Package 'bwimage'

October 12, 2022

Type Package

Title Describe Image Patterns in Natural Structures

Version 1.3

Date 2020-04-22

Author Carlos Biagolini-Jr.

Maintainer Carlos Biagolini-Jr.<c.biagolini@gmail.com>

Depends stats, utils

Imports jpeg, png

Description A computational tool to describe patterns in black and white images from natural structures. 'bwimage' implemented functions for exceptionally broad subject. For instance, 'bwimage' provide examples that range from calculation of canopy openness, description of patterns in vertical vegetation structure, to patterns in bird nest structure.

License GPL (>= 2)

NeedsCompilation no

Repository CRAN

Date/Publication 2020-04-22 20:24:10 UTC

R topics documented:

bwimage-package	
aggregation_index	
altitudinal_profile	
compress	
denseness_column	
denseness_row	
denseness_sample	
denseness_total	
heigh_maximum	
heigh_propotion	
heigh_propotion_test	
hole_columm	
hole_row	

bwimage-package

hole_section	16
hole_section_data	17
image_information	18
light_gap	19
plot_samples	20
stretch	21
threshold_color	22
threshold_image_list	23
topline	25
	26

Index

bwimage-package Describe Image Patterns in Natural Structures

Description

A computational tool to describe patterns in black and white images from natural structures. 'bwimage' implemented functions for exceptionally broad subject. For instance, 'bwimage' provide examples that range from calculation of canopy openness, description of patterns in vertical vegetation structure, to patterns in bird nest structure.

Details

The DESCRIPTION file:

Package:	bwimage
Type:	Package
Title:	Describe Image Patterns in Natural Structures
Version:	1.3
Date:	2020-04-22
Author:	Carlos Biagolini-Jr.
Maintainer:	Carlos Biagolini-Jr. <c.biagolini@gmail.com></c.biagolini@gmail.com>
Depends:	stats, utils
Imports:	jpeg, png
Description:	A computational tool to describe patterns in black and white images from natural structures. 'bwimage' impler
License:	GPL (>= 2)

Index of help topics:

aggregation_index	Aggregation index calculator
altitudinal_profile	Highest black pixel by sections
bwimage-package	Describe Image Patterns in Natural Structures
compress	Compress square to circle
denseness_column	Denseness in column sections
denseness_row	Denseness in row sections
denseness_sample	Denseness in samples

aggregation_index

denseness_total	Denseness for whole image
heigh_maximum	Height of the highest black pixel in the image
heigh_propotion	Cumulative denseness for each line
heigh_propotion_test	Cumulative denseness test
hole_columm	Holes description in columns sections
hole_row	Holes description in row sections
hole_section	Hole finder
hole_section_data	Summary of holes information
image_information	Summary of image information
light_gap	Light gap
<pre>plot_samples</pre>	Plot samples from denseness_sample
stretch	stretch circle to square
threshold_color	Image to matrix - Single
threshold_image_list	Image to matrix - List
topline	Top line

A computational tool to describe patterns in black and white images from natural structures.

Author(s)

Carlos Biagolini-Jr.

Maintainer: Carlos Biagolini-Jr.<c.biagolini@gmail.com>

References

Biagolini-Jr C, Macedo RH (2019) bwimage: A package to describe image patterns in natural structures. F1000Research 8 Lambers M (2016) Mappings between sphere, disc, and square. Journal of Computer Graphics Techniques Vol 5:1-21 Nobis M, Hunziker U (2005) Automatic thresholding for hemispherical canopy-photographs based on edge detection. Agricultural and forest meteorology 128:243-250 Shirley P, Chiu K (1997) A low distortion map between disk and square. Journal of graphics tools 2:45-52 Zehm A, Nobis M, Schwabe A (2003) Multiparameter analysis of vertical vegetation structure based on digital image processing. Flora-Morphology, Distribution, Functional Ecology of Plants 198:142-160

Examples

```
bush<-system.file("extdata/bush.JPG", package ="bwimage")
bush_imagematrix<-threshold_color(bush, "jpeg", "proportional",compress_rate = 0.1)
aggregation_index(bush_imagematrix)</pre>
```

aggregation_index Aggregation index calculator

Description

The function aggregation_index calculate the aggregation index. It works for matrix with and without transparent pixel. The aggregation index is a standardized estimation of the average proportion of same-color pixels around each image pixel. First, the proportion of same-color neighboring pixels (SCNP) is calculated (marginal lines and columns are excluded). Next, the SCNP for all pixels are averaged; then, given the proportion of black and white pixels, number of pixels in height and width, and location of transparent pixels (when present), the maximum and minimum possible aggregation indexes are calculated. Finally, the observed aggregation is standardized to a scale where the minimum possible value is set at zero and the maximum value is set at one.

