu/coala

Description Coalescent simulators can rapidly simulate biological sequences
evolving according to a given model of evolution.
You can use this package to specify such models, to conduct the simulations
and to calculate additional statistics from the results (Staab, Metzler,
2016 <doi:10.1093/bioinformatics/btw(098>).
It relies on existing simulators for doing the simulation, and currently
supports the programs 'ms', 'msms' and 'scrm'. It also supports finite-sites
mutation models by combining the simulators with the program 'seq-gen'.
Coala provides functions for calculating certain summary statistics, which
can also be applied to actual biological data.
One possibility to import data is through the "PopGenome' package
(<https://github.com/pievos101/PopGenome>).

Depends R (>=3.1.0)

Imports assertthat (>= 0.1), digest, methods, parallel, R6 (>=2.0.1),
Repp (>=0.11.0), rehh (>= 3.0.0), scrm (>= 1.6.0-2), stats,
utils

Suggests abc (>= 2.0), knitr, PopGenome (>= 2.1.0), phyclust (>=
0.1-16), rmarkdown, testthat (>= 0.11.0)

LinkingTo Rcpp, ReppArmadillo (>=0.3.810.0)
VignetteBuilder knitr

Collate 'RcppExports.R' 'cache.R' 'coala.R' 'model.R' 'feature.R’
'feature_growth.R' 'feature_ignore_singletons.R'
'feature_migration.R' 'feature_mutation.R' 'feature_outgroup.R'
'feature_pop_merge.R' 'feature_recombination.R’

1

https://github.com/statgenlmu/coala/issues
https://github.com/statgenlmu/coala
https://doi.org/10.1093/bioinformatics/btw098
https://github.com/pievos101/PopGenome

2 R topics documented:

'feature_sample.R' 'feature_selection.R'
'feature_size_change.R' 'feature_sumstats.R'
'feature_unphased.R' 'import_popgenome.R' 'interface_abc.R'
'locus.R' 'model_build.R' 'model_check.R' 'model_examples.R’
'model_getters.R' 'model_print.R' 'model_scale.R'
'model_simulate.R' 'onLoad.R' 'parameter.R' 'parameter_prior.R'
'parameter_variation.R' 'parameter_zero_inflation.R'
'search_executable.R' 'segsites.R' 'simulation_tasks.R'
'simulator_class.R' 'simulator_ms.R' 'simulator_msms.R'
'simulator_scrm.R' 'simulator_seqgen.R' 'sumstat.R’
'sumstat_dna.R' 'sumstat_file.R' 'sumstat_four_gamete.R'
'sumstat_ihh.R' 'sumstat_jsfs.R' 'sumstat_mcmf.R’'
'sumstat_nucleotide_div.R' 'sumstat_omega.R'
'sumstat_seg_sites.R' 'sumstat_sfs.R' 'sumstat_tajimas_d.R’
'sumstat_trees.R' 'tools.R'

Encoding UTF-8

RoxygenNote 7.3.1

NeedsCompilation yes

Maintainer Dirk Metzler <metzler@bio.lmu.de>
Repository CRAN

Date/Publication 2024-03-04 16:20:17 UTC

R topics documented:

coala-package L 3
AS.SEESIES « . . . L e e e e e e 4
as.segsites. GENOME L 4
calc_sumstats_from_data 5
check_model e 6
coal_model e 7
create_abc_param e e e e e e 8
create_abC_SUmMStat e e e e e e e e e e e e 9
Create_SegSiteS v v v it e e e e e e e e e e e 10
feat_growth L e 12
feat_ignore_singletons 13
feat_migration L. e e e e e 14
feat_mutation L e 15
feat_outgroup e e 18
feat_pop_merge e e e e e e 19
feat_recombination e e 20
feat_selection e 21
feat_size_change 23
feat_unphased 24
List_simulators e e e 25
IoCUS e e e 26

coala-package 3
PATAMELEr e e e e e e e e e e e e e e e e 28
par_variation L. e e e e e e e e e 30
par_zero_inflationo L. 31
scale_ model e e 32
simulate.coalmodel 32
SIMulator_MS e e e e e e e 33
SIMulator_MSMS e e e e e e e e 34
SIMUlator_SCrm e e e e e e e 35
SIMUIAtOr_SeqEeNn e e e e 35
sumstat_dna e e 36
sumstat_file e e 37
sumstat_four_gamete L. e 38
sumstat_ihh e e 40
sumstat_jsfs L 41
sumstat memf L L L e e, 43
sumstat_nucleotide_div 44
SUMSEAL_OMEZA .« . v v v v v e 45
SUMSEAL_SEZ_SILES v i i e e e e e e e e e e e e e e e e 47
sumstat_SfS L L e 48
sumstat_tajimas_d L 49
SUMSEAL tTEESt o o e e e e e e e e s 50

Index 51

coala-package A Framework for Coalescent Simulation in R

Description

This package allows to specify and simulate coalescent models from within R.
vignette is a good place to start.

Author(s)

Maintainer: Dirk Metzler <metzler@bio. lmu.de> [thesis advisor]
Authors:

e Paul Staab <develop@paulstaab.de>
Other contributors:

 Jorge E. Amaya Romero [contributor]

See Also
Useful links:

* https://github.com/statgenlmu/coala
» Report bugs at https://github.com/statgenlmu/coala/issues

The introduction

https://github.com/statgenlmu/coala
https://github.com/statgenlmu/coala/issues

4 as.segsites. GENOME

as.segsites Convert genetic data to coala’s internal format

Description

This function can be used to convert the genomic data formats used in other packages to calculate
coala’s segregating sites object. This is useful for calculating the summary statistics of biological
data using the calc_sumstats_from_data function.

Usage
as.segsites(data, ...)
Arguments
data The data object that is converted.
Additional arguments specific for the used package.
Details

Currently, only the package PopGenome is supported, see as.segsites.GENOME for details.

Value

A list of segregating sites objects.

See Also

Further instructions are provided in the coala-data-import vignette

For information about segsites: segsites

as.segsites.GENOME Convert PopGenome Data into Coala’s Format

Description

Using this function, you can convert genetic data imported with the package PopGenome into
coala’s segsites format. See as.segsites for general information on converting genetic data for
coala.

Usage

S3 method for class 'GENOME'
as.segsites(data, only_synonymous = FALSE, ...)

calc_sumstats_from_data 5

Arguments

data The GENOME data from PopGenome.

only_synonymous
Only import synonymous SNPs if set to TRUE. This requires that PopGenome
knows where coding regions are., e.g. by using gff files.

Ignored.

Details

This function imports all loci from the GENOME object that have at least one valid site (data@n.valid.sites).
The number of valid sites is used as length of a locus.

See Also

An example and additional instructions are provided in the coala-data-import vignette

calc_sumstats_from_data
Calculate summary statistics for biological data

Description

This function calculates a model’s summary statistic from biological data. The data needs to be pro-
vided as a list of segregating sites objects. These objects can be create using the create_segsites
function.

Usage

calc_sumstats_from_data(
model,
segsites_list = NULL,
tree_list = NULL,

trios = NULL,
)
Arguments
model The coala model. The summary statistics present in this model will be calcu-
lated. The model should fit to the data, in particular regarding the number of
loci and haploids.

segsites_list Either a list of segsites objects, or an object that can be converted using
as.segsites. It is possible to specify additional argument for the conversion
using the ... argument.

tree_list Not yet implemented.

6 check model

trios If your model is using locus trios, then you can create these by combining in-
dividual loci. This is a list that defines which loci are combined to a trio. Each
entry should consist of either one or three numbers. For one number, the locus
used for calculating the summary statistics is locus in the provided data that cor-
responds to the number. If three numbers are provided, the locus for calculation
is created by combining the corresponding three loci from the given data.

Additional arguments that will be passed to as.segsites.

Examples

segsites <- create_segsites(matrix(c(1, 0, O,
1,1, 0,
9, @, 1), 3, 3, TRUE),
c(.1, .3, .5))
model <- coal_model(3, 1) +
sumstat_sfs() +
sumstat_nucleotide_div() +
sumstat_memf ()
sumstats <- calc_sumstats_from_data(model, list(segsites))
print(sumstats)

check_model Check which simulator can simulate a model

Description
This function checks which of the available simulators can simulate a given model. It also states
the problems for the ones that are incompatible with the model.

Usage
check_model (model)

Arguments

model The model which is checked

See Also

Do view the priority of the simulators: 1ist_simulators

Examples

model <- coal_model(10, 1) +
feat_mutation(5, fixed = TRUE)
check_model (model)

coal_model 7

coal_model Create a Coalescent Model

Description

This creates a basic coalescent model to which more features, loci, parameters and summary statis-
tics can be added later. Data under the model can be simulated using the simulate function.

Usage

coal_model (sample_size, loci_number = @, loci_length = 1000, ploidy = 1)

Arguments
sample_size Defines the number of populations and the number of individual sampled from
each population. Given as an integer vector where each entry gives the number
of individuals sampled from the corresponding population.
loci_number You can optionally add a number of loci with equal length to the model. This

gives to number of loci to add.
loci_length This gives the length of the loci to add.

ploidy The number of chromosomes that will be simulated per individual.

Value

The basic coalescent model which can be extended with features, parameters, loci and summary
statistics.

