Package 'cartograflow'

October 18, 2023

Title Filtering Matrix for Flow Mapping

Version 1.0.5

Description

Functions to prepare and filter an origin-destination matrix for thematic flow mapping purposes. This comes after Bahoken, Francoise (2016), Mapping flow matrix a contribution, PhD in Geography - Territorial sciences. See Bahoken (2017) <doi:10.4000/netcom.2565>.

Depends R (>= 3.4.0)

License GPL-3

URL https://github.com/fbahoken/cartogRaflow

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Suggests knitr, rmarkdown, testthat, cartography

VignetteBuilder knitr,

Imports dplyr, graphics, ggplot2, plotly, reshape2, rlang, sf, utils, igraph

NeedsCompilation no

Author Sylvain Blondeau [aut, cre], Francoise Bahoken [aut]

Maintainer Sylvain Blondeau <blondeau.sylvain@yahoo.fr>

Repository CRAN

Date/Publication 2023-10-17 22:40:21 UTC

R topics documented:

cartograflow							•			 •							•	•					•		2
flowanalysis										 															2
flowcarre .										 															4
flowcontig .										 															5
flowdist				•	•			•	•	 •			•			•		•	•			•		•	6

flowanalysis

flowgini	7
lowjointure	8
flowlowup	9
10wmap	10
Howplaces	12
flowreduct	13
1ows	14
flowstructmat	15
1owtabmat	16
flowtype	16
geoid	18
mat_ex	19
2	20

Index

cartograflow Cartograflow Package

Description

This package contains functions to prepare and filter origin-destination matrix for thematic flow mapping purposes. The spatial objects processing are those of sf package.

This comes after Bahoken, Francoise (2016) Contribution à la cartographie d'une matrice de flux, Phd in Geography, Sorbonne Paris Cité, Paris 7.

Details

To learn more about cartograflow, see the vignette cartograflow.html

Main functions :

• flowanalysis flowcarre flowcontig flowdist flowgini flowjointure flowmap flowreduct flowstructmat flowcontig

flowanalysis	Computation of a global concentration criterion of flows val	ues or
	features	

Description

Computation of a global selection criterion for filtering flows values or flow features. To be use after flowgini and before flowmap.

Usage

```
flowanalysis(tab, fij = NULL, critflow, critlink, result)
```

flowanalysis

Arguments

tab	input flow dataset from flowgini
fij	flow value between origin and destination places
critflow	desired level of information significativity. See Details.
critlink	desired level of features density. See Details.
result	resulting filtering criterion value. See Details.

Details

-critflow = desired level of flow's information significativity (e.g. 80 -critlink = desired level of flow's features density (e.g. 20 of the flow features that represents the more significant information.

-result="density" returns the desired level of features density as a -result = "significativity" returns the level of flow significativity as a

References

Bahoken Françoise, 2016,« La cartographie d'une sélection globale de flux, entre 'significativité' et 'densité' », Netcom Online, 30-3/4 | 2016, Online since 23 March 2017, connection on 05 May 2019. URL : http://journals.openedition.org/netcom/2565 ; DOI : 10.4000/netcom.2565

Examples

flowcarre

Description

Builds a square and closed matrice from a dataframe of spatial nodes

Usage

flowcarre(liste, tab, origin, dest, valflow, empty.sq, format, diagonale)

Arguments

liste	list of all the spatial codes as a single dataframe
tab	the non squared input flow dataset with three column : origin, destination, flow value
origin	node / place of origin of the flow
dest	node / place of destination of the flow
valflow	is the flow value between origin and destination places
empty.sq	Builds an empty matrix or not. See Details.
format	is the desired squared flow dataset output format. See Details.
diagonale	to zero or not the main diagonal. See Details.

