Package ‘cheese’

January 6, 2023

Version 0.1.2

Date 2023-01-04

Title Tools for Working with Data During Statistical Analysis

Description Contains tools for working with data during statistical analysis, promoting flexible, intu-
itive, and reproducible workflows. There are functions designated for specific statisti-
cal tasks such building a custom univariate descriptive table, computing pairwise associa-
tion statistics, etc. These are built on a collection of data manipulation tools designed for gen-
eral use that are motivated by the functional programming concept.

URL https://zajichek.github.io/cheese/,
https://github.com/zajichek/cheese/

License MIT + file LICENSE

Depends R (>=3.4.0)

Imports dplyr (>=0.8.2), forcats (>= 0.3.0), kableExtra (>= 1.0.1),
knitr (>= 1.20), magrittr (>= 1.5), methods (>= 3.4.1), purtr
(>=0.3.2), rlang (>= 0.4.3), stringr (>= 1.3.1), tibble (>=
2.1.3), tidyr (>= 0.8.1), tidyselect (>= 1.0.0)

Suggests rmarkdown (>= 1.10)

VignetteBuilder knitr

Encoding UTF-8

LazyData true

NeedsCompilation no

Author Alex Zajichek [aut, cre]

Maintainer Alex Zajichek <alexzajichek@gmail.com>
Repository CRAN

Date/Publication 2023-01-06 19:40:02 UTC

R topics documented:

absorb . . . L e e
depths L

https://zajichek.github.io/cheese/
https://github.com/zajichek/cheese/

2 absorb
desCriptives o i e e e e e e e e e e e 6
dish e 8
divide e 10
fasteno e 12
grable L e 14
heart_disease 15
muddle e 16
SOME_LYPE « . v v v v e 17
stratiply e 18
stretch e e 19
tYPLY « o e e e 21
univariate_associationsS e e e e e e e e e 22
univariate_table L e 23

Index 27

absorb Absorb values into a string containing keys
Description

Populate string templates containing keys with their values. The keys are interpreted as regular
expressions. Results can optionally be evaluated as R expressions.

Usage
absorb(
key,
value,
text,
sep = Il_ll ,
trace = FALSE,
evaluate = FALSE
)
Arguments
key A vector that can be coerced to type character.
value A vector with the same length as key.
text A (optionally named) character vector containing patterns.
sep Delimiter to separate values by in the placeholder for duplicate patterns. De-
faults to " _"
trace Should the recursion results be printed to the console each iteration? Defaults to
FALSE.

evaluate Should the result(s) be evaluated as R expressions? Defaults to FALSE.

depths 3

Details

The inputs are iterated in sequential order to replace each pattern with its corresponding value. It is
possible that a subsequent pattern could match with a prior result, and hence be replaced more than
once. If duplicate keys exist, the placeholder will be filled with a collapsed string of all the values
for that key.

Value

 If evaluate = FALSE (default), a character vector the same length as text with all matching
patterns replaced by their value.

* Otherwise, a 1ist with the same length as text.

Author(s)
Alex Zajichek

Examples

#Simple example

absorb(
key = c("mean”, "sd", "var"),
value = c("10", "2", "4"),
text =

c("MEAN: mean, SD: sd”,
"VAR: var = sd*2",

MEAN = "mean”
)
)
#Evaluating results
absorb(
key = c("mean”, "mean”, "sd", "var"),

value = c("10", "20", "2", "4"),
text = c("(mean)/2", "sd*2"),

n

sep = "+",

trace = TRUE,

evaluate = TRUE
) %>%

rlang::flatten_dbl()

depths Find the elements in a list structure that satisfy a predicate

Description

Traverse a list of structure to find the depths and positions of its elements that satisfy a predicate.

4 depths

Usage
depths(
list,
predicate,
bare = TRUE,
)
depths_string(
list,
predicate,
bare = TRUE,
)
Arguments
list A list, data.frame, or vector.
predicate A function that evaluates to TRUE or FALSE.
bare Should algorithm only continue for bare lists? Defaults to TRUE. See rlang: : *bare-type-predicates®
Additional arguments to pass to predicate.
Details

The input is recursively evaluated to find elements that satisfy predicate, and only proceeds where
rlang::is_list when argument bare is FALSE, and rlang::is_bare_list when it is TRUE.

