| Type: | Package |
| Title: | Conditional Manifold Learning |
| Version: | 0.3.1 |
| Imports: | vegan |
| Description: | Finds a low-dimensional embedding of high-dimensional data, conditioning on available manifold information. |
| License: | GPL-3 |
| Encoding: | UTF-8 |
| RoxygenNote: | 6.0.1 |
| NeedsCompilation: | no |
| Packaged: | 2026-02-12 00:09:08 UTC; buiat2 |
| Author: | Anh Tuan Bui [aut, cre] |
| Maintainer: | Anh Tuan Bui <atbui@u.northwestern.edu> |
| Repository: | CRAN |
| Date/Publication: | 2026-02-12 00:30:02 UTC |
Conditional Manifold Learning
Description
Find a low-dimensional embedding of high-dimensional data, conditioning on auxiliary manifold information. The current version supports conditional MDS and conditional ISOMAP.
Please cite this package as follows: Bui, A.T. (2024). Dimension Reduction with Prior Information for Knowledge Discovery. IEEE Transactions on Pattern Analysis and Machine Intelligence, 46, 3625-3636. https://doi.org/10.1109/TPAMI.2023.3346212
Details
Brief descriptions of the main functions of the package are provided below:
condMDS(): is the conditional MDS method, which uses conditional SMACOF to optimize its conditional stress function.
condIsomap(): is the conditional ISOMAP method, which is basically conditional MDS applying to graph distances (i.e., estimated geodesic distances) of the given distances/dissimilarities.
Author(s)
Anh Tuan Bui
Maintainer: Anh Tuan Bui <atbui@u.northwestern.edu>
References
Bui, A.T. (2024). Dimension Reduction with Prior Information for Knowledge Discovery. IEEE Transactions on Pattern Analysis and Machine Intelligence, 46, 3625-3636. https://doi.org/10.1109/TPAMI.2023.3346212
Bui, A. T. (2022). A Closed-Form Solution for Conditional Multidimensional Scaling. Pattern Recognition Letters 164, 148-152. https://doi.org/10.1016/j.patrec.2022.11.007
Bui, A.T. (2026). Conditional Multidimensional Scaling for Incomplete Conditioning Data. Journal of Multivariate Analysis. Accepted.
Examples
# Generate car-brand perception data
factor.weights <- c(90, 88, 83, 82, 81, 70, 68)/562
N <- 100
set.seed(1)
data <- matrix(runif(N*7), N, 7)
colnames(data) <- c('Quality', 'Safety', 'Value', 'Performance', 'Eco', 'Design', 'Tech')
rownames(data) <- paste('Brand', 1:N)
data.hat <- data + matrix(rnorm(N*7), N, 7)*data*.05
data.weighted <- t(apply(data, 1, function(x) x*factor.weights))
d <- dist(data.weighted)
d.hat <- d + rnorm(length(d))*d*.05
# Conditional MDS, using the first 4 factors as known features
u.cmds = condMDS(d.hat, data.hat[,1:4], 3, init='eigen')
u.cmds$B # compare with diag(factor.weights[1:4])
ccor(data.hat[,5:7], u.cmds$U)$cancor # canonical correlations
vegan::procrustes(data.hat[,5:7], u.cmds$U, symmetric = TRUE)$ss # Procrustes statistic
# Conditional ISOMAP, using the first 4 factors as known features
u.cisomap = condIsomap(d.hat, data.hat[,1:4], 3, k = 20, init='eigen')
u.cisomap$B # compare with diag(factor.weights[1:4])
ccor(data.hat[,5:7], u.cisomap$U)$cancor
vegan::procrustes(data.hat[,5:7], u.cisomap$U, symmetric = TRUE)$ss
# with missing values in V
V = data.hat[,1:4]
V[1, 1] = NA
u.cmds2 = condMDS(d.hat, V, 3, init='eigen')
u.cmds2$B # compare with diag(factor.weights[1:4])
ccor(data.hat[,5:7], u.cmds2$U)$cancor # canonical correlations
vegan::procrustes(data.hat[,5:7], u.cmds$U, symmetric = TRUE)$ss # Procrustes statistic
u.cmds2$V.hat[1,1] # imputed value for V[1, 1]; the ground truth is data[1,1]
Canonical Correlations
Description
Computes canonical correlations for two sets of multivariate data x and y.
