Package ‘cheapr’

June 3, 2025

Title Simple Functions to Save Time and Memory
Version 1.3.1
Maintainer Nick Christofides <nick.christofides.r@gmail.com>

Description Fast and memory-efficient (or 'cheap') tools to facilitate
efficient programming, saving time and memory. It aims to provide
'cheaper’ alternatives to common base R functions, as well as some
additional functions.

License MIT + file LICENSE

BugReports https://github.com/NicChr/cheapr/issues
Depends R (>=4.0.0)

Imports collapse (>=2.0.0)

Suggests bench, data.table, testthat (>= 3.0.0)

LinkingTo cppll

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.2

NeedsCompilation yes

Author Nick Christofides [aut, cre] (ORCID:
<https://orcid.org/0000-0002-9743-7342>)

Repository CRAN
Date/Publication 2025-06-03 10:00:02 UTC

Contents

cheapr-package
address

https://github.com/NicChr/cheapr/issues
https://orcid.org/0000-0002-9743-7342

2 cheapr-package
cheapr_C e e e e 9
cheapr_if _else e 10
cheapr_table L e 10
COPY « v v e e e e e e e e e e e e e e e 11
factor_ e 13
ged . L e 16
get_breaks L e 18
INL_SIGN . . . L e e e e e e e 19
IS N . . o v v e e e e e e e s 20
lag . . e 22
list_lengths e 26
named_list L e e e 28
new_df . . e 28
OVEIVIEW o it e e e e e e 29
rebuild e 31
recycleo 32
TED « v v e e e e e e e e e e e e e e e e e e 33
SEQUENICE_ .« v v v i e e e e e e e e e e e e e e e e e e 34
setdiff . . . L 36
SEt_abS e e e 39
SSEL . L i e e e e e e e e 41
sset_df . . . L e e e 42
Str_coalesCe e 43
val_count s 44
which_ e e e e e 46

Index 48

cheapr-package cheapr: Simple Functions to Save Time and Memory

Description

In this package, ’cheap’ means fast and efficient.

cheapr aims to provide a set of functions for programmers to write cheaper code, saving time and
memory.

Author(s)

Maintainer: Nick Christofides <nick.christofides.r@gmail.com> (ORCID)

See Also

Useful links:

Report bugs at https://github.com/NicChr/cheapr/issues

https://orcid.org/0000-0002-9743-7342
https://github.com/NicChr/cheapr/issues

address 3

address Memory address of R object

Description

Memory address of R object

Usage

address(x)

Arguments

X An R object.

Value

Memory address of R object.

as_discrete Turn continuous data into discrete bins

Description

This is a cheapr version of cut.numeric() which is more efficient and prioritises pretty-looking
breaks by default through the use of get_breaks (). Out-of-bounds values can be included naturally
through the include_oob argument. Left-closed (right-open) intervals are returned by default in
contrast to cut’s default right-closed intervals. Furthermore there is flexibility in formatting the
interval bins, allowing the user to specify formatting functions and symbols for the interval close
and open symbols.

Usage

as_discrete(x, ...)

S3 method for class 'numeric'
as_discrete(
X,
breaks = if (left_closed) get_breaks(x) else cheapr_rev(-get_breaks(-x)),
left_closed = TRUE,
include_endpoint = FALSE,
include_oob = FALSE,
ordered = FALSE,
intv_start_fun = prettyNum,
intv_end_fun = prettyNum,
intv_closers = c("[", "1"),

4 as_discrete

intV_Openers — C(" H, n)n)’
n on

intv_sep = ",",
inf_label = NULL,

)
S3 method for class 'integer64'
as_discrete(x, ...)
Arguments
X A numeric vector.

Extra arguments passed onto methods.

breaks Break-points. The default option creates pretty looking breaks. Unlike cut(),
the breaks arg cannot be a number denoting the number of breaks you want. To
generate breakpoints this way use get_breaks().

left_closed Left-closed intervals or right-closed intervals?
include_endpoint
Include endpoint? Default is FALSE.

include_oob Include out-of-bounds values? Default is FALSE. This is equivalent to breaks
= c(breaks, Inf) or breaks = c(-Inf, breaks) when left_closed = FALSE.
If include_endpoint = TRUE, the endpoint interval is prioritised before the out-
of-bounds interval. This behaviour cannot be replicated easily with cut (). For
example, these 2 expressions are not equivalent:

cut(10, c(9, 10, Inf), right = F, include.lowest = T) !=
as_discrete(10, c(9, 10), include_endpoint = T, include_oob = T)
ordered Should result be an ordered factor? Default is FALSE.
intv_start_fun Function used to format interval start points.
intv_end_fun Function used to format interval end points.

intv_closers A length 2 character vector denoting the symbol to use for closing either left or
right closed intervals.

intv_openers A length 2 character vector denoting the symbol to use for opening either left or
right closed intervals.

intv_sep A length 1 character vector used to separate the start and end points.

inf_label Label to use for intervals that include infinity. If left NULL the Unicode infinity
symbol is used.

Value

A factor of discrete bins (intervals of start/end pairs).

See Also

bin get_breaks

as_discrete

Examples

library(cheapr)

~as_discrete()” is very similar to “cut()"
but more flexible as it allows you to supply
formatting functions and symbols for the discrete bins

Here is an example of how to use the formatting functions to
categorise age groups nicely

ages <- 1:100

age_group <- function(x, breaks){

age_groups <- as_discrete(
X!
breaks = breaks,
intv_sep = "-",
intv_end_fun = function(x) x - 1,
intv_openers = c("", ""),
intv_closers = c("", ""),
include_oob = TRUE,
ordered = TRUE

)

Below is just renaming the last age group

lvls <- levels(age_groups)

n_lvls <- length(lvls)

max_ages <- paste@(max(breaks), "+"

attr(age_groups, "levels"”) <- c(lvls[-n_lvls], max_ages)
age_groups

age_group(ages, seq(@, 80, 20))
age_group(ages, seq(@, 25, 5))
age_group(ages, 5)

To closely replicate “cut()” with “as_discrete()” we can use the following

cheapr_cut <- function(x, breaks, right = TRUE,
include.lowest = FALSE,
ordered.result = FALSE){
if (length(breaks) == 1){
breaks <- get_breaks(x, breaks, pretty = FALSE,
expand_min = FALSE, expand_max = FALSE)
adj <- diff(range(breaks)) * 0.001
breaks[1] <- breaks[1] - adj
breaks[length(breaks)] <- breaks[length(breaks)] + adj
}
as_discrete(x, breaks, left_closed = !right,
include_endpoint = include.lowest,
ordered = ordered.result,

6 attrs

intv_start_fun = function(x) formatC(x, digits = 3, width = 1),
intv_end_fun = function(x) formatC(x, digits = 3, width = 1))
3

X <= rnorm(100)
cheapr_cut(x, 10)
identical(cut(x, 10), cheapr_cut(x, 10))

attrs Add and remove attributes

Description

Simple tools to add and remove attributes, both normally and in-place. To remove specific attributes,
set those attributes to NULL.

Usage
attrs_modify(x, ..., .set = FALSE, .args = NULL)
attrs_add(x, ..., .set = FALSE, .args = NULL)

attrs_clear(x, .set = FALSE)

attrs_rm(x, .set = FALSE)

Arguments
X Object to add/remove attributes.
Named attributes, e.g "key = value’.
.set Should attributes be added in-place without shallow-copying x? Default is FALSE.
.args An alternative to . . . for easier programming with lists.
Value

The object x with attributes removed or added.

See Also

shallow_copy

bin 7

bin A sometimes cheaper but argument richer alternative to .bincode()

Description

When x is an integer vector, bin() is cheaper than .bincode() as no coercion to a double vector
occurs. This alternative also has more arguments that allow you to return the start values of the
binned vector, as well as including out-of-bounds intervals.