Value

* depths() returns an integer vector indicating the levels that contain elements satisfying the
predicate.

* depths_string() returns a character representation of the traversal. Brackets {} are used
to indicate the level of the tree, commas to separate element-indices within a level, and the
sign of the index to indicate whether the element satisfied predicate (- = yes, + = no).

Author(s)
Alex Zajichek

Examples

#Find depths of data frames
df1 <-
heart_disease %>%

#Divide the frame into a list
divide(

Sex,

HeartDisease,

ChestPain

depths

df1 %>%

#Get depths as an integer
depths(
predicate = is.data.frame

)
df1 %>%

#Get full structure
depths_string(
predicate = is.data.frame

)

#Shallower list
df2 <-
heart_disease %>%
divide(
Sex,
HeartDisease,
ChestPain,
depth =1
)

df2 %>%
depths(
predicate = is.data.frame

)

df2 %>%
depths_string(
predicate = is.data.frame

)

#Allow for non-bare lists to be traversed
df1 %>%
depths(
predicate = is.factor,
bare = FALSE
)

#Make uneven list with diverse objects
my_list <-
list(
heart_disease,
list(
heart_disease
),
1:10,
list(
heart_disease$Age,

6 descriptives

list(
heart_disease

)

),

glm(
formula = HeartDisease ~ .,
data = heart_disease,
family = "binomial”

)

)

#Find the data frames
my_list %>%
depths(
predicate = is.data.frame

)

my_list %>%
depths_string(
predicate = is.data.frame

)

#Go deeper by relaxing bare list argument
my_list %>%
depths_string(
predicate = is.data.frame,

bare = FALSE
)
descriptives Compute descriptive statistics on columns of a data frame
Description

The user can specify an unlimited number of functions to evaluate and the types of data that each
set of functions will be applied to (including the default; see "Details").

Usage

descriptives(
data,
f_all = NULL,
f_numeric = NULL,
numeric_types = "numeric”,
f_categorical = NULL,
categorical_types = "factor”,
f_other = NULL,
useNA = c("ifany", "no", "always"),

descriptives

round = 2,
na_string = "(missing)"
)
Arguments
data A data.frame.
f_all A list of functions to evaluate on all columns.
f_numeric A list of functions to evaluate on numeric_types columns.

numeric_types Character vector of data types that should be evaluated by f_numeric.

f_categorical A list of functions to evaluate on categorical_types columns.
categorical_types
Character vector of data types that should be evaluated by f_categorical.

f_other A list of functions to evaluate on remaining columns.
useNA See table for details. Defaults to "ifany".
round Digit to round numeric data. Defaults to 2.
na_string String to fill in NA names.
Details

The following fun_key’s are available by default for the specified types:

e ALL: length, missing, available, class, unique
e Numeric: mean, sd, min, q1, median, g3, max, iqr, range

* Categorical: count, proportion, percent

Value

A tibble::tibble with the following columns:

e fun_eval: Column types function was applied to

¢ fun_key: Name of function that was evaluated

e col_ind: Index from input dataset

* col_lab: Label of the column

* val_ind: Index of the value within the function result
* val_lab: Label extracted from the result with names
* val_dbl: Numeric result

* val_chr: Non-numeric result

¢ val_cbn: Combination of (rounded) numeric and non-numeric values

Author(s)
Alex Zajichek

8 dish

Examples

#Default
heart_disease %>%
descriptives()

#Allow logicals as categorical
heart_disease %>%
descriptives(
categorical_types = c("logical”, "factor")
) %>%

#Extract info from the column
dplyr::filter(

col_lab == "BloodSugar"”
)

#Nothing treated as numeric
heart_disease %>%
descriptives(

numeric_types = NULL

)

#Evaluate a custom function
heart_disease %>%
descriptives(
f_numeric =
list(
cv = function(x) sd(x, na.rm = TRUE)/mean(x, na.rm = TRUE)
)
) %>%

#Extract info from the custom function
dplyr::filter(
fun_key == "cv

n

)

dish Evaluate a two-argument function with combinations of columns

Description

Split up columns into groups and apply a function to combinations of those columns with control
over whether each group is entered as a single data. frame or individual vector’s.