See Also

The ’coala-intro’ vignette for a general description on how to extend models.
For checking which simulators can be used for this model: check_model
For adding mutation or for a list of other features: feat_mutation

For adding loci: locus_single, locus_averaged, locus_trio

For a generating DNA sequences or for a list of summary statistics: sumstat_dna

Examples

A model with one population and 20 unlinked loci:
model <- coal_model(10, 20) +
feat_mutation(5) +
sumstat_tajimas_d()
check_model (model)
simulate(model)

A model with two populations:
model <- coal_model(c(13, 18), 5) +

8 create_abc_param

feat_migration(.5, symmetric = TRUE) +
sumstat_trees()

check_model (model)

simulate(model)

A model with 10 populations:

model <- coal_model(rep(2, 10), 5) +
feat_migration(.5, symmetric = TRUE) +
sumstat_trees()

check_model (model)

simulate(model)

A model with recombination:

model <- coal_model(20, 1, 1000) +
feat_recombination(10) +
feat_mutation(5) +
sumstat_four_gamete()

check_model (model)

simulate(model)

create_abc_param Convert Simulation Results to abc’s Parameter Format

Description

This function creates an object compatible with the param argument of the abc function from coala’s
simulation results.

Usage

create_abc_param(sim_results, model)

Arguments
sim_results The simulation results as returned from simulate.
model The model used for the simulations.

Value

A data.frame that can be used as param argument of abc.

See Also

For generating abc’s summary statistics format: create_abc_sumstat

create_abc_sumstat 9

Examples

model <- coal_model(10, 1) +
feat_mutation(par_prior("theta”, rnorm(1, 5, .5))) +
sumstat_sfs()

sim_results <- simulate(model, nsim = 2)

abc_param <- create_abc_param(sim_results, model)

print(abc_param)

create_abc_sumstat Convert Simulation Results to abc’s Summary Statistic Format

Description

This function creates an object compatible with the sumstat argument of the abc function from
coala’s simulation results. It converts all summary statistics that are in the simulation results and
expects that each of them is a numeric vector. Use transformation functions to convert none vector-
valued statistics (e.g. sumstat_jsfs, sumstat_omega or sumstat_trees) into a vector.

Usage

create_abc_sumstat(sim_results, model)

Arguments
sim_results The simulation results as returned from simulate.
model The model used for the simulations.

Value

A data.frame that can be used as sumstat argument of abc.

See Also

For generating abc’s parameter format: create_abc_param

Examples

Using the SFS:

model <- coal_model(10, 1) +
feat_mutation(par_prior("theta”, rnorm(1, 5, .5))) +
sumstat_sfs()

sim_results <- simulate(model, nsim = 2)

abc_sumstat <- create_abc_sumstat(sim_results, model)

print(abc_sumstat)

Using the JSFS and converting it into a vector:
model <- coal_model(c(10, 10), 1) +
feat_mutation(par_prior(”"theta”, rnorm(1, 5, .5))) +

10 create_segsites

feat_migration(par_prior("m", rnorm(1, .5, .1)), symmetri = TRUE) +
sumstat_jsfs(transformation = function(jsfs) {
c(sum(jsfs[1, 1), sum(jsfs[, 11), sum(jsfs[-1, -11))
b))
sim_results <- simulate(model, nsim = 2)
abc_sumstat <- create_abc_sumstat(sim_results, model)
print(abc_sumstat)

create_segsites Segregating Sites

Description

These functions create and modify segregating sites objects, which are one of the basic intermediary
statistics that is calculated in coala. Segregating sites consist primarily of a SNP matrix that contains
all SNPs for one locus, with some additional information attached. The parts of the S3 class are
detailed below.

Usage

create_segsites(snps, positions, trio_locus = numeric(@), check = TRUE)
get_snps(segsites)

get_positions(segsites)

set_positions(segsites, positions)

get_trio_locus(segsites)

set_trio_locus(segsites, trio_locus)

is_segsites(segsites)

create_locus_trio(left, middle, right)

Arguments

snps The SNP Matrix (see Details).

positions A numeric vector indicating the relative positions of each SNP on the locus (see
Details).

trio_locus If the locus consists of a locus trio (see Details).

check Whether non-segregating sites are removed from the segregating sites (TRUE) or
not (FALSE).

segsites The segregating sites object

left The segregating sites from the left locus

middle The segregating sites from the middle locus

right The segregating sites from the right locus

create_segsites 11

Details

A segregating sites object contains all SNPs for one genetic locus. Each object consists of three
parts: A SNP matrix, a vector of SNP positions and a vector that states which transcript a SNP
belong to, if the locus consists of multiple transscripts ("locus trio’).

¢ In the SNP matrix, each row represents a haplotype and each column represents a SNP. An
entry is either 1 if the haplotype carries the derived allele for the SNP, or @ if it carries the
ancestral one.

* In the positions vector, each entry gives the relative position of SNP in the corresponding
column of the SNP matrix.

* The trio_locus vector contains the trio locus each SNP belongs to. Entry of -1,0, 1 represent
the left, middle, and right locus, respectively. For normal loci, this just consists of @’s

Functions

* create_segsites(): Creates segregating sites

» get_snps(): Returns the SNP matrix from a segregating sites object.

* get_positions(): Returns the SNP’s positions from a segregating sites object.

* set_positions(): Sets the SNP’s positions in a segregating sites object.

e get_trio_locus(): Returns the trio locus positions from a segregating sites object.
* set_trio_locus(): Sets the trio locus in a segregating sites object.

* is_segsites(): Checks whether an object is a segsites object.

» create_locus_trio(): Combines three segregating sites to a locus trio

Author(s)
Paul Staab

See Also

For converting biological data to segsites: as.segsites

Examples
snps <- matrix(c(1, @, O,
17 17 @7
0, 0, 1), 3, 3, TRUE)

pos <- c(.1, .3, .5)

segsites <- create_segsites(snps, pos)
print(segsites)

get_snps(segsites)
get_positions(segsites)

When subsetting individuals, sites that are not
segregating in these are automatically removed:
segsites[1:2, 1:3]

12 feat_growth

feat_growth Feature: Exponential population size growth/decline

Description

This feature changes the growth factor of a population at given point in time. This factor applies to
the time interval further into the past from this point.

Usage

feat_growth(rate, population = "all”, time = "@", locus_group = "all")

Arguments
rate The growth rate. Can be a numeric or a parameter. See Details for an expla-
nation how the rate affects the population size.
population The population which growths/declines. Can be "all" for all populations, or the
number of one population.
time The time at which the growth rate is changed. Can also be a parameter.
locus_group The loci for which this features is used. Can either be "all” (default), in which
case the feature is used for simulating all loci, or a numeric vector. In the
latter case, the feature is only used for the loci added in locus_ commands
with the corresponding index starting from 1 in order in which the commands
where added to the model. For example, if a model has locus_single(10) +
locus_averaged(10, 11) + locus_single(12) and this argument is c(2, 3),
than the feature is used for all but the first locus (that is locus 2 - 12).
Details

The population size changes by a factor exp(—« * t), where « is the growth parameter and ¢ is the
time since the growth has started. For positive alpha, the population will decline backwards in time
or grow forwards in time. For a negative value of « it will decline (forward in time).

Value

The feature, which can be added to a model created with coal_model using +.

See Also

For instantaneous population size changes: feat_size_change
For creating a model: coal_model

Other features: feat_ignore_singletons(), feat_migration(), feat_mutation(), feat_outgroup(),
feat_pop_merge(), feat_recombination(), feat_selection(), feat_size_change(), feat_unphased()

feat_ignore_singletons 13

Examples

Simulate a haploid population that has been expanding for
the last 2*Ne generations
model <- coal_model(10, 1) +
feat_growth(5, time = @) +
feat_growth(@, time = 1) +
feat_mutation(10) +
sumstat_sfs()
simulate(model)

feat_ignore_singletons
Feature: Ignore Singletons

Description

Mutations that are observed in just one haplotype (’singletons’) are often regarded as likely candi-
dates for sequencing errors. Sometimes, it can be advantageous to exclude them from an analysis.
This feature removes all singletons from the simulated data before the summary statistics are calcu-

lated.
Usage
feat_ignore_singletons(locus_group = "all")
Arguments
locus_group The loci for which this features is used. Can either be "all” (default), in which
case the feature is used for simulating all loci, or a numeric vector. In the
latter case, the feature is only used for the loci added in locus_ commands
with the corresponding index starting from 1 in order in which the commands
where added to the model. For example, if a model has locus_single(10) +
locus_averaged(10, 11) + locus_single(12) and this argument is c(2, 3),
than the feature is used for all but the first locus (that is locus 2 - 12).
Details

This function assumes that a singleton is a mutation for which the derived allele is observed exactly
once in all sequences, regardless of the population structure.
Value

The feature, which can be added to a model created with coal_model using +.

See Also

For creating a model: coal_model

Other features: feat_growth(), feat_migration(), feat_mutation(), feat_outgroup(), feat_pop_merge(),
feat_recombination(), feat_selection(), feat_size_change(), feat_unphased()

14 feat_migration

Examples

model <- coal_model(2, 1) +

feat_mutation(10) +

feat_ignore_singletons() +

sumstat_sfs(”"n_mut”, transformation = sum)
In this model, all mutations are singletons. Therefore,
the number of mutations is @ when removing singletons:
simulate(model)$n_mut

feat_migration Feature: Migration/Gene Flow

Description

This feature changes the migration rates at a given time point. Per default, no migration between
the population occurs, which corresponds to a rate of @. Set it to a value greater than zero to enable
migration from one population to another.

