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Abstract

Do-calculus is concerned with estimating the interventional distribution of an action
from the observed joint probability distribution of the variables in a given causal struc-
ture. All identifiable causal effects can be derived using the rules of do-calculus, but
the rules themselves do not give any direct indication whether the effect in question is
identifiable or not. Shpitser and Pearl (2006b) constructed an algorithm for identifying
joint interventional distributions in causal models, which contain unobserved variables
and induce directed acyclic graphs. This algorithm can be seen as a repeated application
of the rules of do-calculus and known properties of probabilities, and it ultimately either
derives an expression for the causal distribution, or fails to identify the effect, in which
case the effect is non-identifiable. In this paper, the R package causaleffect is presented,
which provides an implementation of this algorithm. Functionality of causaleffect is also
demonstrated through examples.

Keywords: DAG, do-calculus, causality, causal model, identifiability, graph, C-component,
hedge, d-separation.

A modification of (Tikka and Karvanen 2017) published in the Journal of Statistical Software.

1. Introduction

When discussing causality, one often means the relationships between events, where a set
of events directly or indirectly causes another set of events. The aim of causal inference is
to draw conclusions from these relationships by using available data and prior knowledge.
Causal inference can also be applied when determining the effects of actions on some vari-
ables of interest. These types of actions are often called interventions and the results of the
interventions are referred to as causal effects.

The causal inference can be divided into three sub-areas: discovering the causal model from
the data, identifying the causal effect when the causal structure is known and estimating an
identifiable causal effect from the data. Our contribution belongs to the second category,
identification of causal effects. As a starting point, we assume that the causal relationships
between the variables are known in a non-parametric form and formally presented as a proba-
bilistic causal model (Pearl 1995). Part of the variables may be latent. The causal structure,
i.e., the non-parametric causal relationships, can be described using a directed acyclic graph
(DAG). A causal effect is called identifiable if it can be uniquely determined from the causal
structure on basis of the observations only.
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Do-calculus (Pearl 1995) consist of a set of inference rules, which can be used to express the
interventional probability distribution using only observational distributions. The rules of do-
calculus do not themselves indicate the order in which they should be applied. This problem
is solved in the algorithm developed by Tian and Pearl (2003) and Shpitser and Pearl (2006b).
The algorithm is proved to determine the interventional distribution of an identifiable causal
effect. When faced with an unidentifiable effect, the algorithm provides a problematic graph
structure called a hedge, which can be thought of as the cause of unidentifiability.

Other R packages for causal inference are summarized in Table 1. It can be seen that in
addition to causaleffect, only pcalg (Kalisch et al. 2012) supports the identification of causal
effects. pcalg supports the generalized back-door criterion but does not support the front-
door criterion. Thus, according to our knowledge, causaleffect is the only R package that
implements a complete algorithm for the identification of causal effects.

An algorithm equivalent to the one developed by (Shpitser and Pearl 2006b) has been im-
plemented earlier by Lexin Liu in the CIBN software using JavaBayes, which is a graphical
software interface written in Java by Fabio Gagliardi Cozman. In addition to causal effect
identification CIBN also provides tools for creating and editing graphical models. CIBN is
freely available from http://web.cs.iastate.edu/~jtian/Software/CIBN.htm. DAGitty

(Textor et al. 2011) provides another free interface for causal inference and causal modeling.
One of the main features of DAGitty is finding sufficient adjustment sets for the minimiza-
tion of bias in causal effect estimation. DAGitty can also be used to determine instrumental
variables, which is a feature currently not provided by causaleffect. However, DAGitty does
not provide a complete criterion for identifiability.

Familiarity of Pearl’s causal model, do-calculus and basic graph theory is assumed throughout
the paper. These concepts are briefly reviewed in Appendix A. A more detailed description
can be found in (Pearl 2009) and (Koller and Friedman 2009). Notation similar to that of
(Shpitser and Pearl 2006b) is also utilized repeatedly in this paper. Capital letters denote
variables and small letters denote their values. Bold letters denote sets which are formed
of the previous two. The abbreviations Pa(Y)G, An(Y)G, and De(Y)G denote the set of
observable parents, ancestors and descendants of the node set Y while also containing Y

itself. It should also be noted that the shorthand notation of bidirected edges is used to
represent the direct effects of an unobserved confounding variable on the two variables at the
endpoints of the bidirected edge.

A motivating example is presented in Section 2. The identification algorithm is presented
in Section 3 and the details of its R implementation are described in Section 4. Section 5
showcases the usage of causaleffect in R with some simple examples, and describes some
curious special cases arising from the nature of the algorithm itself. Section 6 concludes this
paper by providing some examples of similar algorithms, where the work of this paper could
be applicable.

2. Example on do-calculus

Consider identification of causal effect Px(y) in the graph G of Figure 1. We show how this
causal effect can be identified by applying do-calculus (Pearl 2009) manually. Later the same
example is reconsidered using the identification algorithm.

First, the rules of do-calculus are shortly reviewed. The purpose of do-calculus is to represent

http://web.cs.iastate.edu/~jtian/Software/CIBN.htm
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Packages for specific applications

ASPBay Bayesian inference on causal genetic variants using affected
sib-pairs data (Dandine-Roulland 2015)

cin Causal inference for neuroscience (Luo et al. 2011)
mwa Causal inference in spatiotemporal event data (Schutte and

Donnay 2015)
qtlnet Causal inference of QTL networks (Neto and Yandell 2014)

Packages for estimation of causal effects from data

CausalGAM Estimation of causal effects with generalized additive models
(Glynn and Quinn 2010)

InvariantCausalPrediction Invariant causal prediction (Meinshausen 2015)
iWeigReg Improved methods for causal inference and missing data prob-

lems (Tan and Shu 2013)
pcalg Methods for graphical models and causal inference
SVMMatch Causal effect estimation and diagnostics with support vector

machines (Ratkovic 2015)
wfe Weighted linear fixed effects regression models for causal in-

ference (Kim and Imai 2014)

Packages for sensitivity analysis and other specific problems in causal inference

causalsens Selection bias approach to sensitivity analysis for causal ef-
fects (Blackwell 2013)

cit Causal inference test (Millstein 2015)
ImpactIV Identifying causal effect for multi-component intervention us-

ing instrumental variable method (Ding 2012)
inferference Methods for causal inference with interference (Saul 2015)
MatchingFrontier Computation of the balance – sample size frontier in matching

methods for causal inference (King et al. 2015)
mediation Causal mediation analysis (Tingley et al. 2014)
qualCI Causal inference with qualitative and ordinal information on

outcomes(Kashin et al. 2014)
SimpleTable Bayesian inference and sensitivity analysis for causal effects

from 2× 2 and 2× 2×K tables in the presence of unmeasured
confounding (Quinn 2012)

treatSens Sensitivity analysis for causal inference (Carnegie et al. 2015)

Packages for causal discovery

CAM Causal additive model (CAM) (Peters and Ernest 2015)
D2C Predicting causal direction from dependency features (Bon-

tempi et al. 2015)
pcalg Methods for graphical models and causal inference

Packages for identification of causal effects

causaleffect Deriving expressions of joint interventional distributions in
causal models

pcalg Methods for graphical models and causal inference

Table 1: R packages for causal inference.
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Figure 1: Graph G for the illustrative example.

the interventional distribution Px(y) by using only observational probabilities. A causal
effect is identifiable, if such an expression can be found by applying the rules of do-calculus
repeatedly. This result follow directly from the definition of identifiability due to the fact that
all observational distributions are assumed identical for the causal models that induce G.

Let X, Y and Z be pairwise disjoint sets of nodes in the graph G induced by a causal model
M . Here G

X,Z means the graph that is obtained from G by removing all incoming edges of
X and all outgoing edges of Z. Let P be the joint distribution of all observed and unobserved
variables of M . Now, the following three rules hold (Pearl 1995):

1. Insertion and deletion of observations:

Px(y|z, w) = Px(y|w), if (Y |= Z|X, W)G
X

.