Details

- empty.sq is "TRUE" builds an empty matrix ; else is "FALSE" or missing
- format is "M" for matrice format
- format is "L" for long format, as three column dataframe
- diagonal is "TRUE" to zero the main diagonal

Examples

```
library(cartograflow)
data(flowdata)
var1 <- geoid
var2 <- flows
# 1/2 Compute an empty square matrice with ID code, and sets the value to zero
# Example for matrice format (same procedure for the long format)
mat <- flowcarre(var1, var2,
    origin = "i", dest = "j", valflow = "Fij",
    format = "M", empty.sq = TRUE
)</pre>
```

```
# 2/2 Fill in the matrice with external flow values
mat <- flowcarre(var1, var2,
    origin = "i", dest = "j", valflow = "Fij",
    format = "M", empty.sq = FALSE
)
# Square a matrice and zero the main diagonal
mat <- flowcarre(var1, var2,
    origin = "i", dest = "j", valflow = "Fij", format = "M",
    empty.sq = FALSE, diagonale = FALSE
)</pre>
```

flowcontig

Builds an ordinal distance matrices from a spatial features background

Description

From a layer of areal spatial features, compute an ordinal distance matrice based on a k order criterion of adjacency or contiguity between origin and destination places.

The result is a neighbourhood graph that can be used for filtering flow values before flow mapping (flowmap)

Usage

flowcontig(bkg, code, k, algo)

Arguments

bkg	a layer of areal spatial features (eg. the map background)
code	spatial areal features code
k	order of adjacency or contiguity between two areal spatial features
algo	algorithm to use for ordinal distance calculation. Default is "Dijkstra's" algorithm. See Details.

Details

The (k=1,2,...,k) order of adjacency or contiguity, of an areal spatial features background, is the number of spatial boundaries to be crossed between a couple of origin-destination (ODs) places. The k number can be assimilated to a shortest path between two pair of nodes Argument 'k' is to enter the number k of the contiguity matrix to be constructed ; -ordre=1 : ODs places are adjacent, ie the flow have to cross only 1 boundary

-ordre=2 : ODs places are distant from 2 borders

-ordre=k : ODs places are distant from k borders

The function returns also the (k) number of the layer

Value

a contiguity matrice with the k orders of adjacency

Examples

```
library(cartograflow)
library(sf)
data(flowdata)
map <- st_read(system.file("shape/MGP_TER.shp", package = "cartograflow"))
graph_ckij_1 <- flowcontig(bkg = map, code = "EPT_NUM", k = 1, algo = "automatic")
flowmap(
   tab = graph_ckij_1,
   fij = "ordre", origin.f = "i", destination.f = "j",
   bkg = map, code = "EPT_NUM", nodes.X = "X", nodes.Y = "Y",
   filter = FALSE
)</pre>
```

.owdist	

Builds a continuous distance matrices from a spatial features background

Description

From a layer of areal spatial features, compute and threshold a continuous distance matrix. The result is either a matrice of distances between ODs, or a flow matrix based on the distance travelled between ODs ; both can be used for filtering flow before flow mapping (flowmap)

Usage

flowdist(tab, dist.method, result)

Arguments

tab	the input flow dataset
dist.method	distance calculation algorithm, default is euclidian calculation
result	Choose Building a "flowdist" or a simple "dist" matrice. See Details

Details

- result = "dist" is the simple resulting distance matrice.
- result = "flowdist" is the resulting distance matrice with additional calculated parameters.
- It is also possible to filter flow by a level of distance travelled.

Value

- (1) A flowdata set with continuous distances calculations. See dist.method parameter
- (2) A flowdata set with movement from euclidian distances calculations

flowgini

Examples

```
library(cartograflow)
library(sf)
data(flowdata)
map <- st_read(system.file("shape/MGP_TER.shp", package = "cartograflow"))
tabflow <- flowjointure(
  geom = "area", bkg = map, DF.flow = flows, origin = "i",
  destination = "j", id = "EPT_NUM", x = "X", y = "Y"
)
# Format long with only origin, destination and distance parameters:
tab.distance <- flowdist(tabflow, dist.method = "euclidian", result = "dist")
# Format long with with all parameters: coordinates, distance, mouvement
tab.distance <- flowdist(tabflow, dist.method = "euclidian", result = "flowdist")</pre>
```

flowgini

Analysis of flow concentration (Gini coefficient)

Description

Calculates Gini coefficient, plot Lorenz curve and threshold the matrice according to a global concentration criterion for mapping flow intensity or flow density. To be use before flowanalysis

Usage

flowgini(ODpts, origin, destination, valflow, lorenz.plot)

Arguments

ODpts	the input dataset with : nodes code, flow values and XY coordinates
origin	ID origin place, in long format
destination	ID destination place, long format
valflow	flow value between origin and destination places
lorenz.plot	to plot or the Lorenz curve. See Details

Details

flowgini(...,lorenz.plot = TRUE) for ploting Lorenz curve associate to the gini coefficient, from cumulated flows and links.