Usage

dish(
data,

dish 9

f,

left,

right,

each_left = TRUE,
each_right = TRUE,

)
Arguments
data A data.frame.
f A function that takes a vector and/or data. frame in the first two arguments.
left A vector of quoted/unquoted columns, positions, and/or tidyselect: :select_helpers
to be evaluated in the first argument of f.
right A vector of quoted/unquoted columns, positions, and/or tidyselect: :select_helpers
to be evaluated in the second argument of f.
each_left Should each left variable be indivdually evaluated in f? Defaults to TRUE. If
FALSE, left columns are entered into f as a single data. frame.
each_right Should each right variable be individually evaluated in f? Defaults to TRUE. If
FALSE, right columns are entered into f as a single data. frame.
Additional arguments to be passed to f.
Value
Alist
Author(s)
Alex Zajichek
Examples

#All variables on both sides
heart_disease %>%
dplyr::select(
where(is.numeric)
) %%
dish(
f = cor

)

#Simple regression of each numeric variable on each other variable
heart_disease %>%
dish(
f =
function(y, x) {
mod <- 1m(y ~ x)
tibble::tibble(
Parameter = names(mod$coef),

10 divide

Estimate = mod$coef
)
h
left = where(is.numeric)
) %%

#Bind rows together
fasten(
into = c("Outcome”, "Predictor")

)

#Multiple regression of each numeric variable on all others simultaneously
heart_disease %>%
dish(
f =
function(y, x) {
mod <- 1m(y ~ ., data = x)
tibble::tibble(
Parameter = names(mod$coef),
Estimate = mod$coef
)
h
left = where(is.numeric),
each_right = FALSE
) %%

#Bind rows together
fasten(
into = "Qutcome”

divide Divide a data frame into a list

Description

Separate a data. frame into a 1ist of any depth by one or more stratification columns whose levels
become the names.

Usage
divide(
data,
depth = Inf,
remove = TRUE,
drop = TRUE,
Sep = ”|II

divide 11

Arguments
data Any data. frame.
Selection of columns to split by. See dplyr: :select for details.
depth Depth to split to. Defaults to Inf. See details for more information.
remove Should the stratfication columns be removed? Defaults to TRUE.
drop Should unused combinations of stratification variables be dropped? Defaults to
TRUE.
sep String to separate values of each stratification variable by. Defaults to " |”. Only
used when the number of stratification columns exceeds the desired depth.
Details

For the depth, use positive integers to move from the root and negative integers to move from the
leaves. The maximum (minimum) depth will be used for integers larger (smaller) than such.

Value

Alist

Author(s)
Alex Zajichek

Examples

#Unquoted selection
heart_disease %>%
divide(
Sex

)

#Using select helpers
heart_disease %>%
divide(
matches("*S")
)

#Reduced depth
heart_disease %>%

divide(
Sex,
HeartDisease,
depth =1

)

#Keep columns in result; change delimiter in names
heart_disease %>%
divide(
Sex,

HeartDisease,
depth = 1,
remove = FALSE,
sep = ","

)

#Move inward from maximum depth
heart_disease %>%

divide(
Sex,
HeartDisease,
ChestPain,
depth = -1

)

#No depth returns original data (and warning)
heart_disease %>%

divide(
Sex,
depth = @

)

heart_disease %>%

divide(
Sex,
HeartDisease,
depth = -5

)

#lLarger than maximum depth returns maximum depth (default)
heart_disease %>%
divide(
Sex,
depth = 100

fasten

fasten Bind a list of data frames back together

Description

Roll up a 1list of arbitrary depth with data. frame’s at the leaves row-wise.

Usage

fasten(
list,
into = NULL,
depth = @

fasten 13

Arguments
list A list with data. frame’s at the leaves.
into A character vector of resulting column names. Defaults to NULL.
depth Depth to bind the list to. Defaults to 0.

Details

nn

Use empty strings "" in the into argument to omit column creation when rows are binded. Use
positive integers for the depth to move from the root and negative integers to move from the leaves.
The maximum (minimum) depth will be used for integers larger (smaller) than such. The leaves of
the input 1ist should be at the same depth.