2. Exchanging actions and observations:

Px,z(y|w) = Px(y|z, w), if (Y |= Z|X, W)G
X,Z

.

3. Insertion and deletion of actions:

Px,z(y|w) = Px(y|w), if (Y |= Z|X, W)G
X,Z(W)

,

where Z(W) = Z \An(W)G
X

.

The rules of do-calculus can be shown to be true by using d-separation and the definition of
the do(·)-operator. Pearl presented proofs for these three rules (Pearl 1995). Do-calculus has
also been shown to be complete, meaning that the expressions of all identifiable causal effects
can be derived by using the three rules (Shpitser and Pearl 2006b; Huang and Valtorta 2006).

To identify Px(y) in the causal model of Figure 1, we begin with the factorization

Px(y) =
∑

w,z

Px(y|w, z)Px(z|w)Px(w). (1)

Let us start by focusing on the first term in the sum. Because (Y |= Z|X, W )G
X,Z

rule 2

implies that
Px(y|w, z) = Px,z(y|w)

and by noting that (Y |= X|Z, W )G
Z,X

rule 3 allows us to write

Px,z(y|w) = Pz(y|w).
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By expanding the previous expression we get

Pz(y|w) =
∑

x

Pz(y|w, x)Pz(x|w). (2)

Rule 2 and the fact that (Y |= Z|X, W )GZ
together imply

Pz(y|w, x) = P (y|w, x, z). (3)

The condition (X |= Z|W )G
Z

and rule 3 allow us to write

Pz(x|w) = P (x|w). (4)

Inserting (3) and (4) into (2) yields

Pz(y|w) =
∑

x

P (y|w, x, z)P (x|w). (5)

Focusing now on the second term of (1) we see that because (Z |= X|W )GX
rule 2 implies

that

Px(z|w) = P (z|x, w). (6)

Similarly, the third term simplifies by using rule 3 and the condition (W |= X)G
X

rule 3.

Px(w) = P (w). (7)

Finally, we combine the results above by inserting (5), (6) and (7) into (1) which yields the
expression for the causal effect.

Px(y) =
∑

w,z

(

∑

x

P (y|w, x, z)P (x|w)

)

P (z|x, w)P (w)

In Section 3.3 we will see how the causal effect can be identified by applying the algorithm
of (Shpitser and Pearl 2006b). The previous result highly resembles the front-door criterion,
which states that

Px(y) =
∑

s

(

∑

x

P (y|x, s)P (x)

)

P (s|x),

whenever the set S blocks all directed paths from X to Y, there are no unblocked back-door
paths from X to S and X blocks all back-door paths from S to Y. However, neither W , Z,
or {W, Z} satisfy the role of the set S. The criterion would certainly hold if we removed W
from the graph.

3. Identifiability algorithm

Even if a causal effect is identifiable, the rules of do-calculus themselves do not guarantee
that they could be used to form an expression for the interventional distribution, and that it
would contain only observed quantities. It is also not self-evident in which order the rules of
do-calculus should be applied to reach the desired expression from the joint distribution of
the observed variables P (V).
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(a) Graph G. (b) A subgraph of G induced by the set {X, Z1, Z2}.

Figure 2: An example illustrating the definition of an induced subgraph.

To overcome these limitations an identifiability algorithm has been developed by Shpitser
and Pearl (2006b). This algorithm can be used to determine the identifiability of any causal
effect, in addition of generating the expression for the interventional distribution in the case
of an identifiable effect.

3.1. Definitions

Some graph theoretic definitions are necessary in order to present the algorithm. The notation
mostly follows that of (Shpitser and Pearl 2006b) with some slight alterations for the benefit
of the reader.

Definition 1 (Induced Subgraph). Let H = 〈W, F〉 and G = 〈V, E〉 be graphs such that
W ⊂ V. If every pair of nodes X, Y ∈ W is connected by an edge in graph H precisely
when they are connected by an edge of the same direction in graph G, then H is an induced
subgraph induced by the set W and H = G[W].

Defining new graphs using only a set of nodes can easily be achieved using induced subgraphs.
For example, the graph in Figure 2(b) is an induced subgraph induced by the nodes X, Z1

and Z2 from G in 2(a).

Perhaps the most important definition is C-component (confounded component).

Definition 2 (C-component, (Shpitser and Pearl 2006b) 3). Let G = 〈V, E〉 be a graph. If
there exists a set B such that B ⊂ E and B contains only bidirected edges, and the graph
〈V, B〉 is connected, then G is a C-component.

Both graphs in Figure 2 are examples of C-components. Even if a graph is not a C-component,
at least one of its subgraphs is guaranteed to be a C-component because every subgraph
induced by a single node is always a C-component. It is often of greater interest to determine
how a given graph can be partitioned in C-components that contain as many nodes as possible.

Definition 3 (Maximal C-component). Let G be a graph and C = 〈V, E〉 a C-component
such that C ⊂ G. C-component C is maximal (with respect to graph G) if H ⊂ C for every
bidirected path H of graph G which contains at least one node of the set V.

Tian (2002) proved, that the joint probability distribution P (V) of the observed variables of
graph G can always be factorized in such a way, that each term of the resulting product corre-
sponds to a maximal C-component. This property is in a fundamental role in the algorithm,
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Figure 3: Path H.

since it can be used to recursively divide the expression of the interventional distribution into
simpler expressions.

If a given graph G is not a C-component, it can still be divided into a unique set C(G) of
subgraphs, each a maximal C-component of G. This follows from the fact, that there exists
a bidirected path between two nodes in G if and only if they belong in the same maximal
C-component, which in turn follows from the definition of a maximal C-component. This
means, that the bidirected paths of graph G completely define its maximal C-components.

C-trees are a special case of C-components. They are closely related to direct effects, which
are causal effects of the form PP a(Y )(Y ).

Definition 4 (C-tree, (Shpitser and Pearl 2006b) 4). Let G be a C-component such that
every observed node has at most one child. If there is a node Y such that G[An(Y )G] = G,
then G is a Y -rooted C-tree.

Using only C-trees and C-components it is already possible to characterize identifiability of
effects on a single variable. C-forest is the multivariate generalization of a C-tree in such a
way that the root set, which is the set of nodes {X ∈ G | De(X)G \ {X} = ∅}, contains one
or more nodes.

Definition 5 (C-forest, (Shpitser and Pearl 2006b) 5). Let G be a graph and Y its root set.
If G is a C-component, and every observed node has at most one child, then G is Y-rooted
C-forest.

Both C-components in Figure 2 are also C-forests, because every observed node has at most
one child in both graphs. In addition, their root sets consist only of a single node. There
exists a connection between C-forests and general causal effects of the form Px(Y). A graph
structure formed by a pair of C-trees is used to determine such effects.

Shpitser and Pearl (2006b) proved, that if a graph G contains a hedge for Px(y), then the
effect is not identifiable.

Definition 6 (Hedge, (Shpitser and Pearl 2006b) 6). Let G = 〈V, E〉 be a graph, and X, Y ⊂
V disjoint subsets. If there are two R-rooted C-forests F = 〈VF , EF 〉 and F ′ = 〈VF ′ , EF ′〉
such that VF ∩X 6= ∅, VF ′ ∩X = ∅, F ′ ⊂ F, and R ⊂ An(Y)G

X
, then F and F ′ form hedge

for Px(y) in G.

