
Package ‘bvartools’
January 8, 2024

Title Bayesian Inference of Vector Autoregressive and Error Correction
Models

Version 0.2.4

Date 2024-01-05

Description
Assists in the set-up of algorithms for Bayesian inference of vector autoregressive (VAR) and er-
ror correction (VEC) models. Functions for posterior simulation, forecasting, impulse re-
sponse analysis and forecast error variance decomposition are largely based on the introduc-
tory texts of Chan, Koop, Poirier and Tobias (2019, ISBN: 9781108437493), Koop and Koro-
bilis (2010) <doi:10.1561/0800000013> and Luetkepohl (2006, ISBN: 9783540262398).

License GPL (>= 2)

Depends R (>= 3.4.0), coda, Matrix

Imports grDevices, graphics, methods, parallel, Rcpp (>= 0.12.14),
stats

LinkingTo Rcpp, RcppArmadillo

Encoding UTF-8

RoxygenNote 7.2.3

URL https://github.com/franzmohr/bvartools

BugReports https://github.com/franzmohr/bvartools/issues

Suggests knitr, rmarkdown

VignetteBuilder knitr

Collate 'RcppExports.R' 'add_priors.R' 'add_priors.bvarmodel.R'
'add_priors.bvecmodel.R' 'add_priors.dfmodel.R' 'bvar.R'
'bvar_fill_helper.R' 'bvarpost.R' 'bvartools-package.R'
'bvec.R' 'bvec_to_bvar.R' 'bvecpost.R' 'data.R' 'dfm.R'
'dfmpost.R' 'draw_posterior.R' 'draw_posterior.bvarmodel.R'
'draw_posterior.bvecmodel.R' 'draw_posterior.dfmodel.R'
'fevd.R' 'fevd.bvar.R' 'gen_dfm.R' 'gen_var.R' 'gen_vec.R'
'get_regressor_names.R' 'inclusion_prior.R' 'irf.R'
'irf.bvar.R' 'minnesota_prior.R' 'plot.bvar.R'
'plot.bvarfevd.R' 'plot.bvarirf.R' 'plot.bvarlist.R'

1

https://doi.org/10.1561/0800000013
https://github.com/franzmohr/bvartools
https://github.com/franzmohr/bvartools/issues


2 R topics documented:

'plot.bvarprd.R' 'plot.bvec.R' 'plot.dfm.R'
'post_normal_covar_const.R' 'post_normal_covar_tvp.R'
'predict.bvar.R' 'summary.bvar.R' 'print.summary.bvar.R'
'summary.bvec.R' 'print.summary.bvec.R' 'ssvs_prior.R'
'summary.bvarlist.R' 'summary.dfm.R' 'thin.bvar.R'
'thin.bvarlist.R' 'thin.bvec.R' 'thin.dfm.R' 'tvpribbon.R'
'zzz.R'

NeedsCompilation yes

Author Franz X. Mohr [aut, cre] (0009-0003-8890-7781)

Maintainer Franz X. Mohr <franz.x.mohr@outlook.com>

Repository CRAN

Date/Publication 2024-01-08 12:10:02 UTC

R topics documented:
add_priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
add_priors.bvarmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
add_priors.bvecmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
add_priors.dfmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
bem_dfmdata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
bvar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
bvarpost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
bvec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
bvecpost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
bvec_to_bvar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
bvs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
dfm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
dfmpost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
draw_posterior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
draw_posterior.bvarmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
draw_posterior.bvecmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
draw_posterior.dfmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
e1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
e6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
fevd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
fevd.bvar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
gen_dfm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
gen_var . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
gen_vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
inclusion_prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
irf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
irf.bvar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
kalman_dk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
loglik_normal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
minnesota_prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
plot.bvarlist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



add_priors 3

plot.bvarprd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
post_coint_kls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
post_coint_kls_sur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
post_normal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
post_normal_covar_const . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
post_normal_covar_tvp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
post_normal_sur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
ssvs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
ssvs_prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
stochvol_ksc1998 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
stochvol_ocsn2007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
stoch_vol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
summary.bvar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
summary.bvarlist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
summary.bvec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
summary.dfm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
thin.bvar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
thin.bvarlist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
thin.bvec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
thin.dfm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
us_macrodata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Index 88

add_priors Add Priors to Bayesian Models A generic function used to generate
prior specifications for a list of models. The function invokes particu-
lar methods which depend on the class of the first argument.

Description

Add Priors to Bayesian Models

A generic function used to generate prior specifications for a list of models. The function invokes
particular methods which depend on the class of the first argument.

Usage

add_priors(object, ...)

Arguments

object an object of class "bvarmodel" or "bvecmodel".

... arguments passed forward to method.
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Examples

# Load data
data("e1")
e1 <- diff(log(e1)) * 100

# Obtain data matrices
model <- gen_var(e1, p = 2, deterministic = 2,

iterations = 100, burnin = 10)
# Chosen number of iterations and burn-in draws should be much higher.

# Add prior specifications
model <- add_priors(model)

add_priors.bvarmodel Add Priors for a Vector Autoregressive Models

Description

Adds prior specifications to a list of models, which was produced by function gen_var.

Usage

## S3 method for class 'bvarmodel'
add_priors(
object,
coef = list(v_i = 1, v_i_det = 0.1, shape = 3, rate = 1e-04, rate_det = 0.01),
sigma = list(df = "k", scale = 1, mu = 0, v_i = 0.01, sigma_h = 0.05, constant = 1e-04),
ssvs = NULL,
bvs = NULL,
...

)

Arguments

object a list, usually, the output of a call to gen_var.

coef a named list of prior specifications for the coefficients of the models. For the de-
fault specification all prior means are set to zero and the diagonal elements of the
inverse prior variance-covariance matrix are set to 1 for coefficients correspond-
ing to non-deterministic and structural terms. For deterministic coefficients the
prior variances are set to 10 via v_i_det = 0.1. The variances need to be spec-
ified as precisions, i.e. as inverses of the variances. For further specifications
such as the Minnesota prior see ’Details’.

sigma a named list of prior specifications for the error variance-covariance matrix of
the models. For the default specification of an inverse Wishart distribution the
prior degrees of freedom are set to the number of endogenous variables and the
prior variances to 1. See ’Details’.
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ssvs optional; a named list of prior specifications for the SSVS algorithm. Not al-
lowed for TVP models. See ’Details’.

bvs optional; a named list of prior specifications for the BVS algorithm. See ’De-
tails’.

... further arguments passed to or from other methods.

Details

The arguments of the function require named lists. Possible specifications are described in the
following. Note that it is important to specify the priors in the correct list. Otherwise, the provided
specification will be disregarded and default values will be used.