Value

A tibble::tibble orreduced list

Author(s)
Alex Zajichek

Examples

#Make a divided data frame
list <-
heart_disease %>%
divide(
Sex,
HeartDisease,
ChestPain
)

#Bind without creating names
list %>%
fasten

#Bind with names
list %>%
fasten(
into = c("Sex", "HeartDisease"”, "ChestPain")

)

#0nly retain "Sex”
list %>%
fasten(
into = "Sex"

)

#0nly retain "HeartDisease”
list %>%
fasten(

into = c(

nn

, "HeartDisease")

14

)

#Bind up to Sex
list %>%

fasten(
into = c("HeartDisease”, "ChestPain"),
depth = 1

)

#Same thing, but start at the leaves
list %>%
fasten(
into = c("HeartDisease”, "ChestPain"),
depth = -2
)

#Too large of depth returns original list
list %>%
fasten(
depth = 100
)

#Too small of depth goes to @
list %>%
fasten(
depth = -100
)

grable

grable

Make a kable with a hierarchical header

Description

Create a knitr: :kable with a multi-layered (graded) header.

Usage
grable(
data,
at,
sep p— ll_ll,

reverse = FALSE,
format = c("html”, "latex"),
caption = NULL,

heart_disease 15

Arguments
data A data.frame.
at A vector of quoted/unquoted columns, positions, and/or tidyselect: :select_helpers.
Defaults to all columns.
sep String to separate the columns. Defaults to "_"
reverse Should the layers be added in the opposite direction? Defaults to FALSE.
format Format for rendering the table. Must be "html" (default) or "latex".
caption Optional caption for the table
Arguments to pass to kableExtra: :kable_styling
Value

A knitr::kable

Author(s)

Alex Zajichek

heart_disease Heart Disease

Description

This is a cleaned up version of the "heart disease data set" found in the UCI Machine Learning
Repository (https://archive.ics.uci.edu/ml/datasets/Heart+Disease), containing a subset of the de-
fault variables.

Usage

heart_disease

Format

See "Source" for link to dataset home page

Source

https://archive.ics.uci.edu/ml/datasets/Heart+Disease

16 muddle

muddle Randomly permute some or all columns of a data frame

Description

Shuffle any of the columns of a data. frame to artificially distort relationships.

Usage
muddle(
data,
at,
)
Arguments
data A data.frame.
at A vector of quoted/unquoted columns, positions, and/or tidyselect: :select_helpers.
Defaults to all columns.
Additional arguments passed to sample.
Value

A tibble::tibble

Author(s)
Alex Zajichek

Examples

#Set a seed
set.seed(123)

#Default permutes all columns
heart_disease %>%
muddle

#Permute select columns
heart_disease %>%
muddle(
at = c(Age, Sex)
)

#Using a select helper
heart_disease %>%
muddle(

some_type

at = matches("*S")
)

#Pass other arguments
heart_disease %>%
muddle(
size = 5,
replace = TRUE
)

17

some_type Is an object one of the specified types?

Description

Check if an object inherits one (or more) of a vector classes.

Usage

some_type(
object,
types

Arguments

object Any R object.

types A character vector of classes to test against.

Value

A logical indicator

Author(s)
Alex Zajichek

Examples

#Columns of a data frame
heart_disease %>%
purrr::map_lgl(
some_type,
types = c("numeric”, "logical")

18 stratiply

stratiply Stratify a data frame and apply a function

Description

Split a data. frame by any number of columns and apply a function to subset.

Usage

stratiply(
data,
f,
by,

Arguments

data A data.frame.
f A function that takes a data. frame as an argument.
by A vector of quoted/unquoted columns, positions, and/or tidyselect: :select_helpers

Additional arguments passed to f.