Hedges are a remarkable structure, since they generalize certain results regarding identifia-
bility. One example of such a result is the condition for identification of a causal effect of the
form Px(y) in (Tian and Pearl 2002). The result states that Px(y) is identifiable if and only
if there are no bidirected paths between X and any of its children in G[An(Y)G]. Consider
the graph H = 〈V, E〉 in Figure 3 containing the nodes X and Y and a bidirected path
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connecting them formed by the intermediary nodes {Z1, . . . , Zk}. One can observe, that the
C-forests H and H[V \ {X}] form a hedge for Px(Y, Z1, . . . , Zk).

3.2. Algorithm

Using the previously presented definitions it is now possible to define Algorithm 1, which
completely characterizes the identifiability problem of general causal effects. Shpitser and
Pearl (2006b) showed, that the expression returned by Algorithm 1 for Px(y) is always correct
if the effect in question is identifiable. They also showed, that if the algorithm is interrupted
on line five, then the original graph G contains a hedge, preventing the identifiability of the
effect. The existence of a hedge is therefore equivalent with unidentifiability. This result also
shows the completeness of do-calculus, because the algorithm only applies standard rules of
probability manipulations and the three rules of do-calculus. All variables are assumed to
be discrete, but the algorithm can also be applied in a continuous case, when the respective
sums are replaced with integrals.

The algorithm is required to be able to iteratively process the nodes of the graph, which
means that the nodes have to be ordered in some meaningful fashion. This ordering must
be able to take the directions of the edges into account, and at least one such ordering must
always exist for any given graph. Topological ordering has all of these prerequisite properties.

Definition 7 (Topological Ordering). Topological ordering π of a DAG G = 〈V, E〉 is an
ordering of its nodes, where either X > Y or Y > X for all pairs of nodes X, Y ∈ V, X 6= Y
in G. In addition, no node can be greater than its descendants in π. In other words, if X is
an ancestor of Y in G, then X < Y .

There exists at least one topological ordering for any DAG, but in some cases there can be
multiple orderings. One way to always construct an ordering for a given graph is to begin
by determining all nodes without parents, and ordering them arbitrarily. Next, all nodes
without parents excluding the nodes found in previous step are determined and again ordered
arbitrarily. It is also assigned, that the largest node in the previous step is smaller than the
smallest node in the current step. This process is iterated, until all nodes have been ordered.

Algorithm 1 is simple in a sense that at each recursion stage the computation proceeds to
exactly one line only. This is easy to see from the fact that after a condition regarding any of
the line has been checked, either a return or a FAIL command will be executed. If x = ∅ on
line one, then the marginal distribution P (y) is computed instead of a causal effect. This can
be achieved by marginalizing over the joint distribution P (V). On line two, all non-ancestors
of Y in G are eliminated. This is possible due to the fact that the input of the algorithm
assumes that G is an I-map of G and thus all necessary conditional independences hold. On
line three, interventions are added to the original causal effect, which is feasible due to the
third rule of do-calculus, because (Y |= W|X)G

X,W
.

It is possible to index the nodes of G and the nodes of any subgraph of G using the topological

ordering. This property is utilized on lines four, six and seven. The notation V
(i−1)

π refers
to all nodes in G that are smaller than Vi in π. Any topological ordering of G is also a
topological ordering for any subgraph of G. This means, that it is unnecessary to determine
a new ordering for each subgraph of G. Instead, one can fix the ordering before applying the
algorithm.
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INPUT: Value assignments x and y, joint distribution P (v) and a DAG G = 〈V, E〉. G is
an I-map of P .

OUTPUT: Expression for Px(y) in terms of P (v) or FAIL(F, F ′).

function ID(y, x, P, G)
1: if x = ∅, then

return
∑

v∈v\y P (v).

2: if V 6= An(Y)G, then

return ID(y, x ∩An(Y)G, P (An(Y)G), G[An(Y)G)].

3: Let W = (V \X) \An(Y)G
X

.
if W 6= ∅, then

return ID(y, x ∪w, P, G).
4: if C(G[V \X]) = {G[S1], . . . , G[Sk]}, then

return
∑

v∈v\(y∪x)

∏k
i=1 ID(si, v \ si, P, G).

if C(G[V \X]) = {G[S]}, then

5: if C(G) = {G}, then

throw FAIL(G, G[S]).
6: if G[S] ∈ C(G), then

return
∑

v∈s\y

∏

Vi∈S P (vi|v
(i−1)
π ).

7: if (∃S′)S ⊂ S′ such that G[S′] ∈ C(G), then

return ID(y, x ∩ s′,
∏

Vi∈S′ P (Vi|V
(i−1)

π ∩ S′, v
(i−1)
π \ s′), G[S′]).

Algorithm 1: The causal effect of intervention do(X = x) on Y.

The maximal C-components of G[V \X] are determined on line four and their factorization
property is utilized. If more than one C-components were found, it is now necessary to
calculate a new causal effect for every C-component. The algorithm proceeds to either line
five, six or seven in the case if only one C-component was found.

If Algorithm 1 throws FAIL, then the original graph G contains a hedge formed by graph
G and G[S] of the current recursion stage, due to which the original effect is not identifiable
and computation terminates. If the algorithm continues, then it is necessary to determine
whether G[S] is a maximal C-component of G. If this is the case, then the condition of line
six has been satisfied. In the other case, the computation of the intervention can be limited
to the intersection of sets X and S′ on line seven.

Identifiability of conditional interventional distributions is characterized by Algorithm 2. This
algorithm is a generalization of Algorithm 1 and in fact it utilizes the function ID in the
computation. It was constructed by Shpitser and Pearl (2006a) for identifying conditional
causal effects i.e., causal effects of the form Px(y|z). They showed, that this algorithm is also
sound and complete for identifying all such effects.

The primary focus of this paper however, is the implementation of Algorithm 1. The imple-
mentation of Algorithm 2 follows seamlessly from this implementation, because at the bottom
of any recursive stack of IDC the function ID is ultimately called, which determines if the
original conditional effect is identifiable. The only additional task is to determine whether a
suitable node for the d-separation condition exists on line 1.



10 Identifying Causal Effects with the R Package causaleffect

INPUT: Value assignments x, y and z, joint distribution P (v) and a DAG G = 〈V, E〉. G
is an I-map of P .

OUTPUT: Expression for Px(y|z) in terms of P (v) or FAIL(F, F ′).

function IDC(y, x, z, P, G)
1: if ∃Z ∈ Z such that (Y |= Z|X, Z \ {Z})G

X,Z
then

return IDC(y, x ∪ {z}, z \ {z}, P, G).

2: else let P ′ = ID(y ∪ z, x, P, G).
return P ′/

∑

y∈y P ′

Algorithm 2: The causal effect of intervention do(X = x) on Y given Z.

(a) Graph G (b) Subgraph G[An(Z)G]. (c) Subgraph G[S′].

Figure 4: Graph G and its subgraphs.

3.3. Application in practice

We return to the example presented in Section 2. The graph of the example along with some
subgraphs are shown here in Figure 4. Let G = 〈V, E〉 be a graph such as in Figure 4(a)
and a causal effect of interest Px(y), which is to be identified from the joint distribution
P (X, Y, Z, W ). Only a single topological ordering exists for the nodes of G, and it is W <
X < Z < Y . Clearly x 6= ∅, V = An(Y )G and W = ∅, so the first three lines are ignored and
line four is triggered, since

C(G[V \ {X}]) = {G[W ], G[Z], G[Y ]}.

Because v \ ({y} ∪ {x}) = {w, z}, it is now necessary to identify three new causal effects in
the following expression:

∑

w,z

Px,z,y(w)Pw,x,y(z)Pw,x,z(y).

Consider the first term of the product. Because V 6= An(W )G, line two is triggered, and
non-ancestors of W are ignored. This results in the first term simplifying to P (w) because
An(W )G = {W}. Line two is also triggered when computing the second term, and

Pw,x,y(z) = Pw,x(z)

in a subgraph induced by ancestors of Z as in Figure 4(b). Observing that

C(G[An(Z)G \ {W, X}]) = {G[Z]}
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(a) Graph F . (b) Subgraph An(Z2)F .

