
Package ‘camtrapdp’
June 11, 2025

Title Read and Manipulate Camera Trap Data Packages

Version 0.4.0

Date 2025-06-06

Description Read and manipulate Camera Trap Data Packages ('Camtrap DP').
'Camtrap DP' (<https://camtrap-dp.tdwg.org>) is a data exchange format
for camera trap data. With 'camtrapdp' you can read, filter and
transform data (including to Darwin Core) before further analysis in
e.g. 'camtraptor' or 'camtrapR'.

License MIT + file LICENSE

URL https://github.com/inbo/camtrapdp,

https://inbo.github.io/camtrapdp/

BugReports https://github.com/inbo/camtrapdp/issues

Depends R (>= 3.6.0)

Imports cli, dplyr, EML, frictionless (>= 1.2.1), memoise, purrr,
readr, rlang, stringr, uuid

Suggests jsonlite, lubridate, testthat (>= 3.0.0), tibble, xml2

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.2

NeedsCompilation no

Author Peter Desmet [aut, cre] (ORCID:
<https://orcid.org/0000-0002-8442-8025>, affiliation: Research
Institute for Nature and Forest (INBO)),

Sanne Govaert [aut] (ORCID: <https://orcid.org/0000-0002-8939-1305>,
affiliation: Research Institute for Nature and Forest (INBO)),

Pieter Huybrechts [aut] (ORCID:
<https://orcid.org/0000-0002-6658-6062>, affiliation: Research
Institute for Nature and Forest (INBO)),

Damiano Oldoni [aut] (ORCID: <https://orcid.org/0000-0003-3445-7562>,
affiliation: Research Institute for Nature and Forest (INBO)),

Research Institute for Nature and Forest (INBO) [cph] (ROR:

1

https://camtrap-dp.tdwg.org
https://github.com/inbo/camtrapdp
https://inbo.github.io/camtrapdp/
https://github.com/inbo/camtrapdp/issues
https://orcid.org/0000-0002-8442-8025
https://orcid.org/0000-0002-8939-1305
https://orcid.org/0000-0002-6658-6062
https://orcid.org/0000-0003-3445-7562

2 check_camtrapdp

<https://ror.org/00j54wy13>),
Research Foundation - Flanders [fnd] (https://lifewatch.be)

Maintainer Peter Desmet <peter.desmet@inbo.be>

Repository CRAN

Date/Publication 2025-06-11 11:40:05 UTC

Contents
check_camtrapdp . 2
contributors . 3
deployments . 4
events . 5
example_dataset . 6
filter_deployments . 6
filter_media . 7
filter_observations . 8
individuals . 10
locations . 11
media . 12
merge_camtrapdp . 13
observations . 15
print.camtrapdp . 16
read_camtrapdp . 16
round_coordinates . 18
shift_time . 20
taxa . 21
update_taxon . 22
version . 23
write_camtrapdp . 24
write_dwc . 25
write_eml . 26

Index 29

check_camtrapdp Check a Camera Trap Data Package object

Description

Checks if an object is a Camera Trap Data Package object with the required properties.

Usage

check_camtrapdp(x)

https://ror.org/00j54wy13

contributors 3

Arguments

x Camera Trap Data Package object, as returned by read_camtrapdp().

Value

x invisibly or an error.

Examples

x <- example_dataset()
check_camtrapdp(x) # Invisible return of x if valid

contributors Get or set contributors

Description

contributors() gets contributors from the x$contributors property in a Camera Trap Data
Package object and returns it as a tibble data frame.
contributors()<- is the assignment equivalent.

Usage

contributors(x)

contributors(x) <- value

Arguments

x Camera Trap Data Package object, as returned by read_camtrapdp().

value A data frame to assign as contributors.

Value

A tibble::tibble() data frame with the contributors, containing the following columns (columns
absent in x$contributors will be created):

• title

• firstName: if absent, this will be set to the first word in title, except if it is a single word or
the role is rightsHolder or publisher.

• lastName: if absent, this will be set to the remaining words in title, with the same exceptions
as firstName.

• email

• path

• role

• organization

4 deployments

See Also

Other accessor functions: deployments(), events(), individuals(), locations(), media(),
observations(), taxa()

Examples

x <- example_dataset()
Get contributors
contributors(x)

Set contributors
contributors(x) <- head(contributors(x), 1)

deployments Get or set deployments

Description

deployments() gets the deployments from a Camera Trap Data Package object.
deployments()<- is the assignment equivalent.