Usage

```
aggregation_index(imagematrix)
```

Arguments

imagematrix The matrix to be analysed.

Value

adjusted_aggregation Standardized aggregation. non_adjusted_aggregation Observed aggregation.

Author(s)

Carlos Biagolini-Jr.

See Also

threshold_color

Examples

```
# First, get a matrix from your image. Here an example of a bush image is used.
# Using aggregation_index to estimate vegetation agregation
bush<-system.file("extdata/bush.JPG", package ="bwimage")
bush_imagematrix<-threshold_color(bush, "jpeg", "proportional", compress_rate = 0.1)
aggregation_index(bush_imagematrix)
```

```
# Using aggregation_index to estimate aggregation of nest wall holes
nestwall<-system.file("extdata/bird_nestwall.png", package ="bwimage")
nestwall_imagematrix<-threshold_color(nestwall, "png", "width_fixed", target_width=300)
aggregation_index(nestwall_imagematrix)
```

4

altitudinal_profile Highest black pixel by sections

Description

Break the original matrix in a number of section (n_sections), then find the higher black pixel in each image section.

Usage

```
altitudinal_profile(imagematrix, n_sections, height_size)
```

Arguments

imagematrix	The matrix to be analysed.
n_sections	Break the image in this number of columns.
height_size	Real size of image height (in mm, cm, m, etc).

Value

Mean	Height mean of the highest black pixel in sections.
SD	Standard deviations of the highest black pixel in sections.
Size	Height of the highest black pixel in sections.

Author(s)

Carlos Biagolini-Jr.

References

Zehm et al 2003 Multiparameter analysis of vertical vegetation structure based on digital image processing. Flora-Morphology, Distribution, Functional Ecology of Plants, 198: 142-160.

See Also

threshold_color

Examples

```
# First, get a matrix from your image. Here an example of a bush image is used.
bush<-system.file("extdata/bush.JPG",package ="bwimage")
bush_imagematrix<-threshold_color(bush, "jpeg", "proportional", compress_rate = 0.1)
# Profile of highest black pixels on sections of the bush image matrix
altitudinal_profile(bush_imagematrix,n_sections = 10, height_size=100)
# Conclusions:
# i) the mean height of the highest black pixel is 45.28 cm.
# ii) standard deviation of highest black height is 21.54.
```

compress

Description

Compress data from square image to circular in binary matrix

Usage

```
compress(imagematrix, method = "radial", background = NA)
```

Arguments

imagematrix	The matrix to be compressed.
method	Compress algorithm. Four algorithms (radial, shirley, squircle, and elliptical) are available to stretch the image. The algorithms were adapted from Lambers 2016.
background	Code for background cell value. When compressing a squared matrix, corners of the transformed matrix will no have corresponding pixel from original matrix. Thus, the background value will be the value of transformed matrix corners.

Value

A matrix of 0, 1 and NA representing white, black and transparent pixels, respectively.

Author(s)

Carlos Biagolini-Jr.

References

Lambers 2016 Mappings between Sphere, Disc, and Square. Journal of Computer Graphics Techniques, 5(2): 1-21.

Examples

```
img_location <- system.file("extdata/chesstable.png",package ="bwimage")
image_matrix<- threshold_color(img_location,"png", "frame_fixed",target_width = 50,target_height=50)
compress(image_matrix,method="radial")</pre>
```

Description

Calculate the denseness (proportion of black pixel in relation to the total number of pixels) for a given number of sections (n_sections). n_sections should be set as a number, in this situation denseness_column will break the original matrix in slices, and apply denseness_total function for each section. For instance, in a matrix of 1000x1000 if n_sections = 10, it will break to 10 sections of 1000x100 and analyze it. In other words, the sections will be the following sections of the original matrix [1:1000, 1:100], [1:1000,101:200], [1:1000,201:300], [1:1000,301:400], [1:1000,401:500], [1:1000,501:600], [1:1000,601:700], [1:1000,701:800], [1:1000,801:900], [1:1000,901:1000]. The default for parameter n_sections is "all", it will calculate denseness for each column of pixel. In other words, it will break the image in a number of section equal to the image pixel width.

Usage

```
denseness_column(imagematrix, n_sections = "all")
```

Arguments

imagematrix	The matrix to be analysed.
n_sections	Break the image in this number of columns.