Usage

bin(
X,
breaks,
left_closed = TRUE,
include_endpoint = FALSE,
include_oob = FALSE,

codes = TRUE
)
Arguments
X A numeric vector.
breaks A numeric vector of breaks.

left_closed Should intervals be left-closed (and right-open)? Default is TRUE. If FALSE they
are left-open (and right-closed).

include_endpoint
Equivalent to include.lowest in ?.bincode.

include_oob Should out-of-bounds interval be included? Default is FALSE. This is the equiv-
alent of adding Inf as the last value of the breaks, or -Inf as the first value
of the breaks if left_closed = FALSE. When TRUE, this essentially becomes
findInterval().

codes Should an integer vector indicating which bin the values fall into be returned?
Default is TRUE. If FALSE the start values of the respective bin intervals are re-
turned, i.e the corresponding breaks.
Value
Either an integer vector of codes indicating which bin the values fall into, or the start of the intervals
for which each value falls into.

See Also

get_breaks as_discrete

8 case

case A cheapr case-when and switch

Description

case and val_match are cheaper alternatives to dplyr: :case_when and dplyr::case_match re-

spectively.
Usage
case(..., .default = NULL)
val_match(.x, ..., .default = NULL)
Arguments
e Logical expressions or scalar values in the case of val_match.
.default Catch-all value or vector.
X Vector used to switch values.
Details

val_match() is a very efficient special case of the case() function when all lhs expressions are
scalars, i.e. length-1 vectors. RHS expressions can be vectors the same length as . x. The below 2
expressions are equivalent.

val_match(
X’
1 ~ "one",
2 ~ "two",
.default = "Unknown”
)
case(
x == 1 ~ "one”,
x == 2 ~ "two",
.default = "Unknown”
)
Value

A vector the same length as . x or same length as the first condition in the case of case, unless the
condition length is smaller than the rhs, in which case the length of the rhs is used.

See Also

cheapr_if_else

cheapr _c 9

cheapr_c A cheapr version of c()

Description

cheapr’s version of c(). It is quite a bit faster for atomic vectors and combines data frame rows
instead of cols.

Usage
cheapr_c(..., .args = NULL)
Arguments
Objects to combine.
.args An alternative to . .. for easier programming with lists.
Value

Combined objects.

Examples
library(cheapr)

Combine just like “c()~
cheapr_c(1, 2, 3:5)

It combines rows by default instead of cols
cheapr_c(new_df(x = 1:3), new_df(x = 4:10))

If you have a list of objects you want to combine
use ~.args” instead of “do.call® as it's more efficient

list_of_objs <- rep(list(@), 10"4)

bench: :mark(
do.call(cheapr_c, list_of_objs),
cheapr_c(.args = list_of_objs)

)

10 cheapr_table

cheapr_if_else Cheaper version of ifelse()

Description

Cheaper version of ifelse()

Usage

cheapr_if_else(condition, true, false, na = false[NA_integer_])

Arguments
condition logical A condition which will be used to evaluate the if else operation.
true Value(s) to replace TRUE instances.
false Value(s) to replace FALSE instances.
na Catch-all value(s) to replace all other instances, where is.na(condition).
Value

A vector the same length as condition, using a common type between true, false and default.

See Also

case val_match

cheapr_table Fast frequency tables - Still experimental

Description

This is not a one-to-one copy of base: : table() as some behaviours differ. It is more flexible as it
accepts inputs such as data frames and vctrs_rcrd objects.

Usage
cheapr_table(

names = TRUE,
order = FALSE,
na_exclude = FALSE,
classed = FALSE

)

counts(x, sort = is.factor(x))

copy 11

Arguments
>=1 objects that can be converted to a factor through cheapr: : factor_().
names Should level names be kept? Default is TRUE.
order Should result be ordered by level names? Default is FALSE.
na_exclude Should NA values be excluded? Default is FALSE.
classed Should a table object be returned? Default is FALSE
X A vector.
sort Should groups be sorted? Default is FALSE.
Details

cheapr_table() tries to match the behaviour of table() where possible. counts() alternatively
works only for atomic vectors and is faster, returning a data. frame of counts.

Value

A named integer vector if one object is supplied, otherwise an array.

copy Copy R objects

Description
shallow_copy () and deep_copy () are just wrappers to the R C API functions Rf _shallow_duplicate()
and Rf_duplicate() respectively. semi_copy() is something in between whereby it fully copies
the data but only shallow copies the attributes.

Usage

shallow_copy(x)
semi_copy(x)

deep_copy (x)

Arguments

X An object to shallow, semi, or deep copy.

12 copy

Details

Shallow duplicates are mainly useful for adding attributes to objects in-place as well assigning
vectors to shallow copied lists in-place.

Deep copies are generally useful for ensuring an object is fully duplicated, including all attributes
associated with it. Deep copies are generally expensive and should be used with care.

semi_copy () deep copies everything except the attributes. This is experimental but in theory should
be much more efficient and generally preferred to deep_copy ().

To summarise:

* shallow_copy - Shallow copies data and attributes
* semi_copy - Deep copies data and shallow copies attributes

* deep_copy - Deep copies both data and attributes

It is recommended to use these functions only if you know what you are doing.

Value

A shallow, semi or deep copied R object.

Examples
library(cheapr)
library(bench)
df <- new_df(x = sample.int(10"4))
Note the memory allocation
mark (shallow_copy(df), iterations = 1)
mark (deep_copy(df), iterations = 1)
In both cases the address of df changes
address(df) ;address(shallow_copy(df));address(deep_copy(df))
When shallow-copying attributes are not duplicated
address(attr(df, "names"));address(attr(shallow_copy(df), "names"))
They are when deep-copying
address(attr(df, "names"));address(attr(deep_copy(df), "names"))
Adding an attribute in place with and without shallow copy
invisible(attrs_add(df, key = TRUE, .set = TRUE))

attr(df, "key")

Remove attribute in-place
invisible(attrs_add(df, key = NULL, .set = TRUE))

With shallow copy
invisible(attrs_add(shallow_copy(df), key = TRUE, .set = TRUE))

factor_ 13

'key' attr was only added to the shallow copy, and not the original df
attr(df, "key")

factor_ A cheaper version of factor() along with cheaper utilities

Description

A fast version of factor () using the collapse package.

There are some additional utilities, most of which begin with the prefix ’levels_’, such as as_factor ()
which is an efficient way to coerce both vectors and factors, levels_factor() which returns the
levels of a factor, as a factor, levels_used() which returns the used levels of a factor, levels_unused()
which returns the unused levels of a factor, levels_add() adds the specified levels onto the exist-

ing levels, levels_rm() removes the specified levels, levels_add_na() which adds an explicit

NA level, levels_drop_na() which drops the NA level, levels_drop() which drops unused fac-

tor levels, levels_rename() for renaming levels, levels_lump() which returns top n levels and
lumps all others into the same category,

levels_count() which returns the counts of each level, and finally levels_reorder() which
reorders the levels of x based on y using the ordered median values of y for each level.

Usage

factor_(
x = integer(),
levels = NULL,
order = TRUE,
na_exclude = TRUE,
ordered = is.ordered(x)

)

as_factor(x)

levels_factor(x)

levels_used(x)

levels_unused(x)

levels_rm(x, levels)

levels_add(x, levels, where = c("last”, "first"))

levels_add_na(x, name = NA, where = c("last”, "first"))

14

factor_

levels_drop_na(x)

levels_drop(x)

levels_reorder(x, order_by, decreasing = FALSE)

levels_rename(x, ..., .fun = NULL)

levels_lump(
X,
n,
prop,

other_category = "Other”,
ties = c¢("min", "average"”, "first"”, "last”, "random”, "max")

)

levels_count(x)

Arguments

X
levels

order

na_exclude
ordered
where

name
order_by

decreasing

.fun

n

prop

other_category

ties

Details

A vector.
Optional factor levels.