Usage

feat_migration(
rate,
pop_from = NULL,
pop_to = NULL,
symmetric = FALSE,

time = "0",
locus_group = "all”
)
Arguments
rate The migration rate. Can be a numeric or a parameter. The rate is specified as
4% N0 *m, where m is the fraction of pop_to that is replaced by migrants from
pop_from each generation (in forward time).
pop_from The population from which the individuals leave.
pop_to The population to which the individuals move.
symmetric Use the rate for all pairs of populations.
time The time point at which the migration with the migration rate is set. The rate
applies to the time past warts of the time point, until it is changed again.
locus_group The loci for which this features is used. Can either be "all” (default), in which

case the feature is used for simulating all loci, or a numeric vector. In the
latter case, the feature is only used for the loci added in locus_ commands
with the corresponding index starting from 1 in order in which the commands
where added to the model. For example, if a model has locus_single(10) +
locus_averaged(10, 11) + locus_single(12) and this argument is c(2, 3),
than the feature is used for all but the first locus (that is locus 2 - 12).

feat_mutation 15

Details

When looking forward in time, a fraction of pop_to that is replaced by migrants from pop_from
each generation (see rate). When looking backwards in time, ancestral lines in pop_to move to
pop_from with the given rate.

Value

The feature, which can be added to a model created with coal_model using +.

See Also

For creating a model: coal_model

Other features: feat_growth(), feat_ignore_singletons(), feat_mutation(), feat_outgroup(),
feat_pop_merge(), feat_recombination(), feat_selection(), feat_size_change(), feat_unphased()

Examples

Asymmetric migration between two populations:
model <- coal_model(c(5, 5), 10) +
feat_migration(@.5, 1, 2) +
feat_migration(1.0, 2, 1) +
feat_mutation(5) +
sumstat_sfs()
simulate(model)

Three populations that exchange migrations with equal
rates at times more than 0.5 time units in the past:
model <- coal_model(c(3, 4, 5), 2) +
feat_migration(1.2, symmetric = TRUE, time = 0.5) +
feat_mutation(5) +
sumstat_sfs()
simulate(model)

feat_mutation Feature: Mutation

Description

This feature adds mutations to a model. Mutations occur in the genomes of the individuals with a
given rate. The rate is per locus for unlinked loci and per trio for linked locus trios. By default,
the same mutation rate is used for all loci, but it is possible to change this with par_variation and
par_zero_inflation.

16 feat_mutation

Usage
feat_mutation(
rate,
model = "IFS",

base_frequencies = NA,
tstv_ratio = NA,
gtr_rates = NA,
fixed_number = FALSE,

locus_group = "all”
)
Arguments
rate The mutation rate. Can be a numeric or a parameter. The rate is specified as
4 % NO % mu, where mu is the mutation rate per locus.
model The mutation model you want to use. Can be either 'IFS’ (default), "HKY’ or

’GTR’. Refer to the mutation model section for detailed information.
base_frequencies

The equilibrium frequencies of the four bases used in the "HKY’ mutation model.

Must be a numeric vector of length four, with the values for A, C, G and T, in

that order.
tstv_ratio The ratio of transitions to transversions used in the "THKY’ muation model.
gtr_rates The rates for the six amino acid substitutions used in the ’GTR’ model. Must be
a numeric vector of length six. Order: A<->C, A<->G, A<->T, C<->G, C<->T,
G<->T.

fixed_number If set to TRUE, the number of mutations on each locus will always be exactly
equal to the rate, rather than happening with a rate along the ancestral tree.

locus_group The loci for which this features is used. Can either be "all” (default), in which
case the feature is used for simulating all loci, or a numeric vector. In the
latter case, the feature is only used for the loci added in locus_ commands
with the corresponding index starting from 1 in order in which the commands
where added to the model. For example, if a model has locus_single(10) +
locus_averaged(10, 11) + locus_single(12) and this argument is c(2, 3),
than the feature is used for all but the first locus (that is locus 2 - 12).

Value

The feature, which can be added to a model using +.

The feature, which can be added to a model created with coal_model using +.

Mutation Models

The infinite sites mutation (IFS) model is a frequently used simplification in population genetics.
It assumes that each locus consists of infinitely many sites at which mutations can occur, and each
mutation hits a new site. Consequently, there are no back-mutations with this model. It does not
generate DNA sequences, but rather only 0/1 coded data, were 0 denotes the ancestral state of the
site, and 1 the derived state created by a mutation.

feat_mutation 17

The other mutation models are finite site models that generate more realistic sequences.

The Hasegawa, Kishino and Yano (HKY) model (Hasegawa et al., 1985) allows for a different
rate of transitions and transversions (tstv_ratio) and unequal frequencies of the four nucleotides
(base_frequencies).

The general reversible process (GTR) model (e.g. Yang, 1994) is more general than the HKY model
and allows to define the rates for each type of substitution. The rates are assumed to be symmetric
(e.g., the rate for T to G is equal to the one for G to T).

See Also

For using rates that variate between the loci in a model: par_variation, par_zero_inflation
For adding recombination: feat_recombination.
For creating a model: coal_model

Other features: feat_growth(), feat_ignore_singletons(), feat_migration(), feat_outgroup(),
feat_pop_merge(), feat_recombination(), feat_selection(), feat_size_change(), feat_unphased()

Examples

A model with a constant mutation rate of 5:
model <- coal_model(5, 1) + feat_mutation(5) + sumstat_seg_sites()
simulate(model)

A model with a mutation of 5.0 for the first 10 loci, and 7.5 for the
second 10 loci
model <- coal_model(4) +
locus_averaged(10, 100) +
locus_averaged(10, 100) +
feat_mutation(5.0, locus_group = 1) +
feat_mutation(7.5, locus_group = 2) +
sumstat_seg_sites()
simulate(model)

A model with 7 mutations per locus:
model <- coal_model(5, 1) +
feat_mutation(7, fixed = TRUE) +
sumstat_seg_sites()
simulate(model)

A model using the HKY model:
model <- coal_model(c(10, 1), 2) +
feat_mutation(7.5, model = "HKY", tstv_ratio = 2,
base_frequencies = c(.25, .25, .25, .25)) +
feat_outgroup(2) +
feat_pop_merge(1.0, 2, 1) +
sumstat_seg_sites()
Not run: simulate(model)

A model using the GTR model:
model <- coal_model(c(10, 1), 1, 25) +
feat_mutation(7.5, model = "GTR",

18 feat_outgroup

gtr_rates = c(1, 1, 1, 1, 1, 1) / 6) +
feat_outgroup(2) +
feat_pop_merge(1.0, 2, 1) +
sumstat_dna()
Not run: simulate(model)$dna

feat_outgroup Feature: Outgroup

Description

This feature declares an existing population as outgroup. Outgroups are used to determine the
ancestral allele in finite sites simulations and are required there. All individuals of the outgroup are
ignored when calculating summary statistics. If the outgroup consists of multiple individuals, all
positions where the individuals have different alleles are ignored.

Usage
feat_outgroup(population, locus_group = "all")
Arguments
population The population that is marked as outgroup. If finite-sites mutation models are
used, the last population must be specified as outgroup.
locus_group The loci for which this features is used. Can either be "all” (default), in which
case the feature is used for simulating all loci, or a numeric vector. In the
latter case, the feature is only used for the loci added in locus_ commands
with the corresponding index starting from 1 in order in which the commands
where added to the model. For example, if a model has locus_single(10) +
locus_averaged(10, 11) + locus_single(12) and this argument is c(2, 3),
than the feature is used for all but the first locus (that is locus 2 - 12).
Value

The feature, which can be added to a model created with coal_model using +.

See Also

For creating a model: coal_model

Other features: feat_growth(), feat_ignore_singletons(), feat_migration(), feat_mutation(),
feat_pop_merge(), feat_recombination(), feat_selection(), feat_size_change(), feat_unphased()

feat_pop_merge

Examples

19

A simple finite sites model
model <- coal_model(c(4, 6, 1), 2, 10) +
feat_outgroup(3) +
feat_pop_merge(0.5, 2, 1) +
feat_pop_merge(2, 3, 1) +
feat_mutation(5, model = "GTR", gtr_rates = 1:6)

feat_pop_merge

Feature: Population Merge

Description

Backwards in time, this feature merges one population into another. Forwards in time, this corre-
sponds to a speciation event.

Usage
feat_pop_merge(time, pop_source, pop_target, locus_group = "all")
Arguments
time The time at which the merge occurs.
pop_source The population from which all lines are moved. This is the newly created popu-
lation in the speciation event.
pop_target The population to which the lines are moved. This is the population in which

locus_group

Details

the speciation event occurs.

The loci for which this features is used. Can either be "all” (default), in which
case the feature is used for simulating all loci, or a numeric vector. In the
latter case, the feature is only used for the loci added in locus_ commands
with the corresponding index starting from 1 in order in which the commands
where added to the model. For example, if a model has locus_single(10) +
locus_averaged(10, 11) + locus_single(12) and this argument is c(2, 3),
than the feature is used for all but the first locus (that is locus 2 - 12).

In addition to the merge, the growth rate of and all migration rates from the source population
will be set to 0 at the time of the merge to mimic a speciation event forwards in time. Technically,
pop_source is still present in the model, but not used unless migration to the population is manually

enabled.

Value

The feature, which can be added to a model created with coal_model using +.

20 feat_recombination

See Also

For creating a model: coal_model

Other features: feat_growth(), feat_ignore_singletons(), feat_migration(), feat_mutation(),
feat_outgroup(), feat_recombination(), feat_selection(), feat_size_change(), feat_unphased()

Examples

Two population which merge after 0.5 time units:
model <- coal_model(c(25,25), 1) +
feat_pop_merge(0.5, 2, 1) +
feat_mutation(5) +
sumstat_tajimas_d()
simulate(model)

An standard isolation-with-migration model:
model_iwm <- model +

feat_migration(.75, symmetric = TRUE)
simulate(model_iwm)

feat_recombination Feature: Recombination

Description

This feature adds intra-locus recombination to a model. The rate is per locus for unlinked loci
and per trio for linked locus trios. By default, the same recombination rate is used for all loci, but
it is possible to change this with par_variation and par_zero_inflation. Coala assumes that
recombination events can occur between all neighboring bases.