Value

Denseness	Denseness of each column section.
Mean	Mean of column sections denseness.
SD	standard deviations of column sections denseness.

Author(s)

Carlos Biagolini-Jr.

References

Zehm et al 2003 Multiparameter analysis of vertical vegetation structure based on digital image processing. Flora-Morphology, Distribution, Functional Ecology of Plants, 198: 142-160.

See Also

denseness_total threshold_color

Examples

```
# First, get a matrix from your image. Here an example of a bush image is used.
bush<-system.file("extdata/bush.JPG",package ="bwimage")
bush_imagematrix<-threshold_color(bush, "jpeg", "proportional", compress_rate = 0.1)
# Calculate vegetation denseness in 20 column sections
denseness_column(bush_imagematrix,20)
```

denseness_row 1

Denseness in row sections

Description

Calculate the denseness (proportion of black pixel in relation to the total number of pixels) for a given number of sections (n_sections). n_sections should be set as a number, in this situation denseness_row will break the original matrix in slices, and apply denseness_total function for each section. For instance, in a matrix of 1000x1000 if n_sections = 10, it will break to 10 sections of 100x1000 and analyze it. In other words, the sections will be the following sections of the original matrix [1:100, 1:1000], [101:200, 1:1000], [201:300, 1:1000], [301:400, 1:1000], [401:500, 1:1000], [501:600, 1:1000], [601:700, 1:1000], [701:800, 1:1000], [801:900, 1:1000], [901:1000, 1:1000]. The default for parameter n_sections is "all", it will calculate denseness for each row of pixel. In other words, it will break the image in a number of section equal to the image pixel height.

Usage

```
denseness_row(imagematrix, n_sections = "all")
```

Arguments

imagematrix	The matrix to be analysed.
n_sections	Break the image in this number of rows.

Value

Denseness	Denseness of each row section.
Mean	Mean of row sections denseness.
SD	standard deviations of row sections denseness.

Author(s)

Carlos Biagolini-Jr.

References

Zehm et al 2003 Multiparameter analysis of vertical vegetation structure based on digital image processing. Flora-Morphology, Distribution, Functional Ecology of Plants, 198: 142-160.

denseness_sample

See Also

denseness_total threshold_color

Examples

```
# First, get a matrix from your image. Here an example of a bush image is used.
bush<-system.file("extdata/bush.JPG",package ="bwimage")
bush_imagematrix<-threshold_color(bush, "jpeg", "proportional",compress_rate = 0.1)</pre>
```

```
# Calculate vegetation denseness in 20 row sections
denseness_row(bush_imagematrix, n_sections = 20)
```

denseness_sample Denseness in samples

Description

Calculate the denseness (proportion of black pixel in relation to the total number of pixels) for a given number of samples.

Usage

```
denseness_sample(imagematrix, width_size, height_size, sample_width,
    sample_height, method = "random", sample_shape = "rectangle",
    n_samples = 10, n_sample_horizontal = 10, n_sample_vertical = 1,
    proportion_horizontal = 1, proportion_vertical = 1,
    aligin_horizontal = "center", aligin_vertical = "bottom")
```

Arguments

imagematrix	The matrix to be analysed.		
width_size	Real size of image width (in mm, cm, m, etc).		
height_size	Real size of image height (in mm, cm, m, etc).		
sample_width	Width of sample area.		
sample_height	Height of sample area.		
method	Method for sample ("random" or "uniform").		
sample_shape	The shape of sample unity ("rectangle" or "ellipse"). See plot_samples function.		
n_samples	Defines the number of samples, when sample_shape="random".		
n_sample_horizontal			
	Defines the number of samples column, when sample_shape=" uniform".		
n_sample_vertical			
	Defines the number of samples lines, when sample_shape=" uniform".		
proportion_horizontal			
	Range from 0 to 1. Represent the proportion of horizontal plane to be sample. If proportion_horizontal=1 (default) all columns beacome potentially sample.		

proportion_vert	ical
	Range from 0 to 1. Represent the proportion of vertical plane to be sample. If proportion_vertical=1 (default) all lines become potentially sample.
aligin_horizonta	al
	Define horizontal align. Three options are available: "center", "left" or "right".
aligin_vertical	
	Define vertical align. Three options are available: "middle", "bottom" or "top".

Value

Sample_densenessProportion of black pixels in samples. It do not take into account transparent
pixels (when present)..HeightHeight of each sample (in mm, cm, m, etc. ..). Central point used as reference.Distance(left)Distance ti the left side of each sample (in mm, cm, m, etc. ..). Central point
used as reference.Matrix(line)Imagem matrix line coordinates.Matrix(column)Imagem matrix column coordinates.