• It should only be used within other functions, where the expected data structure can be guar-
anteed.

• Metadata (x$spatial and x$temporal) are updated to match the assigned deployments.

Usage

deployments(x)

deployments(x) <- value

Arguments

x Camera Trap Data Package object, as returned by read_camtrapdp().

value A data frame to assign as deployments.

Value

A tibble::tibble() data frame with deployments.

See Also

Other accessor functions: contributors(), events(), individuals(), locations(), media(),
observations(), taxa()

events 5

Examples

x <- example_dataset()
Get deployments
deployments(x)

Set deployments (not recommended outside a function)
deployments(x) <- head(deployments(x), 1)

events Get events

Description

Gets the (unique) events from the observations of a Camera Trap Data Package object. Only obser-
vations with observationLevel == "event" are considered.

Usage

events(x)

Arguments

x Camera Trap Data Package object, as returned by read_camtrapdp().

Value

A tibble::tibble() data frame with the events, containing the following columns:

• deploymentID

• eventID

• eventStart

• eventEnd

See Also

Other accessor functions: contributors(), deployments(), individuals(), locations(), media(),
observations(), taxa()

Examples

x <- example_dataset()
events(x)

6 filter_deployments

example_dataset Read the Camtrap DP example dataset

Description

Reads the Camtrap DP example dataset. This dataset is maintained and versioned with the Camtrap
DP standard.

Usage

example_dataset()

Value

Camera Trap Data Package object.

Examples

example_dataset()

filter_deployments Filter deployments

Description

Subsets deployments in a Camera Trap Data Package object, retaining all rows that satisfy the
conditions.

• Media are filtered on associated deploymentID.

• Observations are filtered on associated deploymentID.

• Metadata (x$spatial, x$temporal and x$taxonomic) are updated to match the filtered de-
ployments.

Usage

filter_deployments(x, ...)

Arguments

x Camera Trap Data Package object, as returned by read_camtrapdp().

... Filtering conditions, see dplyr::filter().

Value

x filtered.

https://camtrap-dp.tdwg.org/example/

filter_media 7

See Also

Other filter functions: filter_media(), filter_observations()

Examples

x <- example_dataset()

Filtering returns x, so pipe with deployments() to see the result
x %>%

filter_deployments(deploymentID == "62c200a9") %>%
deployments()

Filtering on deployments also affects associated media and observations
x_filtered <- filter_deployments(x, deploymentID == "62c200a9")
media(x_filtered)
observations(x_filtered)

Filtering on multiple conditions (combined with &)
x %>%

filter_deployments(latitude > 51.0, longitude > 5.0) %>%
deployments()

Filtering on dates is easiest with lubridate
library(lubridate, warn.conflicts = FALSE)
x %>%

filter_deployments(
deploymentStart >= lubridate::as_date("2020-06-19"),
deploymentEnd <= lubridate::as_date("2020-08-30")

) %>%
deployments()

filter_media Filter media

Description

Subsets media in a Camera Trap Data Package object, retaining all rows that satisfy the conditions.

• Deployments are not filtered.

• Observations are filtered on associated mediaID (for media-based observations) and eventID
(for event-based observations).

• Metadata (x$taxonomic) are updated to match the filtered observations.

Usage

filter_media(x, ...)

8 filter_observations

Arguments

x Camera Trap Data Package object, as returned by read_camtrapdp().

... Filtering conditions, see dplyr::filter().

Value

x filtered.

See Also

Other filter functions: filter_deployments(), filter_observations()

Examples

x <- example_dataset()

Filtering returns x, so pipe with media() to see the result
x %>%

filter_media(captureMethod == "timeLapse") %>%
media()

Filtering on media also affects associated observations, but not deployments
x_filtered <- filter_media(x, favorite == TRUE)
observations(x_filtered)

Filtering on multiple conditions (combined with &)
x %>%

filter_media(captureMethod == "activityDetection", filePublic == FALSE) %>%
media()

Filtering on datetimes is easiest with lubridate
library(lubridate, warn.conflicts = FALSE)
x %>%

filter_media(
timestamp >= lubridate::as_datetime("2020-08-02 05:01:00"),
timestamp <= lubridate::as_datetime("2020-08-02 05:02:00")

) %>%
media()

filter_observations Filter observations

Description

Subsets observations in a Camera Trap Data Package object, retaining all rows that satisfy the
conditions.

