Package ‘cachem’

May 16, 2024

Version 1.1.0
Title Cache R Objects with Automatic Pruning

Description Key-value stores with automatic pruning. Caches can limit
either their total size or the age of the oldest object (or both),
automatically pruning objects to maintain the constraints.

License MIT + file LICENSE
Encoding UTF-8
ByteCompile true

URL https://cachem.r-1ib.org/, https://github.com/r-1ib/cachem
Imports rlang, fastmap (>= 1.2.0)

Suggests testthat

RoxygenNote 7.2.3

Config/Needs/routine lobstr

Config/Needs/website pkgdown

NeedsCompilation yes

Author Winston Chang [aut, cre],
Posit Software, PBC [cph, fnd]

Maintainer Winston Chang <winston@posit.co>
Repository CRAN
Date/Publication 2024-05-16 09:50:11 UTC

R topics documented:

cache disk. L e
cache_layered L
cache_mem

Index

https://cachem.r-lib.org/
https://github.com/r-lib/cachem

cache_disk

cache_disk

Create a disk cache object

Description

A disk cache object is a key-value store that saves the values as files in a directory on disk. Objects
can be stored and retrieved using the get () and set() methods. Objects are automatically pruned
from the cache according to the parameters max_size, max_age, max_n, and evict.

Usage

cache_disk(
dir = NULL,
max_size

1024 * 1024*2,

max_age = Inf,

max_n =
evict =

c("lru”, "fifo"),

destroy_on_finalize = FALSE,

read_fn

NULL,

write_fn = NULL,
extension = ".rds",
missing = key_missing(),
prune_rate = 20,
warn_ref_objects = FALSE,
logfile = NULL

Arguments

dir

max_size

max_age

max_n

evict

Directory to store files for the cache. If NULL (the default) it will create and use
a temporary directory.

Maximum size of the cache, in bytes. If the cache exceeds this size, cached
objects will be removed according to the value of the evict. Use Inf for no
size limit. The default is 1 gigabyte.

Maximum age of files in cache before they are evicted, in seconds. Use Inf for
no age limit.

Maximum number of objects in the cache. If the number of objects exceeds this
value, then cached objects will be removed according to the value of evict. Use
Inf for no limit of number of items.

The eviction policy to use to decide which objects are removed when a cache
pruning occurs. Currently, "1ru” and "fifo" are supported.

destroy_on_finalize

If TRUE, then when the cache_disk object is garbage collected, the cache direc-
tory and all objects inside of it will be deleted from disk. If FALSE (the default),
it will do nothing when finalized.

cache_disk 3

read_fn The function used to read the values from disk. If NULL (the default) it will use
readRDS.

write_fn The function used to write the values from disk. If NULL (the default) it will use
writeRDS.

extension The file extension to use for files on disk.

missing A value to return when get(key) is called but the key is not present in the

cache. The default is a key_missing() object. It is actually an expression that
is evaluated each time there is a cache miss. See section Missing keys for more
information.

prune_rate How often to prune the cache. See section Cache Pruning for more information.
warn_ref_objects
Should a warning be emitted when a reference is stored in the cache? This
can be useful because serializing and deserializing a reference object (such as
environments and external pointers) can lead to unexpected behavior.

logfile An optional filename or connection object to where logging information will be
written. To log to the console, use stderr() or stdout().

Value

A disk caching object, with class cache_disk.

Missing keys

The missing parameter controls what happens when get () is called with a key that is not in the
cache (a cache miss). The default behavior is to return a key_missing() object. This is a sentinel
value that indicates that the key was not present in the cache. You can test if the returned value
represents a missing key by using the is.key_missing() function. You can also have get () return
a different sentinel value, like NULL. If you want to throw an error on a cache miss, you can do so
by providing an expression for missing, as in missing = stop(”"Missing key").

When the cache is created, you can supply a value for missing, which sets the default value to be
returned for missing values. It can also be overridden when get () is called, by supplying amissing
argument. For example, if you use cache$get("mykey”, missing = NULL), it will return NULL if
the key is not in the cache.

The missing parameter is actually an expression which is evaluated each time there is a cache miss.
A quosure (from the rlang package) can be used.

If you use this, the code that calls get () should be wrapped with tryCatch() to gracefully handle
missing keys.

Cache pruning

Cache pruning occurs when set () is called, or it can be invoked manually by calling prune().