Author(s)

Carlos Biagolini-Jr.

See Also

plot_samples

Examples

Get a matrix from your image. Here examples provided by bwimage package.

```
bush<-system.file("extdata/bush.JPG",package ="bwimage")
bush<-threshold_color(bush, "jpeg", "proportional",compress_rate = 0.1)
denseness_sample(bush, width_size=100, height_size=100, sample_width=5, sample_height=5)</pre>
```

denseness_total Denseness for whole image

Description

Proportion of black pixels in relation to all pixels. It do not take into account transparent pixels (when present).

Usage

denseness_total(imagematrix)

heigh_maximum

Arguments

imagematrix The matrix to be analysed.

Value

Proportion of black pixels in relation to all pixels. It do not take into account transparent pixels (when present).

Author(s)

Carlos Biagolini-Jr.

References

Zehm et al 2003 Multiparameter analysis of vertical vegetation structure based on digital image processing. Flora-Morphology, Distribution, Functional Ecology of Plants, 198: 142-160.

See Also

threshold_color

Examples

Get a matrix from your image. Here examples provided by bwimage package.

```
# I) Calculate vegetation denseness
bush<-system.file("extdata/bush.JPG",package ="bwimage")
bush_imagematrix<-threshold_color(bush, "jpeg", "proportional",compress_rate = 0.1)
denseness_total(bush_imagematrix)
# II) Calculate canopy openness
# Convert image into binary matrix
```

```
canopy<-system.file("extdata/canopy.JPG",package ="bwimage")
canopy_matrix<-threshold_color(canopy,"jpeg", compress_method="proportional",compress_rate=0.1)
1-denseness_total(canopy_matrix) # canopy openness</pre>
```

heigh_maximum	Height of the highest	t black pixel in the image
---------------	-----------------------	----------------------------

Description

Find the higher black pixel in the whole image.

Usage

heigh_maximum(imagematrix, height_size)

Arguments

imagematrix	The matrix to be analysed.
height_size	Real size of image width (in mm, cm, m, etc).

Value

Height of the highest black pixel. It is scaleted for the real size (in mm, cm, m, etc..) based in the information from argument height_size.

Author(s)

Carlos Biagolini-Jr.

References

Zehm et al 2003 Multiparameter analysis of vertical vegetation structure based on digital image processing. Flora-Morphology, Distribution, Functional Ecology of Plants, 198: 142-160.

See Also

threshold_color

Examples

```
# First, get a matrix from your image. Here an example of a bush image is used.
bush<-system.file("extdata/bush.JPG",package ="bwimage")
bush_imagematrix<-threshold_color(bush, "jpeg", "proportional", compress_rate = 0.1)
# Calculate height of the highest black pixel in the bush image matrix
heigh_maximum(bush_imagematrix,height_size=100)
```

Conclusions: The highest vegetation unit ,i.e. highest black pixel, is 84.4 cm above ground.

heigh_propotion Cumulative denseness for each line

Description

Proportion of black pixel below each matrix line.

Usage

```
heigh_propotion(imagematrix)
```

Arguments

imagematrix The matrix to be analysed.

Author(s)

Carlos Biagolini-Jr.

References

Zehm et al 2003 Multiparameter analysis of vertical vegetation structure based on digital image processing. Flora-Morphology, Distribution, Functional Ecology of Plants, 198: 142-160.

See Also

threshold_color

Examples

```
# First, get a matrix from your image. Here an example of a bush image is used.
bush<-system.file("extdata/bush.JPG",package ="bwimage")
bush_imagematrix<-threshold_color(bush, "jpeg", "proportional", compress_rate = 0.1)
# Proportion of black pixel below each matrix line.
```

```
heigh_propotion(bush_imagematrix)
```

heigh_propotion_test Cumulative denseness test

Description

Find the height which a given proportion of black pixel is found.

Usage

```
heigh_propotion_test(imagematrix, proportion, height_size)
```

Arguments

imagematrix	The matrix to be analysed.
proportion	Proportion of denseness to test.
height_size	Real size of image height (in mm, cm, m, etc).

Author(s)

Carlos Biagolini-Jr.

References

Zehm et al 2003 Multiparameter analysis of vertical vegetation structure based on digital image processing. Flora-Morphology, Distribution, Functional Ecology of Plants, 198: 142-160.