Argument coef can contain the following elements

v_i a numeric specifying the prior precision of the coefficients. Default is 1.

v_i_det a numeric specifying the prior precision of coefficients corresponding to deterministic
terms. Default is 0.1.

coint_var a logical specifying whether the prior mean of the first own lag of an endogenous
variable should be set to 1. Default is FALSE.

const a numeric or character specifying the prior mean of coefficients, which correspond to the
intercept. If a numeric is provided, all prior means are set to this value. If const = "mean",
the mean of the respective endogenous variable is used as prior mean. If const = "first",
the first values of the respective endogenous variable is used as prior mean.

minnesota a list of length 4 containing parameters for the calculation of the Minnesota prior, where
the element names must be kappa0, kappa1, kappa2 and kappa3. For the endogenous variable
i the prior variance of the lth lag of regressor j is obtained as

κ0

l2
for own lags of endogenous variables,

κ0κ1

l2
σ2
i

σ2
j

for endogenous variables other than own lags,

κ0κ2

(l + 1)2

σ2
i

σ2
j

for exogenous variables,

κ0κ3σ
2
i for deterministic terms,

where σi is the residual standard deviation of variable i of an unrestricted LS estimate. For
exogenous variables σi is the sample standard deviation.

max_var a numeric specifying the maximum prior variance that is allowed for non-deterministic
coefficients.

shape a numeric specifying the prior shape parameter of the error term of the state equation. Only
used for models with time varying parameters. Default is 3.

rate a numeric specifying the prior rate parameter of the error term of the state equation. Only
used for models with time varying parameters. Default is 0.0001.

rate_det a numeric specifying the prior rate parameter of the error term of the state equation for
coefficients, which correspond to deterministic terms. Only used for models with time varying
parameters. Default is 0.01.
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If minnesota is specified, v_i and v_i_det are ignored.

Argument sigma can contain the following elements:

df an integer or character specifying the prior degrees of freedom of the error term. Only used, if
the prior is inverse Wishart. Default is "k", which indicates the amount of endogenous vari-
ables in the respective model. "k + 3" can be used to set the prior to the amount of endogenous
variables plus 3. If an integer is provided, the degrees of freedom are set to this value in all
models.

scale a numeric specifying the prior error variance of endogenous variables. Default is 1.

shape a numeric or character specifying the prior shape parameter of the error term. Only used,
if the prior is inverse gamma or if time varying volatilities are estimated. For models with
constant volatility the default is "k", which indicates the amount of endogenous variables in
the respective country model. "k + 3" can be used to set the prior to the amount of endogenous
variables plus 3. If a numeric is provided, the shape parameters are set to this value in all
models. For models with stochastic volatility this prior refers to the error variance of the state
equation.

rate a numeric specifying the prior rate parameter of the error term. Only used, if the prior is in-
verse gamma or if time varying volatilities are estimated. For models with stochastic volatility
this prior refers to the error variance of the state equation.

mu numeric of the prior mean of the initial state of the log-volatilities. Only used for models with
time varying volatility.

v_i numeric of the prior precision of the initial state of the log-volatilities. Only used for models
with time varying volatility.

sigma_h numeric of the initial draw for the variance of the log-volatilities. Only used for models
with time varying volatility.

constant numeric of the constant, which is added before taking the log of the squared errors. Only
used for models with time varying volatility.

covar logical indicating whether error covariances should be estimated. Only used in combina-
tion with an inverse gamma prior or stochastic volatility, for which shape and rate must be
specified.

df and scale must be specified for an inverse Wishart prior. shape and rate are required for an
inverse gamma prior. For structural models or models with stochastic volatility only a gamma prior
specification is allowed.

Argument ssvs can contain the following elements:

inprior a numeric between 0 and 1 specifying the prior probability of a variable to be included in
the model.

tau a numeric vector of two elements containing the prior standard errors of restricted variables
(τ0) as its first element and unrestricted variables (τ1) as its second.

semiautomatic an numeric vector of two elements containing the factors by which the standard
errors associated with an unconstrained least squares estimate of the model are multiplied to
obtain the prior standard errors of restricted (τ0) and unrestricted (τ1) variables, respectively.
This is the semiautomatic approach described in George et al. (2008).

covar logical indicating if SSVS should also be applied to the error covariance matrix as in George
et al. (2008).
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exclude_det logical indicating if deterministic terms should be excluded from the SSVS algo-
rithm.

minnesota a numeric vector of length 4 containing parameters for the calculation of the Minnesota-
like inclusion priors. See below.

Either tau or semiautomatic must be specified.

The argument bvs can contain the following elements

inprior a numeric between 0 and 1 specifying the prior probability of a variable to be included in
the model.

covar logical indicating if BVS should also be applied to the error covariance matrix.

exclude_det logical indicating if deterministic terms should be excluded from the BVS algorithm.

minnesota a numeric vector of length 4 containing parameters for the calculation of the Minnesota-
like inclusion priors. See below.

If either ssvs$minnesota or bvs$minnesota is specified, prior inclusion probabilities are calcu-
lated in a Minnesota-like fashion as

κ1

l for own lags of endogenous variables,
κ2

l for other endogenous variables,
κ3

1+l for exogenous variables,
κ4 for deterministic variables,

for lag l with κ1, κ2, κ3, κ4 as the first, second, third and forth element in ssvs$minnesota or
bvs$minnesota, respectively.

Value

A list of country models.

References

Chan, J., Koop, G., Poirier, D. J., & Tobias J. L. (2019). Bayesian econometric methods (2nd ed.).
Cambridge: Cambridge University Press.

George, E. I., Sun, D., & Ni, S. (2008). Bayesian stochastic search for VAR model restrictions.
Journal of Econometrics, 142(1), 553–580. doi:10.1016/j.jeconom.2007.08.017

Korobilis, D. (2013). VAR forecasting using Bayesian variable selection. Journal of Applied Econo-
metrics, 28(2), 204–230. doi:10.1002/jae.1271

Lütkepohl, H. (2006). New introduction to multiple time series analysis (2nd ed.). Berlin: Springer.

Examples

data("e1")
e1 <- diff(log(e1)) * 100

model <- gen_var(e1, p = 2, deterministic = 2,
iterations = 100, burnin = 10)

https://doi.org/10.1016/j.jeconom.2007.08.017
https://doi.org/10.1002/jae.1271
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model <- add_priors(model)

add_priors.bvecmodel Add Priors for Vector Error Correction Models

Description

Adds prior specifications to a list of models, which was produced by function gen_vec.

Usage

## S3 method for class 'bvecmodel'
add_priors(
object,
coef = list(v_i = 1, v_i_det = 0.1, shape = 3, rate = 1e-04, rate_det = 0.01),
coint = list(v_i = 0, p_tau_i = 1, shape = 3, rate = 1e-04, rho = 0.999),
sigma = list(df = "k", scale = 1, mu = 0, v_i = 0.01, sigma_h = 0.05, constant = 1e-04),
ssvs = NULL,
bvs = NULL,
...

)

Arguments

object a list, usually, the output of a call to gen_vec.

coef a named list of prior specifications for coefficients that do not determine the
cointegration space. For the default specification all prior means are set to zero
and the diagonal elements of the inverse prior variance-covariance matrix are set
to 1 for coefficients corresponding to non-deterministic terms. For deterministic
coefficients the prior variances are set to 10 by v_i_det = 0.1. The variances
need to be specified as precisions, i.e. as inverses of the variances. For further
specifications such as the Minnesota prior see ’Details’.

coint a named list of prior specifications for coefficients determining the cointegration
space of VEC models. See ’Details’.

sigma a named list of prior specifications for the error variance-covariance matrix of
the models. For the default specification of an inverse Wishart distribution the
prior degrees of freedom are set to the number of endogenous variables plus the
rank of the cointegration matrix. The prior variance is to 1. See ’Details’.

ssvs optional; a named list of prior specifications for the SSVS algorithm. Not al-
lowed for TVP models. See ’Details’.

bvs optional; a named list of prior specifications for the BVS algorithm. See ’De-
tails’.