Value

plot Lorenz curve for the cumulated flow and links : flowgini(...,gini.plot = TRUE),warning : the function must be not assign a variable

value of the Gini's coefficent and the table : table<-flowgini(...,missing(gini.plot) or gini.plot = FALSE)

References

Bahoken Françoise, 2016,« La cartographie d'une sélection globale de flux, entre 'significativité' et 'densité' », Netcom Online, 30-3/4 | 2016, Online since 23 March 2017, connection on 05 May 2019. URL : http://journals.openedition.org/netcom/2565 ; DOI : 10.4000/netcom.2565. Grasland Claude, 2014, "Flows analysis carto", unpublished R functions.

Examples

```
flowjointure
```

Builds a spatial join with a flow dataset

Description

Builds a spatial join between a flow dataset and a spatial features layer (as a map background)

Usage

```
flowjointure(geom, bkg, DF.flow, origin, destination, DF.point, id, x, y)
```

Arguments

geom	the geometry of the spatial features layer: points or areas
bkg	the spatial features layer
DF.flow	the input flow dataset as a dataframe
origin	the place of origin code
destination	the place of destination code
DF.point	a dataframe of points or places
id	dataframe of points or places file code
х	the X coordinate of the point or places
У	the Y coordinate of the point or places

Value

the corresponding joint table between the flow dataset and the spatial feature layer

flowlowup

Examples

```
library(cartograflow)
library(sf)
data(flowdata)
map <- st_read(system.file("shape/MGP_TER.shp", package = "cartograflow"))
tabflow <- flowjointure(
  geom = "area", bkg = map, DF.flow = flows, origin = "i", destination = "j",
  id = "EPT_NUM", x = "X", y = "Y"
)</pre>
```

flowlowup

Extracts the triangular sub-matrix of flows

Description

Extracts the upper or lower triangular part of a matrix

Usage

```
flowlowup(tab, origin = NULL, destination = NULL, fij = NULL, lowup, format, x)
```

Arguments

tab	is the input flow dataset
origin	the place of origin code
destination	the place of destination code
fij	the flow value between origin and destination places
lowup	for selecting lower or upper triangular sub-portion of the original matrix. See Details.
format	specify the flow dataset format, "M " for square matrix [n*n] or "L" for long [i,j,data]
x	enter the Enter the triangular part to be extracted: "low", "up". See Details.

Details

This function compute for all pairs or origin-destination places (i,j) a lower "low" or upper "up" triangular sub-portion of the original matrix - x = "up" for the part above the main diagonal - x = "low" for the part below the main diagonal

flowmap

Examples

```
library(cartograflow)
data(flowdata)
###Extract the upper part of the matrix : Long format
tab_up <- flowlowup(flows, format="L", lowup="up")
tab_low<-flowlowup(flows, format="L", lowup="low")</pre>
```

flowmap

Mapping of an origin-destination flow matrix

Description

Mapping of an origin-destination flow matrix

Usage

```
flowmap(
  tab,
  fij,
 origin.f,
  destination.f,
 bkg = NULL,
  crs,
  nodes = NULL,
  code,
  nodes.X,
  nodes.Y,
  filter,
  plota,
  threshold,
  taille,
 a.head,
 a.length,
 a.angle,
 a.col,
  add = NULL,
  . . .
)
```

Arguments

tab	the input flow dataset in .csv format. See Details
fij	the flow value between origin and destination places
origin.f	the place of origin code