Should factor levels be sorted? Default is TRUE. It typically is faster to set this
to FALSE, in which case the levels are sorted by order of first appearance.

Should NA values be excluded from the factor levels? Default is TRUE.
Should the result be an ordered factor?

Where should NA level be placed? Either first or last.

Name of NA level.

A vector to order the levels of x by using the medians of order_by.
Should the reordered levels be in decreasing order? Default is FALSE.

Key-value pairs where the key is the new name and value is the name to replace
that with the new name. For example levels_rename(x, new = old) replaces
the level "old" with the level "new".

Renaming function applied to each level.
Top n number of levels to calculate.

Top proportion of levels to calculate. This is a proportion of the total unique
levels in x.

Name of ’other’ category.

Ties method to use. See ?rank.

This operates similarly to collapse: :qF ().
The main difference internally is that collapse: : funique() is used and therefore s3 methods can

be written for it.

factor_ 15

Furthermore, for date-times factor_ differs in that it differentiates all instances in time whereas
factor differentiates calendar times. Using a daylight savings example where the clocks go back:
factor(as.POSIXct (1729984360, tz = "Europe/London”) + 3600 *(1:5)) produces 4 levels whereas
factor_(as.POSIXct(1729984360, tz = "Europe/London") + 3600 *(1:5)) produces 5 levels.

levels_lump() is a cheaper version of forcats::lump_n() but returns levels in order of highest
frequency to lowest. This can be very useful for plotting.

Value

A factor or character in the case of levels_used and levels_unused. levels_count returns
a data frame of counts and proportions for each level.

Examples

library(cheapr)
x <- factor_(sample(letters[sample.int(26, 10)], 100, TRUE), levels = letters)
X

Used/unused levels

levels_used(x)
levels_unused(x)

Drop unused levels
levels_drop(x)

Top 3 letters by by frequency
lumped_letters <- levels_lump(x, 3)
levels_count(lumped_letters)
To remove the "other” category, use ~levels_rm()"
levels_count(levels_rm(lumped_letters, "Other"))
We can use levels_lump to create a generic top n function for non-factors too
get_top_n <- function(x, n){
f <- levels_lump(factor_(x, order = FALSE), n = n)

levels_count(f)

3
get_top_n(x, 3)

A neat way to order the levels of a factor by frequency
is the following:

levels(levels_lump(x, prop = 1)) # Highest to lowest
levels(levels_lump(x, prop = -1)) # Lowest to highest

16 gcd

gcd Greatest common divisor and smallest common multiple

Description

Fast greatest common divisor and smallest common multiple using the Euclidean algorithm.

gcd() returns the greatest common divisor.

scm() returns the smallest common multiple.
gcd2() is a vectorised binary version of gcd.
scm2() is a vectorised binary version of scm.

Usage

ged(
X,
tol = sqrt(.Machine$double.eps),
na_rm = TRUE,
round = TRUE,
break_early = TRUE

)

scm(x, tol = sqrt(.Machine$double.eps), na_rm = TRUE)

gcd2(x, y, tol = sqgrt(.Machine$double.eps), na_rm = TRUE)

scm2(x, y, tol = sqgrt(.Machine$double.eps), na_rm = TRUE)

Arguments

X A numeric vector.

tol Tolerance. This must be a single positive number strictly less than 1.

na_rm If TRUE the default, NA values are ignored.

round If TRUE the output is rounded as round(gcd, digits) where digitsis ceiling(abs(logl@(tol)))
+1.
Tllis can potentially reduce floating point errors on further calculations.
The default is TRUE.

break_early This is experimental and applies only to floating-point numbers. When TRUE the

algorithm will end once gcd > @ && gcd < 2 * tol. This can offer a tremendous
speed improvement. If FALSE the algorithm finishes once it has gone through all
elements of x. The default is TRUE.

For integers, the algorithm always breaks early once gcd > 0 && ged <= 1.

y A numeric vector.

gcd

17

Details

Value

Method:

GCD (Greatest Common Divisor):

The GCD is calculated using a binary function that takes input GCD(gcd, x[i + 1]) where the
output of this function is passed as input back into the same function iteratively along the length
of x. The first gcd value is x[1].

Zeroes are handled in the following way:

GCD(0, 0) = 0

GCD(a, @) = a

This has the nice property that zeroes are essentially ignored.

SCM (Smallest Common Multiple):

This is calculated using the GCD and the formula is:

SCM(x, y) = (abs(x) / GCD(x, y)) * abs(y)

If you want to calculate the gcd & lem for 2 values or across 2 vectors of values, use gcd2 and
scm2.

A note on performance:

A very common solution to finding the GCD of a vector of values is to use Reduce () along with
a binary function like gcd2().

e.g. Reduce(gcd2, seq(5, 20, 5)).

This is exactly identical to gcd(seq(5, 20, 5)), with gcd() being much faster and overall
cheaper as it is written in C++ and heavily optimised. Therefore it is recommended to always
use gcd().

For example we can compare the two approaches below,

x <- seq(5L, length =106, by =5L)

bench: :mark(Reduce(gcd2, x), gcd(x))

This example code shows gcd() being ~200x faster on my machine than the Reduce + gcd?2
approach, even though gcd? itself is written in C++ and has little overhead.

A number representing the GCD or SCM.

Examples

library(cheapr)
library(bench)

#

Binary versions

gcd2(15, 25)
gcd2(15, seq(5, 25, 5))
scm2(15, seq(5, 25, 5))
scm2(15, 25)

#

GCD across a vector

ged(c(0, 5, 25))
mark(gcd(c(@, 5, 25)))

X

<- rnorm(10*5)

18 get_breaks
ged(x)
gcd(x, round = FALSE)
mark(gcd(x))
get_breaks Pretty break-points for continuous (numeric) data
Description
The distances between break-points are always equal in this implementation.
Usage
get_breaks(x, n =10, ...)
Default S3 method:
get_breaks(x, n =10, ...)
S3 method for class 'numeric'
get_breaks(
X)
n =10,
pretty = TRUE,
expand_min = FALSE,
expand_max = pretty,
)
S3 method for class 'integer64'
get_breaks(x, n =10, ...)
Arguments
X A numeric vector.
n Number of breakpoints. You may get less or more than requested.
Extra arguments passed onto methods.
pretty Should pretty break-points be prioritised? Default is TRUE. If FALSE bin-widths
will be calculated as diff (range(x)) / n.
expand_min Should smallest break be extended beyond the minimum of the data? Default is
FALSE. If TRUE then min(get_breaks(x)) is ensured to be less than min(x).
expand_max Should largest break be extended beyond the maximum of the data? Default is
TRUE. If TRUE then max (get_breaks(x)) is ensured to be greater than max (x).
Value

A numeric vector of break-points.

int_sign

See Also

bin as_discrete

Examples

library(cheapr)

set.seed(123)
ages <- sample(0:80, 100, TRUE)

Pretty

get_breaks(ages, n = 10)

Not-pretty

bin-width is diff(range(ages)) / n_breaks
get_breaks(ages, n = 10, pretty = FALSE)

“get_breaks()” is left-biased in a sense, meaning that
the first break is always <= “min(x)" but the last break
may be < “max(x)’

To get right-biased breaks we can use a helper like so..

right_breaks <- function(x, ...){
-get_breaks(-x, ...)
3

get_breaks(4:24, 10)
right_breaks(4:24, 10)

Use “rev()™ to ensure they are in ascending order
rev(right_breaks(4:24, 10))

int_sign A fast and integer-based sign()

Description

A fast and integer-based sign()

Usage

int_sign(x)

Arguments

X Integer or double vector.

20 iS_na

Value

An integer vector denoting the sign, -1 for negatives, 1 for positives and O for when x == 0.

is_na Efficient functions for dealing with missing values.