... further arguments passed to or from other methods.
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Details

The arguments of the function require named lists. Possible specifications are described in the
following. Note that it is important to specify the priors in the correct list. Otherwise, the provided
specification will be disregarded and default values will be used.

Argument coef contains the following elements

v_i a numeric specifying the prior precision of the coefficients. Default is 1.

v_i_det a numeric specifying the prior precision of coefficients that correspond to deterministic
terms. Default is 0.1.

const a character specifying the prior mean of coefficients, which correspond to the intercept. If
const = "mean", the means of the series of endogenous variables are used as prior means.
If const = "first", the first values of the series of endogenous variables are used as prior
means.

minnesota a list of length 4 containing parameters for the calculation of the Minnesota prior, where
the element names must be kappa0, kappa1, kappa2 and kappa3. For the endogenous variable
i the prior variance of the lth lag of regressor j is obtained as

κ0

l2
for own lags of endogenous variables,

κ0κ1

l2
σ2
i

σ2
j

for endogenous variables other than own lags,

κ0κ2

(l + 1)2

σ2
i

σ2
j

for exogenous variables,

κ0κ3σ
2
i for deterministic terms,

where σi is the residual standard deviation of variable i of an unrestricted LS estimate. For
exogenous variables σi is the sample standard deviation.
The function only provides priors for the non-cointegration part of the model. However, the
residual standard errors σi are based on an unrestricted LS regression of the endogenous vari-
ables on the error correction term and the non-cointegration regressors.

max_var a numeric specifying the maximum prior variance that is allowed for non-deterministic
coefficients.

shape a numeric specifying the prior shape parameter of the error term of the state equation. Only
used for models with time varying parameters. Default is 3.

rate a numeric specifying the prior rate parameter of the error term of the state equation. Only
used for models with time varying parameters. Default is 0.0001.

rate_det a numeric specifying the prior rate parameter of the error term of the state equation for
coefficients, which correspond to deterministic terms. Only used for models with time varying
parameters. Default is 0.01.

If minnesota is specified, elements v_i and v_i_det are ignored.

Argument coint can contain the following elements:

v_i numeric between 0 and 1 specifying the shrinkage of the cointegration space prior. Default is
0.
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p_tau_i numeric of the diagonal elements of the inverse prior matrix of the central location of the
cointegration space sp(β). Default is 1.

shape an integer specifying the prior degrees of freedom of the error term of the state equation of
the loading matrix α. Default is 3.

rate a numeric specifying the prior variance of error term of the state equation of the loading
matrix α. Default is 0.0001.

rho a numeric specifying the autocorrelation coefficient of the state equation of β. It must be
smaller than 1. Default is 0.999. Note that in contrast to Koop et al. (2011) ρ is not drawn in
the Gibbs sampler of this package yet.

Argument sigma can contain the following elements:

df an integer or character specifying the prior degrees of freedom of the error term. Only used, if
the prior is inverse Wishart. Default is "k", which indicates the amount of endogenous vari-
ables in the respective model. "k + 3" can be used to set the prior to the amount of endogenous
variables plus 3. If an integer is provided, the degrees of freedom are set to this value in all
models. In all cases the rank r of the cointegration matrix is automatically added.

scale a numeric specifying the prior error variance of endogenous variables. Default is 1.

shape a numeric or character specifying the prior shape parameter of the error term. Only used,
if the prior is inverse gamma or if time varying volatilities are estimated. For models with
constant volatility the default is "k", which indicates the amount of endogenous variables in
the respective country model. "k + 3" can be used to set the prior to the amount of endogenous
variables plus 3. If a numeric is provided, the shape parameters are set to this value in all
models. For models with stochastic volatility this prior refers to the error variance of the state
equation.

rate a numeric specifying the prior rate parameter of the error term. Only used, if the prior is in-
verse gamma or if time varying volatilities are estimated. For models with stochastic volatility
this prior refers to the error variance of the state equation.

mu numeric of the prior mean of the initial state of the log-volatilities. Only used for models with
time varying volatility.

v_i numeric of the prior precision of the initial state of the log-volatilities. Only used for models
with time varying volatility.

sigma_h numeric of the initial draw for the variance of the log-volatilities. Only used for models
with time varying volatility.

constant numeric of the constant, which is added before taking the log of the squared errors. Only
used for models with time varying volatility.

covar logical indicating whether error covariances should be estimated. Only used in combina-
tion with an inverse gamma prior or stochastic volatility, for which shape and rate must be
specified.

df and scale must be specified for an inverse Wishart prior. shape and rate are required for an
inverse gamma prior. For structural models or models with stochastic volatility only a gamma prior
specification is allowed.

Argument ssvs can contain the following elements:

inprior a numeric between 0 and 1 specifying the prior probability of a variable to be included in
the model.
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tau a numeric vector of two elements containing the prior standard errors of restricted variables
(τ0) as its first element and unrestricted variables (τ1) as its second.

semiautomatic an numeric vector of two elements containing the factors by which the standard
errors associated with an unconstrained least squares estimate of the model are multiplied to
obtain the prior standard errors of restricted (τ0) and unrestricted (τ1) variables, respectively.
This is the semiautomatic approach described in George et al. (2008).

covar logical indicating if SSVS should also be applied to the error covariance matrix as in George
et al. (2008).

exclude_det logical indicating if deterministic terms should be excluded from the SSVS algo-
rithm.

minnesota a numeric vector of length 4 containing parameters for the calculation of the Minnesota-
like inclusion priors. See below.

Either tau or semiautomatic must be specified.

The argument bvs can contain the following elements

inprior a numeric between 0 and 1 specifying the prior probability of a variable to be included in
the model.

covar logical indicating if BVS should also be applied to the error covariance matrix.

exclude_det logical indicating if deterministic terms should be excluded from the BVS algorithm.

minnesota a numeric vector of length 4 containing parameters for the calculation of the Minnesota-
like inclusion priors. See below.

If either ssvs$minnesota or bvs$minnesota is specified, prior inclusion probabilities are calcu-
lated in a Minnesota-like fashion as

κ1

l for own lags of endogenous variables,
κ2

l for other endogenous variables,
κ3

1+l for exogenous variables,
κ4 for deterministic variables,

for lag l with κ1, κ2, κ3, κ4 as the first, second, third and forth element in ssvs$minnesota or
bvs$minnesota, respectively.

Value

A list of models.

References

Chan, J., Koop, G., Poirier, D. J., & Tobias J. L. (2019). Bayesian econometric methods (2nd ed.).
Cambridge: Cambridge University Press.

George, E. I., Sun, D., & Ni, S. (2008). Bayesian stochastic search for VAR model restrictions.
Journal of Econometrics, 142(1), 553–580. doi:10.1016/j.jeconom.2007.08.017

Koop, G., León-González, R., & Strachan R. W. (2010). Efficient posterior simulation for coin-
tegrated models with priors on the cointegration space. Econometric Reviews, 29(2), 224–242.
doi:10.1080/07474930903382208

https://doi.org/10.1016/j.jeconom.2007.08.017
https://doi.org/10.1080/07474930903382208
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Koop, G., León-González, R., & Strachan R. W. (2011). Bayesian inference in a time varying coin-
tegration model. Journal of Econometrics, 165(2), 210–220. doi:10.1016/j.jeconom.2011.07.007

Korobilis, D. (2013). VAR forecasting using Bayesian variable selection. Journal of Applied Econo-
metrics, 28(2), 204–230. doi:10.1002/jae.1271

Lütkepohl, H. (2006). New introduction to multiple time series analysis (2nd ed.). Berlin: Springer.