10

flowmap

destination.f	the place of destination code
bkg	a spatial feature layer, as a map background, in .shp or .json or other format
crs	the coordinate reference system (CRS)
nodes	the input points file in .csv format
code	the spatial features code
nodes.X	the X coordinate of the point or places
nodes.Y	the Y coordinate of the point or places
filter	is to filter or not the flow values. See details
plota	is to add spatial features as map background to the flows's plot
threshold	the value of the threshold criterion to filter flows. Default is 1.
taille	the value of the width of the flow feature
a.head	for arrow's head is the arrow head parameter code. It allows to choose the kind of arrow. See Details
a.length	for arrow's length is the length of the edges of the arrow head (in inches)
a.angle	for arrow's angle is the angle from the shaft of the arrow to the edge of the arrow head
a.col	for arrow's color
add	is to allow to overlay flow features on external spatial features background
	Adds the set of variables of the arrow function

Details

The input .csv flow dataset must be first converted to a dataframe for optimal performance (troubles remains with tibble format)

- filter is "FALSE" means that all the flow value will be plot as segments $[(n^*(n-1))]$, i.e. all the OD matrice's cells out of the main diagonal will be plot.

- filter is "TRUE" means only non-zero values will be plot, i.e. existing links with or without threshold.

The default threshold is set to 1.

Flow features are plot as segments betwwen (x0,y0) and (x1,y1)

- a.head is for applying an arrow or not to a segment:
- code="0" : the link has no head no arrow
- code="1" : an arrow is draw at (x0[i], y0[i])
- code="2": an arrow is draw at (x1[j], y1[j])
- code="3" : an arrow is draw at both nodes.

Value

a matrix or a list with the correct flow dataframe ID code The resulting flowmap

Examples

```
rm(list=ls())
library(cartograflow)
library(sf)
data(flowdata)
# example with the background
map <- st_read(system.file("shape/MGP_TER.shp", package = "cartograflow"))
par(bg = "NA")
plot(st_geometry(map), col = "blue")
flowmap(
   tab = flows, fij = "Fij", origin.f = "i", destination.f = "j",
   bkg = map,add=TRUE, code = "EPT_NUM", nodes.X = "X", nodes.Y = "Y",
   filter = FALSE
)</pre>
```

flowplaces

Computes flow indicators per places

Description

Compute indicators per places (origin and/or destination) from the margins of the matrix. Ex/ in and out degrees, gross and net flows, asymmetry from an initial matrix

Usage

```
flowplaces(tab, origin = NULL, destination = NULL, fij = NULL, format, x)
```

Arguments

tab	is the input flow dataset
origin	the place of origin code
destination	the place of destination code
fij	the flow value between origin and destination places
format	specify the flow dataset format, "M " for square matrix $[n*n]$ or "L" for long $[i,j,data]$
X	enter the flowplaces indicator type : "allflowplaces", "ini", "outi", "degi", "intra", "Oi", "Dj", voli", "bali", "asyi". See Details.

Details

This function compute for all pairs or origin-destination places (i,j) a data table that describes the flows from the point of view of Origin / destination places - x = "ini" for the number of incoming links (as in-degree)

-x = "outi" for the number of outcoming links (as out-degree)

-x = "degi" for the total number of links (as in and out degrees)

- x = "intra" for total intra zonal interaction (if main diagonal is not empty

12

flowreduct

- -x = "Dj" for the total flows received by (j) place
- -x = "voli" for the total volume of flow per place
- -x = "bali" for the net balance of flow per place
- -x = "asyi" for the asymetry of flow per place
- -x = "allflowplaces" for computing all the above indicators

Examples

```
library(cartograflow)
data(flowdata)
bkg <- system.file("shape/MGP_TER.shp",
    package = "cartograflow",
    lib.loc = NULL, mustWork = TRUE)
###1:Computes the total flow volume of places : Long format
voli <- flowplaces(flows, origin ="i",destination="j",fij="Fij",format = "L", x = "voli")
###2:Computes the total flows received by destination place : Long format
tab_bali <- flowplaces(flows, origin ="i",destination="j",fij="Fij",format = "L", x = "bali")</pre>
```

flowreduct

Flow matrix reduction according to another matrix

Description

Reduces a flow dataset according to an external matrix, eg. a matrix of travelled distance. Builds geographical movements, by weighting a flow dataset according to a distance criterion.