• Deployments are not filtered.

filter_observations 9

• Media are filtered on associated mediaID (for media-based observations) and eventID (for
event-based observations). Filter on observationLevel == "media" to only retain directly
linked media.

• Metadata (x$taxonomic) are updated to match the filtered observations.

Usage

filter_observations(x, ...)

Arguments

x Camera Trap Data Package object, as returned by read_camtrapdp().

... Filtering conditions, see dplyr::filter().

Value

x filtered.

See Also

Other filter functions: filter_deployments(), filter_media()

Examples

x <- example_dataset()

Filtering returns x, so pipe with observations() to see the result
x %>%

filter_observations(observationType == "animal") %>%
observations()

Filtering on observations also affects associated media, but not deployments
x %>%

filter_observations(
scientificName == "Vulpes vulpes",
observationLevel == "event"

) %>%
media()

x %>%
filter_observations(

scientificName == "Vulpes vulpes",
observationLevel == "media"

) %>%
media()

Filtering on multiple conditions (combined with &)
x %>%

filter_observations(
deploymentID == "577b543a",
scientificName %in% c("Martes foina", "Mustela putorius")

) %>%

10 individuals

observations()

Filtering on datetimes is easiest with lubridate
library(lubridate, warn.conflicts = FALSE)
x %>%

filter_observations(
eventStart >= lubridate::as_datetime("2020-06-19 22:00:00"),
eventEnd <= lubridate::as_datetime("2020-06-19 22:10:00")

) %>%
observations()

individuals Get individuals

Description

Gets the (unique) individuals from the observations of a Camera Trap Data Package object.

Usage

individuals(x)

Arguments

x Camera Trap Data Package object, as returned by read_camtrapdp().

Value

A tibble::tibble() data frame with the individuals that have an individualID, containing the
following columns:

• individualID

• scientificName

• lifeStage

• sex

See Also

Other accessor functions: contributors(), deployments(), events(), locations(), media(),
observations(), taxa()

Examples

x <- example_dataset()
individuals(x)

locations 11

locations Get locations

Description

Gets the (unique) locations from the deployments of a Camera Trap Data Package object.

Usage

locations(x)

Arguments

x Camera Trap Data Package object, as returned by read_camtrapdp().

Value

A tibble::tibble() data frame with the locations, containing the following columns:

• locationID

• locationName

• latitude

• longitude

• coordinateUncertainty

See Also

Other accessor functions: contributors(), deployments(), events(), individuals(), media(),
observations(), taxa()

Examples

x <- example_dataset()
locations(x)

12 media

media Get or set media

Description

media() gets the media from a Camera Trap Data Package object.
media()<- is the assignment equivalent.

• It should only be used within other functions, where the expected data structure can be guar-
anteed.

Usage

media(x)

media(x) <- value

Arguments

x Camera Trap Data Package object, as returned by read_camtrapdp().

value A data frame to assign as media.

Value

A tibble::tibble() data frame with media.

See Also

Other accessor functions: contributors(), deployments(), events(), individuals(), locations(),
observations(), taxa()

Examples

x <- example_dataset()
Get media
media(x)

Set media (not recommended outside a function)
media(x) <- head(media(x), 1)

merge_camtrapdp 13

merge_camtrapdp Merge two Camera Trap Data Packages

Description

Merges two Camera Trap Data Package objects into one. Repeat to merge multiple datasets.

Usage

merge_camtrapdp(x, y)

Arguments

x, y Camera Trap Data Package objects, as returned by read_camtrapdp().

Value

A single Camera Trap Data Package object that is the combination of x and y.

Transformation details

Both x and y must have a unique dataset name x$name and y$name. This name is used to prefix
identifiers in the data that occur in both datasets. For example:

• x contains deploymentIDs c("a", "b").

• y contains deploymentIDs c("b", "c").

• Then merged xy will contain deploymentIDs c("a", "x_b", "y_b", "c").

Data are merged as follows:

• Deployments are combined, with deploymentID kept unique.

• Media are combined, with mediaID, deploymentID and eventID kept unique.