Value

Alist

Author(s)
Alex Zajichek

Examples

#Unquoted selection
heart_disease %>%

stratiply(
head,
Sex

)

#Select helper
heart_disease %>%
stratiply(
f = head,
by = starts_with("S")
)

#Use additional arguments for the function

stretch 19

heart_disease %>%

stratiply(
f = glm,
by = Sex,
formula = HeartDisease ~ .,
family = "binomial”
)

#Use mixed selections to split by desired columns
heart_disease %>%
stratiply(
f = glm,
by = c(Sex, where(is.logical)),
formula = HeartDisease ~ Age,

family = "binomial”
)
stretch Span keys and values across the columns
Description

Pivot one or more values across the columns by one or more keys

Usage
stretch(
data,
key,
value,
sep = H_II
)
Arguments
data A data.frame.
key A vector of quoted/unquoted columns, positions, and/or tidyselect: :select_helpers
whose values will become the column name(s).
value A vector of quoted/unquoted columns, positions, and/or tidyselect: :select_helpers
whose values will be spread across the columns.
sep String to separate keys/values by in the resulting column names. Defaults to
"_". Only used when there are more than one keys/values.
Details

In the case of multiple value’s, the labels are always appended to the end of the resulting columns.

20
Value

A tibble::tibble
Author(s)

Alex Zajichek
Examples

#Make a summary table
set.seed(123)
data <-
heart_disease %>%
dplyr::group_by(
Sex,
BloodSugar,
HeartDisease
) %%
dplyr: :summarise(
Mean = mean(Age),
SD = sd(Age),
.groups = "drop”
) %%
dplyr: :mutate(
Random =
rbinom(nrow(.), size = 1, prob = .5) %>%
factor

)

data %>%
stretch(
key = c(BloodSugar, HeartDisease),
value = c(Mean, SD, Random)

)

data %>%
stretch(
key = where(is.factor),
value = where(is.numeric)

)

data %>%
stretch(
key = c(where(is.factor), where(is.logical)),
value = where(is.numeric)

)

stretch

typly 21

typly Evaluate a function on columns conforming to one or more (or no)
specified types

Description

Apply a function to columns in a data. frame that inherit one of the specified types.

Usage
typly(
data,
f,
types,
negated = FALSE,
)
Arguments
data A data.frame.
f A function.
types A character vector of classes to test against.
negated Should the function be applied to columns that don’t match any types? Defaults
to FALSE.
Additional arguments to be passed to f.
Value
Alist
Author(s)
Alex Zajichek
Examples

heart_disease %>%

#Compute means on numeric or logical data

typly(
f = mean,
types = c("numeric”, "logical”),
na.rm = TRUE

22 univariate_associations

univariate_associations
Compute association statistics between columns of a data frame

Description

Evaluate a 1ist of scalar functions on any number of "response” columns by any number of "pre-
dictor" columns

Usage
univariate_associations(
data,
f ’
responses,
predictors
)
Arguments
data A data.frame.
f A function or a 1ist of functions (preferably named) that take a vector as input
in the first two arguments and return a scalar.
responses A vector of quoted/unquoted columns, positions, and/or tidyselect: :select_helpers
to be evaluated as the first argument. See the left argument in dish.
predictors A vector of quoted/unquoted columns, positions, and/or tidyselect: :select_helpers
to be evaluated as the second argument. See the right argument in dish.
Value

A tibble::tibble with the response/predictor columns down the rows and the results of the f
across the columns. The names of the result columns will be the names provided in f.

Author(s)
Alex Zajichek

Examples

#Make a list of functions to evaluate
f <=
list(

#Compute a univariate p-value
‘P-value® =
function(y, x) {
if(some_type(x, c("factor”, "character”))) {

univariate_table

p <- fisher.test(factor(y), factor(x), simulate.p.value = TRUE)$p.value
} else {

p <- kruskal.test(x, factor(y))$p.value

ifelse(p < 0.001, "<0.001", as.character(round(p, 2)))

}’

#Compute difference in AIC model between null model and one predictor model
*AIC Difference® =
function(y, x) {

glm(factor(y)~1, family = "binomial”)$aic -
glm(factor(y)~x, family = "binomial”)$aic

#Choose a couple binary outcomes
heart_disease %>%
univariate_associations(
f=f,
responses = c(ExerciseInducedAngina, HeartDisease)

)

#Use a subset of predictors
heart_disease %>%
univariate_associations(
f=f,
responses = c(ExerciseInducedAngina, HeartDisease),
predictors = c(Age, BP)
)

#Numeric predictors only
heart_disease %>%
univariate_associations(
f=f,
responses = c(ExerciseInducedAngina, HeartDisease),
predictors = is.numeric

)

univariate_table Create a custom descriptive table for a dataset

24

univariate_table

Description

Produces a formatted table of univariate summary statistics with options allowing for stratifica-
tion by one or more variables, computing of custom summary/association statistics, custom string
templates for results, etc.