The disk cache will throttle the pruning so that it does not happen on every call to set(), because
the filesystem operations for checking the status of files can be slow. Instead, it will prune once in
every prune_rate calls to set (), or if at least 5 seconds have elapsed since the last prune occurred,
whichever is first.

When a pruning occurs, if there are any objects that are older than max_age, they will be removed.

4 cache_disk

The max_size and max_n parameters are applied to the cache as a whole, in contrast to max_age,
which is applied to each object individually.

If the number of objects in the cache exceeds max_n, then objects will be removed from the cache
according to the eviction policy, which is set with the evict parameter. Objects will be removed so
that the number of items is max_n.

If the size of the objects in the cache exceeds max_size, then objects will be removed from the
cache. Objects will be removed from the cache so that the total size remains under max_size. Note
that the size is calculated using the size of the files, not the size of disk space used by the files —
these two values can differ because of files are stored in blocks on disk. For example, if the block
size is 4096 bytes, then a file that is one byte in size will take 4096 bytes on disk.

Another time that objects can be removed from the cache is when get() is called. If the target
object is older than max_age, it will be removed and the cache will report it as a missing value.

Eviction policies

If max_n or max_size are used, then objects will be removed from the cache according to an eviction
policy. The available eviction policies are:

"lru” Least Recently Used. The least recently used objects will be removed. This uses the
filesystem’s mtime property. When "lru" is used, each get() is called, it will update the
file’s mtime using Sys.setFileTime(). Note that on some platforms, the resolution of
Sys.setFileTime() may be low, one or two seconds.

"fifo" First-in-first-out. The oldest objects will be removed.

Both of these policies use files’ mtime. Note that some filesystems (notably FAT) have poor mtime
resolution. (atime is not used because support for atime is worse than mtime.)

Sharing among multiple processes

The directory for a cache_disk can be shared among multiple R processes. To do this, each R pro-
cess should have a cache_disk object that uses the same directory. Each cache_disk will do pruning
independently of the others, so if they have different pruning parameters, then one cache_disk may
remove cached objects before another cache_disk would do so.

Even though it is possible for multiple processes to share a cache_disk directory, this should not be
done on networked file systems, because of slow performance of networked file systems can cause
problems. If you need a high-performance shared cache, you can use one built on a database like
Redis, SQLite, mySQL, or similar.

When multiple processes share a cache directory, there are some potential race conditions. For ex-
ample, if your code calls exists(key) to check if an object is in the cache, and then call get (key),
the object may be removed from the cache in between those two calls, and get (key) will throw an
error. Instead of calling the two functions, it is better to simply call get(key), and check that the
returned object is not a key_missing() object, using is.key_missing(). This effectively tests for
existence and gets the object in one operation.

It is also possible for one processes to prune objects at the same time that another processes is trying
to prune objects. If this happens, you may see a warning from file.remove() failing to remove a
file that has already been deleted.

cache_layered 5

Methods

A disk cache object has the following methods:

get(key, missing) Returns the value associated with key. If the key is not in the cache, then it
evaluates the expression specified by missing and returns the value. If missing is specified
here, then it will override the default that was set when the cache_mem object was created. See
section Missing Keys for more information.

set(key, value) Stores the key-value pair in the cache.
exists(key) Returns TRUE if the cache contains the key, otherwise FALSE.

remove (key) Removes key from the cache, if it exists in the cache. If the key is not in the cache,
this does nothing.

size() Returns the number of items currently in the cache.

keys() Returns a character vector of all keys currently in the cache.

reset() Clears all objects from the cache.

destroy() Clears all objects in the cache, and removes the cache directory from disk.

prune() Prunes the cache, using the parameters specified by max_size, max_age, max_n, and
evict.

cache_layered Compose any number of cache objects into a new, layered cache object

Description

Note that cache_layered is currently experimental.

Usage
cache_layered(..., logfile = NULL)
Arguments
. Cache objects to compose into a new, layered cache object.
logfile An optional filename or connection object to where logging information will be
written. To log to the console, use stderr() or stdout().
Value

A layered caching object, with class cache_layered.

Examples

Make a layered cache from a small memory cache and large disk cache
m <- cache_mem(max_size = 100 * 1024"2)

d <- cache_disk(max_size = 2 x 1024"3)

cl <- cache_layered(m, d)

cache_mem

cache_mem

Create a memory cache object

Description

A memory cache object is a key-value store that saves the values in an environment. Objects can be
stored and retrieved using the get() and set() methods. Objects are automatically pruned from
the cache according to the parameters max_size, max_age, max_n, and evict.