Usage

flowreduct(tab, tab.metric, metric, d.criteria, d)

Arguments

tab	is the input flowdata set
tab.metric	the distance dataset
metric	select "continuous" or "ordinal" metric. See Details
d.criteria	is for selecting "dmin" or "dmax" distance criteria for "continuous" metric. See Details.
d	is the value of the selected "dmin" or "dmax". see Details

Details

The involved metric can be continous or not.

(1) Metric is 'continous" for distance as euclidian, maximum, manhattan, etc. See flowdist

- Metric is 'ordinal" for computing neighbourhood ordinal distance matrix. – Select ="dmin" for reducing flow dataset to flow values that are up or equal to the dmin distance parameter (Fij>=dmin); – select ="dmax" for reducing flow dataset to values that are less or equal to the dmax distance parameter(Fij=<dmin).

- Metric is 'ordinal' for computing neighbourhood ordinal distance with k contiguity. See flowcontig for computing ordinal distance matrix

Value

A flow dataset with distances computations and flow reduction

Examples

```
library(cartograflow)
library(sf)
library(dplyr)
data(flowdata)
map <- st_read(system.file("shape/MGP_TER.shp", package = "cartograflow"))</pre>
tab <- flowjointure(</pre>
  geom = "area", bkg = map, DF.flow = flows, origin = "i", destination = "j",
  id = "EPT_NUM", x = "X", y = "Y"
)
# Example for reducing a flow matrice with a distance matrice, in long format (i,j, distance)
## 1/2: Computes the matrice distances
tab.distance <- flowdist(tab, dist.method = "euclidian", result = "dist")</pre>
tab.distance <- tab.distance %>% select(i, j, distance)
## 2/2: Reduce the flow matrice
tab.flow <- flowreduct(flows, tab.distance,</pre>
  metric = "continous",
  d.criteria = "dmax", d = 8567
)
```

flows

MOBPRO: Commuting trips in 2015

Description

Statistical dataset in .csv: Extraction of the french national census : "Mobilités professionnelles en 2015 : déplacements domicile - lieu de travail" - Base flux de mobilité - for the Greater Paris area. Citation: INSEE - RP MOBPRO, 2015. Variable (i) is the place of origin of the flow. Variable (j) is the place of destination of the flow.

flowstructmat

Variable (Fij) is the flow value between (i,j). Variable (count) is the frequency of the (i,j) couple of places.

Source

https://www.insee.fr/fr/statistiques/fichier/3566008/rp2015_mobpro_txt.zip

flowstructmat Structuring a matrix

Description

Fixes an ID shift in the flow matrix (to bo use with flowjointure if necessary and flowtabmat)

Usage

```
flowstructmat(z)
```

Arguments

z

The input flow dataset in the matrice format where the first column is filled with the ID

Value

A flow dataset with an usable format

Examples

```
library(cartograflow)
data(flowdata)
```

dim(mat_ex) # dimension fo the original matrice
10 11 # first colum is fill with the ID

tab <- flowstructmat(mat_ex)
dim(tab)
10 10 # dimension fo the resulting matrice</pre>

flowtabmat

Description

Transform a flow dataset from long to matrice format, and vice versa. Square matrice.

Usage

flowtabmat(tab, matlist)

Arguments

tab	flow dasaset, in matrice or long format
matlist	choose "matrice" or "long" for the resulting format. See Details.

Details

matlist="M" from long (3 columns : origin, destination, flow) to matrice format [n*n];
matlist="L" from matrice to long format.