Figure 5: Graph F and its subgraph F [An(Z2)F ].

and
G[Z] ∈ C(G[An(Z)G]) = {G[X], G[W ], G[Z]},

the algorithm proceeds to line 6 and the second term simplifies again

Pw,x(z) = P (z|w, x).

The last term Pw,x,z(y) triggers line four, because

C(G[V \ {W, X, Z}]) = {G[Y ]}.

G[Y ] is not a maximal C-component of G, but Y is a node of one of the maximal C-components
of G: {Y } ⊂ {X, Y } = S′. It holds for the set S′, that

G[S′] ∈ C(G) = {G[{X, Y }], G[W ], G[Z]}.

So it is mandatory to compute Px(y) from P (X|w)P (Y |X, w, z) in the graph corresponding
to Figure 4(c). It should be noted, that this causal effect differs from the original effect
Px(y), because the joint distribution P (V) of observed variables of G is not the same as the
distribution P (X|w)P (Y |X, w, z) of the subgraph of the current recursion stage.

Line two is triggered next, and since Y has no observed ancestors in the graph corresponding
to 4(c), it follows that

Px(y) =
∑

x

P (x|w)P (y|x, w, z).

An expression for the original causal effect is obtained by combining the previous results

Px(y) =
∑

w,z

P (z|w, x)P (w)
∑

x

P (y|w, x, z)P (x|w).

The result agrees with the result derived in Section 2.

Algorithm 1 can also be used to detect unidentifiability. Let F = 〈V, E〉 be a graph of Figure
5(a) and a causal effect of interest Px(y), which is to be identified from P (X, Y, Z1, Z2). Let
the topological ordering of the nodes of F be Z1 < X < Z2 < Y .

The computation starts from line three

W = (V \X) \An(Y)F
X

= ({X, Y, Z1, Z2} \ {X}) \ {X, Z2, Y } = {Z1} 6= ∅.
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Z1 is added to the original intervention, so Pz1,x(y) has to be identified. Line four is triggered
next, because

C(F [V \ {Z1, X}]) = {F [Z2], F [Y ]}.

Since v \ ({y}∪ {z1, x}) = {z2}, two new causal effects have to be identified following expres-
sion:

∑

z2

Pz1,x,y(z2)Pz1,x,z2(y).

Consider the first term of the product. Clearly V 6= An(Z2)F , so the algorithm proceeds to
line two, which means that

Pz1,x,y(z2) = Pz1,x(z2)

in a subgraph formed by ancestors of Z2 as in Figure 5(b). However, Pz1,x(z2) is not identifi-
able, because

C(F [An(Z2)F \ {Z1, X}]) = {F [Z2]} and C(F [An(Z2)F ]) = {F [An(Z2)F ]},

which trigger line five. In conclusion, F contains a hedge for Pz1,x(z2) formed by C-forests
F [Z2] and F [{Z1, Z2, X}]. Thus the original effect Px(y) is not identifiable.

4. Implementation using R

The programming language R (R Core Team 2015) was chosen for the implementation of
Algorithm 1. The R packages XML (Temple Lang 2013), igraph (Csardi and Nepusz 2006)
and ggm (Marchetti et al. 2015) are utilized repeatedly throughout the implementation.

4.1. Graph files

A graph G induced by the causal model is a crucial argument of Algorithm 1. Many file
formats for visualizing graphs are available, each with their own strengths and weaknesses.
Some of these formats are very simple, and do not differentiate directed and undirected
graphs. Some formats offer excessive features for describing causal models, or they might
require handling complex syntax, which can be time consuming.

GraphML (Brandes et al. 2002) is a user-friendly file format for graphs. Its features include
support for directed graphs and visualizations. GraphML is based on the extensible markup
language XML (Maler et al. 2004), which makes processing of graphs files almost effortless.
One can also include the names of the nodes within the GraphML file itself, so the user is not
limited to having to input the node names themselves inside the R environment. Graphical
editors for creating GraphML files are freely available for the user. A special function called
parse.graphml has been developed for processing GraphML files. However, the implemen-
tation of Algorithm 1 is not limited to GraphML files alone. Any file format supported by
the igraph package can be used, as long as the graph follows one of the following notations
for bidirected edges.

Bidirected edges can be separated from unidirected edges by using graphical parameters. For
this purpose, three distinct notations have been selected to describe bidirected edges, which
correspond to unobserved nodes.

The available notations for bidirected edges are shown in Figures 6(a), 6(b) and 6(c). It
should be noted, that notations 1 and 2 are almost identical. Because of their similarity, both
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(a) Notation 1. (b) Notation 2. (c) Notation 3.

Figure 6: Notations for bidirected edges.

notations 1 and 2 are referred to as standard notation. Notation 3, as shown in Figure 6(c)
differs from the previous two. It is apparent, that this notation cannot be used as such,
because it induces loops in the graph which is not allowed in the context of DAGs. However,
GraphML format enables the assignment of parameters for the edges, which in turn allows
one to separate these edges from their unidirected counterparts. When using notation 3, one
must define a parameter called description for the two unidirected edges corresponding to
the bidirected edge, and assign its value to "U" (Unobserved). Notation 3 is used in the
implementation itself, which is why it is referred to as the internal notation.

The process of importing GraphML files created by a graphical editor is handled by using the
R package XML. This package contains the function xmlParse, which is utilized to import
graph files into R objects. It should be noted, that these objects only reflect their internal C

objects and are thus different from ordinary R objects. This means that the memory reserved
by the XML objects has to be freed after the files have been imported. Normally R does this
automatically.

Algorithm 1 requires only a small portion of the XML content, and the unnecessary content
is removed in the process of searching for the important items. Items of importance are
those that contain data about the node names, node count, edge count and the values of the
description parameters of the edges. If notation 1 or 2 of Figures 6(a) and 6(b) was used for
the bidirected arcs, it is converted to match the internal format of Figure 6(c). The XML
search is implemented using the function getNodeSet of the XML package. This function
uses XPath, which is a processing language for XML content search (Simpson 2002).

When the crucial information has been extracted, an igraph graph is formed from the remain-
ing content. igraph is a tool for visualizing and processing graphs, and it can handle graphs
which may contain millions of nodes due to its implementation in C. This package also offers
many useful functions related to Algorithm 1, such as determining the ancestors of a node,
constructing a topological ordering and generating induced subgraphs from a set of edges or
nodes. One of the main goals of igraph is the effortless implementation of graph algorithms.

4.2. Distribution objects

An important question regarding the Algorithm 1 of Section 3.2, is how the probability
distribution which changes at each recursive stage should be implemented. An intuitive
solution is to construct a distribution object, which maintains the terms currently present in
the expression. Distribution objects are recursive by construction as is the algorithm itself.
In practice this means that when any of the lines four, six or seven is triggered, sub objects
are formed, which correspond to the product terms of the expression. These sub objects can
further branch into sub objects of their own and so forth. causaleffect implements an R class
called probability to represent the distribution objects.
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Multiple attributes have to be set for the distribution objects in order to present the prob-
ability distribution precisely. The string vectors var and cond are one of the most common
attributes, because they enable the definition of a simple conditional distribution. A distribu-
tion is formed by the variables described in var conditioned on those of cond. For example,
let p be a distribution object, and let the values of its attributes be var = "Y" and cond =

"X". Therefore object p represents the conditional distribution P (Y |X).

When the distribution is a product, the individual terms are defined in a list of distribution
objects called children and a logical variable recursive is set to TRUE to differentiate this ob-
ject from those containing only a single term. For example, for a distribution which represents
the distribution P ∗ = P (Z|X)P (X|Y )P (Y ) one has to set children = list(a,b,c), where
the objects a, b and c represent the distributions P (Z|X), P (X|Y ) and P (Y ) respectively.