See Also

threshold_color

Examples

```
# First, get a matrix from your image. Here an example of a bush image is used.
bush<-system.file("extdata/bush.JPG",package ="bwimage")
bush_imagematrix<-threshold_color(bush, "jpeg", "proportional", compress_rate = 0.1)
# See the proportion of black pixels (1) below each bush image matrix row
heigh_propotion_test(bush_imagematrix,0.75,100)
# Conclusion: in this imagem, 75 percent of the vegetation is hold below 31.2 cm.
```

hole_columm

Holes description in columns sections

Description

Summary information of holes in a given number of columns (n_sections). n_sections must be set as a number, in this situation hole_column will sample columns, and apply hole_section_data function for each section. Next, all results will be display on hole_column output. Example of how column sample works: in a matrix of 250x250 if n_sections = 5, it will sample columns 1,51,101,151, and 201 and analyze it. In other words, the sections will be following sections of the original matrix [1:250,1], [1:250,51], [1:250,101], [1:250,151], [1:250,201]. The default for parameter n_sections is "all", it will calculate hole_section_data for each column of pixel. In other words, it will break the image in a number of section equal to the image pixel width.

Usage

```
hole_columm(imagematrix, color = 0, n_sections = "all")
```

Arguments

imagematrix	The matrix to be analysed.
color	Color of the hole (0 or 1).
n_sections	Sample this number of columns.

Value

Ν	Number of sections.
Mean	Mean sections size.
SD	standard deviations of sections size.
Min	Minimum sections size sections size.
Max	Maximum sections size.
LH	Stratum with largest hole count.

hole_row

Author(s)

Carlos Biagolini-Jr.

References

Zehm et al 2003 Multiparameter analysis of vertical vegetation structure based on digital image processing. Flora-Morphology, Distribution, Functional Ecology of Plants, 198: 142-160.

See Also

hole_section_data threshold_color

Examples

```
# First, get a matrix from your image. Here an example of a bush image is used.
bush<-system.file("extdata/bush.JPG",package ="bwimage")
bush_imagematrix<-threshold_color(bush, "jpeg", "proportional", compress_rate = 0.1)</pre>
```

Information of white (i.e. 0s in matrix) holes in 5 columns uniformly sample among matrix. hole_columm(bush_imagematrix, n_sections=5)

Information of black (i.e. 1s in matrix) holes in 20 columns uniformly sample among matrix. hole_columm(bush_imagematrix, n_sections=20)

hole_row

Holes description in row sections

Description

Summary information of holes in a given number of rows (n_sections). n_sections must be set as a number, in this situation hole_row will sample rows, and apply hole_section_data function for each section. Next, all results will be display on hole_columm output. Example of how row sample works: in a matrix of 250x250 if n_sections = 5, it will sample rows 1,51,101,151, and 201 and analyze it. In other words, the sections will be following sections of the original matrix [1,1:250], [51,1:250], [101,1:250], [201,1:250]. The default for parameter n_sections is "all", it will calculate hole_section_data for each row of pixel. In other words, it will break the image in a number of section equal to the image pixel height.

Usage

hole_row(imagematrix, color = 0, n_sections = "all")

Arguments

imagematrix	The matrix to be analysed.
color	Color of the hole (0 or 1).
n_sections	Sample this number of rows.

Value

Ν	Number of sections.
Mean	Mean sections size.
SD	standard deviations of sections size.
Min	Minimum sections size sections size.
Max	Maximum sections size.
LH	Stratum with largest hole count.

Author(s)

Carlos Biagolini-Jr.

See Also

hole_section_data threshold_color

Examples

```
# First, get a matrix from your image. Here an example of a bush image is used.
bush<-system.file("extdata/bush.JPG",package ="bwimage")
bush_imagematrix<-threshold_color(bush, "jpeg", "proportional", compress_rate = 0.1)</pre>
```

Information of white (i.e. 0s in matrix) holes in 10 rows uniformly sample among matrix. hole_row(bush_imagematrix, n_sections=10)

Information of black (i.e. 1s in matrix) holes in 15 rows uniformly sample among matrix. hole_row(bush_imagematrix, n_sections=15)

hole_section Hole finder

Description

Description of when a sequence of same color pixel start and end.

Usage

```
hole_section(section)
```

Arguments

section Section to be analysed.

Value

Description of start and end of each same color sequence

```
hole_section_data
```

Author(s)

Carlos Biagolini-Jr.

References

Zehm et al 2003 Multiparameter analysis of vertical vegetation structure based on digital image processing. Flora-Morphology, Distribution, Functional Ecology of Plants, 198: 142-160.