Description

is_na() is a parallelised alternative to is.na().
num_na(x) is a faster and more efficient sum(is.na(x)).
which_na(x) is a more efficient which(is.na(x))
which_not_na(x) is a more efficient which(!is.na(x))
row_na_counts(x) is a more efficient rowSums(is.na(x))
row_all_na() returns a logical vector indicating which rows are empty and have only NA values.
row_any_na() returns a logical vector indicating which rows have at least 1 NA value.
The col_ variants are the same, but operate by-column.

Usage
is_na(x)

Default S3 method:
is_na(x)

S3 method for class 'POSIX1t'
is_na(x)

S3 method for class 'vctrs_rcrd'
is_na(x)

S3 method for class 'data.frame'
is_na(x)

num_na(x, recursive = TRUE)
which_na(x)

which_not_na(x)

any_na(x, recursive = TRUE)

all_na(x, recursive = TRUE)

row_na_counts(x, names = FALSE)

col_na_counts(x, names = FALSE)

iS_na 21

row_all_na(x, names = FALSE)
col_all_na(x, names = FALSE)
row_any_na(x, names = FALSE)

col_any_na(x, names = FALSE)

Arguments
X A vector, list, data frame or matrix.
recursive Should the function be applied recursively to lists? The default is TRUE. Set-
ting this to TRUE is actually much cheaper because when FALSE, the other NA
functions rely on calling is_na(), therefore allocating a vector. This is so that
alternative objects with is.na methods can be supported.
names Should row/col names be added?
Details

These functions are designed primarily for programmers, to increase the speed and memory-efficiency
of NA handling.
Most of these functions can be parallelised through options(cheapr.cores).

Common use-cases:

To replicate complete.cases(x), use !row_any_na(x).

To find rows with any empty values, use which_(row_any_na(df)).

To find empty rows use which_(row_all_na(df)) or which_na(df). To drop empty rows use
na_rm(df) or sset(df, which_(row_all_na(df), TRUE)).

is_na:

is_nalsan S3 generic function. It will internally fall back on using is.na if it can’t find a suitable
method. Alternatively you can write your own is_na method. For example there is a method for
vctrs_rcrd objects that simply converts it to a data frame and then calls row_all_na(). There
is also a POSIX1t method for is_na that is much faster than is.na.

Lists:

When x is a list, num_na, any_na and all_na will recursively search the list for NA values. If
recursive =F then is_na() is used to find NA values.
is_na differs to is.na in 2 ways:

¢ List elements are counted as NA if either that value is NA, or if it’s a list, then all values of that
list are NA.

* When called on a data frame, it returns TRUE for empty rows that contain only NA values.

Value

Number or location of NA values.

22

Examples

library(cheapr)
library(bench)

X <= 1:10

x[c(1, 5, 10)] <- NA
num_na(x)
which_na(x)
which_not_na(x)

row_nas <- row_na_counts(airquality, names = TRUE)
col_nas <- col_na_counts(airquality, names = TRUE)
row_nas
col_nas

df <- sset(airquality, j = 1:2)

Number of NAs in data
num_na(df)

Which rows are empty?
row_na <- row_all_na(df)
sset(df, row_na)

Removing the empty rows

sset(df, which_(row_na, invert = TRUE))
Or

na_rm(df)

Or

sset(df, row_na_counts(df) < ncol(df))

lag_

lag_ Lagged operations.

Description

Fast lags and leads optionally using dynamic vectorised lags, ordering and run lengths.

Usage

lag_(x, n = 1L, fill = NULL, set = FALSE, recursive = TRUE)

lag2_(
X,
n =1L,
order = NULL,
run_lengths = NULL,
fill = NULL,

recursive = TRUE

lag_ 23

Arguments
X A vector or data frame.
n Number of lags. Negative values are accepted.
lag2_ accepts a vector of dynamic lags and leads which gets recycled to the
length of x.
fill Value used to fill first n values. Default is NA.
set Should x be updated by reference? If TRUE no copy is made and x is updated in
place. The default is FALSE.
recursive Should list elements be lagged as well? If TRUE, this is useful for data frames
and will return row lags. If FALSE this will return a plain lagged list.
order Optionally specify an ordering with which to apply the lags. This is useful for
example when applying lags chronologically using an unsorted time variable.
run_lengths Optional integer vector of run lengths that defines the size of each lag run. For
example, supplying c(5, 5) applies lags to the first 5 elements and then essen-
tially resets the bounds and applies lags to the next 5 elements as if they were an
entirely separate and standalone vector.
This is particularly useful in conjunction with the order argument to perform a
by-group lag. See the examples for details.
Details

For most applications, it is more efficient and recommended to use lag_(). For anything that
requires dynamic lags, lag by order of another variable, or by-group lags, one can use lag2_().
To do cyclic lags, see the examples below for an implementation.

lag2_:
lag2_ is a generalised form of lag_ that by default performs simple lags and leads.
It has 3 additional features but does not support updating by reference or long vectors.

These extra features include:

* n - This shares the same name as the n argument in 1ag_ for consistency. The difference is that
lag_ accepts a lag vector of length 1 whereas this accepts a vector of dynamic lags allowing
for flexible combinations of variable sized lags and leads. These are recycled to the length
of the data and will always align with the data, meaning that if you supply a custom order
argument, this ordering is applied both to x and the recycled lag vector n simultaneously.

e order - Apply lags in any order you wish. This can be useful for reverse order lags, lags
against unsorted time variables, and by-group lags.

* run_lengths - Specify the size of individual lag runs. For example, if you specify run_lengths
=c(3, 4, 2), this will apply your lags to the first 3 elements and then reset, applying lags
to the next 4 elements, to reset again and apply lags to the final 2 elements. Each time the
reset occurs, it treats each run length sized ’chunk’ as a unique and separate vector. See the
examples for a showcase.

Table of differences between lag_and lag2_:

24
Description lag_
Lags Yes
Leads Yes
Long vector support Yes
Lag by reference Yes
Dynamic vectorised lags ~ No
Data frame row lags Yes
Alternative order lags No
Value

A lagged object the same size as X.

Examples

library(cheapr)
library(bench)

A use-case for data.table
Adding @ because can't update ALTREP by reference
df <- data.frame(x = 1:10%5 + QL)

Normal data frame lag
sset(lag_(df), 1:10)

Lag these behind by 3 rows
sset(lag_(df, 3, set = TRUE), 1:10)

df$x[1:10] # x variable was updated by reference!

The above can be used naturally in data.table to lag data

without any copies

To perform regular R row lags, just make sure set is “FALSE~

sset(lag_(as.data.frame(EuStockMarkets), 5), 1:10)

lag2_ is a generalised version of lag_ that allows
for much more complex lags

x <- 1:10

lag every 2nd element
lag2_(x, n = c(1, @)) # lag vector is recycled

Explicit Lag(3) using a vector of lags
lags <- lag_sequence(length(x), 3, partial = FALSE)
lag2_(x, n = lags)

Alternating lags and leads
lag2_(x, c(1, -1))

lag_

Lag only the 3rd element
lags <- integer(length(x))
lags[3] <- 1L
lag2_(x, lags)

lag in descending order (same as a lead)
lag2_(x, order = 10:1)

lag that resets after index 5
lag2_(x, run_lengths = c(5, 5))

lag with a time index
years <- sample(2011:2020)
lag2_(x, order = order(years))

Example of how to do a cyclical lag
n <- length(x)

When k >= @

k <= min(3, n)

lag2_(x, c(rep(-n + k, k), rep(k, n - k)))
When k < 0

k <= max(-3, -n)

lag2_(x, c(rep(k, n + k), rep(n + k, -k)))

As it turns out, we can do a grouped lag
by supplying group sizes as run lengths and group order as the order

set.seed(45)
g <- sample(c(”a", "b"), 10, TRUE)

NOTE: collapse::flag will not work unless g is already sorted!