Examples

# Get data
data("e6")

# Create model
model <- gen_vec(e6, p = 4, r = 1,

const = "unrestricted", seasonal = "unrestricted",
iterations = 100, burnin = 10)

# Chosen number of iterations and burnin should be much higher.

# Add priors
model <- add_priors(model)

add_priors.dfmodel Add Priors to Dynamic Factor Model

Description

Adds prior specifications to a list of models, which was produced by function gen_dfm.

Usage

## S3 method for class 'dfmodel'
add_priors(
object,
lambda = list(v_i = 0.01),
sigma_u = list(shape = 5, rate = 4),
a = list(v_i = 0.01),
sigma_v = list(shape = 5, rate = 4),
...

)

Arguments

object a list, usually, the output of a call to gen_dfm.

lambda a named list of prior specifications for the factor loadings in the measurement
equation. For the default specification the diagonal elements of the inverse prior
variance-covariance matrix are set to 0.01. The variances need to be specified as
precisions, i.e. as inverses of the variances.

https://doi.org/10.1016/j.jeconom.2011.07.007
https://doi.org/10.1002/jae.1271
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sigma_u a named list of prior specifications for the error variance-covariance matrix. See
’Details’.

a a named list of prior specifications for the coefficients of the transition equa-
tion. For the default specification the diagonal elements of the inverse prior
variance-covariance matrix are set to 0.01. The variances need to be specified as
precisions, i.e. as inverses of the variances.

sigma_v a named list of prior specifications for the error variance-covariance matrix. See
’Details’.

... further arguments passed to or from other methods.

Details

Argument lambda can only contain the element v_i, which is a numeric specifying the prior preci-
sion of the loading factors of the measurement equation. Default is 0.01.

The function assumes an inverse gamma prior for the errors of the measurement equation. Argument
sigma_u can contain the following elements:

shape a numeric or character specifying the prior shape parameter of the error terms of the mea-
surement equation. Default is 5.

rate a numeric specifying the prior rate parameter of the error terms of the measurement equation.
Default is 4.

Argument a can only contain the element v_i, which is a numeric specifying the prior precision of
the coefficients of the transition equation. Default is 0.01.

The function assumes an inverse gamma prior for the errors of the transition equation. Argument
sigma_v can contain the following elements:

shape a numeric or character specifying the prior shape parameter of the error terms of the transi-
tion equation. Default is 5.

rate a numeric specifying the prior rate parameter of the error terms of the transition equation.
Default is 4.

Value

A list of models.

References

Chan, J., Koop, G., Poirier, D. J., & Tobias J. L. (2019). Bayesian econometric methods (2nd ed.).
Cambridge: Cambridge University Press.

Lütkepohl, H. (2007). New introduction to multiple time series analysis (2nd ed.). Berlin: Springer.

Examples

# Load data
data("bem_dfmdata")



14 bem_dfmdata

# Generate model data
model <- gen_dfm(x = bem_dfmdata, p = 1, n = 1,

iterations = 5000, burnin = 1000)
# Number of iterations and burnin should be much higher.

# Add prior specifications
model <- add_priors(model,

lambda = list(v_i = .01),
sigma_u = list(shape = 5, rate = 4),
a = list(v_i = .01),
sigma_v = list(shape = 5, rate = 4))

bem_dfmdata FRED-QD data

Description

The data set contains quarterly time series for 196 US macroeconomic variables from 1959Q3 to
2015Q3. It was produced from file "freddata_Q.csv" of the data sets associated with Chan, Koop,
Poirier and Tobias (2019). Raw data are available at https://web.ics.purdue.edu/~jltobias/
second_edition/Chapter18/code_for_exercise_4/freddata_Q.csv.

Usage

data("bem_dfmdata")

Format

A named time-series object with 225 rows and 196 variables. A detailed explanation of the variables
can be found in McCracken and Ng (2016).

References

Chan, J., Koop, G., Poirier, D. J., & Tobias J. L. (2019). Bayesian econometric methods (2nd ed.).
Cambridge: Cambridge University Press.

McCracken, M. W., & Ng, S. (2016). FRED-MD: A monthly database for macroeconomic research.
Journal of Business & Economic Statistics 34(4), 574-589. doi:10.1080/07350015.2015.1086655

https://web.ics.purdue.edu/~jltobias/second_edition/Chapter18/code_for_exercise_4/freddata_Q.csv
https://web.ics.purdue.edu/~jltobias/second_edition/Chapter18/code_for_exercise_4/freddata_Q.csv
https://doi.org/10.1080/07350015.2015.1086655
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bvar Bayesian Vector Autoregression Objects

Description

bvar is used to create objects of class "bvar".

A plot function for objects of class "bvar".

Forecasting a Bayesian VAR object of class "bvar" with credible bands.

Usage

bvar(
data = NULL,
exogen = NULL,
y,
x = NULL,
A0 = NULL,
A = NULL,
B = NULL,
C = NULL,
Sigma = NULL

)

## S3 method for class 'bvar'
plot(x, ci = 0.95, type = "hist", ...)

## S3 method for class 'bvar'
predict(object, ..., n.ahead = 10, new_x = NULL, new_d = NULL, ci = 0.95)

Arguments

data the original time-series object of endogenous variables.

exogen the original time-series object of unmodelled variables.

y a time-series object of endogenous variables with T observations, usually, a
result of a call to gen_var.

x an object of class "bvar", usually, a result of a call to draw_posterior.

A0 either a K2 × S matrix of MCMC coefficient draws of structural parameters
or a named list, where element coeffs contains a K2 × S matrix of MCMC
coefficient draws of structural parameters and element lambda contains the cor-
responding draws of inclusion parameters in case variable selection algorithms
were employed. For time varying parameter models the coefficient matrix must
be TK2 × S. Draws of the error covariance matrix of the state equation can be
provided as a K2 × S matrix in an additional list element.
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A either a pK2 × S matrix of MCMC coefficient draws of lagged endogenous
variables or a named list, where element coeffs contains a pK2 × S matrix of
MCMC coefficient draws of lagged endogenous variables and element lambda
contains the corresponding draws of inclusion parameters in case variable selec-
tion algorithms were employed. For time varying parameter models the coeffi-
cient matrix must be pTK2 × S. Draws of the error covariance matrix of the
state equation can be provided as a pK2×S matrix in an additional list element.

B either a ((1 + s)MK) × S matrix of MCMC coefficient draws of unmodelled,
non-deterministic variables or a named list, where element coeffs contains a
((1 + s)MK) × S matrix of MCMC coefficient draws of unmodelled, non-
deterministic variables and element lambda contains the corresponding draws of
inclusion parameters in case variable selection algorithms were employed. For
time varying parameter models the coefficient matrix must be (1+s)TMK×S.
Draws of the error covariance matrix of the state equation can be provided as a
(1 + s)MK × S matrix in an additional list element.