Usage

univariate_table(

data,

strata = NULL,

associations = NULL,

numeric_summary = c(Summary = "median (ql1, q3)"),
categorical_summary = c(Summary = "count (percent%)"),
other_summary = NULL,

all_summary = NULL,

evaluate = FALSE,

add_n = FALSE,

order = NULL,

labels = NULL,

levels = NULL,

format = c("html”, "latex”, "markdown"”, "pandoc”, "none"),
variableName = "Variable",
levelName = "Level”,
sep = n n
—

fill_blanks = "",
caption = NULL,

)
Arguments
data A data.frame.
strata An additive formula specifying stratification columns. Columns on the left side
go down the rows, and columns on the right side go across the columns. Defaults
to NULL.

associations A named list of functions to evaluate with column strata and each variable.

nume

cate

othe

Defaults to NULL. See univariate_associations.

ric_summary
A named vector containing string templates of how results for numeric data
should be presented. See details for what is available by default. Defaults to
c(Summary = "median (q1, g3)").

gorical_summary
A named vector containing string templates of how results for categorical data
should be presented. See details for what is available by default. Defaults to
c(Summary = "count (percent%)").

r_summary A named character vector containing string templates of how results for non-
numeric and non-categorical data should be presented. Defaults to NULL.

univariate_table

all_summary

evaluate

add_n

order

labels

levels

format

variableName
levelName
sep
fill_blanks

caption

Value

25

A named character vector containing string templates of additional results ap-
plying to all variables. See details for what is available by default. Defaults to
NULL.

Should the results of the string templates be evaluated as an R expression after
filled with their values? See absorb for details. Defaults to FALSE.

Should the sample size for each stratfication level be added to the result? De-
faults to FALSE.

Arguments passed to forcats: :fct_relevel for reordering the variables. De-
faults to NULL

A named character vector containing the new labels. Defaults to NULL

A named list of named character vectors containing the new levels. Defaults
to NULL

The format that the result should be rendered in. Must be "html", "latex", "mark-

non

down", "pandoc”, or "none". Defaults to "html".
Header for the variable column in the result. Defaults to "Variable”.
Header for the factor level column in the result. Defaults to "Level”.

n o n

Delimiter to separate summary columns. Defaults to "_".
String to fill in blank spaces in the result. Defaults to "".
Caption for resulting table passed to knitr: :kable. Defaults to NULL.

Additional arguments to pass to descriptives.

A table of summary statistics in the specified format. A tibble::tibble is returned if format =

"none".

Author(s)
Alex Zajichek

Examples

#Set format

format <- "pandoc”

#Default summary
heart_disease %>%

univariate_table(
format = format

)

#Stratified summary

heart_disease %>%

univariate_table(

strata

~Sex,

add_n = TRUE,

26 univariate_table

format = format

#Row strata with custom summaries with
heart_disease %>%
univariate_table(
strata = HeartDisease~1,

numeric_summary = c(Mean = "mean”, Median = "median”),
categorical_summary = c(*Count (%) = "count (percent%)"),
categorical_types = c("factor”, "logical"),

add_n = TRUE,

format = format

Index

* datasets table, 7
heart_disease, 15 typly, 21
absorb, 2, 25 unique, 7
univariate_associations, 22, 24
character,2—4, 13,17, 21 univariate_table, 23
class, 7 -
vector, 4,8, 9

data.frame, 4, 7-13, 15, 16, 18, 19, 21, 22, 24
depths, 3

depths_string (depths), 3
descriptives, 6, 25

dish, 8, 22

divide, 10

fasten, 12
formula, 24
function, 4, 9, 21

grable, 14
heart_disease, 15
integer, 4

length, 7
list, 3, 4,7,9-13, 18,21, 22,24, 25
logical, 17

max, 7
mean, 7
median, 7
min, 7
muddle, 16

names, 7

sample, 16
sd, 7
some_type, 17
stratiply, 18
stretch, 19

27

	absorb
	depths
	descriptives
	dish
	divide
	fasten
	grable
	heart_disease
	muddle
	some_type
	stratiply
	stretch
	typly
	univariate_associations
	univariate_table
	Index