This is not an issue with lag2_()

collapse::flag(x, g = g)

lag2_(x, order = order(g), run_lengths = collapse::GRP(g)$group.sizes)

For production code, we can of course make
this more optimised by using collapse::radixorderv()
Which calculates the order and group sizes all at once

0 <- collapse::radixorderv(g, group.sizes = TRUE)
lag2_(x, order = o, run_lengths = attr(o, "group.sizes"))

Let's finally wrap this up in a nice grouped-lag function
grouped_lag <- function(x, n = 1, g = integer(length(x))){
0 <- collapse::radixorderv(g, group.sizes = TRUE, sort = FALSE)
lag2_(x, n, order = o, run_lengths = attr(o, "group.sizes"))

3

And voila!

26 list_lengths

grouped_lag(x, g = g)
A method to extract this information from dplyr

We can actually get this information easily from a ~grouped_df" object
Uncomment the below code to run the implementation
library(dplyr)
library(timeplyr)
eu_stock <- EuStockMarkets |>
ts_as_tibble() |>
group_by(stock_index = group)
groups <- group_data(eu_stock) # Group information
group_order <- unlist(groups$.rows) # Order of groups
group_sizes <- lengths_(groups$.rows) # Group sizes

by-stock index lag
lag2_(eu_stock$value, order = group_order, run_lengths = group_sizes)

#
#
#
#
#
#
#
#
#
#
#
#
Verifying this output is correct

eu_stock |>

ungroup() |>

mutate(lagl = lag_(value), .by = stock_index) |>

mutate(lag2 = lag2_(value, order = group_order, run_lengths = group_sizes)) |>
summarise(lags_are_equal = identical(lagl, lag2))

Let's compare this to data.table

library(data.table)

default_threads <- getDTthreads()

setDTthreads(1)

dt <- data.table(x
g

1:10%5,
sample.int(10%4, 10*5, TRUE))

bench: :mark(dt[, y := shift(x), by = gI[J[["y"]1],
grouped_lag(dt$x, g = dt$g),
iterations = 10)

setDTthreads(default_threads)

list_lengths List utilities

Description

Functions to help work with lists.

Usage
list_lengths(x, names = FALSE)

lengths_(x, names = FALSE)

list_lengths 27

unlisted_length(x)

new_list(length = 0L, default = NULL)
list_assign(x, values)

list_modify(x, values)
list_combine(..., .args = NULL)

list_drop_null(x)

Arguments

X A list.

names Should names of list elements be added? Default is FALSE.

length Length of list.

default Default value for each list element.

values A named list

Objects to combine into a list.

.args An alternative to . .. for easier programming with lists.

Value

list_lengths() returns the list lengths.

unlisted_length() is a fast alternative to length(unlist(x)).

new_list() is like vector("list"”, length) but also allows you to specify a default value for
each list element. This can be useful for initialising with a catch-all value so that when you unlist
you’re guaranteed a list of length >= to the specified length.

list_assign() is vectorised version of [[<- that concatenates values to x or modifies x where
the names match. Can be useful for modifying data frame variables.

list_combine() combines each element of a set of lists into a single list. If an element is not a list,
it is treated as a length-one list. This happens to be very useful for combining data frame cols.

list_drop_null() removes NULL list elements very quickly.

Examples

library(cheapr)
1 <- list(1:10,
NULL,
list(integer(), NA_integer_, 2:10))

lengths_(1) # Faster lengths()
unlisted_length(l) # length of vector if we unlist
pasted("length: ", length(print(unlist(1l))))

28 new_df

unlisted_length(l) - na_count(l) # Number of non-NA elements

We can create and initialise a new list with a default value
1 <- new_list(20, oL)

1[1:5]

This works well with vctrs_list_of objects

named_list Turn dot-dot-dot (. . .) into a named list

Description

A fast and useful function for always returning a named list from . . .

Usage
named_list(..., .keep_null = TRUE)
Arguments
Key-value pairs.
.keep_null Should NULL entries be kept? Default is TRUE.
Value

A named list.

new_df Cheap data frame utilities

Description

Cheap data frame utilities

Usage
new_df (..., .nrows = NULL, .recycle = TRUE, .name_repair = TRUE, .args = NULL)
as_df (x)
fast_df (..., .args = NULL)

df_modify(x, cols)

list_as_df(x)

overview 29

name_repair(x, dup_sep = "_", empty_sep = "col_")
unique_name_repair(x, dup_sep = "_", empty_sep = "col_")
col_c(..., .recycle = TRUE, .name_repair = TRUE, .args = NULL)
row_c(..., .args = NULL)

Arguments

Key-value pairs.

.nrows [integer(1)] - (Optional) number of rows.
Commonly used to initialise a 0-column data frame with rows.

.recycle [logical(1)] - Should arguments be recycled? Default is TRUE.

.name_repair [logical(1)] - Should duplicate and empty names repaired and made unique?
Default is TRUE.

.args An alternative to . .. for easier programming with lists.

X An object to coerce to a data. frame or a character vector for unique_name_repair().

cols A list of values to add or modify data frame x.

dup_sep [character(1)] A separator to use between duplicate column names and their
locations. Defaultis '_'

empty_sep [character(1)] A separator to use between the empty column names and their

locations. Default is 'col_"

Details

fast_df () is a very fast bare-bones version of new_df () that performs no checks and no recycling
or name tidying, making it appropriate for very tight loops.

Value

A data.frame.
name_repair takes a character vector and returns unique strings by appending duplicate string
locations to the duplicates. This is mostly used to create unique col names.

overview An alternative to summary () inspired by the skimr package

Description

A cheaper summary () function, designed for larger data.

30 overview

Usage

overview(x, digits = getOption("cheapr.digits”, 2), ...)

Default S3 method:
overview(x, digits = getOption("cheapr.digits”, 2), ...)

S3 method for class 'logical'
overview(x, digits = getOption("cheapr.digits”, 2), ...)

S3 method for class 'integer'

overview(x, digits = getOption("cheapr.digits”, 2), hist = TRUE, ...)

S3 method for class 'numeric'

overview(x, digits = getOption("cheapr.digits”, 2), hist = TRUE, ...)

S3 method for class 'integer64'

overview(x, digits = getOption("cheapr.digits”, 2), hist = TRUE, ...)

S3 method for class 'character'

overview(x, digits = getOption("cheapr.digits”, 2), ...)

S3 method for class 'factor'

overview(x, digits = getOption("cheapr.digits”, 2), ...)

S3 method for class 'Date’

overview(x, digits = getOption("”cheapr.digits”, 2), ...)

S3 method for class 'POSIXt'

overview(x, digits = getOption("cheapr.digits”, 2), ...)

S3 method for class 'ts'

overview(x, digits = getOption("cheapr.digits”, 2), ...)

S3 method for class 'zoo'

overview(x, digits = getOption("cheapr.digits”, 2), ...)

S3 method for class 'data.frame'

overview(x, digits = getOption("cheapr.digits”, 2), hist = TRUE, ...)
Arguments

X A vector or data frame.

digits How many decimal places should the summary statistics be printed as? Default

is 2.
Further arguments passed onto methods. Currently unused.

hist Should in-line histograms be returned? Default is FALSE.

rebuild 31

Details

No rounding of statistics is done except in printing which can be controlled either through the
digits argument in overview(), or by setting the option options(cheapr.digits).
To access the underlying data, for example the numeric summary, just use $numeric, e.g. overview(rnorm(30))$numeric.

Value

An object of class "overview". Under the hood this is just a list of data frames. Key summary
statistics are reported in each data frame.

Examples

library(cheapr)
overview(iris)

With histograms
overview(airquality, hist = TRUE)

Round to @ decimal places
overview(airquality, digits = @)

We can set an option for all overviews
options(cheapr.digits = 1)
overview(rnorm(100))
options(cheapr.digits = 2) # The default

rebuild Rebuild an object from a template

Description

Rebuild an object from a template

Usage

rebuild(x, template, ...)