For marginal distributions a string vector sumset has been defined. The contents of this
vector correspond to the variables which the distribution is to be summed over in the discrete
case, or integrated over in the continuous case. In simple situations this parameter is not
needed, but often with more complex graphs one encounters instances, where the computa-
tion of conditionals is no longer straightorward. Suppose one had to compute the marginal
distribution P ∗(X) of X from the joint distribution P ∗(X, Y, Z) of the previous example.
To achieve this, one has to set sumset = c("Y","Z") for the matching distribution object,
because P ∗(X) =

∑

Y,Z P (Z|X)P (X|Y )P (Y ).

The level of complexity increases further when computing conditionals from distributions
which consist of multiple product terms. The previously presented attributes are often insuf-
ficient to form an expression for the corresponding distribution object. Consider once more
the joint distribution P ∗. Computing the marginal conditional distribution P ∗(X|Y ) results
in

P ∗(X|Y ) =
P ∗(X, Y )

P ∗(Y )
=

∑

Z P (Z|X)P (X|Y )P (Y )
∑

X,Z P (Z|X)P (X|Y )P (Y )
=

P (X|Y )
∑

Z P (Z|X)
∑

X P (X|Y )
∑

Z P (Z|X)
= P (X|Y ).

The implementation is able to handle similar situations, where the expression can easily be
simplified using the following procedure. Any term which does not depend on the summation
index, will be placed outside of the sum. Next, it is checked whether any expressions can
be simplified by changing the order of summation. Corresponding terms are subtracted if
possible.

These simplification rules are not sufficient to handle every situation. For example, the
expression

∑

X P (Y |X)P (X) cannot be simplified using the procedure above. One cannot
remove any terms from within the sum and the summation order is clearly fixed. In situations,
where the denominator is necessary in order to correctly form the expression, one needs to
include additional attributes called divisor and fraction. These attributes are similar to
the attributes children and recursive in a sense that divisor contains the distribution
object that represents the denominator and fraction is set to TRUE when it is necessary to
represent the expression as a fraction.

4.3. Maximal C-components
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In Section 3.1 it was shown, that for every causal diagram G there exists a unique set C(G)
of maximal C-components of G. To construct this set, one has to begin by determining all
bidirected edges of G. Afterwards, a subgraph containing only bidirected edges is formed. This
subgraph will contain one or more components, which are connected subgraphs of G. Because
these components are disjoint and every pair of nodes within a component is connected by a
bidirected path, it follows that they must be the maximal C-components of G. The adjacency
matrix of G is utilized to find the bidirected edges of G.

Definition 8 (adjacency matrix). An adjacency matrix of a graph G = 〈V, E〉 is a n× n
matrix A = [aij ], where n is the number of nodes of G, V = {V1, V2, . . . , Vn} and aij is the
number of edges from Vi to Vj .

Because G is directed, its adjacency matrix is not necessarily symmetric. When notation 3
of Figure 6(c) is used to describe the bidirected edges, it is easy to confirm that two nodes Vi

and Vj are connected by at least one bidirected edge if and only if aij ≥ 1 and aji ≥ 1. Thus
all bidirected edges can be determined by comparing A to its transpose A⊤, and by choosing
only those edges which correspond to indices with aij ≥ 1 and aji ≥ 1.

The subgraph of G containing only bidirected edges is constructed by using the function
subgraph.edges of the igraph package. This function retains all nodes of the input graph,
but removes all the edges that were not given as input. The subgraph returned by this
function is further divided into components by using the function decompose.graph which is
also provided by igraph.

4.4. Implementation

All necessary preparations have been presented to implement Algorithm 1. Any probability
distribution can be represented with a corresponding distribution object, and the adjacency
matrix provides a method to determine the maximal C-components of G. Other important
methods are provided by the igraph package, such as constructing subgraphs and determining
the ancestors of a given set of nodes. In this implementation, the input of Algorithm 1 consists
of the sets x and y including the graph G, and returns a probability object, which is a list
structure that describes the expression of the causal distribution Px(y) in terms of P (V).
The returned object can be further parsed into a character representation.

The R function of Algorithm 1 is called id. This function takes five parameters as input:
a string vector y, a string vector x, a distribution object P, an igraph graph G and a string
vector to. The first four parameters correspond to their mathematical counterparts, namely
the vectors x, y, P and G. The last parameter to is a string vector representing some
topological ordering of the nodes of G. All required set theoretic operations are included in
R as the functions intersect, setdiff and union.

The observed portion of G is saved as G.obs. This graph contains all the observed nodes of
G and the edges between them. In addition, the observed nodes are saved into vector v, and
the ancestors of y are saved into vector anc. The implementation of each line of Algorithm 1
is presented next.

1: if x = ∅, then

return
∑

v∈v\y P (v).

The truth value of the expression x = ∅ is determined on line 1. This is done by computing
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the length of x. If the length is zero, then id combines the difference of the sets v and y with
the sumset of P and returns P.

2: if V 6= An(Y)G, then

return ID(y, x ∩An(Y)G, P (An(Y)G), G[An(Y)G)].

The truth value of the condition on line 2 is determined by computing the length of the
vector setdiff(v, anc). If the length is not zero, then id is called with the arguments
id(y, intersect(x, anc), P, anc.graph, to), where anc.graph is the induced subgraph
G[An(Y)G], which is constructed by using the induced.subgraph function of the igraph

package. This function takes a set of nodes and a graph as input, and constructs a subgraph,
which retains all of the nodes given as input, and all of the edges between them in the original
graph.

3: let W = (V \X) \An(Y)G
X

.
if W 6= ∅, then

return ID(y, x ∪w, P, G).

To construct a vector w which represents the node set W, one must first construct the subgraph
G

X
. To accomplish this, all incoming edges of X have to be determined. A useful operator

is provided by the igraph package to accomplish this. The operator %->% can be used to find
incoming or outgoing edges of a node. In this case, one finds the incoming nodes of x with
the command E(G) [1:length(E(G)) %->% x], where E is a function that returns all edges
of G. When the subgraph has been constructed, w can also be constructed. If the length of w

is not zero, then id is called with the arguments id(y, union(x, w), P, G, to).

4: if C(G[V \X]) = {G[S1], . . . , G[Sk]}, then

return
∑

v∈v\(y∪x)

∏k
i=1 ID(si, v \ si, P, G).

The set C(G[V \ X]) can be found with the function c.components. This function deter-
mines the node set of every maximal C-component of the input graph, and returns them
as a list s. If the length of this list is larger than one, then id returns a new distribu-
tion object with sumset = setdiff(v, union(y, x)), recursive = TRUE, children =

productlist, where every object in productlist is determined by a new recursive call for
every C-component G[Si], i = 1, . . . , k that was found. These components are constructed by
calling id with the arguments id(s[[i]], setdiff(v, s[[i]]), P, G, to), i = 1, . . . , k.

If the algorithm did not proceed to any of the previous lines, then the additional condition
C(G[V \X]) = {G[S]} must be true. The node set of the single C-component G[S] is now
saved in the vector s, which was previously a list. This means that s is replaced by s[[1]].

5: if C(G) = {G}, then

throw FAIL(G, G[S]).

The function c.components is utilized again in order to find the maximal C-components of G.
If in addition to having only a single C-component this C-component is G itself, then line five
is triggered. This is checked by comparing s and v. If they are equal, then the computation
is interrupted by the stop function and an error message is produced. The error message
describes the C-forests which form the problematic hedge structure for the causal effect of
the current recursion stage.

6: if G[S] ∈ C(G), then
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return
∑

v∈s\y

∏

Vi∈S P (vi|v
(i−1)
π ).