Value

a flow dataset in matrice or in long format

Examples

```
library(cartograflow)
data(flowdata)
# 1: From long to matrix format (n*m)
matFlow <- flowtabmat(flows, matlist = "M")
# 2: From matrix to long format [i,j,Fij]
listflow <- flowtabmat(matFlow, matlist = "L")</pre>
```

flowtype

Compute bilateral several flow types

Description

Compute bilateral flow type: volumn (gross), balance (net), asymetry, min/max ... from an initial asymetric matrix

flowtype

Usage

```
flowtype(
  tab,
  origin = NULL,
  destination = NULL,
  fij = NULL,
  format,
  lowup,
  net,
   x
)
```

Arguments

tab	is the input flow dataset
origin	the place of origin code
destination	the place of destination code
fij	the flow value between origin and destination places
format	specify the flow dataset format, "M " for square matrix [n*n] or L for long [i,j,data]
lowup	for extracting the lower or upper triangular sub-portion of the bilateral volum matrix. See Details.
net	for extracting the "positive" or the "negative" flow values of the bilateral bal- ance) matrix
x	enter the flow indicator type : "alltypes", "flux", "transpose", "bivolum", "bibal", "biasym", "bimin", "bimax", "birange" and "bidisym"

Details

The matrice must be squared (if not, see flowcarre). This function compute for all pairs or origindestination places (i,j) involved in an asymetric flow matrix (Fij<> Fji) several matrix :

Param x: -x = "flux" for the initial flow: (Fij)

- x = "transpose" for the reverse flow value: (Fji) =t(Fij)

- x = "bivolum" for the bilateral volum or gross flow: FSij=(Fij+Fji)

-x = "bibal" for the bilateral balance or net flow: FBij=(Fij-Fji)

- x = "biasym" for asymetry of bilateral flow: FAij=(FBij/FSij)

-x = "bimin" for the minimum of bilateral flow: minFij=(Fij, Fji)

-x = "bimax" for the maximum of bilateral flow: Fij(Fij, Fji)

- x = "birange" for the amplitude of bilateral flows: rangeFij=(maxFij - minFij)

- x = "bidisym" for the bilateral disymetry: FDij=(rangeFij/FSij) - x = "alltypes" for computing all the available types of flows

Param lowup is for reducing the matrix:

- lowup ="up" for triangular part above the main diagonal

- lowup = "low" for triangular part below the main diagonal

Param net is for extracting positive or negative flow values of the bilateral balance (bibal matrix):

- net ="negative" values

- net ="positive" values

References

Bahoken Francoise, 2016, L'approche cartographique de la décomposition des matrices de flux, Mappemonde, Revue sur l'image géographique et les formes du territoire, number 116, URL : https://mappemonde-archive.mgm.fr/num44/articles/art14404.html

Examples

```
library(cartograflow)
data(flowdata)
bkg <- system.file("shape/MGP_TER.shp",package = "cartograflow",</pre>
                   lib.loc = NULL, mustWork = TRUE
)
## 1a:Computes flowtypes: Matrix format
matflow <- flowtabmat(flows, matlist = "M")</pre>
m <- flowtype(matflow, format = "M", x = "flux")</pre>
m <- flowtype(matflow, format = "M", x = "transpose")</pre>
m <- flowtype(matflow, format = "M", x = "bivolum")</pre>
m <- flowtype(matflow, format = "M", x = "bibal")</pre>
## 1b:Computes flowtypes: Long format
types_all <- flowtype(flows,origin ="i",destination="j",fij="Fij", format = "L",</pre>
x = "alltypes")
bivol<- flowtype(flows,origin ="i",destination="j",fij="Fij",format = "L",</pre>
x = "bivolum",lowup="up")
bibal_net<- flowtype(flows,origin ="i",destination="j",fij="Fij",format = "L",</pre>
x = "bibal", net="negative")
```

geoid

Geographical ID

Description

One column dataframe in.csv. Variable (COD_GEO_EPT) is the geographical code of the territory citation : APUR, 2018

Source

https://www.insee.fr/fr/statistiques/fichier/3566008/rp2015_mobpro_txt.zip

mat_ex

Description

Example of a small Origin-Destination flow dataset, in a matrice format

Index

cartograflow, 2

flowanalysis, 2, 2, 7 flowcarre, 2, 4, 17 flowcontig, 2, 5, 14 flowdist, 2, 6, 13 flowgini, 2, 3, 7 flowjointure, 2, 8, 15 flowlowup, 9 flowmap, 2, 5, 6, 10 flowplaces, 12 flowreduct, 2, 13 flows, 14 flowstructmat, 2, 15 flowtabmat, 15, 16 flowtype, 16 geoid, 18

mat_ex, 19