S3 method for class 'data.frame'
rebuild(x, template, shallow_copy = TRUE, ...)

S3 method for class 'data.table'
rebuild(x, template, shallow_copy = TRUE, ...)

32 recycle

Arguments
X An object in which carefully selected attributes will be copied into from template.
template A template object used to copy attributes into x.

Further arguments passed onto methods.

shallow_copy Should x be shallow copied before rebuilding? Default is TRUE.

Details

In R attributes are difficult to work with. One big reason for this is that attributes may or may not
be independent of the data. Date vectors for example have attributes completely independent of the
data and hence if the attributes are removed at any point, they can easily be re-added without any
calculations. Factors have almost data-independent attributes with an exception being when factors
are combined. In some cases it is not possible to rebuild attributes from the data alone.

You can add your own rebuild method for an object not covered by the methods here.

Value

An object similar to template.

recycle Recycle objects to a common size

Description

A convenience function to recycle R objects to either a common or specified size.

Usage
recycle(..., length = NULL, .args = NULL)
Arguments
Objects to recycle.
length Optional length to recycle objects to.
.args An alternative to . . . for easier programming with lists.
Details

Data frames are recycled by recycling their rows.
recycle() is optimised to only recycle objects that need recycling.
NULL objects are ignored and not recycled or returned.

Value

A list of recycled R objects.

rep 33

Examples

library(cheapr)

Recycles both to size 10
recycle(Sys.Date(), 1:10)

Any vectors of zero-length are all recycled to zero-length
recycle(integer(), 1:10)

Unless length is supplied
recycle(integer(), 1:10, length = 10)

Data frame rows are recycled
recycle(sset(iris, 1:3), length

9)

To recycle objects in a list, use ~.args"
my_list <- list(from = 1L, to = 10L, by = seq(@.1, 1, 0.1))
recycle(.args = my_list)

rep cheapr style repeat functions

Description

cheapr style repeat functions

Usage
cheapr_rep(x, times)

cheapr_rep_len(x, length)

cheapr_rep_each(x, each)

Arguments
X A vector or data frame.
times [integer(n)] A vector of times to repeat elements of x. Can be length 1 or the
same length as vector_length(x).
length [integer(1)1] - Length of the recycled result.
each [integer(1)] - How many times to repeat out each element of x.
Value

Repeated out object.

34

sequence_

sequence_

Utilities for creating many sequences

Description

sequence_ is an extension to sequence which accepts decimal number increments.
seqg_id can be paired with sequence_ to group individual sequences.

seq_ is a vectorised version of seq.

window_sequence creates a vector of window sizes for rolling calculations.
lag_sequence creates a vector of lags for rolling calculations.

lead_sequence creates a vector of leads for rolling calculations.

Usage

sequence_(size, from = 1L, by = 1L, add_id = FALSE)

seq_id(size)

seq_(from

1L, to = 1L, by = 1L, add_id = FALSE)

seq_size(from, to, by = 1L)

window_sequence(size, k, partial = TRUE, ascending = TRUE, add_id = FALSE)

lag_sequence(size, k, partial = TRUE, add_id = FALSE)

lead_sequence(size, k, partial = TRUE, add_id = FALSE)

Arguments
size
from
by
add_id
to
k
partial

ascending

Details

Vector of sequence lengths.

Start of sequence(s).

Unit increment of sequence(s).

Should the ID numbers of the sequences be added as names? Default is FALSE.
End of sequence(s).

Window/lag size.

Should partial windows/lags be returned? Default is TRUE.

Should window sequence be ascending? Default is TRUE.

sequence_() works in the same way as sequence() but can accept non-integer by values. It also
recycles from and to, in the same way as sequence().

sequence_ 35

If any of the sequences contain values > .Machine$integer.max, then the result will always be a
double vector.

from can be also be a date, date-time, or any object that supports addition and multiplication.

seq_() is a vectorised version of seq() that strictly accepts only the arguments from, to and by.

Value

A vector of length sum(size) except for seq_ which returns a vector of size sum((to - from) /
(by +1))

Examples

library(cheapr)
sequence(1:3)
sequence_(1:3)

sequence(1:3, by = 0.1)
sequence_(1:3, by = 0.1)

Add IDs to the sequences

sequence_(1:3, by = 0.1, add_id = TRUE)

Turn this quickly into a data frame

seqs <- sequence_(1:3, by = 0.1, add_id = TRUE)
new_df (name = names(seqs), seq = seqs)

sequence(c(3, 2), by = c(-0.1, 0.1))
sequence_(c(3, 2), by = c(-0.1, 0.1))

Vectorised version of seq()
seq_(1, 10, by = c(1, 0.5))

Same as below

c(seq(1, 10, 1), seq(l, 10, 0.5))

Programmers may use seq_size() to determine final sequence lengths

sizes <- seq_size(1, 10, by = c(1, 0.5))
print(paste(c(”sequence sizes: (", sizes, ") total size:", sum(sizes)),
collapse = " "))

We can group sequences using seq_id

from <- Sys.Date()

to <- from + 10

by <- c(1, 2, 3)

x <- seq_(from, to, by, add_id = TRUE)
class(x) <- "Date"

X

Utilities for rolling calculations

36

window_sequence(c(3, 5), 3)

window_sequence(c(3, 5), 3, partial = FALSE)
window_sequence(c(3, 5), 3, partial = TRUE, ascending = FALSE)
One can for example use these in data.table::frollsum

setdiff

setdiff_ Extra utilities

Description

Extra utilities

Usage

setdiff_(x, y, dups = TRUE)
intersect_(x, y, dups = TRUE)

cut_numeric(
X,
breaks,
labels = NULL,
include.lowest = FALSE,
right = TRUE,
dig.lab = 3L,
ordered_result = FALSE,

X %in_% table
x %!'in_% table
enframe_(x, name = "name"”, value = "value")

deframe_(x)

sample_(x, size = vector_length(x), replace = FALSE, prob = NULL)

val_insert(x, value, n = NULL, prop = NULL)
na_insert(x, n = NULL, prop = NULL)
vector_length(x)

cheapr_var(x, na.rm = TRUE)

setdiff

cheapr_rev(x)

37

with_local_seed(expr, .seed = NULL, ...)
Arguments

X A vector or data frame.

y A vector or data frame.

dups Should duplicates be kept? Default is TRUE.

breaks See ?cut.

labels See ?cut.

include.lowest See ?cut.

right See ?cut.

dig.lab See ?cut.

ordered_result See ?cut.

table
name
value
size
replace
prob

n

prop
na.rm

expr

.seed

Value

Further arguments passed onto cut or set. seed.

See ?collapse: :fmatch

The column name to assign the names of a vector.

The column name to assign the values of a vector.

See ?sample.

See ?sample.

See ?sample.

Number of scalar values (or NA) to insert randomly into your vector.
Proportion of scalar values (or NA) values to insert randomly into your vector.
Should NA values be ignored in cheapr_var () Default is TRUE.

Expression that will be evaluated with a local seed that is independent and has
absolutely no effect on the global RNG state.

A local seed to set which is only used inside with_local_seed(). After the
execution of the expression the original seed is reset.

enframe () _ converts a vector to a data frame.

deframe()_ converts a 1-2 column data frame to a vector.

intersect_() returns a vector of common values between x and y.

setdiff_() returns a vector of values in x but not y.

cut_numeric() places values of a numeric vector into buckets, defined through the breaks argu-
ment and returns a factor unless labels = FALSE, in which case an integer vector of break indices

is returned.