• Observations are combined, with observationID, deploymentID, mediaID and eventID
kept unique.

• Additional resources are retained, with the resource name kept unique.

Metadata properties are merged as follows:

• name: Removed.

• id: Removed.

• created: Set to current timestamp.

• title: Removed.

• contributors: Combined, with duplicates removed.

• description: Combined as two paragraphs.

• version: Set to 1.0.

14 merge_camtrapdp

• keywords: Combined, with duplicates removed.

• image: Removed.

• homepage: Removed.

• sources: Combined, with duplicates removed.

• licenses: Combined, with duplicates removed.

• bibliographicCitation: Removed.

• project$id: Removed.

• project$title: Combined.

• project$acronym: Removed.

• project$description: Combined as two paragraphs.

• project$path: Removed.

• project$samplingDesign: Sampling design of x.

• project$captureMethod: Combined, with duplicates removed.

• project$individuals: TRUE if one of the datasets has TRUE.

• project$observationLevel: Combined, with duplicates removed.

• coordinatePrecision: Set to the least precise coordinatePrecision.

• spatial: Reset based on the new deployments.

• temporal: Reset based on the new deployments.

• taxonomic: Combined, with duplicates removed.

• relatedIdentifiers: Combined, with duplicates removed.

• references: Combined, with duplicates removed.

• Custom properties of x are also retained.

See Also

Other transformation functions: round_coordinates(), shift_time(), update_taxon(), write_dwc(),
write_eml()

Examples

x <- example_dataset() %>%
filter_deployments(deploymentID %in% c("00a2c20d", "29b7d356"))

y <- example_dataset() %>%
filter_deployments(deploymentID %in% c("577b543a", "62c200a9"))

x$name <- "x"
y$name <- "y"
merge_camtrapdp(x, y)

observations 15

observations Get or set observations

Description

observations() gets the observations from a Camera Trap Data Package object.
observations()<- is the assignment equivalent.

• It should only be used within other functions, where the expected data structure can be guar-
anteed.

• Metadata (x$taxonomic) are updated to match the assigned observations.

Usage

observations(x)

observations(x) <- value

Arguments

x Camera Trap Data Package object, as returned by read_camtrapdp().

value A data frame to assign as observations.

Value

A tibble::tibble() data frame with observations.

See Also

Other accessor functions: contributors(), deployments(), events(), individuals(), locations(),
media(), taxa()

Examples

x <- example_dataset()
Get the observations
observations(x)

Set observations (not recommended outside a function)
observations(x) <- head(observations(x), 1)

16 read_camtrapdp

print.camtrapdp Print a Camera Trap Data Package

Description

Prints a human-readable summary of a Camera Trap Data Package, as an extension of frictionless::print.datapackage().

Usage

S3 method for class 'camtrapdp'
print(x, ...)

Arguments

x Camera Trap Data Package object, as returned by read_camtrapdp().

... Further arguments, they are ignored by this function.

Value

print() with a summary of the Camera Trap Data Package object.

Examples

x <- example_dataset()

Print a summary
print(x)

Print a summary after filtering
filter_deployments(x, deploymentID == "62c200a9")

read_camtrapdp Read a Camera Trap Data Package

Description

Reads a Camera Trap Data Package (Camtrap DP) dataset into memory.

Usage

read_camtrapdp(file)

Arguments

file Path or URL to a datapackage.json file.

https://camtrap-dp.tdwg.org

read_camtrapdp 17

Value

A Camera Trap Data Package object.

Older versions

The read_camtrapdp() function supports older versions of Camtrap DP and will automatically
upgrade such datasets to the latest version of the standard. It currently supports versions 1.0 and
1.0.1 (latest).

Events

Observations can contain classifications at two levels:

• Media-based observations (observationLevel = "media") are based on a single media file
and are directly linked to it via mediaID.

• Event-based observations (observationLevel = "event") are based on an event, defined as
a combination of eventID, eventStart and eventEnd. This event can consist of one or more
media files, but is not directly linked to these.

The read_camtrapdp() function will automatically assign eventIDs to media, using media.deploymentID
= observations.deploymentID and observations.eventStart <= media.timestamp <= observations.eventEnd.
Note that this can result in media being linked to multiple events (and thus being duplicated), for
example when events and sub-events were defined.

