Package 'coRanking'

September 30, 2024

Title Co-Ranking Matrix

Version 0.2.5

Description Calculates the co-ranking matrix to assess the quality of a dimensionality reduction.

URL https://coranking.guido-kraemer.com/

BugReports https://github.com/gdkrmr/coRanking/issues License GPL-3 | file LICENSE Encoding UTF-8 Imports methods, graphics, stats RoxygenNote 7.3.2 Collate 'coranking-package.R' 'coranking.R' 'coranking_internals.R' 'lcmc.R' 'criteria.R' 'image.R' 'rankmatrix.R' 'submatrix.R' 'r_nx.R' Suggests testthat, knitr, rmarkdown, Rtsne, scatterplot3d VignetteBuilder knitr NeedsCompilation yes Author Guido Kraemer [aut, cre] (<https://orcid.org/0000-0003-4865-5041>) Maintainer Guido Kraemer <guido.kraemer@uni-leipzig.de> Repository CRAN Date/Publication 2024-09-30 09:30:02 UTC

Contents

oRanking-package	2
UC_ln_K	3
pranking	4
nageplot	5
СМС	6
lot_R_NX	
<u>NX</u>	7
ınkmatrix	8
_NX	9

Index

10

coRanking-package Methods for the co-ranking matrix

Description

coRanking provides methods for the calculation of the co-ranking matrix and derived measures to assess the quality of a dimensionality reduction

Details

This package provides functions for calculating the co-ranking matrix, plotting functions and some derived measures for quality assessment of dimensionality reductions.

Funding provided by the Department for Biogeochemical Integration, Empirical Inference of the Earth System Group, at the Max Plack Institute for Biogeochemistry, Jena.

Author(s)

Maintainer: Guido Kraemer <guido.kraemer@uni-leipzig.de> (ORCID)

References

Chen, L., Buja, A., 2006. Local Multidimensional Scaling for Nonlinear Dimension Reduction, Graph Layout and Proximity Analysis.

Lee, J.A., Lee, J.A., Verleysen, M., 2009. Quality assessment of dimensionality reduction: Rankbased criteria. Neurocomputing 72.

Lueks, W., Mokbel, B., Biehl, M., & Hammer, B. (2011). How to Evaluate Dimensionality Reduction? - Improving the Co-ranking Matrix. ArXiv:1110.3917 [Cs]. http://arxiv.org/abs/1110.3917

Lee, J. A., Peluffo-Ordóñez, D. H., & Verleysen, M., 2015. Multi-scale similarities in stochastic neighbour embedding: Reducing dimensionality while preserving both local and global structure. Neurocomputing, 169, 246–261. https://doi.org/10.1016/j.neucom.2014.12.095

See Also

Useful links:

- https://coranking.guido-kraemer.com/
- Report bugs at https://github.com/gdkrmr/coRanking/issues

AUC_ln_K

Description

Area under the $R_{NX}(K)$ curve when K is put on a logarithmic scale.

Usage

AUC_ln_K(R_NX)

Arguments

R_NX

The R_NX curve, a vector of values

Details

It is calculated as:

$$AUC_{\ln K}(R_{NX}(K)) = \left(\sum_{K=1}^{N-2} R_{NX}(K)/K\right) / \left(\sum_{K=1}^{N-2} 1/K\right)$$

Value

A value, the area under the curve.

Author(s)

Guido Kraemer

References

Lee, J. A., Peluffo-Ordóñez, D. H., & Verleysen, M., 2015. Multi-scale similarities in stochastic neighbour embedding: Reducing dimensionality while preserving both local and global structure. Neurocomputing, 169, 246–261. https://doi.org/10.1016/j.neucom.2014.12.095

coranking

Description

Calculate the co-ranking matrix to assess the quality of a diminsionality reduction.

Usage

```
coranking(
   Xi,
   X,
   input_Xi = c("data", "dist", "rank"),
   input_X = input_Xi,
   use = "C"
)
```

Arguments

Xi	high dimensional data
Х	low dimensional data
input_Xi	type of input of Xi (see. details)
input_X	type of input of X (see. details)
use	R or C backend

Details

Calculate the coranking matrix, to assess the quality of a dimensionality reduction. Xi is input in high dimensions, X is input in low dimensions the type of input is given in input_Xi and input_X, they can be one of c('data', 'dist', 'rank').

Value

a matrix of class 'coranking'

Author(s)

Guido Kraemer

See Also

rankmatrix

imageplot

Description

Plots the co-ranking matrix nicely

Usage

```
imageplot(
 Q,
 lwd = 2,
 bty = "n",
 main = "co-ranking matrix",
 xlab = expression(R),
 ylab = expression(Ro),
 col = colorRampPalette(colors = c("gray85", "red", "yellow", "green", "blue"))(100),
 axes = FALSE,
 legend = TRUE,
 ....
)
```

Arguments

Q	of class coranking.
lwd	linewidth in legend
bty	boxtype of legend
main	title of plot
xlab	label of the x axis
ylab	label of the y axis
col	a palette for coloring
axes	ligical draw axes
legend	if ⊤ plot a legend.
	parameters for the image function.