C either a KN × S matrix of MCMC coefficient draws of deterministic terms
or a named list, where element coeffs contains a KN × S matrix of MCMC
coefficient draws of deterministic terms and element lambda contains the cor-
responding draws of inclusion parameters in case variable selection algorithms
were employed. For time varying parameter models the coefficient matrix must
be TKN ×S. Draws of the error covariance matrix of the state equation can be
provided as a KN × S matrix in an additional list element.

Sigma a K2 × S matrix of MCMC draws for the error variance-covariance matrix or a
named list, where element coeffs contains a K2 × S matrix of MCMC draws
for the error variance-covariance matrix and element lambda contains the cor-
responding draws of inclusion parameters in case variable selection algorithms
were employed to the covariances. For time varying parameter models the co-
efficient matrix must be TK2 × S. Draws of the error covariance matrix of the
state equation can be provided as a K2 × S matrix in an additional list element.

ci a numeric between 0 and 1 specifying the probability mass covered by the cred-
ible intervals. Defaults to 0.95.

type either "hist" (default) for histograms, "trace" for a trace plot or "boxplot"
for a boxplot. Only used for parameter draws of constant coefficients.

... additional arguments.
object an object of class "bvar", usually, a result of a call to bvar or bvec_to_bvar.
n.ahead number of steps ahead at which to predict.
new_x an object of class ts of new non-deterministic, exogenous variables. The object

must have the same frequency as the time series in object[["x"]] and must
contain at least all necessary observations for the predicted period.

new_d a matrix of new deterministic variables. Must have n.ahead rows.

Details

For the VARX model

A0yt =

p∑
i=1

Aiyt−i +

s∑
i=0

Bixt−i + Cdt + ut
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the function collects the S draws of a Gibbs sampler (after the burn-in phase) in a standardised
object, where yt is a K-dimensional vector of endogenous variables, A0 is a K × K matrix of
structural coefficients. Ai is aK×K coefficient matrix of lagged endogenous variabels. xt is an M-
dimensional vector of unmodelled, non-deterministic variables and Bi its corresponding coefficient
matrix. dt is an N-dimensional vector of deterministic terms and C its corresponding coefficient
matrix. ut is an error term with ut ∼ N(0,Σu).

For time varying parameter and stochastic volatility models the respective coefficients and error
covariance matrix of the above model are assumed to be time varying, respectively.

The draws of the different coefficient matrices provided in A0, A, B, C and Sigma have to correspond
to the same MCMC iterations.

For the VAR model

A0yt =

p∑
i=1

Aiyt−i +

s∑
i=0

Bixt−i + CDt + ut,

with ut ∼ N(0,Σ) the function produces n.ahead forecasts.

Value

An object of class "bvar" containing the following components, if specified:

data the original time-series object of endogenous variables.

exogen the original time-series object of unmodelled variables.

y a K × T matrix of endogenous variables.

x a (pK + (1 + s)M +N)× T matrix of regressor variables.

A0 an S ×K2 "mcmc" object of coefficient draws of structural parameters. In case
of time varying parameters a list of such objects.

A0_lambda an S ×K2 "mcmc" object of inclusion parameters for structural parameters.

A0_sigma an S × K2 "mcmc" object of the error covariance matrices of the structural
parameters in a model with time varying parameters.

A an S×pK2 "mcmc" object of coefficient draws of lagged endogenous variables.
In case of time varying parameters a list of such objects.

A_lambda an S×pK2 "mcmc" object of inclusion parameters for lagged endogenous vari-
ables.

A_sigma an S × pK2 "mcmc" object of the error covariance matrices of coefficients of
lagged endogenous variables in a model with time varying parameters.

B an S × ((1 + s)MK) "mcmc" object of coefficient draws of unmodelled, non-
deterministic variables. In case of time varying parameters a list of such objects.

B_lambda an S × ((1 + s)MK) "mcmc" object of inclusion parameters for unmodelled,
non-deterministic variables.

B_sigma an S × ((1 + s)MK) "mcmc" object of the error covariance matrices of coeffi-
cients of unmodelled, non-deterministic variables in a model with time varying
parameters.

C an S ×NK "mcmc" object of coefficient draws of deterministic terms. In case
of time varying parameters a list of such objects.
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C_lambda an S ×NK "mcmc" object of inclusion parameters for deterministic terms.

C_sigma an S × NK "mcmc" object of the error covariance matrices of coefficients of
deterministic terms in a model with time varying parameters.

Sigma an S×K2 "mcmc" object of variance-covariance draws. In case of time varying
parameters a list of such objects.

Sigma_lambda an S ×K2 "mcmc" object of inclusion parameters for error covariances.

Sigma_sigma an S×K2 "mcmc" object of the error covariance matrices of the coefficients of
the error covariance matrix of the measurement equation of a model with time
varying parameters.

specifications a list containing information on the model specification.

A time-series object of class "bvarprd".

References

Lütkepohl, H. (2006). New introduction to multiple time series analysis (2nd ed.). Berlin: Springer.

Examples

# Get data
data("e1")
e1 <- diff(log(e1))
e1 <- window(e1, end = c(1978, 4))

# Generate model data
data <- gen_var(e1, p = 2, deterministic = "const")

# Add priors
model <- add_priors(data,

coef = list(v_i = 0, v_i_det = 0),
sigma = list(df = 0, scale = .00001))

# Set RNG seed for reproducibility
set.seed(1234567)

iterations <- 400 # Number of iterations of the Gibbs sampler
# Chosen number of iterations and burnin should be much higher.
burnin <- 100 # Number of burn-in draws
draws <- iterations + burnin # Total number of MCMC draws

y <- t(model$data$Y)
x <- t(model$data$Z)
tt <- ncol(y) # Number of observations
k <- nrow(y) # Number of endogenous variables
m <- k * nrow(x) # Number of estimated coefficients

# Priors
a_mu_prior <- model$priors$coefficients$mu # Vector of prior parameter means
a_v_i_prior <- model$priors$coefficients$v_i # Inverse of the prior covariance matrix
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u_sigma_df_prior <- model$priors$sigma$df # Prior degrees of freedom
u_sigma_scale_prior <- model$priors$sigma$scale # Prior covariance matrix
u_sigma_df_post <- tt + u_sigma_df_prior # Posterior degrees of freedom

# Initial values
u_sigma_i <- diag(1 / .00001, k)

# Data containers for posterior draws
draws_a <- matrix(NA, m, iterations)
draws_sigma <- matrix(NA, k^2, iterations)

# Start Gibbs sampler
for (draw in 1:draws) {
# Draw conditional mean parameters
a <- post_normal(y, x, u_sigma_i, a_mu_prior, a_v_i_prior)

# Draw variance-covariance matrix
u <- y - matrix(a, k) %*% x # Obtain residuals
u_sigma_scale_post <- solve(u_sigma_scale_prior + tcrossprod(u))
u_sigma_i <- matrix(rWishart(1, u_sigma_df_post, u_sigma_scale_post)[,, 1], k)

# Store draws
if (draw > burnin) {
draws_a[, draw - burnin] <- a
draws_sigma[, draw - burnin] <- solve(u_sigma_i)
}

}

# Generate bvar object
bvar_est <- bvar(y = model$data$Y, x = model$data$Z,

A = draws_a[1:18,], C = draws_a[19:21, ],
Sigma = draws_sigma)

# Load data
data("e1")
e1 <- diff(log(e1)) * 100

# Generate model
model <- gen_var(e1, p = 1, deterministic = 2,

iterations = 100, burnin = 10)
# Chosen number of iterations and burn-in should be much higher.