Usage
feat_recombination(rate, locus_group = "all")
Arguments
rate The recombination rate. Can be a numeric or a parameter. The rate is equal to
4+ NO=r, where r is the probability that a recombination event within the locus
occurs in one generation.
locus_group The loci for which this features is used. Can either be "all” (default), in which

case the feature is used for simulating all loci, or a numeric vector. In the
latter case, the feature is only used for the loci added in locus_ commands
with the corresponding index starting from 1 in order in which the commands
where added to the model. For example, if a model has locus_single(10) +
locus_averaged(10, 11) + locus_single(12) and this argument is c(2, 3),
than the feature is used for all but the first locus (that is locus 2 - 12).

feat_selection 21

Value

The feature, which can be added to a model using +.

The feature, which can be added to a model created with coal_model using +.

See Also

For creating a model: coal_model
For adding recombination: feat_mutation.

Other features: feat_growth(), feat_ignore_singletons(), feat_migration(), feat_mutation(),
feat_outgroup(), feat_pop_merge(), feat_selection(), feat_size_change(), feat_unphased()

Examples

Simulate a 1.5kb sequence for 10 individuals with recombination:
model <- coal_model(10, 2, 1500) +

feat_recombination(1.5) +

feat_mutation(5) +

sumstat_sfs()
simulate(model)

feat_selection Feature: Selection

Description

This feature adds selection to a model. Only one site per locus can be under selection. Using this
feature requires that msms is installed, see activate_msms.

Usage

feat_selection(
strength_AA = 0,
strength_Aa =
strength_aa
strength_A = NULL,

11
[SENS)

population = "all",
time,

start = TRUE,
start_frequency = 5e-04,
Ne = 10000,

position = 0.5,
force_keep = TRUE,
locus_group = "all”

22 feat_selection

Arguments

strength_AA The selection strength for the selected homozygote. The parameter is valid for
the chosen population and the time further past-wards from either time 0 on
if start = TRUE, or from time onwards. The same applies for strength_Aa,
strength_aa and strength_A.

strength_Aa The selection strength for the heterozygote.
strength_aa The selection strength for the recessive homozygote.

strength_A This sets the strength for the selected allele in a haploid model or a diploid model
with additive selection. strength_AA, strength_Aa, strength_aa are ignored
when this is argument is given.

population The population in which the allele is selected. Can either be all for all popula-
tion, or the number of a population.

time The time at which the selection starts if start == TRUE (looking forwards in
time), or the time at which the selection strength changes if start == FALSE.
The new strength applies for the time period further into the past in this case.

start Whether selection should start at this time point. At this time, the selected allele
is introduced in the population with an initial starting frequency. This must
be set to TRUE for exactly one selection feature in the model. The values of
start_frequency, Ne, position and force_keep are used for the model. You
can add additional selection feature to the model to set the selection strength for
more demes or change it at different time points, but these need to have start
= FALSE.

start_frequency
The start frequency at which the selected allele is introduced at time. If the
model has multiple population, this can either be a numeric vector that contains
the initial frequency for each population or a single number. In the latter case,
the value is used for all population specified with populations, and 0O is used
for all other populations.

Ne The effective population size that is used for the forward simulations.

position The position of the selected site, relative to the simulated sequence. Values
between 0 and 1 are within the simulated area, while smaller values are to the
left of it and larger ones to the right.

force_keep Whether to restart simulations in which the selected goes to extinction or not.

locus_group The loci for which this features is used. Can either be "all” (default), in which
case the feature is used for simulating all loci, or a numeric vector. In the
latter case, the feature is only used for the loci added in locus_ commands
with the corresponding index starting from 1 in order in which the commands
where added to the model. For example, if a model has locus_single(10) +
locus_averaged(10, 11) + locus_single(12) and this argument is c(2, 3),
than the feature is used for all but the first locus (that is locus 2 - 12).

Value

The feature, which can be added to a model created with coal_model using +.

feat_size_change 23

See Also

For using rates that variate between the loci in a model: par_variation, par_zero_inflation

For summary statistics that are sensitive for selection: sumstat_tajimas_d, sumstat_ihh, sumstat_omega,
sumstat_mcmf

For creating a model: coal_model

Other features: feat_growth(), feat_ignore_singletons(), feat_migration(), feat_mutation(),
feat_outgroup(), feat_pop_merge(), feat_recombination(), feat_size_change(), feat_unphased()

Examples

Positive additive selection in population 2:
model <- coal_model(c(10, 13), 1, 10000) +
feat_pop_merge(.5, 2, 1) +
feat_selection(strength_A = 1000,
population = 2,
time = par_named("”tau”)) +
feat_mutation(100) +
feat_recombination(10) +
sumstat_tajimas_d(population = 2)
Not run: simulate(model, pars = c(tau = 0.03))

feat_size_change Feature: Instantaneous Size Change

Description

This feature changes the effective population size of one population. The change is performed at
a given time point and applies to the time interval further on into the past from this point. The
population size is set to a fraction of NO.

Usage
feat_size_change(new_size, population = 1, time = "@", locus_group = "all")
Arguments
new_size A parameter giving the new size of the population, as a fraction of NO.
population The number of the population whichs size changes. Can also be set to "all".
Then the size changes applies to all populations.
time The time at which the population’s size is changed.
locus_group The loci for which this features is used. Can either be "all” (default), in which

case the feature is used for simulating all loci, or a numeric vector. In the
latter case, the feature is only used for the loci added in locus_ commands
with the corresponding index starting from 1 in order in which the commands
where added to the model. For example, if a model has locus_single(10) +
locus_averaged(10, 11) + locus_single(12) and this argument is c(2, 3),
than the feature is used for all but the first locus (that is locus 2 - 12).

24 feat_unphased

Value

The feature, which can be added to a model using +.

The feature, which can be added to a model created with coal_model using +.

See Also

For continuous size changes over time: feat_growth.
For creating a model: coal_model

Other features: feat_growth(), feat_ignore_singletons(), feat_migration(), feat_mutation(),
feat_outgroup(), feat_pop_merge(), feat_recombination(), feat_selection(), feat_unphased()

Examples

A model with one smaller population:

model <- coal_model(c(20, 5), 3) +
feat_size_change(.1, population = 2) +
feat_mutation(1.0) +
feat_migration(@.5, 2, 1) +
sumstat_sfs()

simulate(model)

A model of one population that experienced a bottleneck:
model <- coal_model(10, 1) +
feat_size_change(0.1, time = 0.3) +
feat_size_change(1.0, time = 0.5) +
feat_mutation(20) +
sumstat_sfs()
simulate(model)

feat_unphased Feature: Unphased Sequences

Description
This simulates unphased data by randomly mixing the sites within one individual. Each position is
randomly taken from a phased chromosome..

Usage

feat_unphased(samples_per_ind, locus_group = "all")

Arguments

samples_per_ind
The number of pseudo-chromosomes that are created from the phased chromo-
somes for each individual.

list_simulators 25

locus_group The loci for which this features is used. Can either be "all” (default), in which
case the feature is used for simulating all loci, or a numeric vector. In the
latter case, the feature is only used for the loci added in locus_ commands
with the corresponding index starting from 1 in order in which the commands
where added to the model. For example, if a model has locus_single(10) +
locus_averaged(10, 11) + locus_single(12) and this argument is c(2, 3),
than the feature is used for all but the first locus (that is locus 2 - 12).

Details

For each individual, ploidy chromosomes are simulated, and samples_per_ind pseudo-chromosomes
are created of these.

Value

The feature, which can be added to a model using +.

The feature, which can be added to a model created with coal_model using +.

See Also

For creating a model: coal_model

Other features: feat_growth(), feat_ignore_singletons(), feat_migration(), feat_mutation(),
feat_outgroup(), feat_pop_merge(), feat_recombination(), feat_selection(), feat_size_change()

Examples

Simulate unphased data in a diploid population
model <- coal_model(10@, 1, ploidy = 2) +
feat_mutation(10) +
feat_unphased(2) +
sumstat_seg_sites()
simulate(model)

The same as before, but return only one chromosome for
each individual:
model <- coal_model(10@, 1, ploidy = 2) +
feat_mutation(10) +
feat_unphased(1) +
sumstat_seg_sites()
simulate(model)

list_simulators Returns the available simulators

Description

This functions returns the usable simulators

26 locus
Usage

list_simulators()

Examples

list_simulators()

locus Loci

Description

This functions adds one or more loci to a model. A locus is a continuous stretch of DNA of a
given length. All loci are simulated independently of each other, and are genetically unlinked. A
model can contain a large number of different loci created with locus_single. This will, however,
slow down the simulation. For performance reasons, it is better to add the same number of loci
with averaged length using locus_averaged if this simplification is justifiable. Both can also be
combined in a single model. In the results, the summary statistics for the loci are returned in order
in which they are added to the model.

Usage

locus_single(length)

locus_averaged(number, length)

Arguments
length The length of the locus in base pairs.
number The number of loci to add.
Functions

* locus_single(): Adds a single locus.

* locus_averaged(): Adds multiple loci with equal length.

See Also

For adding three loci which are linked to each other: locus_trio

locus_trio 27

Examples

A model with one locus of length 1005 bp:
coal_model(10) + locus_single(1005)

This is equivalent to:

coal_model(10, 1, 1005)

A model can contain multiple loci:

coal_model(5) + locus_single(100) + locus_single(200) + locus_single(300)
Or more efficient with averaged length:

coal_model(5) + locus_averaged(3, 200)

Or equivalently:

coal_model(5, 3, 200)

Single and averaged loci can also be combined arbitrarily:
coal_model(15) + locus_averaged(10, 150) + locus_single(250)
coal_model(15, 10, 150) + locus_single(250) + locus_averaged(10, 350)

locus_trio Locus Trios

Description

This functions adds a group of three loci to the model that are genetically linked to each other. They
are still unlinked to all other loci or locus trios in the model. Simulating linked loci that are far apart
from each other can be very slow. Please mind that mutation and recombination rates for locus trios
are rates per trio and not per locus, i.e. they account for mutations that occur on the tree loci and
the sequences in-between them together.

