Package 'cbsREPS'

April 25, 2025

Type Package

Title Hedonic and Multilateral Index Methods for Real Estate Price Statistics

Version 0.1.0

Maintainer Vivek Gajadhar <v.gajadhar@cbs.nl>

Description Compute price indices using various Hedonic and multilateral methods, including Laspeyres, Paasche, Fisher, and HMTS (Hedonic Multilateral Time series re-estimation with splicing). The central function calculate_price_index() offers a unified interface for running these methods on structured datasets. This package is designed to support index construction workflows for real estate and other domains where quality-adjusted price comparisons over time are essential. The development of this package was funded by Eurostat and Statistics Netherlands (CBS), and carried out by Statistics Netherlands. The HMTS method implemented here is described in Ishaak, Ouwehand and Remøy (2024) <doi:10.1177/0282423X241246617>. For broader methodological context, see Eurostat (2013, ISBN:978-92-79-25984-5, <doi:10.2785/34007>).

License GPL-2

Encoding UTF-8

LazyData true

RoxygenNote 7.3.1

Depends R (>= 4.4.0)

Imports dplyr, stats, assertthat, KFAS, stringr

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

VignetteBuilder knitr

NeedsCompilation no

Author Farley Ishaak [aut], Pim Ouwehand [aut], David Pietersz [aut], Liu Nuo Su [aut], Cynthia Cao [aut],

```
Mohammed Kardal [aut],
Odens van der Zwan [aut],
Vivek Gajadhar [aut, cre]
```

Repository CRAN

Date/Publication 2025-04-25 15:10:01 UTC

Contents

calculate_fisher	2
calculate_geometric_average	3
calculate_laspeyres	4
calculate_paasche	5
calculate_price_index	6
custom_update_function	8
data_constraxion	9
1	10

Index

calculate_fisher	Calculate direct index according to the Fisher hedonic double impu-
	tation method

Description

By the parameters 'dependent_variable', 'continue_variable' and 'categorical_variables' as regression model is compiled. With the model, a direct series of index figures is estimated by use of hedonic regression.

Usage

```
calculate_fisher(
  dataset,
  period_variable,
  dependent_variable,
  continuous_variables,
  categorical_variables,
  reference_period = NULL,
  number_of_observations = FALSE
)
```

Arguments

dataset table with data (does not need to be a selection of relevant variables) period_variable

variable in the table with periods

dependent_variable

usually the sale price

calculate_geometric_average

continuous_variables
 vector with quality determining numeric variables (no dummies)
categorical_variables
 vector with quality determining categorical variables (also dummies)
reference_period
 period or group of periods that will be set to 100 (numeric/string)
number_of_observations
 number of observations per period (default = TRUE)

Details

N.B.: the independent variables must be entered transformed (and ready) in the parameters. Hence, not: log(floor_area), but transform the variable in advance and then provide log_floor_area. This does not count for the dependent variable. This should be entered untransformed

Within the data, it is not neccesary to filter the data on relevant variables or complete records. This is taken care of in the function.

Value

table with index, imputation averages, number of observations and confidence intervals per period

Author(s)

Farley Ishaak

```
calculate_geometric_average
```

Calculate the geometric average of a series of values

Description

The equation for the calculation is:: exp(mean(log(series_values)))

Usage

calculate_geometric_average(values)

Arguments

values series with numeric values

Value

geometric average

Author(s)

Farley Ishaak

calculate_laspeyres

Description

By the parameters 'dependent_variable', 'continue_variable' and 'categorical_variables' as regression model is compiled. With the model, a direct series of index figures is estimated by use of hedonic regression.

Usage

```
calculate_laspeyres(
  dataset,
  period_variable,
  dependent_variable,
  continuous_variables,
  categorical_variables,
  reference_period = NULL,
  index = TRUE,
  number_of_observations = FALSE,
  imputation = FALSE
)
```

Arguments

dataset	table with data (does not need to be a selection of relevant variables)		
period_variable			
	variable in the table with periods		
dependent_varia	ble		
	usually the sale price		
continuous_vari	ables		
	vector with quality determining numeric variables (no dummies)		
categorical_var	iables		
	vector with quality determining categorical variables (also dummies)		
reference_perio	d		
	period or group of periods that will be set to 100 (numeric/string)		
index	caprice index		
number_of_observations			
	number of observations per period (default = TRUE)		
imputation	display the underlying average imputation values? (default = FALSE)		

Details

N.B.: the independent variables must be entered transformed (and ready) in the parameters. Hence, not: log(floor_area), but transform the variable in advance and then provide log_floor_area. This does not count for the dependent variable. This should be entered untransformed/

Within the data, it is not necessary to filter the data on relevant variables or complete records. This is taken care of in the function.

Value

table with index, imputation averages, number of observations and confidence intervals per period

Author(s)

Farley Ishaak

calculate_paasche Calculate direct index according to the Paasche hedonic double imputation method

Description

By the parameters 'dependent_variable', 'continue_variable' and 'categorical_variables' as regression model is compiled. With the model, a direct series of index figures is estimated by use of hedonic regression.