# Add priors
model <- add_priors(model)

# Obtain posterior draws
object <- draw_posterior(model)

# Plot draws
plot(object)
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# Load data
data("e1")
e1 <- diff(log(e1)) * 100
e1 <- window(e1, end = c(1978, 4))

# Generate model data
model <- gen_var(e1, p = 0, deterministic = "const",

iterations = 100, burnin = 10)
# Chosen number of iterations and burnin should be much higher.

# Add prior specifications
model <- add_priors(model)

# Obtain posterior draws
object <- draw_posterior(model)

# Generate forecasts
bvar_pred <- predict(object, n.ahead = 10, new_d = rep(1, 10))

# Plot forecasts
plot(bvar_pred)

bvarpost Posterior Simulation for BVAR Models

Description

Produces draws from the posterior distributions of Bayesian VAR models.

Usage

bvarpost(object)

Arguments

object an object of class "bvarmodel", usually, a result of a call to gen_var in combi-
nation with add_priors.

Details

The function implements commonly used posterior simulation algorithms for Bayesian VAR models
with both constant and time varying parameters (TVP) as well as stochastic volatility. It can produce
posterior draws for standard BVAR models with independent normal-Wishart priors, which can be
augmented by stochastic search variable selection (SSVS) as proposed by Geroge et al. (2008) or
Bayesian variable selection (BVS) as proposed in Korobilis (2013). Both SSVS or BVS can also be
applied to the covariances of the error term.
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The implementation follows the descriptions in Chan et al. (2019), George et al. (2008) and Koro-
bilis (2013). For all approaches the SUR form of a VAR model is used to obtain posterior draws.
The algorithm is implemented in C++ to reduce calculation time.

The function also supports structural BVAR models, where the structural coefficients are estimated
from contemporary endogenous variables, which corresponds to the so-called (A-model). Currently,
only specifications are supported, where the structural matrix contains ones on its diagonal and all
lower triangular elements are freely estimated. Since posterior draws are obtained based on the SUR
form of the VAR model, the structural coefficients are drawn jointly with the other coefficients.

Value

An object of class "bvar".

References

Chan, J., Koop, G., Poirier, D. J., & Tobias J. L. (2019). Bayesian econometric methods (2nd ed.).
Cambridge: Cambridge University Press.

George, E. I., Sun, D., & Ni, S. (2008). Bayesian stochastic search for VAR model restrictions.
Journal of Econometrics, 142(1), 553–580. doi:10.1016/j.jeconom.2007.08.017

Korobilis, D. (2013). VAR forecasting using Bayesian variable selection. Journal of Applied Econo-
metrics, 28(2), 204–230. doi:10.1002/jae.1271

Examples

# Get data
data("e1")
e1 <- diff(log(e1)) * 100

# Create model
model <- gen_var(e1, p = 2, deterministic = "const",

iterations = 50, burnin = 10)
# Number of iterations and burnin should be much higher.

# Add priors
model <- add_priors(model)

# Obtain posterior draws
object <- bvarpost(model)

bvec Bayesian Vector Error Correction Objects

Description

‘bvec‘ is used to create objects of class "bvec".

A plot function for objects of class "bvec".

https://doi.org/10.1016/j.jeconom.2007.08.017
https://doi.org/10.1002/jae.1271
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Usage

bvec(
y,
alpha = NULL,
beta = NULL,
beta_x = NULL,
beta_d = NULL,
r = NULL,
Pi = NULL,
Pi_x = NULL,
Pi_d = NULL,
w = NULL,
w_x = NULL,
w_d = NULL,
Gamma = NULL,
Upsilon = NULL,
C = NULL,
x = NULL,
x_x = NULL,
x_d = NULL,
A0 = NULL,
Sigma = NULL,
data = NULL,
exogen = NULL

)

## S3 method for class 'bvec'
plot(x, ci = 0.95, type = "hist", ...)

Arguments

y a time-series object of differenced endogenous variables, usually, a result of a
call to gen_vec.

alpha a Kr × S matrix of MCMC coefficient draws of the loading matrix α.

beta a Kr × S matrix of MCMC coefficient draws of cointegration matrix β corre-
sponding to the endogenous variables of the model.

beta_x a Mr × S matrix of MCMC coefficient draws of cointegration matrix β corre-
sponding to unmodelled, non-deterministic variables.

beta_d a NRr× S matrix of MCMC coefficient draws of cointegration matrix β corre-
sponding to restricted deterministic terms.

r an integer of the rank of the cointegration matrix.

Pi a K2 × S matrix of MCMC coefficient draws of endogenous varaibles in the
cointegration matrix.

Pi_x aKM×S matrix of MCMC coefficient draws of unmodelled, non-deterministic
variables in the cointegration matrix.

Pi_d aKNR×S matrix of MCMC coefficient draws of restricted deterministic terms.
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w a time-series object of lagged endogenous variables in levels, which enter the
cointegration term, usually, a result of a call to gen_vec.

w_x a time-series object of lagged unmodelled, non-deterministic variables in levels,
which enter the cointegration term, usually, a result of a call to gen_vec.

w_d a time-series object of deterministic terms, which enter the cointegration term,
usually, a result of a call to gen_vec.

Gamma a (p − 1)K2 × S matrix of MCMC coefficient draws of differenced lagged
endogenous variables or a named list, where element coeffs contains a (p −
1)K2×S matrix of MCMC coefficient draws of lagged differenced endogenous
variables and element lambda contains the corresponding draws of inclusion
parameters in case variable selection algorithms were employed.

Upsilon an sMK × S matrix of MCMC coefficient draws of differenced unmodelled,
non-deterministic variables or a named list, where element coeffs contains a
sMK×S matrix of MCMC coefficient draws of unmodelled, non-deterministic
variables and element lambda contains the corresponding draws of inclusion
parameters in case variable selection algorithms were employed.

C an KNUR×S matrix of MCMC coefficient draws of unrestricted deterministic
terms or a named list, where element coeffs contains a KNUR × S matrix
of MCMC coefficient draws of deterministic terms and element lambda con-
tains the corresponding draws of inclusion parameters in case variable selection
algorithms were employed.

x an object of class "bvec", usually, a result of a call to draw_posterior.

x_x a time-series object of Ms differenced unmodelled regressors.

x_d a time-series object of NUR deterministic terms that do not enter the cointegra-
tion term.

A0 either a K2 × S matrix of MCMC coefficient draws of structural parameters
or a named list, where element coeffs contains a K2 × S matrix of MCMC
coefficient draws of structural parameters and element lambda contains the cor-
responding draws of inclusion parameters in case variable selection algorithms
were employed.

Sigma a K2 × S matrix of MCMC draws for the error variance-covariance matrix or a
named list, where element coeffs contains a K2 × S matrix of MCMC draws
for the error variance-covariance matrix and element lambda contains the cor-
responding draws of inclusion parameters in case variable selection algorithms
were employed to the covariances.

data the original time-series object of endogenous variables.

exogen the original time-series object of unmodelled variables.

ci interval used to calculate credible bands for time-varying parameters.

type either "hist" (default) for histograms, "trace" for a trace plot or "boxplot"
for a boxplot. Only used for parameter draws of constant coefficients.