Usage

locus_trio(
locus_length = c(left = 1000, middle = 1000, right = 1000),
distance = c(left_middle = 500, middle_right = 500),
number = 1

Arguments

locus_length An integer vector of length 3, giving the length of each of the three loci (left,

middle and right).
distance A vector of two, giving the distance between left and middle, and middle an
right locus, in base pairs.
number The number of loci to add.
See Also

For adding unlinked loci: locus

28 parameter

Examples

A model with one locus trio
coal_model(25) +
locus_trio(locus_length=c(1250, 1017, 980), distance=c(257, 814))

Ten identical locus trios:
coal_model(25) +
locus_trio(locus_length=c(1250, 1017, 980), distance=c(257, 814), number = 10)

Two different ones:

coal_model(25) +
locus_trio(locus_length=c(1000, 500, 900), distance=c(200, 400)) +
locus_trio(locus_length=c(700, 500, 800), distance=c(350, 150))

parameter Model Parameters

Description

These functions add parameters to a model. Parameters can either be used in features, or added di-
rectly to a model using the plus operator. The value of parameters can be specified in the simulation
command (for par_named and par_range), sampled from a prior distribution (par_prior) or can
be derived from other parameters (par_expr).

Usage

par_expr (expr)
par_const(constant)
par_named(name)
par_range(name, lower, upper)

par_prior(name, prior)

Arguments

expr An R expression. This allows to define a parameter using an R expression. It can
contain other named parameters (e.g. 2 * a will create an parameter that is twice
the value of an existing parameter a). Make sure that the expression always
evaluates to a valid parameter value (a single numeric in almost all cases).

constant An R expression. The constant value of the parameter. Different to expr, the
expression is evaluated immediately and can not depend on other named param-
eters.

name Character. The name of the parameter. Must be unique in a model.

lower A numeric. The lower boundary of the parameter’s range.

parameter 29

upper A numeric. The upper boundary of the parameter’s range.

prior An expression. Evaluation this expression should give a sample from the prior
distribution you want for the parameter. For example using rnorm(1) gives a
standard normal prior.

Functions

* par_expr(): Creates a parameter with value determined by evaluating an expression.

* par_const(): Creates an parameter that is equal to a fixed value. Different to par_expr, the
value is evaluated on parameter creation.

* par_named(): Creates an parameter whose value is specified via the pars argument in simulate.coalmodel.

* par_range(): Creates an parameter that can take a range of possible values. Similar to
par_named, the value of the parameter used in a simulation is set via the pars argument.
This is primarily intended for creating model parameters for jaatha.

e par_prior(): Creates a named parameter with a prior distribution. Before each simulation,
the expression for the prior is evaluated. The resulting value can be used in par_expr under
the chosen name.

Author(s)
Paul Staab

See Also

For parameters that variate between the loci in a model: par_variation, par_zero_inflation

Examples

A parameter (here for the mutation rate) that is always

equal to '5':

model_base <- coal_model(20, 1) +
sumstat_nucleotide_div()

model <- model_base +
feat_mutation(par_const(5))
simulate(model)

With using a prior:

model <- model_base +
feat_mutation(par_prior("theta”, rnorm(1, 5, .1)))

simulate(model)

Using a named parater:

model <- model_base +
feat_mutation(par_named("theta"))

simulate(model, pars = c(theta = 5))

or similarly a ranged parameter:
model <- model_base +
feat_mutation(par_range("theta”, 1, 10))

30

simulate(model, pars = c(theta = 5))

Expressions can be used to derive parameters from
other parameters:
model <- model_base +
par_named("theta_half") +
feat_mutation(par_expr(theta_half * 2))
simulate(model, pars = c(theta_half = 2.5))

model <- model_base +
par_named("theta_log") +
feat_mutation(par_expr(exp(theta_log)))
simulate(model, pars = c(theta_log = log(5)))

par_variation

par_variation Variable Parameters

Description

This function can be used to let the values of a parameter vary between the different loci. When
used, the values for the enclosed parameter will follow a gamma distribution with mean of the
parameters original value, and the variance specified as argument variance. This requires that
the original value is positive. When using this, the simulators are called separately for each locus,

which can dramatically increase the time needed to simulate models with many loci.

Usage

Arguments
par A parameter whichs value will be made variable between the loci.
variance The variance of the gamma distribution, which the values used for simulation
will follow.
See Also

par_variation(par, variance)

For parameters that are identical for all loci: parameter

Examples

model <- coal_model(5, 10) +
feat_mutation(par_variation(par_const(5), 10)) +
sumstat_nucleotide_div()

simulate(model)

par_zero_inflation 31

par_zero_inflation Zero Inflation for Parameters

Description

This adds a zero inflation to the distribution of a parameter for the different loci. When using this,
each locus will be simulated with a parameter value of 0 with probability prob, or with parameter’s
original value in the remaining cases. are called separately for each locus, which can dramatically
increase the time needed to simulate models with many loci.

Usage

par_zero_inflation(par, prob, random = TRUE)

Arguments
par A parameter which will be set to O for part of the loci.
prob The probability that the parameters value will be set to @ for each locus if random
is TRUE. Otherwise, it’s the fixed fraction of loci which will have a parameter
value of 0.
random Whether the number of loci which are simulated with a value of @ should be
random (TRUE) or a fixed fraction (FALSE). See prob for details.
See Also

For parameters that are identical for all loci: parameter

Examples

Simulate half of the loci with recomination and the other half without it:

model <- coal_model(4, 4) +
feat_recombination(par_zero_inflation(par_named(”"rho”), .5, random = FALSE)) +
sumstat_trees()

simulate(model, pars = c(rho = 1))

Use a zero inflated gamma distribution:

model <- coal_model(4, 4) +
feat_recombination(par_zero_inflation(par_variation(1, 10), .3)) +
sumstat_trees()

simulate(model)

32 simulate.coalmodel

scale_model Function that downscales a coalescent model

Description

This function reduces the number of loci in all averaged loci by a certain factor. Non-averaged loci
as created with locus_single are not modified in any way. This function is primarily designed for
jaatha, and might be unsuitable for other purposes.

Usage

scale_model (model, scaling_factor)

Arguments

model The model to downscale

scaling_factor The factor by which the number of loci are reduced. A value of 2 changes to
numbers to half their value (rounded), a value of 3 to a third an so on.

Examples

model <- coal_model(1@, loci_number = 10) + locus_single(100)
model
Group 1: 10 loci; group 2: 1 locus

model <- scale_model(model, 3)
model
Group 1: 3 loci; group 2: 1 locus

simulate.coalmodel Simulate Data According to a Demographic Model

Description

This function simulates a model created with coal_model. The model can be extended with fea-
tures, parameters and loci. Read the ’coala-introduction’ vignette for detailed instructions on
creating and simulating such models.

Usage

S3 method for class 'coalmodel'
simulate(object, nsim = 1, seed, ..., pars = numeric(@), cores = 1)

simulator_ms 33

Arguments
object The coalescent model to be simulated
nsim currently unused
seed A random seed that is set before simulation.
currently unused
pars Values for parameters specified with par_named or par_range. Should be a
named numeric vector.
cores The number of cores that the independent repetitions from nsim will be dis-
tributed on. Must be 1 on Windows, and should also be 1 when using R in a
graphical environment (e.g. Rstudio).
Value

A list of summary statistics.

Examples

model <- coal_model(10, 3) +
feat_mutation(5) +
sumstat_sfs() +
sumstat_tajimas_d()

simulate(model, nsim = 2)

model <- coal_model(c(5,10), 20) +
feat_pop_merge(par_range('tau', 0.01, 5), 2, 1) +
feat_mutation(par_range('theta', 1, 10)) +
sumstat_jsfs()

simulate(model, pars=c(tau = 1, theta = 5))

simulator_ms Simulator: ms

Description

This function adds the simulator 'ms’ to the list of available simulators. In order to use 'ms’, you
need to install the CRAN package phyclust. By default, ’scrm’ will be preferred over 'ms’. Raise
the priority of ms’ to change this behavior.

Usage

activate_ms(priority = 300)

Arguments

priority The priority for this simulator. If multiple simulators can simulate a model, the
one with the highest priority will be used.

34 simulator_msms

References
Richard R. Hudson. Generating samples under a Wright-Fisher neutral model of genetic variation.
Bioinformatics (2002) 18 (2): 337-338 doi:10.1093/bioinformatics/18.2.337

See Also

Other simulators: simulator_msms, simulator_scrm, simulator_seqgen

Examples

To prefer ms to scrm:
Not run: activate_ms(priority = 500)

simulator_msms Simulator: msms

Description
This adds the simulator ‘'msms’ to the list of available simulators. To add msms, you need to
download the jar file and have Java installed on your system.

Usage
activate_msms(jar = NULL, java = NULL, priority = 200, download = FALSE)

Arguments
jar The path of the msms jar file.
java The path of the java executable on your system.
priority The priority for this simulator. If multiple simulators can simulate a model, the
one with the highest priority will be used.
download If set to TRUE, coala will try to download the msms jar file. In that case, the jar
argument is not required.
References

Gregory Ewing and Joachim Hermisson. MSMS: a coalescent simulation program including re-
combination, demographic structure and selection at a single locus. Bioinformatics (2010) 26 (16):
2064-2065 doi:10.1093/bioinformatics/btq322

See Also

Other simulators: simulator_ms, simulator_scrm, simulator_seqgen

Examples

Download and activate msms (requires Java)
Not run: activate_msms(download = TRUE)

simulator_scrm 35

simulator_scrm Simulator: scrm

Description

This function adds the simulator ’scrm’ to the list of available simulators. It is provided via the
CRAN package scrm and should be always installed alongside with coala. It should be activated
automatically, and this function is only needed to change it priority.