Usage
ccor(x, y)
Arguments
x |
the first multivariate dataset. |
y |
the second multivariate dataset. |
Value
a list of the following components:
cancor |
a vector of canonical correlations. |
xcoef |
a matrix, each column of which is the vector of coefficients of x to produce the corresponding canonical covariate. |
ycoef |
a matrix, each column of which is the vector of coefficients of y to produce the corresponding canonical covariate. |
Author(s)
Anh Tuan Bui
Examples
ccor(iris[,1:2], iris[,3:4])
Conditional Euclidean distance
Description
Internal functions.
Usage
condDist(U, V.tilde, one_n_t=t(rep(1,nrow(U))))
condDist2(U, V.tilde2, one_n_t=t(rep(1,nrow(U))))
Arguments
U |
the embedding |
V.tilde |
|
V.tilde2 |
|
one_n_t |
|
Value
a dist object.
Author(s)
Anh Tuan Bui
References
Bui, A.T. (2024). Dimension Reduction with Prior Information for Knowledge Discovery. IEEE Transactions on Pattern Analysis and Machine Intelligence, 46, 3625-3636. https://doi.org/10.1109/TPAMI.2023.3346212
Conditional ISOMAP
Description
Finds a low-dimensional manifold embedding of a given distance/dissimilarity matrix, conditioning on auxiliary manifold parameters. The method applies conditional MDS (see condMDS) to a graph distance matrix computed for the given distances/dissimilarities, using the isomap{vegan} function.
Usage
condIsomap(d, V, u.dim, epsilon = NULL, k, W,
method = c('matrix', 'vector'), exact = TRUE,
it.max = 1000, gamma = 1e-05,
init = c('none', 'condSmacof', 'eigen', 'user'),
U.start, B.start,
V.tilde.start = NULL, ...)
Arguments
d |
a distance/dissimilarity matrix of N entities (or a |
V |
an Nxq matrix of q manifold auxiliary parameter values of the N entities. |
u.dim |
the embedding dimension. |
epsilon |
shortest dissimilarity retained. |
k |
Number of shortest dissimilarities retained for a point. If both |
W |
an NxN symmetric weight matrix. If not given, a matrix of ones will be used. |
method |
if |
exact |
If |
it.max |
the max number of conditional SMACOF iterations. |
gamma |
conditional SMACOF stops early if the reduction of normalized conditional stress is less than |
init |
initialization method. |
U.start |
user-defined starting values for the embedding (when |
B.start |
starting |
V.tilde.start |
starting |
... |
other arguments for the |
Value
U |
the embedding result. |
B |
the estimated |
stress |
Normalized conditional stress value. |
sigma |
the conditional stress value at each iteration. |
init |
the value of the |
U.start |
the starting values for the embedding. |
B.start |
starting values for the |
V.tilde.start |
starting values for the |
V.hat |
imputed |
method |
the value of the |
exact |
the value of the |
Author(s)
Anh Tuan Bui
References
Bui, A.T. (2024). Dimension Reduction with Prior Information for Knowledge Discovery. IEEE Transactions on Pattern Analysis and Machine Intelligence, 46, 3625-3636. https://doi.org/10.1109/TPAMI.2023.3346212
Bui, A. T. (2022). A Closed-Form Solution for Conditional Multidimensional Scaling. Pattern Recognition Letters 164, 148-152. https://doi.org/10.1016/j.patrec.2022.11.007
Bui, A.T. (2026). Conditional Multidimensional Scaling for Incomplete Conditioning Data. Journal of Multivariate Analysis. Accepted.