If the single C-component found on line four is one of the maximal C-components of G,
then the function id returns a new distribution object. The sumset of this object is set to
setdiff(s, y). The distribution is a product so it must also be set, that recursive = TRUE

for this new object. The objects in the list children are determined by new recursive calls
for every node Vi in S. The conditioning nodes are the ones that precede Vi in the topological
ordering to.

7: if (∃S′)S ⊂ S′ such that G[S′] ∈ C(G), then

return ID(y, x ∩ s′,
∏

Vi∈S′ P (Vi|V
(i−1)

π ∩ S′, v
(i−1)
π \ s′), G[S′]).

If the single C-component found on line four is not one of the maximal C-components of G,
then it must be a subgraph of some maximal C-component G[S′]. Vector s is replaced by a vec-
tor corresponding to the nodes of S′, since the nodes of S are no longer required. The function
id is called with the following attributes id(y, intersect(x, s), probability(recursive

= TRUE, children = productlist), s.graph, to), where s.graph is the induced sub-
graph G[S′] and every distribution object in productlist is constructed by setting var <-

s[i] and cond <- v[0:(ind[i]-1)] for every node Vi in S′.

Algorithm 2 is also implemented in causaleffect as the function idc. This function iterates
through the nodes z which it receives as input in addition to the parameters that were
previously defined for the id function. The d-separation condition on line 1 is checked by
using the function dSep from the ggm package.

5. Package causaleffect

The primary goal of the causaleffect package is to provide the implementation described in
Section 4. The package also provides a means of importing GraphML files into R while
retaining any attributes that have been set for the nodes or edges of the graph.

5.1. Using causaleffect in R

The primary function which serves as a wrapper for the functions id and idc is called
causal.effect. This function can be called as

causal.effect(y, x, z = NULL, G, expr = TRUE)

where the parameters y, x and G are identical to those of id. The parameter z is optional and
it is used to represent the conditioning variables of idc. The initial probability object P which
is a parameter of id does not have to be specified by the user. In essence, causal.effect

starts from an empty distribution object, and gradually builds the final expression if possi-
ble. Also, the topological ordering to of the function id is automatically generated by the
topological.sort function of the igraph package. It is verified, that the vectors y, x and z

actually contain nodes that are present in G. If G is not a DAG then causal.effect will also
terminate. The last parameter expr is a logical variable. If assigned to TRUE, causal.effect

will return the expression in LATEX syntax. Otherwise, the probability object used internally
by id is returned, which can be manually parsed by the user to gain the desired output. The
function get.expression is also provided to get a string representation of a probability

object. This function currently supports LATEX syntax only.
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First, causaleffect is loaded to demonstrate the usage of the package.

R> library("causaleffect")

The causal.effect function can be utilized without first importing a graph file. One can
utilize the igraph package to construct graphs within R itself. This is demonstrated by
replicating some of the graphs of Section 3.3. The graph of Figure 1 is created as follows.

R> library("igraph")

R> fig1 <- graph.formula(W -+ X, W -+ Z, X -+ Z, Z -+ Y, X -+ Y, Y -+ X,

+ simplify = FALSE)

R> fig1 <- set.edge.attribute(graph = fig1, name = "description",

+ index = c(5,6), value = "U")

R> ce1 <- causal.effect(y = "Y", x = "X", z = NULL, G = fig1, expr = TRUE)

R> ce1

[1] "\\left(\\sum_{W,Z}P(W)P(Z|W,X)\\left(\\sum_{X}P(Y|W,X,Z)P(X|W)\\right)\\right)"

Here X -+ Z denotes a directed edge from X to Z. The argument simplify = FALSE allows
the insertion of duplicate edges for the purposes of forming bidirected arcs. Recalling the
internal notation from Section 4.1 we must denote the unidirected edges that correspond to
a bidirected edge with a special description parameter, and assign its value to "U". This can
be done with the set.edge.attribute function of the igraph package. Finally, the expression
for the interventional distribution is obtained by using the causal.effect function. Usually
one needs to apply the standard R function cat to obtain the expression with only singular
slash symbols.

R> cat(ce1)

\left(\sum_{W,Z}P(W)P(Z|W,X)\left(\sum_{X}P(Y|W,X,Z)P(X|W)\right)\right)

To observe unidentifiability, the graph of Figure 5(a) is also constructed and an attempt is
made to identify Px(y).

R> fig5 <- graph.formula(Z_1 -+ X, X -+ Z_2, Z_2 -+ Y, Z_1 -+ X, X -+ Z_1,

+ Z_1 -+ Z_2, Z_2 -+ Z_1, Z_1 -+ Y, Y -+ Z_1, X -+ Y, Y -+ X,

+ simplify = FALSE)

R> fig5 <- set.edge.attribute(graph = fig5, name = "description",

+ index = 4:11, value = "U")

R> causal.effect(y = "Y", x = "X", z = NULL, G = fig5, expr = TRUE)

Error: Graph contains a hedge formed by C-forests of nodes:

{Z_1,X,Z_2} and {Z_2}.

The identification fails in this case due to a hedge present in the graph.

Another function provided by causaleffect is parse.graphml which can be called as
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parse.graphml(file, format = c("standard", "internal"), nodes = c(),

use.names = TRUE)

Parameter file is the path to the GraphML file the user wishes to convert into an igraph

graph. Parameter format should match the notation that is used to denote bidirected edges
in the input graph. The vector nodes can be used to give names to the nodes of the graph
if they have not been specified in the file itself or alternatively, to replace them. Finally,
use.names is a logical vector indicating whether the names of the nodes should be read from
the file or not.

We provide an example GraphML file in the replication materials to demonstrate the use
of the parse.graphml function. The file g1.graphml contains the graph of Figure 1 in
standard notation. This means that we do not have to provide names for the nodes or
set the unidentified edges manually. First, we read the file into R. This produces several
warnings which can be ignored because they are related to the visual attributes created by
the graphical editor that was used to produce g1.graphml. These attributes play no role in
the identification of Px(y). We omit these warnings from the code for clarity.

R> gml1 <- parse.graphml("g1.graphml", format = "standard")

R> ce2 <- causal.effect(y = "Y", x = "X", z = NULL, G = gml1, expr = TRUE)

R> cat(ce2)

\left(\sum_{W,Z}P(W)P(Z|W,X)\left(\sum_{X}P(Y|W,X,Z)P(X|W)\right)\right)

We see that the result agrees with the one derived from the manually constructed graph.

For conditional causal effects, we simply utilize the parameter z of the causal.effect func-
tion. For example, we can obtain the formula for Px(z|w) in the graph of Figure 1.

R> cond1 <- causal.effect(y = "Z", x = "X", z = "W", G = gml1, expr = TRUE)

R> cat(cond1)

\frac{P(Z|W,X)}{\left(\sum_{Z}P(Z|W,X)\right)}

In mathematical notation the result reads

P (z|w, x)
∑

z[P (z|w, x)]
.

This is a typical case where the resulting expression is slightly awkward due to the incom-
pleteness of the simplification rules. However, in this case it is easy to see that the expression
can be simplified into P (z|w, x).

5.2. A complex expression

The conditional distributions P (vi|v
(i−1)
π ) that are computed on line 6 can sometimes produce

difficult expressions when causal effects are determined from complex graphs. This is a result
of the simplification rules which were described in the previous section, and their inability to
handle every situation. The graph G of Figure 7 serves to demonstrate this phenomenon. An
attempt is made to identify Px(z1, z2, z3, y) in this graph.
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Figure 7: An example of a graph, where an identifiable causal effect results in a complex
expression.

Tian (2002) proved this effect to be identifiable, and showed that its expression is

Px(z1, z2, z3, y) = P (z1|x, z2)
∑

x

P (y, z3|x, z1, z2)P (x, z2).