Taxonomic information

Camtrap DP metadata has a taxonomic property that can contain extra information for each scientificName
found in observations. Such information can include higher taxonomy (family, order, etc.) and
vernacular names in multiple languages.

The read_camtrapdp() function will automatically include this taxonomic information in ob-
servations, as extra columns starting with taxon.. It will then update the taxonomic scope in the
metadata to the unique taxa() found in the data.

Spatial/temporal coverage

Camtrap DP metadata has a spatial and temporal property that contains the spatial and temporal
coverage of the package respectively.

The read_camtrapdp() function will automatically update (or create) the spatial and temporal
scopes in the metadata based on the data. It also does this for the taxonomic scope (see higher).

Additional resources

A Camtrap DP can contain Data Resources not described by the standard. Those are listed with the
tables supported by the standard (i.e. deployments, media, observations) in the resources property.

The read_camtrapdp() function will ignore these additional resources and only read the tables
described by the standard. Additional resources can be read with frictionless::read_resource()
if they are tabular.

18 round_coordinates

Examples

file <- "https://raw.githubusercontent.com/tdwg/camtrap-dp/1.0/example/datapackage.json"
x <- read_camtrapdp(file)
x

round_coordinates Round coordinates to generalize camera trap locations

Description

Rounds deployment coordinates to a certain number of digits to fuzzy/generalize camera trap loca-
tions. This function can be used before publishing data in order to protect sensitive species and/or
prevent theft of active cameras.

Usage

round_coordinates(x, digits)

Arguments

x Camera Trap Data Package object, as returned by read_camtrapdp().

digits Number of decimal places to round coordinates to (1, 2 or 3).

Value

x with chosen coordinatePrecision in metadata and rounded coordinates and calculated coordinateUncertainty
in deployments.

Details

Rounding coordinates is a recommended method to generalize sensitive biodiversity information
(see Section 4.2 in Chapman 2020). Use this function to do so for your data. Determine the category
of sensitivity (see Section 2.2 in Chapman 2020) and choose the associated number of digits :

category sensitivity digits
category 1 extreme (do not publish)
category 2 high 1
category 3 medium 2
category 4 low 3
not sensitive not sensitive all (do not use this function)

The function will:

1. Set the coordinatePrecision in the metadata (original values will be overwritten):

https://docs.gbif.org/sensitive-species-best-practices/master/en/#s-generalization
https://docs.gbif.org/sensitive-species-best-practices/master/en/#table-06

round_coordinates 19

digits coordinatePrecision
1 0.1
2 0.01
3 0.001

2. Round all coordinates in the deployments to the selected number of digits.

3. Update the coordinateUncertainy (in meters) in the deployments. This uncertainty is based
on the number of digits and the latitude, following Table 3 in Chapman & Wieczorek 2020:

digits 0° latitude 30° latitude 60° latitude 85° latitude
1 15691 m 14697 m 12461 m 11211 m
2 1570 m 1470 m 1246 m 1121 m
3 157 m 147 m 125 m 112 m

If a coordinatePrecision is already present, the function will subtract the coordinateUncertainty
associated with it before setting a new uncertainty (e.g. 0.001 to 0.01 = original value - 157 + 1570 m).
If original value is NA, the function will assume the coordinates were obtained by GPS and
set original value = 30.

See Also

Other transformation functions: merge_camtrapdp(), shift_time(), update_taxon(), write_dwc(),
write_eml()

Examples

x <- example_dataset()

Original precision
x$coordinatePrecision

Original coordinates and uncertainty
deployments(x)[c("latitude", "longitude", "coordinateUncertainty")]

Round coordinates to 1 digit
x_rounded <- round_coordinates(x, 1)

Updated coordinatePrecision
x_rounded$coordinatePrecision

Updated coordinates and uncertainty (original 187 - 147 + 14697 = 14737)
deployments(x_rounded)[c("latitude", "longitude", "coordinateUncertainty")]

https://docs.gbif.org/georeferencing-best-practices/1.0/en/#table-uncertainty

20 shift_time

shift_time Shift date-times

Description

Shifts date-times for selected deployments (and associated media and observations) by a specified
duration. This function can be used to correct date-time issues such as incorrectly set time zones.

• Deployments: deploymentStart and deploymentEnd are updated and timestampIssues is
set to FALSE.