See Also

hole_section_data threshold_color

Examples

```
# First, get a matrix from your image. Here an example of a bush image is used.
bush<-system.file("extdata/bush.JPG",package ="bwimage")
bush_imagematrix<-threshold_color(bush, "jpeg", "proportional", compress_rate = 0.1)
# Find pixel hole sections in the column 200 of bush image
hole_section(bush_imagematrix[,200])
# Find pixel hole sections in the row 250 of bush image
hole_section(bush_imagematrix[250,])
```

hole_section_data Summary of holes information

Description

Summary information of holes of a given color in a given section. Result unit is the number of cell.

Usage

```
hole_section_data(section, color = 0)
```

Arguments

section	Section to be analysed.
color	Color of the hole (0 or 1).

Value

Ν	Number of hole sections
Mean	Mean size of hole sections
SD	Standard deviation of hole sections size
Min	Minimum size of hole sections
Max	Maximum size of hole sections

Author(s)

Carlos Biagolini-Jr.

References

Zehm et al 2003 Multiparameter analysis of vertical vegetation structure based on digital image processing. Flora-Morphology, Distribution, Functional Ecology of Plants, 198: 142-160.

See Also

hole_section threshold_color

Examples

```
# First, get a matrix from your image. Here an example of a bush image is used.
bush<-system.file("extdata/bush.JPG",package ="bwimage")
bush_imagematrix<-threshold_color(bush, "jpeg", "proportional", compress_rate = 0.1)
# Detail information of white (0) below continues in the column 200 of bush image
```

Detail information of white (0) holes sections in the column 200 of bush image hole_section_data(bush_imagematrix[,200], color = 0)

```
# Detail information of black (1) holes sections in the row 250 of bush image
hole_section_data(bush_imagematrix[250,], color = 1)
```

image_information Summary of image information

Description

Provide the information of: number of black, white and transparent pixels, total number of pixels, height and width size.

Usage

```
image_information(imagematrix)
```

Arguments

imagematrix The matrix to be analysed.

Value

Black	Number of black pixels
White	Number of white pixels
Transparent	Number of transparent pixels
Total	Total number of pixels
Height	Size in height
Width	Size in width

light_gap

Author(s)

Carlos Biagolini-Jr.

See Also

threshold_color

Examples

```
# First, get a matrix from your image. Here an example of a bush image is used.
bush<-system.file("extdata/bush.JPG",package ="bwimage")
bush_imagematrix<-threshold_color(bush, "jpeg", "proportional",compress_rate = 0.1)
image_information(bush_imagematrix)
```

light_gap Light gap

Description

Left and right distances from first black pixel to image edge.

Usage

```
light_gap(imagematrix, width_size = NA, scale = TRUE)
```

Arguments

imagematrix	The matrix to be analysed
width_size	Real size of image width (in mm, cm, m, etc).
scale	If FALSE do not ajust the output for real size.

Value

Distances without black pixel in each side of the picture

Author(s)

Carlos Biagolini-Jr.

References

Zehm et al 2003 Multiparameter analysis of vertical vegetation structure based on digital image processing. Flora-Morphology, Distribution, Functional Ecology of Plants, 198: 142-160.

See Also

threshold_color

Examples

```
# First, get a matrix from your image. Here an example of a bush image is used.
bush<-system.file("extdata/bush.JPG",package ="bwimage")
bush_imagematrix<-threshold_color(bush, "jpeg", "proportional", compress_rate = 0.1)
# Calculate vegetation Light gap in the bush image matrix
light_gap(bush_imagematrix,width_size=100)
# Conclusion: there is no light gap on both sides of bush image.
```

plot_samples Plot samples from denseness_sample

Description

Plot samples from denseness_sample.

Usage

```
plot_samples(imagematrix, central_lines, central_collumns, width_size,
    height_size, sample_width, sample_height, sample_shape)
```

Arguments

imagematrix	The matrix to be analysed.	
central_lines	Lines data (i.e. "Matrix(line)") provided by denseness_sample	
central_collumns		
	Collumns data (i.e. "Matrix(column)") provided by denseness_sample	
width_size	Real size of image width (in mm, cm, m, etc).	
height_size	Real size of image height (in mm, cm, m, etc).	
sample_width	Width of sample area.	
sample_height	Height of sample area.	
<pre>sample_shape</pre>	Inform the shape of sample unity used ("rectangle" or "ellipse"). See dense- ness_sample function.	

Value

Plot of the analysed matrix (black and white) and sample locations (red).

Author(s)

Carlos Biagolini-Jr.