Details

Plots the co-ranking matrix nicely for visual inspection. uses the image function internaly, ... is passed down to the image function. The values in the co-ranking matrix are logscaled for better contrast.

Author(s)

Guido Kramer

Description

Calculate the local continuity meta-criterion from a co-ranking matrix.

Usage

LCMC(Q, K = 1:nrow(Q))

Arguments

Q	a co-ranking matrix
К	vector of integers describing neighborhood size

Details

The local continuity meta-criterion (Chen and Buja, 2006) is defined as

$$LCMC = \frac{K}{1-N} + \frac{1}{NK} \sum_{(k,l) \in UL_K} q_{kl}$$

Higher values mean a better performance of the dimensionality reduction.

Value

A number, the local continuity meta-criterion

Author(s)

Guido Kraemer

plot_R_NX Plot the $R_NX(K)$ curve

Description

Produces a plot with the $R_{NX}(K)$ curves from the arguments

Usage

```
plot_R_NX(R_NXs, pal = grDevices::palette(), ylim = c(0, 0.9), ...)
```

LCMC

Q_NX

Arguments

R_NXs	A list of R_NX curves, names from the list will appear in the legend
pal	a vector of colors
ylim	set the y-axis limits of the plot
	options for the plotting function

Value

Nothing, produces a plot.

Author(s)

Guido Kraemer

References

Lee, J. A., Peluffo-Ordóñez, D. H., & Verleysen, M., 2015. Multi-scale similarities in stochastic neighbour embedding: Reducing dimensionality while preserving both local and global structure. Neurocomputing, 169, 246-261. https://doi.org/10.1016/j.neucom.2014.12.095

Q_NX

The $Q_NX(K)$ criterion

Description

A curve indicating the percentage of points that are mild in- and extrusions or keep their rank.

Usage

 $Q_NX(Q)$

Arguments Q

a co-ranking matrix

Details

$$Q_{NX}(K) = \frac{1}{KN} \sum_{k=1}^{K} \sum_{l=1}^{K} Q_{kl}$$

Value

A vector with the values for $Q_NX(K)$

Author(s)

Guido Kraemer

References

Lueks, W., Mokbel, B., Biehl, M., & Hammer, B. (2011). How to Evaluate Dimensionality Reduction? - Improving the Co-ranking Matrix. ArXiv:1110.3917 [Cs]. http://arxiv.org/abs/1110.3917

rankmatrix Rank matrix

Description

Replaces the elements of X with their rank in the column vector of the distance matrix

Usage

rankmatrix(X, input = c("data", "dist"), use = "C")

Arguments

Х	data, dist object, or distance matrix
input	type of input
use	if 'C' uses the compiled library, else uses the native R code

Details

Each column vector in the distance matrix (or the distance matrix computed from the input) is replaced by a vector indicating the rank of the distance inside that vector.

This is a computation step necessary for the co-ranking matrix and provided mainly so that the user has the possibility to save computation time.

Value

```
returns a matrix of class 'rankmatrix'
```

Author(s)

Guido Kraemer

R_NX

Description

A curve indicating the improvement of the embedding over a random embedding for the neighborhood size K. Values range from 0, for a random embedding, to 1 for a perfect embedding.

Usage

 $R_NX(Q)$

Arguments Q

a co-ranking matrix

Details

 $R_{NX}(K)$ is calculated as follows:

$$Q_{NX}(K) = \sum_{1 \le k \le K} \sum_{1 \le l \le K} \frac{q_{kl}}{KN}$$

Counts the upper left K-by-K block of Q, i.e. it considers the preserved ranks on the diagonal and the permutations within a neighborhood.

$$R_{NX}(K) = \frac{(N-1)Q_{NX}(K) - K}{N - 1 - K}$$

A resulting vale of 0 corresponds to a random embedding, a value of 1 to a perfect embedding of the K-ary neighborhood.

Value

A vector with the values for R_NX(K)

Author(s)

Guido Kraemer

References

Lee, J.A., Lee, J.A., Verleysen, M., 2009. Quality assessment of dimensionality reduction: Rankbased criteria. Neurocomputing 72.

Lee, J. A., Peluffo-Ordóñez, D. H., & Verleysen, M., 2015. Multi-scale similarities in stochastic neighbour embedding: Reducing dimensionality while preserving both local and global structure. Neurocomputing, 169, 246–261. https://doi.org/10.1016/j.neucom.2014.12.095

Index

AUC_ln_K, 3

coRanking (coRanking-package), 2
coranking, 4
coRanking-package, 2

image, 5
imageplot, 5

LCMC, 6

plot_R_NX, 6

Q_NX, 7

R_NX,9 rankmatrix,4,8