See Also
Examples
# see help(cml)
Conditional Multidimensional Scaling
Description
Wrapper of condSmacof, which finds a low-dimensional embedding of a given distance/dissimilarity matrix, conditioning on auxiliary manifold parameters.
Usage
condMDS(d, V, u.dim, W,
method = c('matrix', 'vector'), exact = TRUE,
it.max = 1000, gamma = 1e-05,
init = c('none', 'eigen', 'user'),
U.start, B.start, V.tilde.start = NULL)
Arguments
d |
a distance/dissimilarity matrix of N entities (or a |
V |
an Nxq matrix of q manifold auxiliary parameter values of the N entities. |
u.dim |
the embedding dimension. |
W |
an NxN symmetric weight matrix. If not given, a matrix of ones will be used. |
method |
if |
exact |
If |
it.max |
the max number of conditional SMACOF iterations. |
gamma |
conditional SMACOF stops early if the reduction of normalized conditional stress is less than |
init |
initialization method. |
U.start |
user-defined starting values for the embedding (when |
B.start |
starting |
V.tilde.start |
starting |
Value
U |
the embedding result. |
B |
the estimated |
stress |
Normalized conditional stress value. |
sigma |
the conditional stress value at each iteration. |
init |
the value of the |
U.start |
the starting values for the embedding. |
B.start |
starting values for the |
V.tilde.start |
starting values for the |
V.hat |
imputed |
method |
the value of the |
exact |
the value of the |
Author(s)
Anh Tuan Bui
References
Bui, A.T. (2024). Dimension Reduction with Prior Information for Knowledge Discovery. IEEE Transactions on Pattern Analysis and Machine Intelligence, 46, 3625-3636. https://doi.org/10.1109/TPAMI.2023.3346212
Bui, A. T. (2022). A Closed-Form Solution for Conditional Multidimensional Scaling. Pattern Recognition Letters 164, 148-152. https://doi.org/10.1016/j.patrec.2022.11.007
Bui, A.T. (2026). Conditional Multidimensional Scaling for Incomplete Conditioning Data. Journal of Multivariate Analysis. Accepted.
See Also
condSmacof, condSmacof_mer, condMDSeigen, condIsomap
Examples
# see help(cml)
Conditional Multidimensional Scaling With Closed-Form Solution
Description
Provides a closed-form solution for conditional multidimensional scaling, based on multiple linear regression and eigendecomposition.
Usage
condMDSeigen(d, V, u.dim, method = c('matrix', 'vector'))
Arguments
d |
a |
V |
an Nxq matrix of q manifold auxiliary parameter values of the N entities. |
u.dim |
the embedding dimension. |
method |
if |
Value
U |
the embedding result. |
B |
the estimated |
eig |
the computed eigenvalues. |
stress |
the corresponding normalized conditional stress value of the solution. |
Author(s)
Anh Tuan Bui
References
Bui, A. T. (2022). A Closed-Form Solution for Conditional Multidimensional Scaling. Pattern Recognition Letters 164, 148-152. https://doi.org/10.1016/j.patrec.2022.11.007
See Also
Examples
# see help(cml)
Conditional SMACOF
Description
The conditional SMACOF algorithm. Intended for internal usage.