%in_% and %!in_% both return a logical vector signifying if the values of x exist or don’t exist in

table respectively.

sample_() is an alternative to sample() that natively samples data frame rows through sset(). It

38

setdiff

also does not have a special case when length(x) is 1.

val_insert inserts scalar values randomly into your vector. Useful for replacing lots of data with
a single value.

na_insert inserts NA values randomly into your vector. Useful for generating missing data.
vector_length behaves mostly like NROW() except for matrices in which it matches length().
cheapr_var returns the variance of a numeric vector. No coercion happens for integer vectors and
so is very cheap.

cheapr_rev is a much cheaper version of rev().

with_local_seed offers no speed improvements but is extremely handy in executing random num-
ber based expressions like rnorm() without affecting the global RNG state. It allows you to run
these expressions in a sort of independent *container’ and with an optional seed for that *container’
for reproducibility. The rationale for including this in ’cheapr’ is that it can reduce the need to set
many seed values, especially for multiple output comparisons of RNG expressions. Another way of
thinking about it is that with_local_seed() is a helper that allows you to write reproducible code
without side-effects, which traditionally cannot be avoided when calling set.seed() directly.

Examples

library(cheapr)

Using “with_local_seed()"

The below 2 statements are equivalent
Statement 1

set.seed(123456789)

res <- rnorm(10)

Statement 2
res2 <- with_local_seed(rnorm(10), .seed = 123456789)

They are the same
identical(res, res2)

As an example we can see that the RNG is unaffected by generating
random uniform deviates in batches between calls to “with_local_seed()
and comparing to the first result

set.seed(123456789)
batch1 <- rnorm(2)

with_local_seed(runif(10))
batch2 <- rnorm(2)
with_local_seed(runif(10))
batch3 <- rnorm(1)
with_local_seed(runif(10))
batch4 <- rnorm(5)

Combining the batches produces the same result
therefore “with_local_seed™ did not interrupt the rng sequence
identical(c(batch1, batch2, batch3, batch4), res)

set_abs 39

It can be useful in multiple comparisons
out1l <- with_local_seed(rnorm(5))
out2 <- with_local_seed(rnorm(5))
out3 <- with_local_seed(rnorm(5))

identical(out1, out2)
identical (out1, out3)

set_abs Math operations by reference - Experimental

Description

These functions transform your variable by reference, with no copies being made. It is advisable to
only use these if you know what you are doing.

Usage
set_abs(x)
set_floor(x)
set_ceiling(x)
set_trunc(x)
set_exp(x)
set_sqrt(x)
set_change_sign(x)
set_round(x, digits = @)
set_log(x, base = exp(1))
set_pow(x, y)
set_add(x, y)
set_subtract(x, y)
set_multiply(x, y)

set_divide(x, y)

40 set_abs

Arguments
X A numeric vector.
digits Number of digits to round to.
base Logarithm base.
y A numeric vector.
Details

These functions are particularly useful for situations where you have made a copy and then wish to
perform further operations without creating more copies.

NA and NaN values are ignored though in some instances NaN values may be replaced with NA. These
functions will not work on any classed objects, meaning they only work on standard integer and
numeric vectors and matrices.

When a copy has to be made:

A copy is only made in certain instances, e.g. when passing an integer vector to set_log(). A
warning will always be thrown in this instance alerting the user to assign the output to an object
because x has not been updated by reference.

To ensure consistent and expected outputs, always assign the output to the same object,

e.g. x <- set_log(x) (do this)

set_log(x) (don’t do this)

x2 <- set_log(x) (Don’t do this either)

No copy is made here unless x is an integer vector.

Value

The exact same object with no copy made, just transformed.

Examples

library(cheapr)
library(bench)

x <= rnorm(2e@5)
options(cheapr.cores = 2)
mark(
base = exp(log(abs(x))),
cheapr = set_exp(set_log(set_abs(x)))
)

options(cheapr.cores = 1)

sset 41

sset Cheaper subset

Description

Cheaper alternative to [that consistently subsets data frame rows, always returning a data frame.
There are explicit methods for enhanced data frames like tibbles, data.tables and sf.

Usage
sset(x, ...)

S3 method for class 'data.frame'
sset(x, i = NULL, j = NULL, ...)

S3 method for class 'POSIX1t'
sset(x, i = NULL, j = NULL, ...)

S3 method for class 'sf'

sset(x, i = NULL, j = NULL, ...)
Arguments
X Vector or data frame.

Further parameters passed to [.

i A logical or vector of indices.
j Column indices, names or logical vector.
Details

sset is an S3 generic. You can either write methods for sset or [.
sset will fall back on using [when no suitable method is found.

To get into more detail, using sset() on a data frame, a new list is always allocated through
new_list().

Difference to base R:

When i is a logical vector, it is passed directly to which_().

This means that NA values are ignored and this also means that i is not recycled, so it is good
practice to make sure the logical vector matches the length of x. To return NA values, use sset(x,
NA_integer_).

ALTREP range subsetting:

When i is an ALTREP compact sequence which can be commonly created using e.g. 1:1@ or
using seq_len, seq_along and seq.int, sset internally uses a range-based subsetting method
which is faster and doesn’t allocate i into memory.

42 sset_df

Value

A new vector, data frame, list, matrix or other R object.

Examples

library(cheapr)
library(bench)

Selecting columns
sset(airquality, j = "Temp")
sset(airquality, j = 1:2)

Selecting rows
sset(iris, 1:5)

Rows and columns
sset(iris, 1:5, 1:5)
sset(iris, iris$Sepal.Length > 7, c("Species”, "Sepal.Length"))

Comparison against base
X <= rnorm(10*4)

mark(x[1:10%3], sset(x, 1:10"3))
mark(x[x > @], sset(x, x > 0))

df <- data.frame(x = x)
mark (df[df$x > @, , drop = FALSE],

sset(df, df$x > 0),
check = FALSE) # Row names are different

sset_df Fast functions for data frame subsetting

Description

These functions are for developers that need minimal overhead when filtering on rows and/or cols.

Usage

sset_df(x, i = NULL, j = NULL, ...)

NULL)

sset_row(x, 1

sset_col(x, j = NULL)

str_coalesce 43

Arguments
X A data.frame.
i Rows - If NULL all rows are returned.
j Cols - If NULL all cols are returned.
Unused.
Details

If you are unsure which functions to use then it is recommended to use sset (). These low-overhead
helpers do not work well with data.tables but should work well with basic data frames and basic tib-
bles. The only real difference between sset_df and sset_row/sset_col is that sset_df attempts
to return a similar type of data frame as the input, whereas sset_row and sset_col always return
a plain data frame.

Value

A data frame subsetted on rows i and cols j.

str_coalesce Coalesce character vectors

Description

nn

str_coalesce() find the first non empty string
fixing the names of R objects.

. This is particularly useful for assigning and

In this implementation, the empty string "" has priority over NA which means NA is only returned
when all values are NA, e.g. str_coalesce(NA, NA).

Usage

str_coalesce(..., .args = NULL)
Arguments

Character vectors to coalesce.

.args An alternative to . .. for easier programming with lists.
Details

str_coalesce(x, y) is equivalent to if_else(x !="" & lis.na(x), x, y).
Value

A coalesced character vector of length corresponding to the recycled size of supplied character
vectors. See ?recycle for details.

44 val_count

Examples
library(cheapr)
Normal examples

str_coalesce("", "hello")
str_coalesce("", NA, "goodbye")

'' always preferred
str_coalesce(”"”, NA)
str_coalesce(NA, "")

Unless there are only NAs
str_coalesce(NA, NA)

~str_coalesce™ is vectorised

x <- val_insert(letters, "", n = 10)
y <- val_insert(LETTERS, "", n = 10)

str_coalesce(x, y)

Using ~.args™ instead of “do.call” is much more efficient
library(bench)
x <- cheapr_rep_len(list(letters), 103)

mark(do.call(str_coalesce, x),
str_coalesce(.args = x),
iterations = 50)

val_count Efficient functions for counting, finding, replacing and removing
scalars

Description

These are primarily intended as very fast scalar-based functions for developers. They are particu-
larly useful for working with NA values in a fast and efficient manner.