Usage

```
calculate_paasche(
   dataset,
   period_variable,
   dependent_variable,
   continuous_variables,
   categorical_variables,
   reference_period = NULL,
   index = TRUE,
   number_of_observations = FALSE,
   imputation = FALSE
)
```

Arguments

dataset table with data (does not need to be a selection of relevant variables) period_variable

variable in the table with periods

dependent_variable

usually the sale price

continuous_vari	ables			
	vector with quality determining numeric variables (no dummies)			
categorical_variables				
	vector with quality determining categorical variables (also dummies)			
reference_period				
	period or group of periods that will be set to 100 (numeric/string)			
index	caprice index			
number_of_observations				
	number of observations per period (default = TRUE)			
imputation	display the underlying average imputation values? (default = FALSE)			

Details

N.B.: the independent variables must be entered transformed (and ready) in the parameters. Hence, not: log(floor_area), but transform the variable in advance and then provide log_floor_area. This does not count for the dependent variable. This should be entered untransformed

Within the data, it is not necessary to filter the data on relevant variables or complete records. This is taken care of in the function.

Value

table with index, imputation averages, number of observations and confidence intervals per period

Author(s)

Farley Ishaak

calculate_price_index Calculate index based on specified method (Fisher, Laspeyres, Paasche, HMTS)

Description

Central hub function to calculate index figures using different methods.

Usage

```
calculate_price_index(
  method,
  dataset,
  period_variable,
  dependent_variable,
  continuous_variables,
  categorical_variables,
  reference_period = NULL,
  number_of_observations = TRUE,
```

calculate_price_index

```
periods_in_year = 4,
production_since = NULL,
number_preliminary_periods = 3,
resting_points = FALSE,
index = TRUE,
imputation = FALSE
```

Arguments

)

method	one of: "fisher", "laspeyres", "paasche", "hmts"			
dataset	data frame with input data			
period_variable				
	name of the variable indicating time periods			
dependent_variable				
	usually the price			
continuous_variables				
	vector with numeric quality-determining variables			
categorical_variables				
	vector with categorical variables (also dummies)			
reference_period				
	period or group of periods that will be set to 100			
number_of_observations				
	show number of observations? Default = TRUE			
<pre>periods_in_year</pre>				
	(HMTS only) number of periods per year (e.g. 12 for months)			
production_since				
	(HMTS only) start period for production simulation			
number_prelimir	ary_periods (HMTS only) number of preliminary periods			
resting_points	(HMTS only) return detailed outputs? Default = FALSE			
index	(Laspeyres/Paasche only) include index column? Default = TRUE			
imputation	(Laspeyres/Paasche only) include imputation values? Default = FALSE			

Value

A data.frame (or list for when method is HMTS with resting_points = TRUE)

Author(s)

Vivek Gajadhar

Examples

```
# Laspeyres index
Tbl_Laspeyres <- calculate_price_index(</pre>
  method = "laspeyres",
  dataset = data_constraxion,
  period_variable = "period",
  dependent_variable = "price",
  continuous_variables = "floor_area",
  categorical_variables = "neighbourhood_code",
  reference_period = 2015,
  number_of_observations = TRUE,
  imputation = FALSE
)
head(Tbl_Laspeyres)
# Paasche index
Tbl_Paasche <- calculate_price_index(</pre>
  method = "paasche",
  dataset = data_constraxion,
  period_variable = "period",
  dependent_variable = "price",
  continuous_variables = "floor_area",
  categorical_variables = "neighbourhood_code",
  reference_period = 2015,
  number_of_observations = TRUE,
  imputation = FALSE
)
head(Tbl_Paasche)
# Fisher index (geometric mean of Laspeyres and Paasche)
Tbl_Fisher <- calculate_price_index(</pre>
  method = "fisher",
  dataset = data_constraxion,
  period_variable = "period",
  dependent_variable = "price",
  continuous_variables = "floor_area",
  categorical_variables = "neighbourhood_code",
  reference_period = 2015,
  number_of_observations = TRUE
)
head(Tbl_Fisher)
```

custom_update_function

Default update function

Description

This function is used in the function: calculate_trend_line_KFAS()

8

data_constraxion

Usage

custom_update_function(params, model)

Arguments

params	startvalues
model	state space modelnumber

Value

Newmodel

Author(s)

Vivek Gajadhar

data_constraxion A real estate example dataframe

Description

A subset of data from a fictitious real estate data frame containing transaction prices and some categorical and numerical characteristics of each dwelling.

Usage

data_constraxion

Format

A data frame with 7,800 rows and 6 columns:

period A (string) vector indicating a time period

price A (string) vector indicating the transaction price of the dwelling

floor_area A real-valued vector of (the logarithm of) the floor area of the dwelling

- **dist_trainstation** A real-valued vector of (the logarithm of) the distance of the dwelling to the nearest train station
- **neighbourhood_code** A categorical code/string referring to the neighbourhood the dwelling belongs to

dummy_large_city A vector indicating whether the dwelling belongs to a large city or not

Source

A fictitious dataset for illustration purposes

Examples

data(data_constraxion)
head(data_constraxion)

Index

* Internal
 calculate_geometric_average, 3
 custom_update_function, 8
* datasets
 data_constraxion, 9

```
calculate_fisher, 2
calculate_geometric_average, 3
calculate_laspeyres, 4
calculate_paasche, 5
calculate_price_index, 6
custom_update_function, 8
```

data_constraxion,9