When applying Algorithm 1 to this causal effect, it is necessary to compute a conditional
distribution P ∗(Y |Z2, Z3), where

P ∗(y, z2, z3) =
∑

x

P (y|z2, x, z3, z1)P (z3|z2, x)P (x|z2)P (z2)

and P is the joint distribution of the observed variables of G. Now, the function causal.effect

is applied as follows.

R> fig7 <- graph.formula(X -+ Z_1, Z_1 -+ Y, Z_3 -+ Y, Z_2 -+ X,

+ Z_2 -+ Z_1, Z_2 -+ Z_3, X -+ Y, Y -+ X, X -+ Z_3, Z_3 -+ X,

+ X -+ Z_2, Z_2 -+ X, Y -+ Z_2, Z_2 -+ Y, simplify = FALSE)

R> fig7 <- set.edge.attribute(graph = fig7, name = "description",

+ index = 7:14, value = "U")

R> ce3 <- causal.effect(y = c("Z_1", "Z_2", "Z_3", "Y"), x = "X",

+ z = NULL, G = fig7, expr = TRUE)

R> cat(ce3)

This results in the expression

P (z1|z2, x)
(
∑

x P (y|z2, x, z3, z1)P (z3|z2, x)P (x|z2)P (z2))
(

∑

x,y P (y|z2, x, z3, z1)P (z3|z2, x)P (x|z2)P (z2)
)

×

(

∑

x,z3,y

P (y|z2, x, z3, z1)P (z3|z2, x)P (x|z2)P (z2)

)

P (z3|z2)

This result is clearly more cumbersome than the one determined by Tian. However, it can be
shown that this expression is correct by using do-calculus. Because the set {X, Z2} d-separates
all paths from Z1 to Z3, it follows that (Z3 |= Z1|X, Z2)G, so

P (z1|z2, x)
∑

x

P (y|z2, x, z3, z1)P (z3|z2, x)P (x|z2)P (z2)

= P (z1|z2, x)
∑

x

P (y|z2, x, z3, z1)P (z3|z2, x, z1)P (x, z2)

= P (z1|z2, x)
∑

x

P (y, z3|z2, x, z1)P (x, z2),
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Figure 8: An example of a graph with additional conditional independences.

where the second equality is due to the conditional independence of Z1 and Z3 given X and
Z2. The last line is equivalent with Tian’s expression up to the ordering of terms. It can be
shown, that the remaining terms are subtracted from the expression.

P (z3|z2)
∑

x,z3,y P (y|z2, x, z3, z1)P (z3|z2, x)P (x|z2)P (z2)
∑

x,y P (y|z2, x, z3, z1)P (z3|z2, x)P (x|z2)P (z2)

=
P (z3|z2)P (z2)

∑

x,y P (y|z2, x, z3, z1)P (z3|z2, x)P (x, z2)
.

By applying the same logic to the denominator, it follows that

P (z3|z2)P (z2)
∑

x,y P (y|z2, x, z3, z1)P (z3|z2, x)P (x, z2)
=

P (z3|z2)P (z2)
∑

x,y P (y, z3|z2, x, z1)P (x, z2)
.

By using the conditional independence of Z1 and Z3 given X and Z2 one gets

P (z3, z2)
∑

x P (z3|z2, x, z1)P (x, z2)
=

P (z3, z2)
∑

x P (z3|z2, x)P (x, z2)

=
P (z3, z2)

∑

x P (z3|z2, x)P (x, z2)
=

P (z3, z2)
∑

x P (z3, z2, x)
=

P (z3, z2)

P (z3, z2)
= 1.

The expression produced by causal.effect is correct despite its complexity.

5.3. d-separation

Algorithm 1 does not utilize every possible independence property of a given graph G. For
example, the conditional distribution of line six is conditioned on all nodes preceding Vi in
the topological ordering π, even though at least some nodes on paths preceding Vi are often
d-separated by some sets of nodes. In these cases, the nodes that are d-separated with Vi

could be excluded from the expression, because they are conditionally independent from Vi

in G. This situation is demonstrated by determining the expression of Px,w(y) in the graph
G of Figure 8.

The function causal.effect is utilized

R> fig8 <- graph.formula(z -+ x, z -+ w, x -+ y, w -+ y)

R> ce3 <- causal.effect(y = "y", x = c("x", "w"), z = NULL, G = fig8,

+ expr = TRUE)

R> cat(ce3)
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The function returns P (y|x, w) even though Algorithm 1 would return P (y|z, x, w). This is
possible because (Y |= Z|X, W )G. This means that our implementation is able to simplify
the expression into P (y|x, w).

6. Discussion

We have introduced R package causaleffect for deriving expressions of joint interventional
distributions in causal models. The task is a specific but important part of causal inference.
We believe that our implementation has two practical use cases. First, causaleffect can be
simply used to derive expressions of interventional distributions for complex causal models or
to check manual derivations. This is an important step in the estimation of causal effects in
complicated settings (Karvanen 2015). Second, causaleffect can be used as a building block
in simulation studies and automated systems where identifiability needs to be checked for a
large number of causal models. An example of this kind usage is already given by Hyttinen
et al. (2015).

The efficiency of the presented implementation causaleffect could be analyzed further for
example by simulation studies. However, an attempt to maximize performance was made
by utilizing the most efficient packages available for the processing of graph files and for the
objects corresponding to them. The existing simplification rules of the expressions could also
be further improved, but it should be noted that sometimes the more complex expression can
prove useful.

There have been many recent developments in the field of causality resulting in graph theoretic
algorithms similar to ID and IDC. These include for example:

• Causal effect z-identifiability algorithm IDZ (Bareinboim and Pearl 2012). z-identifiability
deals with a situation, where it is possible to utilize a set Z that is disjoint from X to
achieve identifiability.

• Causal effect transportability algorithm sID (Bareinboim and Pearl 2013a). Transporta-
bility means, that results obtained from experimental data can be generalized into a
larger population, where only observational studies are applicable.

• Causal effect meta-transportability algorithm µsID (Bareinboim and Pearl 2013b). Meta-
transportability is an extension of the concept of transportability, where the results are
to be generalized from multiple experimental studies simultaneously.

• Counterfactual and conditional counterfactual identifiability algorithms ID* and IDC*
(Shpitser and Pearl 2007).

The work presented in this paper could be utilized to implement these algorithms.
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A. Graphs, causal models and causal effects

A.1. Graphs

The definitions that are presented here follow those of (Koller and Friedman 2009). Graph is
an ordered pair G = 〈V, E〉, where V and E are sets such that

E ⊂ {{X, Y } | X ∈ V, Y ∈ V, X 6= Y }.

The elements of V are the nodes of G, and the elements of E are the edges of G. A graph
F = 〈V′, E′〉 is a subgraph of G if V′ ⊂ V and E′ ⊂ E. This is denoted as F ⊂ G. A graph G
is directed if the set E consists of ordered pairs (X, Y ). In a directed graph, node V2 is a child
of node V1 if G contains an edge from V1 to V2, which means that (V1, V2) ∈ E. Respectively
V2 is a parent of V1 if (V2, V1) ∈ E. The child-parent relationship is often denoted as V1 → V2,
where V1 is a parent of V2 and V2 is a child of V1. This can also be notated as V2 ← V1.

Let n ≥ 1, V = {V1, . . . , Vn} and Vi 6= Vj for all i 6= j. If n > 1, then the graph H = 〈V, E〉
is a path if

E = {{V1, V2}, {V2, V3}, . . . , {Vn−1, Vn}}

or if
E = {{V1, V2}, {V2, V3}, . . . , {Vn−1, Vn}, {Vn, V1}}.