• Media: timestamp is updated.

• Observations: eventStart and eventEnd are updated.

• Metadata (x$temporal) are updated to match the new temporal scope.

Usage

shift_time(x, deployment_id, duration)

Arguments

x Camera Trap Data Package object, as returned by read_camtrapdp().

deployment_id One or more deploymentIDs.

duration Difference between the current and new date-times. Provide as a lubridate::duration()
or difftime.

Value

x with shifted date-times.

See Also

Other transformation functions: merge_camtrapdp(), round_coordinates(), update_taxon(),
write_dwc(), write_eml()

Examples

Set desired duration between current and new date-times (e.g. 4 hours earlier)
library(lubridate, warn.conflicts = FALSE)
duration(-4, units = "hours")

Or calculate one based on two date-times
current <- ymd_hms("2024-04-01T04:00:00", tz = "UTC")
new <- ymd_hms("2024-04-01T00:00:00", tz = "UTC")
duration <- as.duration(interval(current, new))

Shift date-times for 2 deployments
x <- example_dataset()

taxa 21

x_shifted <- shift_time(x, c("00a2c20d", "29b7d356"), duration)

Inspect results
deployments(x)[, c("deploymentID", "deploymentStart", "deploymentEnd")]
deployments(x_shifted)[, c("deploymentID", "deploymentStart", "deploymentEnd")]

taxa Get taxa

Description

Gets the (unique) scientific names and associated taxonomic information from the observations of
a Camera Trap Data Package object. Duplicate taxa (i.e. with the same scientificName) are
removed, retaining the taxon with (first) a taxonID and (second) the most taxonomic information.

Usage

taxa(x)

Arguments

x Camera Trap Data Package object, as returned by read_camtrapdp().

Value

A tibble::tibble() data frame with the taxonomic information, containing at least a scientificName
column.

See Also

Other accessor functions: contributors(), deployments(), events(), individuals(), locations(),
media(), observations()

Examples

x <- example_dataset()
taxa(x)

22 update_taxon

update_taxon Update a taxon

Description

Updates taxonomic information in data and metadata for a provided taxon. This allows to:

1. Update a taxon: provide the same name in to and from$scientificName.

2. Replace a taxon: provide a new name in from$scientificName.

3. Lump a taxon: provide a name in from$scientificName that is already present in the dataset.
In all cases, existing information will be overwritten with the provided information.

Usage

update_taxon(x, from, to)

Arguments

x Camera Trap Data Package object, as returned by read_camtrapdp().

from scientificName of the taxon to update.

to Named list with taxon information, e.g. list(scientificName = "Ardea",
taxonRank = "genus", vernacularname.eng = "great herons").

Value

x with updated taxon information.

See Also

Other transformation functions: merge_camtrapdp(), round_coordinates(), shift_time(), write_dwc(),
write_eml()

Examples

x <- example_dataset()

Update taxonomic information for "Anas platyrhynchos"
updated_x <- update_taxon(

x,
from = "Anas platyrhynchos",
to = list (
scientificName = "Anas platyrhynchos",
taxonID = "https://www.checklistbank.org/dataset/COL2023/taxon/DGP6",
taxonRank = "species",
vernacularNames.fra = "canard colvert"

)
)

version 23

Lump "Ardea cinerea" into already present "Ardea", using the provided info
updated_x <- update_taxon(

x,
from = "Ardea cinerea",
to = list(scientificName = "Ardea", vernacularname.fra = "grands hérons")

)

version Get Camtrap DP version

Description

Extracts the version number used by a Camera Trap Data Package object. This version number
indicates what version of the Camtrap DP standard was used.

Usage

version(x)

Arguments

x Camera Trap Data Package object, as returned by read_camtrapdp(). Also
works on a Frictionless Data Package, as returned by frictionless::read_package().

Details

The version number is derived as follows:

1. The version attribute, if defined.

2. A version number contained in x$profile, which is expected to contain the URL to the used
Camtrap DP standard.

3. x$profile in its entirety (can be NULL).

Value

Camtrap DP version number (e.g. 1.0).

Examples

x <- example_dataset()
version(x)

https://camtrap-dp.tdwg.org

24 write_camtrapdp

write_camtrapdp Write a Camera Trap Data Package to disk

Description

Writes a Camera Trap Data Package and its related Data Resources to disk as a datapackage.json
and CSV files.