Usage
condSmacof(d, V, u.dim, W,
method = c('matrix', 'vector'), exact = TRUE,
it.max = 1000, gamma = 1e-05,
init = c('none', 'eigen', 'user'),
U.start, B.start)
Arguments
d |
a |
V |
an Nxq matrix of q manifold auxiliary parameter values of the N entities. |
u.dim |
the embedding dimension. |
W |
an NxN symmetric weight matrix. If not given, a matrix of ones will be used. |
method |
if |
exact |
If |
it.max |
the max number of iterations. |
gamma |
stops early if the reduction of normalized conditional stress is less than |
init |
initialization method. |
U.start |
user-defined starting values for the embedding (when |
B.start |
user-defined starting values for the |
Value
U |
the embedding result. |
B |
the estimated |
stress |
normalized conditional stress value. |
sigma |
the conditional stress value at each iteration. |
init |
the value of the |
U.start |
the starting values for the embedding. |
B.start |
starting values for the |
method |
the value of the |
Author(s)
Anh Tuan Bui
References
Bui, A.T. (2024). Dimension Reduction with Prior Information for Knowledge Discovery. IEEE Transactions on Pattern Analysis and Machine Intelligence, 46, 3625-3636. https://doi.org/10.1109/TPAMI.2023.3346212
Bui, A. T. (2022). A Closed-Form Solution for Conditional Multidimensional Scaling. Pattern Recognition Letters 164, 148-152. https://doi.org/10.1016/j.patrec.2022.11.007
Conditional SMACOF with incomplete conditioning data (missing entire row)
Description
Conditional SMACOF with missing known feature values. If a row has a missing value in a known feature, the algorithm treats all other known feature values of that row as missing. The algorithm also imputes the actual missing value(s). Intended for internal usage.
Usage
condSmacof_mer(d, V, u.dim, W,
method = c('matrix', 'vector'), exact = TRUE,
it.max = 1000, gamma = 1e-05,
init = c('none', 'eigen', 'user'),
U.start, B.start, V.tilde.start)
Arguments
d |
a |
V |
an Nxq matrix of q manifold auxiliary parameter values of the N entities. |
u.dim |
the embedding dimension. |
W |
an NxN symmetric weight matrix. If not given, a matrix of ones will be used. |
method |
if |
exact |
If |
it.max |
the max number of iterations. |
gamma |
stops early if the reduction of normalized conditional stress is less than |
init |
initialization method. Except for |
U.start |
user-defined starting values for the embedding (when |
B.start |
user-defined starting values for the |
V.tilde.start |
user-defined starting values for the |
Value
U |
the embedding result. |
B |
the estimated |
stress |
normalized conditional stress value. |
sigma |
the conditional stress value at each iteration. |
init |
the value of the |
U.start |
the starting values for the embedding. |
B.start |
the starting values for the |
V.tilde.start |
the starting values for |
V.hat |
imputed |
method |
the value of the |
Author(s)
Anh Tuan Bui
References
Bui, A.T. (2024). Dimension Reduction with Prior Information for Knowledge Discovery. IEEE Transactions on Pattern Analysis and Machine Intelligence, 46, 3625-3636. https://doi.org/10.1109/TPAMI.2023.3346212
Bui, A. T. (2022). A Closed-Form Solution for Conditional Multidimensional Scaling. Pattern Recognition Letters 164, 148-152. https://doi.org/10.1016/j.patrec.2022.11.007
Bui, A.T. (2026). Conditional Multidimensional Scaling for Incomplete Conditioning Data. Journal of Multivariate Analysis. Accepted.
C(Z)
Description
Internal function.
Usage
cz(w, d, dz)
Arguments
w |
the |
d |
the |
dz |
the |
Value
the matrix C(Z)
Author(s)
Anh Tuan Bui
References
Bui, A.T. (2024). Dimension Reduction with Prior Information for Knowledge Discovery. IEEE Transactions on Pattern Analysis and Machine Intelligence, 46, 3625-3636. https://doi.org/10.1109/TPAMI.2023.3346212
Moore-Penrose Inverse
Description
Computes the Moore-Penrose inverse (a.k.a., generalized inverse or pseudoinverse) of a matrix based on singular-value decomposition (SVD).
Usage
mpinv(A, eps = sqrt(.Machine$double.eps))
Arguments
A |
a matrix of real numbers. |
eps |
a threshold (to be multiplied with the largest singular value) for dropping SVD parts that correspond to small singular values. |
Value
the Moore-Penrose inverse.
Author(s)
Anh Tuan Bui
Examples
mpinv(2*diag(4))