Usage

val_count(x, value, recursive = TRUE)
val_find(x, value, invert = FALSE)
which_val(x, value, invert = FALSE)

val_replace(x, value, replace, recursive = TRUE)

val_count 45

na_replace(x, replace, recursive = TRUE)
val_rm(x, value)
na_count(x, recursive = TRUE)

na_find(x, invert = FALSE)

na_rm(x)
Arguments
X A vector, list, data frame or matrix.
value A scalar value to count, find, replace or remove.
recursive Should values in a list be counted or replaced recursively? Default is TRUE and
very useful for data frames.
invert Should which_val find locations of everything except specified value? Default
is FALSE.
replace Replacement scalar value.
Details

The val_ functions allow you to very efficiently work with scalars, i.e length 1 vectors. Many
common common operations like counting the occurrence of NA or zeros, e.g. sum(x == @) or
sum(is.na(x)) can be replaced more efficiently with val_count(x, @) and na_count(x) respec-
tively.

At the moment these functions only work for integer, double and character vectors with the excep-
tion of the NA functions. They are intended mainly for developers who wish to write cheaper code
and reduce expensive vector operations.

¢ val_count() - Counts occurrences of a value
¢ val_find() Finds locations (indices) of a value

* val_replace() - Replaces value with another value
* val_rm() - Removes occurrences of value from an object

There are NA equivalent convenience functions.

* na_count() ==val_count(x, NA)

e na_find() ==val_find(x, NA)

* na_replace() ==val_replace(x, NA)
* na_rm() == val_rm(x, NA)

val_count() and val_replace() can work recursively. For example, when applied to a data
frame, na_replace will replace NA values across the entire data frame with the specified replace-
ment value.

In ’cheapr’ function-naming conventions have not been consistent but going forward all scalar func-
tions (including the NA convenience functions) will be prefixed with ’val_’ and ’na_’ respectively.
Functions named with the older naming scheme like which_na may be removed at some point in
the future.

46 which_

Value

val_count () returns the number of times a scalar value appears in a vector or list.

val_find() returns the index locations of that scalar value.

val_replace() replaces a specified scalar value with a replacement scalar value. If no instances of
said value are found then the input x is returned as is.

na_replace() is a convenience function equivalent to val_replace(x, NA, ...).

val_rm() removes all instances of a specified scalar value. If no instances are found, the original
input x is returned as is.

which_ Memory-efficient alternative to which()

Description

Exactly the same as which() but more memory efficient.

Usage
which_(x, invert = FALSE)

Arguments
X A logical vector.
invert If TRUE, indices of values that are not TRUE are returned (including NA). If FALSE
(the default), only TRUE indices are returned.
Details

This implementation is similar in speed to which() but usually more memory efficient.

Value

An unnamed integer vector.

Examples

library(cheapr)
library(bench)
x <- sample(c(TRUE, FALSE), 1e@5, TRUE)
x[sample.int(1e@5, round(1e05/3))]1 <- NA

mark(which_(TRUE), which(TRUE))

mark(which_(FALSE), which(FALSE))

mark(which_(logical()), which(logical()))

mark(which_(x), which(x), iterations = 20)

mark(base = which(is.na(match(x, TRUE))),
collapse = collapse::whichv(x, TRUE, invert = TRUE),
cheapr = which_(x, invert = TRUE),

which_

iterations = 20)

Index

%!'in_% (setdiff_), 36
%in_% (setdiff_), 36

address, 3
all_na(is_na), 20
any_na (is_na), 20
as_df (new_df), 28
as_discrete, 3,7, 19
as_factor (factor_), 13
attrs, 6

attrs_add (attrs), 6
attrs_clear (attrs), 6
attrs_modify (attrs), 6
attrs_rm (attrs), 6

bin, 4,7, 19

case, 8, 10

cheapr (cheapr-package), 2
cheapr-package, 2
cheapr_c, 9
cheapr_if_else, 8, 10
cheapr_rep (rep), 33
cheapr_rep_each (rep), 33
cheapr_rep_len (rep), 33
cheapr_rev (setdiff_), 36
cheapr_table, 10
cheapr_var (setdiff_), 36
col_all_na(is_na), 20
col_any_na(is_na), 20
col_c (new_df), 28
col_na_counts (is_na), 20
copy, 11

counts (cheapr_table), 10
cut_numeric (setdiff_), 36

deep_copy (copy), 11
deframe_ (setdiff_), 36
df_modify (new_df), 28

enframe_ (setdiff_), 36

48

factor_, 13
fast_df (new_df), 28

ged, 16
gcd2 (ged), 16
get_breaks, 4, 7, 18

int_sign, 19
intersect_ (setdiff_), 36
is_na, 20

lag2_(lag_), 22

lag_, 22

lag_sequence (sequence_), 34
lead_sequence (sequence_), 34
lengths_ (list_lengths), 26
levels_add (factor_), 13
levels_add_na (factor_), 13
levels_count (factor_), 13
levels_drop (factor_), 13
levels_drop_na (factor_), 13
levels_factor (factor_), 13
levels_lump (factor_), 13
levels_rename (factor_), 13
levels_reorder (factor_), 13
levels_rm(factor_), 13
levels_unused (factor_), 13
levels_used (factor_), 13
list_as_df (new_df), 28
list_assign (list_lengths), 26
list_combine (list_lengths), 26

list_drop_null (list_lengths), 26

list_lengths, 26
list_modify (list_lengths), 26
logical, 10, 46

na_count (val_count), 44
na_find (val_count), 44
na_insert (setdiff_), 36
na_replace (val_count), 44

INDEX

na_rm(val_count), 44
name_repair (new_df), 28
named_list, 28

new_df, 28

new_list (list_lengths), 26

num_na (is_na), 20
numeric, /6

overview, 29

rebuild, 31

recycle, 32

rep, 33

row_all_na (is_na), 20
row_any_na (is_na), 20
row_c (new_df), 28
row_na_counts (is_na), 20

sample_ (setdiff_), 36
scm (ged), 16

scm2 (ged), 16

semi_copy (copy), 11
seq, 34

seq_ (sequence_), 34
seq_id (sequence_), 34
seq_size (sequence_), 34
sequence, 34
sequence_, 34
set_abs, 39

set_add (set_abs), 39
set_ceiling (set_abs), 39

set_change_sign (set_abs), 39

set_divide (set_abs), 39
set_exp (set_abs), 39
set_floor (set_abs), 39
set_log (set_abs), 39
set_multiply (set_abs), 39
set_pow (set_abs), 39
set_round (set_abs), 39
set_sqrt (set_abs), 39
set_subtract (set_abs), 39
set_trunc (set_abs), 39
setdiff_, 36
shallow_copy, 6
shallow_copy (copy), 11
sset, 41

sset_col (sset_df), 42
sset_df, 42

sset_row (sset_df), 42

str_coalesce, 43

unique_name_repair (new_df), 28

unlisted_length (list_lengths), 26

val_count, 44

val_find (val_count), 44
val_insert (setdiff_), 36
val_match, 10

val_match (case), 8
val_replace (val_count), 44
val_rm(val_count), 44
vector_length (setdiff_), 36

which_, 46

which_na (is_na), 20
which_not_na (is_na), 20
which_val (val_count), 44
window_sequence (sequence_), 34
with_local_seed (setdiff_), 36

	cheapr-package
	address
	as_discrete
	attrs
	bin
	case
	cheapr_c
	cheapr_if_else
	cheapr_table
	copy
	factor_
	gcd
	get_breaks
	int_sign
	is_na
	lag_
	list_lengths
	named_list
	new_df
	overview
	rebuild
	recycle
	rep
	sequence_
	setdiff_
	set_abs
	sset
	sset_df
	str_coalesce
	val_count
	which_
	Index