Usage

activate_scrm(priority = 400)

Arguments
priority The priority for this simulator. If multiple simulators can simulate a model, the
one with the highest priority will be used.
References

Paul R. Staab, Sha Zhu, Dirk Metzler and Gerton Lunter (2015). "scrm: efficiently simulating
long sequences using the approximated coalescent with recombination." Bioinformatics, 31(10),
pp. 1680-1682. http://dx.doi.org/10.1093/bioinformatics/btu861

See Also

Other simulators: simulator_ms, simulator_msms, simulator_seqggen

Examples

Change scrm's priority

model <- coal_model(10, 1) + feat_mutation(5)
model # scrm is used by default
activate_scrm(250)

model # Now ms is used instead (if installed)
activate_scrm(550)

model # Now scrm is used again

simulator_seqggen Simulator: seq-gen

Description

This allows you to use seq-gen to simulate finite sites mutation models. When using seq-gen, coala
will simulate ancestral tress using the other simulators, and call seq-gen to simulate finite sites
mutations using the trees. Seq-gen has a low priority, but will always be used when finite sites
mutation models are used.

36 sumstat_dna

Usage

activate_seqgen(binary = NULL, priority = 100)

Arguments
binary The path of the seqgen binary that will be used for simulations. If none is pro-
vided, coala will look for a binary called ’seqgen’ or ’seq-gen’ using the PATH
variable.
priority The priority for this simulator. If multiple simulators can simulate a model, the
one with the highest priority will be used.
Installation

You need to download the program from http://tree.bio.ed.ac.uk/software/seqgen/ and
compile the binary prior to invoking this function. On Debian-based systems, you can alternatively
install the package ’seg-gen’.

References

Andrew Rambaut and Nicholas C. Grassly. Seq-Gen: an application for the Monte Carlo simulation
of DNA sequence evolution along phylogenetic trees. Comput Appl Biosci (1997) 13 (3): 235-238
doi:10.1093/bioinformatics/13.3.235

See Also

Other simulators: simulator_ms, simulator_msms, simulator_scrm

Examples

Not run: activate_seqgen("”./bin/seqgen”)

sumstat_dna Summary Statistic: DNA

Description

This summary statistic returns the actual DNA sequences from finite sites simulations. It can not
be calculated together with other summary statistics or when assuming an infinite sites mutation
model. No outgroup is needed for it, and the outgroup sequences will also be returned if present.

Usage

sumstat_dna(name = "dna"”, transformation = identity)

http://tree.bio.ed.ac.uk/software/seqgen/

sumstat_file 37

Arguments

name The name of the summary statistic. When simulating a model, the value of the
statistics are written to an entry of the returned list with this name. Summary
statistic names must be unique in a model.

transformation An optional function for transforming the results of the statistic. If specified, the
results of the transformation are returned instead of the original values.

Value

A list of sequences for each locus. Each entries is a character matrix decoding the sequences. Each
row is an individual, and each column is a genetic position.

See Also

To create a demographic model: coal_model
To calculate this statistic from data: calc_sumstats_from_data

Other summary statistics: sumstat_file(), sumstat_four_gamete(), sumstat_ihh(), sumstat_jsfs(),
sumstat_memf (), sumstat_nucleotide_div(), sumstat_omega(), sumstat_seg_sites(), sumstat_sfs(),
sumstat_tajimas_d(), sumstat_trees()

Examples

model <- coal_model(5, 1, 10) +

feat_mutation(5, model = "GTR", gtr_rates = rep(1, 6)) +
sumstat_dna()

Not run: simulate(model)$dna

sumstat_file Summary Statistic: Files

Description

This "summary statistic" returns files with the raw results of the simulation. Multiple files are re-

turned in case coala needs multiple calls to simulators to simulate the model. These files do not con-

tain any post processing of the results done by coala, e.g. feat_unphased and feat_ignore_singletons.
Usage

sumstat_file(folder)

Arguments

folder The path to a folder. The files will be created there.

Value

A character vector containing the files in order in which they where created.

38 sumstat_four_gamete

See Also

To create a demographic model: coal_model
To calculate this statistic from data: calc_sumstats_from_data

Other summary statistics: sumstat_dna(), sumstat_four_gamete(), sumstat_ihh(), sumstat_jsfs(),
sumstat_memf (), sumstat_nucleotide_div(), sumstat_omega(), sumstat_seg_sites(), sumstat_sfs(),
sumstat_tajimas_d(), sumstat_trees()

Examples

folder <- tempfile("coala-test"”)

model <- coal_model(10, 1) +
feat_mutation(5) +
sumstat_file(folder)

simulate(model)$file

unlink(folder, recursive = TRUE) # Clean up

sumstat_four_gamete Summary Statistic: Four-Gamete-Condition

Description

This summary statistic calculates a number of values (see ’Value’) related to the Four-Gamete-
Condition (see ’Details’). It is sensitive for recombination and particularly useful when estimating
recombination rates with jaatha or Approximate Bayesian Computation.

Usage

sumstat_four_gamete(
name = "four_gamete”,
population = 1,
transformation = identity,
na.rm = FALSE

)
Arguments
name The name of the summary statistic. When simulating a model, the value of the
statistics are written to an entry of the returned list with this name. Summary
statistic names must be unique in a model.
population The population for which the statistic is calculated. Can also be "all" to calculate

it from all populations. Default is population 1.

transformation An optional function for transforming the results of the statistic. If specified, the
results of the transformation are returned instead of the original values.

na.rm should missing data be ignored? Default is FALSE.

sumstat_four_gamete 39

Details

The Four-Gamete-Condition for two SNPs is violated if all four combinations of derived and an-
cestral alleles at the SNPs are observed in a gamete/a haplotype. Under an Infinite-Sites mutation
model, a violation indicates that there must have been at least one recombination event between the
SNPs.

Value

The statistic generates a matrix where each row represents one locus, and the columns give the
statistic for different classes of pairs of SNPs:

mid_near The value for all pairs of SNPs that are close together, that is within 10 percent of the
locus" length. If locus trios are used, only pairs of SNPs were both SNPs are on the middle
locus are considered.

mid_far Same as mid_near, but for pairs of SNPs that are more that 10 percent of the locus" length
apart.

outer Only when using locus trios. The statistic for pairs where both SNPs are on the same outer
locus.

between Only when using locus trios. The statistic for pairs where one SNPs is on the middle
locus, and the other is on an outer one.

mid The value for all pairs on the middle locus or all pairs when not using trios.

perc_polym The percentage of positions that are polymorpic.

Unphased Data

For unphased data, the four gamete condition is only counted as violated if it is violated for all
possible phasing of the data.

See Also

To create a demographic model: coal_model
To calculate this statistic from data: calc_sumstats_from_data

Other summary statistics: sumstat_dna(), sumstat_file(), sumstat_ihh(), sumstat_jsfs(),
sumstat_memf (), sumstat_nucleotide_div(), sumstat_omega(), sumstat_seg_sites(), sumstat_sfs(),
sumstat_tajimas_d(), sumstat_trees()

Examples

model <- coal_model(5, 2) +
feat_mutation(50) +
feat_recombination(10) +
sumstat_four_gamete()

stats <- simulate(model)

print(stats$four_gamete)

40

sumstat_ihh

sumstat_ihh

Summary Statistic: Integrated Extended Haplotype Homozygosity

Description

This summary statistic calculates a number of values based on extended haplotype homozygos-
ity (EHH), including iHH, iES and optionally iHS. Coala relies on scan_hh from package rehh
to calculate this statistic. Please refer to their documentation for detailed information on the im-
plementation. Please cite the corresponding publication (see below) if you use the statistic for a

publication.

Usage

sumstat_ihh(

name = "ihh",

population =

1,

max_snps = 1000,
calc_ihs = FALSE,
transformation = identity

Arguments

name

population

max_snps

calc_ihs

transformation

Value

The name of the summary statistic. When simulating a model, the value of the
statistics are written to an entry of the returned list with this name. Summary
statistic names must be unique in a model.

The population for which the statistic is calculated. Can also be "all" to calculate
it from all populations. Default is population 1.

The maximal number of SNPs per locus that are used for the calculation. If a
locus has more SNPs, only a random subset of them will be used to increase
performance. Set to Inf to use all SNPs.

If set to TRUE, additionally standardized iHS is calculated.

An optional function for transforming the results of the statistic. If specified, the
results of the transformation are returned instead of the original values.

If calc_ihs = FALSE, a data.frame with values for iHH and iES is returned. Otherwise, a list of two
data frames are returned, one for IHH and IES values and the other one for IHS values.

In all data. frames rows are SNPs and the columns present the following values for each SNP:

* CHR: The SNP’s locus

* POSITION: The SNP’s absolute position on its locus
* FREQ_A: The frequency of the ancestral allele

* FREQ_D: The frequency of the derived allele

sumstat_jsts 41

IHH_A: integrated EHH for the ancestral allele
IHH_D: integrated EHH for the derived allele

* IES: integrated EHHS

* INES: integrated normalized EHHS

e THS: iHS, normalized over all loci.

References

* Mathieu Gautier and Renaud Vitalis, rehh: an R package to detect footprints of selection in
genome-wide SNP data from haplotype structure. Bioinformatics (2012) 28 (8): 1176-1177
first published online March 7, 2012 doi:10.1093/bioinformatics/bts115

* Voight et al., A map of recent positive selection in the human genome. PLoS Biol, 4(3):e72,
Mar 2006.