Usage

cache_mem(
max_size

max_n =
evict =
missing
logfile

Arguments

max_size

max_age

max_n

evict

missing

logfile

Details

= 512 * 1024"2,
max_age = Inf,

Inf,

c("lru”, "fifo"),

= key_missing(),
= NULL

Maximum size of the cache, in bytes. If the cache exceeds this size, cached
objects will be removed according to the value of the evict. Use Inf for no
size limit. The default is 512 megabytes.

Maximum age of files in cache before they are evicted, in seconds. Use Inf for
no age limit.

Maximum number of objects in the cache. If the number of objects exceeds this
value, then cached objects will be removed according to the value of evict. Use
Inf for no limit of number of items.

The eviction policy to use to decide which objects are removed when a cache
pruning occurs. Currently, "1ru” and "fifo" are supported.

A value to return when get(key) is called but the key is not present in the
cache. The default is a key_missing() object. It is actually an expression that
is evaluated each time there is a cache miss. See section Missing keys for more
information.

An optional filename or connection object to where logging information will be
written. To log to the console, use stderr() or stdout().

In a cache_mem, R objects are stored directly in the cache; they are not not serialized before being
stored in the cache. This contrasts with other cache types, like cache_disk(), where objects are
serialized, and the serialized object is cached. This can result in some differences of behavior. For
example, as long as an object is stored in a cache_mem, it will not be garbage collected.

cache_mem 7

Value

A memory caching object, with class cache_mem.

Missing keys

The missing parameter controls what happens when get() is called with a key that is not in the
cache (a cache miss). The default behavior is to return a key_missing() object. This is a sentinel
value that indicates that the key was not present in the cache. You can test if the returned value
represents a missing key by using the is.key_missing() function. You can also have get () return
a different sentinel value, like NULL. If you want to throw an error on a cache miss, you can do so
by providing an expression for missing, as in missing = stop(”"Missing key").

When the cache is created, you can supply a value for missing, which sets the default value to be
returned for missing values. It can also be overridden when get () is called, by supplying amissing
argument. For example, if you use cache$get("mykey”, missing = NULL), it will return NULL if
the key is not in the cache.

The missing parameter is actually an expression which is evaluated each time there is a cache miss.
A quosure (from the rlang package) can be used.

If you use this, the code that calls get () should be wrapped with tryCatch() to gracefully handle
missing keys.

@section Cache pruning:
Cache pruning occurs when set () is called, or it can be invoked manually by calling prune().
When a pruning occurs, if there are any objects that are older than max_age, they will be removed.

The max_size and max_n parameters are applied to the cache as a whole, in contrast to max_age,
which is applied to each object individually.

If the number of objects in the cache exceeds max_n, then objects will be removed from the cache
according to the eviction policy, which is set with the evict parameter. Objects will be removed so
that the number of items is max_n.

If the size of the objects in the cache exceeds max_size, then objects will be removed from the
cache. Objects will be removed from the cache so that the total size remains under max_size.

Another time that objects can be removed from the cache is when get() is called. If the target
object is older than max_age, it will be removed and the cache will report it as a missing value.
Eviction policies

If max_n or max_size are used, then objects will be removed from the cache according to an eviction
policy. The available eviction policies are:

"lru” Least Recently Used. The least recently used objects will be removed.

"fifo" First-in-first-out. The oldest objects will be removed.

Methods

A disk cache object has the following methods:

cache_mem

get(key, missing) Returns the value associated with key. If the key is not in the cache, then it
evaluates the expression specified by missing and returns the value. If missing is specified
here, then it will override the default that was set when the cache_mem object was created. See
section Missing Keys for more information.

set(key, value) Stores the key-value pair in the cache.
exists(key) Returns TRUE if the cache contains the key, otherwise FALSE.

remove (key) Removes key from the cache, if it exists in the cache. If the key is not in the cache,
this does nothing.

size() Returns the number of items currently in the cache.

keys() Returns a character vector of all keys currently in the cache.

reset() Clears all objects from the cache.

destroy() Clears all objects in the cache, and removes the cache directory from disk.

prune() Prunes the cache, using the parameters specified by max_size, max_age, max_n, and
evict.

Index

cache_disk, 2
cache_disk(), 6
cache_layered, 5
cache_mem, 6

is.key_missing(), 3,7
key_missing(), 3,6, 7
Sys.setFileTime(), 4

tryCatch(), 3,7

	cache_disk
	cache_layered
	cache_mem
	Index