... further graphical parameters.
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Details

For the vector error correction model with unmodelled exogenous variables (VECX)

A0∆yt = Π+

yt−1

xt−1

dRt−1

+

p−1∑
i=1

Γi∆yt−i +

s−1∑
i=0

Υi∆xt−i + CURdURt + ut

the function collects the S draws of a Gibbs sampler in a standardised object, where ∆yt is a K-
dimensional vector of differenced endogenous variables and A0 is a K × K matrix of structural
coefficients. Π+ =

[
Π,Πx,Πd

]
is the coefficient matrix of the error correction term, where yt−1,

xt−1 and dRt−1 are the first lags of endogenous, exogenous variables in levels and restricted deter-
ministic terms, respectively. Π, Πx, and Πd are the corresponding coefficient matrices, respectively.
Γi is a coefficient matrix of lagged differenced endogenous variabels. ∆xt is an M-dimensional
vector of unmodelled, non-deterministic variables and Υi its corresponding coefficient matrix. dt is
an NUR-dimensional vector of unrestricted deterministics and CUR the corresponding coefficient
matrix. ut is an error term with ut ∼ N(0,Σu).

For time varying parameter and stochastic volatility models the respective coefficients and error
covariance matrix of the above model are assumed to be time varying, respectively.

The draws of the different coefficient matrices provided in alpha, beta, Pi, Pi_x, Pi_d, A0, Gamma,
Ypsilon, C and Sigma have to correspond to the same MCMC iteration.

Value

An object of class "gvec" containing the following components, if specified:

data the original time-series object of endogenous variables.

exogen the original time-series object of unmodelled variables.

y a time-series object of differenced endogenous variables.

w a time-series object of lagged endogenous variables in levels, which enter the
cointegration term.

w_x a time-series object of lagged unmodelled, non-deterministic variables in levels,
which enter the cointegration term.

w_d a time-series object of deterministic terms, which enter the cointegration term.

x a time-series object of K(p− 1) differenced endogenous variables

x_x a time-series object of Ms differenced unmodelled regressors.

x_d a time-series object of NUR deterministic terms that do not enter the cointegra-
tion term.

A0 an S ×K2 "mcmc" object of coefficient draws of structural parameters. In case
of time varying parameters a list of such objects.

A0_lambda an S×K2 "mcmc" object of inclusion parameters for coefficients corresponding
to structural parameters.

A0_sigma an S × K2 "mcmc" object of the error covariance matrices of the structural
parameters in a model with time varying parameters.

alpha an S ×Kr "mcmc" object of coefficient draws of loading parameters. In case
of time varying parameters a list of such objects.
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beta an S × ((K +M +NR)r) "mcmc" object of coefficient draws of cointegration
parameters corresponding to the endogenous variables of the model. In case of
time varying parameters a list of such objects.

beta_x an S×KM "mcmc" object of coefficient draws of cointegration parameters cor-
responding to unmodelled, non-deterministic variables. In case of time varying
parameters a list of such objects.

beta_d an S × KNR "mcmc" object of coefficient draws of cointegration parameters
corresponding to restricted deterministic variables. In case of time varying pa-
rameters a list of such objects.

Pi an S ×K2 "mcmc" object of coefficient draws of endogenous variables in the
cointegration matrix. In case of time varying parameters a list of such objects.

Pi_x an S×KM "mcmc" object of coefficient draws of unmodelled, non-deterministic
variables in the cointegration matrix. In case of time varying parameters a list
of such objects.

Pi_d an S × KNR "mcmc" object of coefficient draws of restricted deterministic
variables in the cointegration matrix. In case of time varying parameters a list
of such objects.

Gamma an S × (p − 1)K2 "mcmc" object of coefficient draws of differenced lagged
endogenous variables. In case of time varying parameters a list of such objects.

Gamma_lamba an S × (p − 1)K2 "mcmc" object of inclusion parameters for coefficients cor-
responding to differenced lagged endogenous variables.

Gamma_sigma an S × (p− 1)K2 "mcmc" object of the error covariance matrices of the coeffi-
cients of lagged endogenous variables in a model with time varying parameters.

Upsilon an S × sMK "mcmc" object of coefficient draws of differenced unmodelled,
non-deterministic variables. In case of time varying parameters a list of such
objects.

Upsilon_lambda an S×sMK "mcmc" object of inclusion parameters for coefficients correspond-
ing to differenced unmodelled, non-deterministic variables.

Upsilon_sigma an S× sMK "mcmc" object of the error covariance matrices of the coefficients
of unmodelled, non-deterministic variables in a model with time varying param-
eters.

C an S ×KNUR "mcmc" object of coefficient draws of deterministic terms that
do not enter the cointegration term. In case of time varying parameters a list of
such objects.

C_lambda an S × KNUR "mcmc" object of inclusion parameters for coefficients corre-
sponding to deterministic terms, that do not enter the conintegration term.

C_sigma an S×KNUR "mcmc" object of the error covariance matrices of the coefficients
of deterministic terms, which do not enter the cointegration term, in a model
with time varying parameters.

Sigma an S×K2 "mcmc" object of variance-covariance draws. In case of time varying
parameters a list of such objects.

Sigma_lambda an S×K2 "mcmc" object inclusion parameters for the variance-covariance ma-
trix.
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Sigma_sigma an S×K2 "mcmc" object of the error covariance matrices of the coefficients of
the error covariance matrix of the measurement equation of a model with time
varying parameters.

specifications a list containing information on the model specification.

Examples

# Load data
data("e6")
# Generate model
data <- gen_vec(e6, p = 4, r = 1, const = "unrestricted", season = "unrestricted")
# Obtain data matrices
y <- t(data$data$Y)
w <- t(data$data$W)
x <- t(data$data$X)

# Reset random number generator for reproducibility
set.seed(1234567)

iterations <- 400 # Number of iterations of the Gibbs sampler
# Chosen number of iterations should be much higher, e.g. 30000.

burnin <- 100 # Number of burn-in draws
draws <- iterations + burnin

r <- 1 # Set rank

tt <- ncol(y) # Number of observations
k <- nrow(y) # Number of endogenous variables
k_w <- nrow(w) # Number of regressors in error correction term
k_x <- nrow(x) # Number of differenced regressors and unrestrictec deterministic terms

k_alpha <- k * r # Number of elements in alpha
k_beta <- k_w * r # Number of elements in beta
k_gamma <- k * k_x

# Set uninformative priors
a_mu_prior <- matrix(0, k_x * k) # Vector of prior parameter means
a_v_i_prior <- diag(0, k_x * k) # Inverse of the prior covariance matrix

v_i <- 0
p_tau_i <- diag(1, k_w)

u_sigma_df_prior <- r # Prior degrees of freedom
u_sigma_scale_prior <- diag(0, k) # Prior covariance matrix
u_sigma_df_post <- tt + u_sigma_df_prior # Posterior degrees of freedom