In the first case, H is a path from V1 to Vn. In the second case H is a cycle. If n = 1, then
H = 〈{V1}, ∅〉 is also a path. A path H is a directed path if all of its edges are directed and
point to the same direction, which means that either

E = {(V1, V2), (V2, V3), . . . , (Vn−1, Vn)}

or
E = {(V1, V2), (V2, V3), . . . , (Vn−1, Vn), (Vn, V1)}.

A node V2 is a descendant of V1 in G, if there exists a directed path H from V1 to V2 and
H ⊂ G. Respectively, V2 is an ancestor of V1 in G, if there exists a directed path H from V2

to V1 and H ⊂ G. If a graph G does not contain any cycles, it is acyclic. A graph G = 〈V, E〉
is connected if there exists a path H ⊂ G between every pair of nodes Vi, Vj ∈ V. Examples
of paths are cycles are presented in Figure 9.

If a graph is directed it is also possible to consider its subgraphs as undirected graphs, when
all of the edges of the graph are regarded as undirected edges. For example, a directed graph
contain paths, even if it does not contain any directed paths. The directed graph in Figure
10 contains a path connecting the nodes X and Y , even though they are not connected by a
directed path.

Let G = 〈V, E〉 be a graph and Y ⊂ V. Assume that the nodes of Y correspond to some ob-
served variables, and that the set V can also contain nodes, which in turn correspond to some
unobserved variables. Then the abbreviations Pa(Y)G, An(Y)G, and De(Y)G denote the set
of observable parents, ancestors and descendants of the node set Y while also containing Y.

A.2. Causal model

Causal model can be used to describe the functional relationships between variables of inter-
est. In addition, the model enables the formal treatment of actions or interventions on the
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(a) A path. (b) A directed path.

(c) A cycle. (d) A directed cycle.

Figure 9: Directed and undirected paths and cycles.

Figure 10: An undirected path in a directed graph.

variables of the model. Judea Pearl defined the deterministic causal model and its probabilis-
tic counterpart (Pearl 2009, p. 203-205), which are presented in this section.

Definition 9 (Causal Model, (Pearl 2009) 7.1.1). A causal model is a triple

M = 〈U, V, F〉,

where:

1. U is a set of background variables that are determined by factors outside the model;

2. V is a set {V1, V2, . . . , Vn} of variables, called endogenous, that are determined by
variables in the model – that is, variables in U ∪V; and

3. F is a set of functions {fV1 , fV2 , . . . , fVn
} such that each fVi

is a mapping from (the
respective domains of) U∪(V\Vi) to Vi, and such that the entire set F forms a mapping
from U to V. In other words, each fi tells the value of Vi given the values of all other
variables in U ∪V, and the entire set F has a unique solution V (u). Symbolically, the
set of equations F can be represented by writing

vi = fVi
(paVi

, uVi
), i = 1, . . . , n,
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Figure 11: Example notation of unobserved edges.

Figure 12: Notation for bidirected edges.

where pai is any realization of the unique minimal set of variables PAVi
in V \ Vi

(connoting parents) sufficient for representing fi. Likewise, UVi
⊆ U stand for the

unique minimal set of variables in U sufficient for representing fi.

For each causal model M there is a corresponding graph G = 〈W, E〉. The node set W

contains a node for each observed and unobserved variable of M . The edge set E is determined
by the functional relationships between the variables of V and U in the causal model M . The
set E contains an edge from X to Y if X ∈ PAY , which means that there is an edge coming
into Vi from every node required to uniquely define fVi

. Likewise, the set E contains an edge
from U to every node Vi such that U ∈ UVi

.

The definition of causal model does not set any limitations for the unobserved variables. Thus
any unobserved node can be a parent of an arbitrary number of observed nodes. If every
unobserved node is a parent of exactly two observed nodes, then the causal model is a semi-
Markovian causal model. Verma (1993) showed, that for any causal model with unobserved
variables one can construct a semi-Markovian causal model that encodes the same set of
conditional independences. This is why only semi-Markovian models are considered in this
paper.

The edges coming from unobserved variables are sometimes denoted as in Figure 11. However,
it is common not to include the unobserved nodes in the visual representation of the graph,
which serves to simplify the notation. Instead, it is said that there exists a bidirected edge
between X and Y , which corresponds to the effect of the unobserved variable. Thus the
notation of Figure 12 is utilized instead of the one in Figure 11.

This notation is used in (Huang and Valtorta 2006; Shpitser and Pearl 2006b; Tian 2002). It
should be noted, that a bidirected edge is not the same as two directed edges between two
nodes, as this would induce a cycle in the graph which is not allowed. Next, the definition
of the causal model is expanded by defining a probability distribution for the unobserved
variables.

Definition 10 (Probabilistic Causal Model, (Pearl 2009) 7.1.6). A Probabilistic causal model
is a pair

M = 〈MD, P (U)〉,
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where MD is a (deterministic) causal model and P (U) is the joint distribution of the variables
in U.

Henceforth in the paper, the term causal model refers to a probabilistic semi-Markovian causal
model without exception. Similarly, any graphs discussed will also refer to the graphs induced
by these causal models. A graph G induced by a causal model is strongly related to the joint
distribution P of all variables in the model, where P =

∏n
i=1 P (vi|pa∗(Vi)G)

∏k
j=1 P (uj), and

Pa∗(.)G also contains all unobserved parents. If this relationship holds, then G is an I-map
(independence map) of P . Independence properties of G and P are closely related through
the following definition

Definition 11 (d-separation, (Pearl 2009) 1.2.3). Let H = 〈V, E〉 be a path and a set Z ⊂ V.
H is said to be d-separated by Z in G, if and only if either

1. H contains a chain I →M → J or a fork I ←M → J , where M ∈ Z and I, J ∈ V., or

2. H contains an inverted fork I →M ← J , where De(M)G ∩ Z = ∅.

Disjoint sets X and Y are said to be d-separated by Z in G if every path from X to Y is
d-separated by Z in G.

If X and Y are d-separated by Z in G, then X is independent of Y given Z in every P for
which G is an I-map of P . The notation of (Dawid 1979) is used to denote this statement as
(X |= Y | Z)G.

A.3. Causal effects

Interventions on a causal model alter the functional relationships between its variables. Any
intervention do(X = x) on a causal model M produces a new model Mx = 〈U, V, Fx, P (U)〉,
where Fx is obtained by replacing fX ∈ F for each X ∈ X with a constant function, where
the constants are defined as the x values of do(X = x). It is now feasible to formalize the
notion of causal effects as follows.

Definition 12 (Causal Effect, (Shpitser and Pearl 2006b)). Let M = 〈U, V, F, P (U)〉 be
a causal model and Y, X ⊂ V. The causal effect of do(X = x) on the set Y in M is the
marginal distribution of Y in Mx, which is noted by P (Y|do(X = x)) = Px(Y).

For every action do(X = x) it is required that P (x|Pa(X)G \X) > 0. This limitation ensures
that Px(V) and its marginals are well defined. The restriction stems from the fact that it is
unfeasible to force X to attain values which cannot be observed. No inference can be made
from the distribution of such an intervention using observational data.

Definition 13 (Causal Effect Identifiability, (Shpitser and Pearl 2006b) 2). Let G = 〈V, E〉
be a graph and Y, X ⊂ V. The causal effect of do(X = x) on the set Y, where Y ∩X = ∅,
is identifiable in G if P 1

x(Y) = P 2
x(Y) for every pair of causal models M1 and M2 such that

P 1(V) = P 2(V) and P 1(x|Pa(X)G \X) > 0.

It is often impossible to show that a causal effect is identifiable by using solely the definition,
because one would have to compare every causal model that agree on the distribution of the
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observed variables. However, the definition serves as a tool to prove unidentifiability in certain
cases by constructing two causal models with the same induced graph and observational
distribution, and by showing further that the interventional distributions differ. The reader
is referred to (Shpitser and Pearl 2006b) for examples.
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