Author(s)

Paul Staab

See Also

To create a demographic model: coal_model
To calculate this statistic from data: calc_sumstats_from_data

Other summary statistics: sumstat_dna(), sumstat_file(), sumstat_four_gamete(), sumstat_jsfs(),
sumstat_memf (), sumstat_nucleotide_div(), sumstat_omega(), sumstat_seg_sites(), sumstat_sfs(),
sumstat_tajimas_d(), sumstat_trees()

Examples

model <- coal_model(20, 1, 1000) +
feat_mutation(1000) +
sumstat_ihh()

stat <- simulate(model)
print(stat$ihh)

sumstat_jsfs Summary Statistic: Joint Site Frequency Spectrum

Description

The summary statistic calculates the joint site frequency spectrum (JSFS) for multiple populations.

42 sumstat_jsfs

Usage

sumstat_jsfs(
name = "jsfs”,
populations = c(1, 2),
per_locus = FALSE,
transformation = identity

)
Arguments
name The name of the summary statistic. When simulating a model, the value of the
statistics are written to an entry of the returned list with this name. Summary
statistic names must be unique in a model.
populations An integer vector containing the populations for which the JSFS is generated.
per_locus If TRUE, the JSFS is returned for each locus instead of globally. In this case, the

result is a list, where each entry is the JSFS for the corresponding locus.

transformation An optional function for transforming the results of the statistic. If specified, the
results of the transformation are returned instead of the original values.

Value

The JSFS, given as an array. The dimensions correspond to the populations as given in the populations
argument.

See Also

To create a demographic model: coal_model
To calculate this statistic from data: calc_sumstats_from_data

Other summary statistics: sumstat_dna(), sumstat_file(), sumstat_four_gamete(), sumstat_ihh(),
sumstat_memf (), sumstat_nucleotide_div(), sumstat_omega(), sumstat_seg_sites(), sumstat_sfs(),
sumstat_tajimas_d(), sumstat_trees()

Examples

model <- coal_model(c(2, 3, 4), 2) +
feat_mutation(5) +
feat_migration(1, symmetric = TRUE) +
sumstat_jsfs(”"jsfs_12", populations = c(1, 2)) +
sumstat_jsfs("jsfs_123", populations = c(1, 2, 3))

stats <- simulate(model)

print(stats$jsfs_12)

print(stats$jsfs_123)

sumstat_mcmf 43

sumstat_mcmf Summary Statistic: Most Common Mutation’s Frequency

Description

This summary statistic calculates the observed frequency of the mutational pattern that is observed
most often in the data.

Usage

sumstat_memf (
name = "mcmf”,
population = 1,
transformation = identity,
expand_mcmf = FALSE,
type_expand = 1

)
Arguments
name The name of the summary statistic. When simulating a model, the value of the
statistics are written to an entry of the returned list with this name. Summary
statistic names must be unique in a model.
population The population for which the statistic is calculated. Can also be "all" to calculate

it from all populations.

transformation An optional function for transforming the results of the statistic. If specified, the
results of the transformation are returned instead of the original values.

expand_mcmf Whether to use or not the expanded MCMF. See Details
type_expand Specifies the type of expanded MCMF to be used. See Details

Details

The expand_mcmf = FALSE calculates the mcmf per locus and returns a vector. The expand_mcmf
= TRUE and type_expand = 1 returns the same results as the first column of a Matrix. The
expand_mcmf = TRUE and type_expand = 2 adds the frequency of derived alleles in the most
frequently observed mutational pattern as a second column. The expand_mcmf = TRUE and
type_expand = 3 adds the percentage of positions that are polymorpic. When expanded_mcmf
= TRUE results are returned as a matrix.

Value

A numeric vector or matrix containing MCMF for each locus.

memf The observed frequency of the mutational pattern that is observed most often in the data.
bal The frequency of derived alleles in the most frequently observed mutational pattern.

perc_poly The percentage of positions that are polymorpic.

44 sumstat_nucleotide_div

See Also

To create a demographic model: coal_model
To calculate this statistic from data: calc_sumstats_from_data

Other summary statistics: sumstat_dna(), sumstat_file(), sumstat_four_gamete(), sumstat_ihh(),
sumstat_jsfs(), sumstat_nucleotide_div(), sumstat_omega(), sumstat_seg_sites(), sumstat_sfs(),
sumstat_tajimas_d(), sumstat_trees()

Examples

Calculate MCMF for a panmictic population
model <- coal_model(10, 2) +
feat_mutation(50) +
sumstat_memf ()
simulate(model)

sumstat_nucleotide_div
Summary Statistic: Nucleotide Diversity

Description

The summary statistic calculates the nucleotide diversity () per locus, which is the mean number
of pairwise difference for two individuals. It is a commonly used estimator for the scaled mutation

rate 6.
Usage
sumstat_nucleotide_div(name = "pi"”, population = 1, transformation = identity)
Arguments
name The name of the summary statistic. When simulating a model, the value of the
statistics are written to an entry of the returned list with this name. Summary
statistic names must be unique in a model.
population The population for which the statistic is calculated. Can also be "all" to calculate

it from all populations. Default is population 1.

transformation An optional function for transforming the results of the statistic. If specified, the
results of the transformation are returned instead of the original values.

Details

The nucleotide diversity was introduced by

Nei and Li (1979). "Mathematical Model for Studying Genetic Variation in Terms of Restriction
Endonucleases". PNAS 76 (10): 5269-73. doi:10.1073/pnas.76.10.5269.

sumstat_omega 45

Value

On simulation, this returns a vector with the value of pi for each locus.

See Also

To create a demographic model: coal_model
To calculate this statistic from data: calc_sumstats_from_data

Other summary statistics: sumstat_dna(), sumstat_file(), sumstat_four_gamete(), sumstat_ihh(),
sumstat_jsfs(), sumstat_mcmf (), sumstat_omega(), sumstat_seg_sites(), sumstat_sfs(),
sumstat_tajimas_d(), sumstat_trees()

Examples

model <- coal_model(5, 2) +
feat_mutation(5) +
sumstat_nucleotide_div()

stats <- simulate(model)

print(stats$pi)

sumstat_omega Summary Statistic: Omega

Description

Calculates the Omega Statistic introduced by Kim & Nielsen (2004) from the simulated data. The
statistic is sensitive for hard selective sweeps. To calculate the statistic, coala relies on the command
line program OmegaPlus, which needs to be downloaded and compiled manually in order to use the
statistic.

Usage

sumstat_omega(
name = "omega",
min_win = 100,
max_win = 1000,

grid = 1000,
binary = "automatic”,
transformation = identity
)
Arguments
name The name of the summary statistic. When simulating a model, the value of the
statistics are written to an entry of the returned list with this name. Summary
statistic names must be unique in a model.
min_win The minimum distance from the grid point that a SNP must have to be included

in the calculation of omega.

http://sco.h-its.org/exelixis/web/software/omegaplus/index.html

46 sumstat_omega

max_win The maximum distance from the grid point that a SNP must have to be included
in the calculation of omega.

grid The number of points for which omega is calculated on each locus. Should be
significantly lower than the locus length.

binary The path of the binary for OmegaPlus. If set to "automatic”, coala will try to
find a binary called "OmegaPlus" using the PATH environment variable.

transformation An optional function for transforming the results of the statistic. If specified, the
results of the transformation are returned instead of the original values.

Value

A data frame listing of locus, genetic position and the calculated omega value.

References

Linkage disequilibrium as a signature of selective sweeps. Y. Kim and R. Nielsen (2004). Genetics,
167, 1513-1524.

OmegaPlus: a scalable tool for rapid detection of selective sweeps in whole-genome datasets. N.
Alachiotis, A. Stamatakis and P. Pavlidis (2012). Bioinformatics Vol. 28 no. 17 2012, pages 2274-
2275 doi:10.1093/bioinformatics/bts419

See Also

To create a demographic model: coal_model
To calculate this statistic from data: calc_sumstats_from_data

Other summary statistics: sumstat_dna(), sumstat_file(), sumstat_four_gamete(), sumstat_ihh(),
sumstat_jsfs(), sumstat_mcmf (), sumstat_nucleotide_div(), sumstat_seg_sites(), sumstat_sfs(),
sumstat_tajimas_d(), sumstat_trees()

Examples

Not run:

model <- coal_model(20, 1, 50000) +
feat_recombination(50) +
feat_mutation(1000) +
feat_selection(strength_A = 1000, time = 0.03) +
sumstat_omega()

stats <- simulate(model)

plot(stats$omega$omega, type = "1")

End(Not run)

sumstat_seg_sites 47

sumstat_seg_sites Summary Statistic: Segregating Sites

Description

This summary statistics generates a matrix of segregating sites. This is useful for calculating sum-
mary statistics that coala does not support..

Usage
sumstat_seg_sites(name = "seg_sites”, transformation = identity)
Arguments
name The name of the summary statistic. When simulating a model, the value of the

statistics are written to an entry of the returned list with this name. Summary
statistic names must be unique in a model.

transformation An optional function for transforming the results of the statistic. If specified, the
results of the transformation are returned instead of the original values.

Value

A list of segsites objects. These can be treated as a matrix for most applications. Rows are
individuals, columns are SNPs.