See Also

denseness_sample

20

stretch

Examples

Get a matrix from your image. Here examples provided by bwimage package.

```
bush<-system.file("extdata/bush.JPG",package ="bwimage")
bush<-threshold_color(bush, "jpeg", "proportional",compress_rate = 0.1)
a<-denseness_sample(bush, width_size=100, height_size=100, sample_width=5, sample_height=5)
plot_samples(bush, a[,4],a[,5], 100,100, 5, 5,"rectangle")</pre>
```

stretch

stretch circle to square

Description

Stretch data from circular image to square in binary matrix

Usage

```
stretch(imagematrix, method = "radial")
```

Arguments

imagematrix	The matrix to be stretched.
method	Stretch algorithm. Four algorithms (radial, shirley, squircle, and elliptical) are available to stretch the image. The algorithms were adapted from Lambers 2016.

Value

A matrix of 0, 1 and NA representing white, black and transparent pixels, respectively.

Author(s)

Carlos Biagolini-Jr.

References

Lambers 2016 Mappings between Sphere, Disc, and Square. Journal of Computer Graphics Techniques, 5(2): 1-21.

Examples

```
img_location <- system.file("extdata/chesstable.png",package ="bwimage")
image_matrix<- threshold_color(img_location,"png", "frame_fixed",target_width = 50,target_height=50)
stretch(image_matrix,method="radial")</pre>
```

threshold_color Image

Description

Convert a single image into a matrix

Usage

```
threshold_color(filename, filetype = "jpeg", compress_method = "none",
  compress_rate = 1, target_width = 100, target_height = 100,
  threshold_value = 0.5, transparency_regulation = 0.5,
  channel = "rgb")
```

Arguments

filename	Name of the file to be load - ex: "Figure01.JPG".
filetype	Type of the file to be load. Compatible file types: ".JPGE", ".JPG" or ".PNG".

compress_method

compress_method	d
	For high resolution files, i.e. numbers of pixels in width and height, it is sug- gested to reduce the resolution to create a smaller matrix, it strongly reduce GPU usage and time necessary to run analyses. On the other hand, by reducing resolution, it will also reduce the accuracy of data description. The available methods for image reduction are: i) frame_fixed, which resamples images to a desired target width and height; ii) proportional, which resamples the image by a given ratio provided in the argument "proportion"; iii) width_fixed, which re- samples images to a target width, and also reduces the image height by the same factor. For instance, if the original file had 1000 pixels in width, and the new width_was set to 100, height will be reduced by a factor of 0.1 (100/1000); and iv) height_fixed, analogous to width_fixed, but assumes height as reference.
compress_rate	Compress rate to by apply if compress_method=proportional. Note: it should be ser as number range from 0 to 1.
target_width	Target width to be used if compress_method=frame_fixed or compress_method= width_fixed.
target_height	Target height to be used if compress_method=frame_fixed or compress_method= height_fixed.
threshold_value	
	For each pixel, the intensity of color channels (red, green and blue) are averaged and compared to a threshold_value (threshold). If the average intensity is less than the threshold_value (default is 0.5) the pixel will be set as black, otherwise it will be white. See channel argument.
transparency_re	egulation
	For PNG images, the alpha channel is used to set transparent pixels, i.e. alpha channel values above transparency_regulation (a threshold) will set the pixel as transparent, default is 0.5. NOTE: In the data matrix the value 1 represents black pixels, 0 represents white pixels and NA represents transparent pixels.

channel RGB channel to be considered in threshold. If channel=RGB (default), the intensity of red, green and blue is averaged and compared to threshold_value. If the average intensity is less than the threshold_value (default is 50 If only one channel is defined ("R" for red, "G" for green, and "B" for blue), the average intensity selected channel compared direct to the threshold_value value.

Value

A matrix of 0, 1 and NA representing white, black and transparent pixels, respectively.

Author(s)

Carlos Biagolini-Jr.

Examples

```
bush<-system.file("extdata/bush.JPG",package ="bwimage")
threshold_color(bush,"jpeg", "frame_fixed",target_width = 15,target_height=15)
# For your images, if the file is in the working directory type:
# threshold_color("FILE_NAME.EXTENSION", filetype ="FILE_EXTENSION")
# or, if the file is in the other directory:
# threshold_color("C:/PATH TO FILE FOLDER/YOUR_FILE_NAME.EXTENSION", "FILE_EXTENSION")</pre>
```

threshold_image_list Image to matrix - List

Description

Convert two or more images into a list of matrices

Usage

```
threshold_image_list(list_names, filetype = "jpeg",
    compress_method = "none", compress_rate = 1, target_width = 100,
    target_height = 100, threshold_value = 0.5,
    transparency_regulation = 0.5, channel = "rgb")
```