Usage

write_camtrapdp(x, directory, ...)

Arguments

x Camera Trap Data Package object, as returned by read_camtrapdp().

directory Path to local directory to write files to.

... Further arguments, passed to frictionless::write_package() (e.g. compress
= TRUE).

Value

datapackage.json and CSV files written to disk.

Examples

x <- example_dataset()

Filter (and therefore change) the dataset
x <- filter_deployments(x, deploymentID == "00a2c20d")

Write the Camera Trap Data Package to disk
write_camtrapdp(x, directory = "my_directory")

Check files
list.files("my_directory")

Clean up (don't do this if you want to keep your files)
unlink("my_directory", recursive = TRUE)

write_dwc 25

write_dwc Transform a Camera Trap Data Package to a Darwin Core Archive

Description

Transforms a Camera Trap Data Package object to a Darwin Core Archive.

Usage

write_dwc(x, directory)

Arguments

x Camera Trap Data Package object, as returned by read_camtrapdp().

directory Path to local directory to write files to.

Value

CSV and meta.xml files written to disk. And invisibly, a list of data frames with the transformed
data.

Transformation details

This function follows recommendations in Reyserhove et al. (2023) doi:10.35035/doc0qzp2x37
and transform data to:

• An Occurrence core.

• An Audubon/Audiovisual Media Description extension.

• A meta.xml file.

Key features of the Darwin Core transformation:

• The Occurrence core contains one row per observation (dwc:occurrenceID = observationID).

• Only observations with observationType = "animal" and are included, thus excluding ob-
servations that are (of) humans, vehicles, blanks, unknowns and unclassified.

• Either observations with observationLevel = "event" or "media" are used, never both to
avoid duplicates. The level be defined with x$gbifIngestion$observationLevel, with
"event" as default.

• Observations classified by humans with 100% certainty get a dwc:identificationVerificationStatus
= "verified using recorded media".

• Deployment information is included in the Occurrence core, such as location, habitat, dwc:samplingProtocol,
deployment duration in dwc:samplingEffort and dwc:parentEventID = deploymentID as
grouping identifier.

• Event information is included in the Occurrence core, as event duration in dwc:eventDate
and dwc:eventID = eventID as grouping identifier.

https://dwc.tdwg.org/text/
https://doi.org/10.35035/doc-0qzp-2x37
https://docs.gbif.org/camera-trap-guide/en/#section-occurrence-core
https://docs.gbif.org/camera-trap-guide/en/#section-ac-extension

26 write_eml

• Media files are included in the Audubon/Audiovisual Media Description extension, with a
foreign key to the observation. A media file that is used for more than one observation is
repeated.

• Metadata are used to set the following record-level terms:

– dwc:datasetID: x$id.
– dwc:datasetName: x$title.
– dwc:collectionCode: first source in x$sources.
– dcterms:license: license name (e.g. CC0-1.0) in x$licenses with scope data. The

license name with scope media is used as dcterms:rights in the Audubon Media De-
scription extension.

– dcterms:rightsHolder: first contributor in x$contributors with role rightsHolder.
– dwc:dataGeneralizations: set if x$coordinatePrecision is defined.

See Also

Other transformation functions: merge_camtrapdp(), round_coordinates(), shift_time(), update_taxon(),
write_eml()

Examples

x <- example_dataset()
write_dwc(x, directory = "my_directory")

Clean up (don't do this if you want to keep your files)
unlink("my_directory", recursive = TRUE)

write_eml Transform a Camera Trap Data Package to EML

Description

Transforms the metadata of a Camera Trap Data Package object to an Ecological Metadata Lan-
guage (EML) file.

Usage

write_eml(x, directory, derived_paragraph = TRUE)

Arguments

x Camera Trap Data Package object, as returned by read_camtrapdp().

directory Path to local directory to write files to.
derived_paragraph

If TRUE, a paragraph will be added to the abstract, indicating that data have been
transformed using write_dwc().

https://eml.ecoinformatics.org/
https://eml.ecoinformatics.org/

write_eml 27

Value

eml.xml file written to disk. And invisibly, an EML::eml object.

Transformation details

Metadata are derived from what is provided in x. The following properties are set:

• title: Title as provided in x$title.