See Also

For a description of the segregating sites class: create_segsites
To create a demographic model: coal_model
To calculate this statistic from data: calc_sumstats_from_data

Other summary statistics: sumstat_dna(), sumstat_file(), sumstat_four_gamete(), sumstat_ihh(),
sumstat_jsfs(), sumstat_mcmf (), sumstat_nucleotide_div(), sumstat_omega(), sumstat_sfs(),
sumstat_tajimas_d(), sumstat_trees()

Examples

model <- coal_model(5, 1) +
feat_mutation(5) +
sumstat_seg_sites("segsites”)

stats <- simulate(model)

print(stats$segsites)

48 sumstat_sfs

sumstat_sfs Summary Statistic: Site Frequency Spectrum

Description

The Site Frequency Spectrum (SFS) counts how many SNPs are in a sample according to their
number of derived alleles.

Usage
sumstat_sfs(name = "sfs"”, population = "all”, transformation = identity)
Arguments
name The name of the summary statistic. When simulating a model, the value of the
statistics are written to an entry of the returned list with this name. Summary
statistic names must be unique in a model.
population The population for which the statistic is calculated. Can also be "all" to calculate

it from all populations. Default is population 1.

transformation An optional function for transforming the results of the statistic. If specified, the
results of the transformation are returned instead of the original values.

See Also

To create a demographic model: coal_model
To calculate this statistic from data: calc_sumstats_from_data

Other summary statistics: sumstat_dna(), sumstat_file(), sumstat_four_gamete(), sumstat_ihh(),
sumstat_jsfs(), sumstat_mcmf (), sumstat_nucleotide_div(), sumstat_omega(), sumstat_seg_sites(),
sumstat_tajimas_d(), sumstat_trees()

Examples

model <- coal_model(20, 500) +
feat_mutation(2) +
sumstat_sfs()

stats <- simulate(model)

barplot(stats$sfs)

sumstat_tajimas_d 49

sumstat_tajimas_d Summary Statistic: Tajima’s D

Description

This statistic calculates Tajima’s D from the simulation results when added to a model. Tajima’s D
primarily measures an deviation of singletons from the neutral expectation of an equilibrium model.
Negative values indicate an excess of singletons, while positive values code a depletion of them.

Usage

sumstat_tajimas_d(
name = "tajimas_d",
population = "all",
transformation = identity

)
Arguments
name The name of the summary statistic. When simulating a model, the value of the
statistics are written to an entry of the returned list with this name. Summary
statistic names must be unique in a model.
population The population for which the statistic is calculated. Can also be "all" to calculate

it from all populations. Default is population 1.

transformation An optional function for transforming the results of the statistic. If specified, the
results of the transformation are returned instead of the original values.
Value

On simulation, this returns a vector with the value of Tajima’s D for each locus.

References

Tajima, F. (1989). "Statistical method for testing the neutral mutation hypothesis by DNA polymor-
phism.". Genetics 123 (3): 585-95.

See Also

To create a demographic model: coal_model
To calculate this statistic from data: calc_sumstats_from_data

Other summary statistics: sumstat_dna(), sumstat_file(), sumstat_four_gamete(), sumstat_ihh(),
sumstat_jsfs(), sumstat_mcmf (), sumstat_nucleotide_div(), sumstat_omega(), sumstat_seg_sites(),
sumstat_sfs(), sumstat_trees()

50 sumstat_trees

Examples

A neutral model that should yield values close to zero:
model <- coal_model(5, 2) +
feat_mutation(20) +
feat_recombination(10) +
sumstat_tajimas_d("taji_d")
stats <- simulate(model)
print(stats$taji_d)

sumstat_trees Summary Statistic: Ancestral Trees

Description

This statistic returns ancestral tress in NEWICK format.

Usage
sumstat_trees(name = "trees")
Arguments
name The name of the summary statistic. When simulating a model, the value of the
statistics are written to an entry of the returned list with this name. Summary
statistic names must be unique in a model.
See Also

To create a demographic model: coal_model
To calculate this statistic from data: calc_sumstats_from_data

Other summary statistics: sumstat_dna(), sumstat_file(), sumstat_four_gamete(), sumstat_ihh(),
sumstat_jsfs(), sumstat_mcmf (), sumstat_nucleotide_div(), sumstat_omega(), sumstat_seg_sites(),
sumstat_sfs(), sumstat_tajimas_d()

Examples

Without recombination:

model <- coal_model(4, 2) + sumstat_trees()
stats <- simulate(model)

print(stats$trees)

With recombination:

model <- model + feat_recombination(5)
stats <- simulate(model)
print(stats$trees)

Index

x features
feat_growth, 12
feat_ignore_singletons, 13
feat_migration, 14
feat_mutation, 15
feat_outgroup, 18
feat_pop_merge, 19
feat_recombination, 20
feat_selection, 21
feat_size_change, 23
feat_unphased, 24

* simulators
simulator_ms, 33
simulator_msms, 34
simulator_scrm, 35
simulator_seqgen, 35

* summary statistics
sumstat_dna, 36
sumstat_file, 37
sumstat_four_gamete, 38
sumstat_ihh, 40
sumstat_jsfs, 41
sumstat_mcmf, 43
sumstat_nucleotide_div, 44
sumstat_omega, 45
sumstat_seg_sites, 47
sumstat_sfs, 48
sumstat_tajimas_d, 49
sumstat_trees, 50

abe, 8, 9

activate_ms (simulator_ms), 33
activate_msms, 2/

activate_msms (simulator_msms), 34
activate_scrm(simulator_scrm), 35
activate_seqgen (simulator_seqgen), 35
as.segsites, 4,4,5,6,11
as.segsites.GENOME, 4, 4

calc_sumstats_from_data, 4, 5, 37-39, 41,

51

42, 44-50
check_model, 6, 7
coal_model, 7, 12, 13, 15-25, 32, 37-39, 41,
42, 44-50
coala (coala-package), 3
coala-package, 3
coalmodelpart (coal_model), 7
create_abc_param, 8, 9
create_abc_sumstat, 8,9
create_locus_trio (create_segsites), 10
create_segsites, 5, 10, 47

feat_growth, 12, 13, 15,17, 18, 20, 21, 23-25
feat_ignore_singletons, 12, 13, 15, 17, 18,
20, 21, 23-25, 37
feat_migration, 12, 13, 14, 17, 18, 20, 21,
23-25
feat_mutation, 7, 12, 13, 15, 15, 18, 20, 21,
23-25
feat_outgroup, 12, 13, 15,17, 18, 20, 21,
23-25
feat_pop_merge, 12, 13, 15,17, 18,19, 21,
23-25
feat_recombination, 12, 13, 15,17, 18, 20,
20, 23-25
feat_selection, 12, 13,15, 17, 18, 20, 21,
21,24, 25
feat_size_change, 12, 13, 15,17, 18, 20, 21,
23,23,25
feat_unphased, 12, 13, 15,17, 18, 20, 21, 23
24,24,37

get_positions (create_segsites), 10
get_snps (create_segsites), 10
get_trio_locus (create_segsites), 10

is_segsites (create_segsites), 10

list_simulators, 6, 25
loci (locus), 26

52

locus, 26, 27

locus trios, 15, 20
locus_averaged, 7
locus_averaged (locus), 26
locus_single, 7, 32
locus_single (locus), 26
locus_trio, 7, 26, 27

par_const (parameter), 28
par_expr, 29

par_expr (parameter), 28
par_named, 29, 33

par_named (parameter), 28

par_prior (parameter), 28
par_range, 33

par_range (parameter), 28
par_variation, 15, 17, 20, 23, 29, 30
par_zero_inflation, 15, 17, 20, 23, 29, 31
parameter, 12, 14, 16, 20, 23, 28, 30-32

scale_model, 32
scan_hh, 40
segsites, 4,47
segsites (create_segsites), 10
set_positions (create_segsites), 10
set_trio_locus (create_segsites), 10
simulate, 7-9
simulate.coalmodel, 29, 32
simulator_ms, 33, 34-36
simulator_msms, 34, 34, 35, 36
simulator_scrm, 34, 35, 36
simulator_seqgen, 34, 35, 35
sumstat_dna, 7, 36, 38, 39, 41, 42, 44-50
sumstat_file, 37, 37, 39, 41, 42, 44-50
sumstat_four_gamete, 37, 38, 38, 41, 42,
44-50
sumstat_ihh, 23, 37-39, 40, 42, 44-50
sumstat_jsfs, 9, 37-39, 41, 41, 44-50
sumstat_memf, 23, 37-39, 41, 42, 43, 45-50
sumstat_nucleotide_div, 37-39, 41, 42, 44,
44, 46-50
sumstat_omega, 9, 23, 37-39, 41, 42, 44, 45,
45, 47-50
sumstat_seg_sites, 37-39, 41, 42, 4446,
47, 48-50
sumstat_sfs, 37-39, 41, 42, 4447, 48, 49, 50
sumstat_tajimas_d, 23, 37-39, 41, 42,
44-48, 49, 50
sumstat_trees, 9, 37-39, 41, 42, 44-49, 50

unlinked loci, 75, 20

INDEX

	coala-package
	as.segsites
	as.segsites.GENOME
	calc_sumstats_from_data
	check_model
	coal_model
	create_abc_param
	create_abc_sumstat
	create_segsites
	feat_growth
	feat_ignore_singletons
	feat_migration
	feat_mutation
	feat_outgroup
	feat_pop_merge
	feat_recombination
	feat_selection
	feat_size_change
	feat_unphased
	list_simulators
	locus
	locus_trio
	parameter
	par_variation
	par_zero_inflation
	scale_model
	simulate.coalmodel
	simulator_ms
	simulator_msms
	simulator_scrm
	simulator_seqgen
	sumstat_dna
	sumstat_file
	sumstat_four_gamete
	sumstat_ihh
	sumstat_jsfs
	sumstat_mcmf
	sumstat_nucleotide_div
	sumstat_omega
	sumstat_seg_sites
	sumstat_sfs
	sumstat_tajimas_d
	sumstat_trees
	Index