Arguments

list_names An object contains the names of the files.

filetype Type of the file to be load. Compatible file types: ".JPGE", ".JPG" or ".PNG". compress_method

For high resolution files, i.e. numbers of pixels in width and height, it is suggested to reduce the resolution to create a smaller matrix, it strongly reduce GPU usage and time necessary to run analyses. On the other hand, by reducing resolution, it will also reduce the accuracy of data description. The available methods for image reduction are: i) frame_fixed, which resamples images to a

	desired target width and height; ii) proportional, which resamples the image by a given ratio provided in the argument "proportion"; iii) width_fixed, which re- samples images to a target width, and also reduces the image height by the same factor. For instance, if the original file had 1000 pixels in width, and the new width_was set to 100, height will be reduced by a factor of 0.1 (100/1000); and iv) height_fixed, analogous to width_fixed, but assumes height as reference.	
compress_rate	Compress rate to by apply if compress_method=proportional. Note: it should be ser as number range from 0 to 1.	
target_width	Target width to be used if compress_method=frame_fixed or compress_method= width_fixed.	
target_height	Target height to be used if compress_method=frame_fixed or compress_method= height_fixed.	
threshold_value	threshold_value	
	For each pixel, the intensity of color channels (red, green and blue) are averaged and compared to a threshold_value (threshold). If the average intensity is less than the threshold_value (default is 0.5) the pixel will be set as black, otherwise it will be white. See channel argument.	
transparency_re	egulation	
	For PNG images, the alpha channel is used to set transparent pixels, i.e. alpha channel values above transparency_regulation (a threshold) will set the pixel as transparent, default is 0.5. NOTE: In the data matrix the value 1 represents black pixels, 0 represents white pixels and NA represents transparent pixels.	
channel	RGB channel to be considered in threshold. If channel=RGB (default), the in- tensity of red, green and blue is averaged and compared to threshold_value. If the average intensity is less than the threshold_value (default is 50 If only one channel is defined ("R" for red, "G" for green, and "B" for blue), the average intensity selected channel compared direct to the threshold_value value.	

Value

A matrix of 0, 1 and NA representing white, black and transparent pixels, respectively.

Author(s)

Carlos Biagolini-Jr.

See Also

threshold_color

Examples

```
# Image examples provided by bwimage package
bush<-system.file("extdata/bush.JPG",package ="bwimage")
canopy<-system.file("extdata/canopy.JPG",package ="bwimage")</pre>
```

Convert images to a list of matrices working_matrices<-threshold_image_list(c(bush,canopy), "jpeg", "proportional", compress_rate = 0.1)</pre> topline

Description

Line running along the crest of highest black pixel.

Usage

```
topline(imagematrix, height_size = NA, width_size = NA)
```

Arguments

imagematrix	The matrix to be analysed.
height_size	Real size of image height (in mm, cm, m, etc).
width_size	Real size of image width (in mm, cm, m, etc).

Value

Top line size that cover black pixels

Author(s)

Carlos Biagolini-Jr.

References

Zehm et al 2003 Multiparameter analysis of vertical vegetation structure based on digital image processing. Flora-Morphology, Distribution, Functional Ecology of Plants, 198: 142-160.

See Also

threshold_color

Examples

```
# First, get a matrix from your image. Here an example of a bush image is used.
bush<-system.file("extdata/bush.JPG",package ="bwimage")
bush_imagematrix<-threshold_color(bush, "jpeg", "proportional", compress_rate = 0.1)</pre>
```

See the proportion of black pixels (1) below each bush image matrix row topline(bush_imagematrix,100,100) # Conclusion: topline size is 785.6 cm.

Index

* animal bwimage-package, 2 * ecology methods bwimage-package, 2 * field bwimage-package, 2 * image analyses bwimage-package, 2 * image processing bwimage-package, 2 *** vegetation patterns** bwimage-package, 2 aggregation_index, 3 altitudinal_profile, 5 bwimage (bwimage-package), 2 bwimage-package, 2 compress, 6 denseness_column, 7 denseness_row, 8 denseness_sample, 9 denseness_total, 10 heigh_maximum, 11 $\texttt{heigh_propotion, 12}$ heigh_propotion_test, 13 hole_columm, 14 hole_row, 15 hole_section, 16 hole_section_data, 17 image_information, 18 light_gap, 19 plot_samples, 20 stretch, 21

threshold_color, 22
threshold_image_list, 23
topline, 25