• type: Set to Occurrence in keywords.

• subtype: Set to Observation in keywords.

• update frequency: Set to unknown.

• description: Description as provided in x$description. If derived_paragraph = TRUE a
generated paragraph is added, e.g.:
Data have been standardized to Darwin Core using the camtrapdp R package and only include
observations (and associated media) of animals. Excluded are records that document blank or
unclassified media, vehicles and observations of humans.

• license: License with scope data as provided in x$licenses.

• creators: Contributors as provided in x$contributors, excluding those with roles rightsHolder
and publisher.

• contact: Contributors with role contact. If none exist, first creator.

• metadata provider: Same as contact.

• keywords: Keywords as provided in x$keywords.

• geographic coverage: Bounding box as provided in x$spatial.

• taxonomic coverage: Taxa as provided in x$taxonomic.

• temporal coverage: Date range as provided in x$temporal.

• project data: Title, acronym as identifier, description, and sampling design as provided in
x$project.

• alternative identifier: Identifier as provided in x$id. If this is a DOI, no new DOI will be
created when publishing to GBIF.

• external link: URL of the project as provided in x$project$path.

The following properties are not set:

• publishing organization
• associated parties
• sampling methods
• citations
• collection data: not applicable.

See Also

Other transformation functions: merge_camtrapdp(), round_coordinates(), shift_time(), update_taxon(),
write_dwc()

https://inbo.github.io/camtrapdp/

28 write_eml

Examples

x <- example_dataset()
(write_eml(x, directory = "my_directory"))

Clean up (don't do this if you want to keep your files)
unlink("my_directory", recursive = TRUE)

Index

∗ accessor functions
contributors, 3
deployments, 4
events, 5
individuals, 10
locations, 11
media, 12
observations, 15
taxa, 21

∗ check functions
check_camtrapdp, 2

∗ filter functions
filter_deployments, 6
filter_media, 7
filter_observations, 8

∗ misc functions
version, 23

∗ print functions
print.camtrapdp, 16

∗ read functions
read_camtrapdp, 16

∗ sample data
example_dataset, 6

∗ transformation functions
merge_camtrapdp, 13
round_coordinates, 18
shift_time, 20
update_taxon, 22
write_dwc, 25
write_eml, 26

∗ write functions
write_camtrapdp, 24

check_camtrapdp, 2
contributors, 3, 4, 5, 10–12, 15, 21
contributors<- (contributors), 3

deployments, 4, 4, 5, 10–12, 15, 21
deployments<- (deployments), 4
difftime, 20

EML::eml, 27
events, 4, 5, 10–12, 15, 21
example_dataset, 6

filter_deployments, 6, 8, 9
filter_media, 7, 7, 9
filter_observations, 7, 8, 8
frictionless::print.datapackage(), 16
frictionless::read_package(), 23
frictionless::read_resource(), 17
frictionless::write_package(), 24

individuals, 4, 5, 10, 11, 12, 15, 21

locations, 4, 5, 10, 11, 12, 15, 21
lubridate::duration(), 20

media, 4, 5, 10, 11, 12, 15, 21
media<- (media), 12
merge_camtrapdp, 13, 19, 20, 22, 26, 27

observations, 4, 5, 10–12, 15, 21
observations<- (observations), 15

print(), 16
print.camtrapdp, 16

read_camtrapdp, 16
read_camtrapdp(), 3–6, 8–13, 15, 16, 18,

20–26
round_coordinates, 14, 18, 20, 22, 26, 27

shift_time, 14, 19, 20, 22, 26, 27

taxa, 4, 5, 10–12, 15, 21
taxa(), 17
tibble::tibble(), 3–5, 10–12, 15, 21

update_taxon, 14, 19, 20, 22, 26, 27

version, 23

29

30 INDEX

write_camtrapdp, 24
write_dwc, 14, 19, 20, 22, 25, 27
write_eml, 14, 19, 20, 22, 26, 26

	check_camtrapdp
	contributors
	deployments
	events
	example_dataset
	filter_deployments
	filter_media
	filter_observations
	individuals
	locations
	media
	merge_camtrapdp
	observations
	print.camtrapdp
	read_camtrapdp
	round_coordinates
	shift_time
	taxa
	update_taxon
	version
	write_camtrapdp
	write_dwc
	write_eml
	Index