# Initial values
beta <- matrix(c(1, -4), k_w, r)
u_sigma_i <- diag(1 / .0001, k)
g_i <- u_sigma_i
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# Data containers
draws_alpha <- matrix(NA, k_alpha, iterations)
draws_beta <- matrix(NA, k_beta, iterations)
draws_pi <- matrix(NA, k * k_w, iterations)
draws_gamma <- matrix(NA, k_gamma, iterations)
draws_sigma <- matrix(NA, k^2, iterations)

# Start Gibbs sampler
for (draw in 1:draws) {

# Draw conditional mean parameters
temp <- post_coint_kls(y = y, beta = beta, w = w, x = x, sigma_i = u_sigma_i,

v_i = v_i, p_tau_i = p_tau_i, g_i = g_i,
gamma_mu_prior = a_mu_prior,
gamma_v_i_prior = a_v_i_prior)

alpha <- temp$alpha
beta <- temp$beta
Pi <- temp$Pi
gamma <- temp$Gamma

# Draw variance-covariance matrix
u <- y - Pi %*% w - matrix(gamma, k) %*% x
u_sigma_scale_post <- solve(tcrossprod(u) +

v_i * alpha %*% tcrossprod(crossprod(beta, p_tau_i) %*% beta, alpha))
u_sigma_i <- matrix(rWishart(1, u_sigma_df_post, u_sigma_scale_post)[,, 1], k)
u_sigma <- solve(u_sigma_i)

# Update g_i
g_i <- u_sigma_i

# Store draws
if (draw > burnin) {
draws_alpha[, draw - burnin] <- alpha
draws_beta[, draw - burnin] <- beta
draws_pi[, draw - burnin] <- Pi
draws_gamma[, draw - burnin] <- gamma
draws_sigma[, draw - burnin] <- u_sigma

}
}

# Number of non-deterministic coefficients
k_nondet <- (k_x - 4) * k

# Generate bvec object
bvec_est <- bvec(y = data$data$Y, w = data$data$W,

x = data$data$X[, 1:6],
x_d = data$data$X[, 7:10],
Pi = draws_pi,
Gamma = draws_gamma[1:k_nondet,],
C = draws_gamma[(k_nondet + 1):nrow(draws_gamma),],
Sigma = draws_sigma)
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# Load data
data("e6")

# Generate model
model <- gen_vec(data = e6, p = 2, r = 1, const = "unrestricted",

iterations = 20, burnin = 10)
# Chosen number of iterations and burn-in should be much higher.

# Add priors
model <- add_priors(model)

# Obtain posterior draws
object <- draw_posterior(model)

# Plot draws
plot(object)

bvecpost Posterior Simulation for BVEC Models

Description

Produces draws from the posterior distributions of Bayesian VEC models.

Usage

bvecpost(object)

Arguments

object an object of class "bvecmodel", usually, a result of a call to gen_vec in combi-
nation with add_priors.

Details

The function implements posterior simulation algorithms proposed in Koop et al. (2010) and Koop
et al. (2011), which place identifying restrictions on the cointegration space. Both algorithms are
able to employ Bayesian variable selection (BVS) as proposed in Korobilis (2013). The algorithm
of Koop et al. (2010) is also able to employ stochastic search variable selection (SSVS) as proposed
by Geroge et al. (2008). Both SSVS and BVS can also be applied to the covariances of the error
term. However, the algorithms cannot be applied to cointegration related coefficients, i.e. to the
loading matrix α or the cointegration matrix beta.

The implementation primarily follows the description in Koop et al. (2010). Chan et al. (2019),
George et al. (2008) and Korobilis (2013) were used to implement the variable selection algorithms.
For all approaches the SUR form of a VEC model is used to obtain posterior draws. The algorithm
is implemented in C++ to reduce calculation time.
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The function also supports structural BVEC models, where the structural coefficients are estimated
from contemporary endogenous variables, which corresponds to the so-called (A-model). Currently,
only specifications are supported, where the structural matrix contains ones on its diagonal and all
lower triangular elements are freely estimated. Since posterior draws are obtained based on the SUR
form of the VEC model, the structural coefficients are drawn jointly with the other coefficients. No
identifying restrictions are made regarding the cointegration matrix.

Value

An object of class "bvec".

References

Chan, J., Koop, G., Poirier, D. J., & Tobias J. L. (2019). Bayesian econometric methods (2nd ed.).
Cambridge: Cambridge University Press.

George, E. I., Sun, D., & Ni, S. (2008). Bayesian stochastic search for VAR model restrictions.
Journal of Econometrics, 142(1), 553–580. doi:10.1016/j.jeconom.2007.08.017

Koop, G., León-González, R., & Strachan R. W. (2010). Efficient posterior simulation for coin-
tegrated models with priors on the cointegration space. Econometric Reviews, 29(2), 224–242.
doi:10.1080/07474930903382208

Koop, G., León-González, R., & Strachan R. W. (2011). Bayesian inference in a time varying coin-
tegration model. Journal of Econometrics, 165(2), 210–220. doi:10.1016/j.jeconom.2011.07.007

Korobilis, D. (2013). VAR forecasting using Bayesian variable selection. Journal of Applied Econo-
metrics, 28(2), 204–230. doi:10.1002/jae.1271

Examples

# Get data
data("e6")

# Create model
model <- gen_vec(e6, p = 4, r = 1,

const = "unrestricted", seasonal = "unrestricted",
iterations = 100, burnin = 10)

# Chosen number of iterations and burnin should be much higher.

# Add priors
model <- add_priors(model)

# Obtain posterior draws
object <- bvecpost(model)

https://doi.org/10.1016/j.jeconom.2007.08.017
https://doi.org/10.1080/07474930903382208
https://doi.org/10.1016/j.jeconom.2011.07.007
https://doi.org/10.1002/jae.1271
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bvec_to_bvar Transform a VEC Model to a VAR in Levels

Description

An object of class "bvec" is transformed to a VAR in level representation.

Usage

bvec_to_bvar(object)

Arguments

object an object of class "bvec".

Value

An object of class "bvar".

References

Lütkepohl, H. (2006). New introduction to multiple time series analysis (2nd ed.). Berlin: Springer.

Examples

# Load data
data("e6")

# Generate model
data <- gen_vec(e6, p = 4, r = 1, const = "unrestricted", season = "unrestricted")

# Obtain data matrices
y <- t(data$data$Y)
w <- t(data$data$W)
x <- t(data$data$X)

# Reset random number generator for reproducibility
set.seed(1234567)

iterations <- 100 # Number of iterations of the Gibbs sampler
# Chosen number of iterations should be much higher, e.g. 30000.

burnin <- 100 # Number of burn-in draws
draws <- iterations + burnin

r <- 1 # Set rank

tt <- ncol(y) # Number of observations
k <- nrow(y) # Number of endogenous variables
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k_w <- nrow(w) # Number of regressors in error correction term
k_x <- nrow(x) # Number of differenced regressors and unrestrictec deterministic terms

k_alpha <- k * r # Number of elements in alpha
k_beta <- k_w * r # Number of elements in beta
k_gamma <- k * k_x

# Set uninformative priors
a_mu_prior <- matrix(0, k_x * k) # Vector of prior parameter means
a_v_i_prior <- diag(0, k_x * k) # Inverse of the prior covariance matrix

v_i <- 0
p_tau_i <- diag(1, k_w)

u_sigma_df_prior <- r # Prior degrees of freedom
u_sigma_scale_prior <- diag(0, k) # Prior covariance matrix
u_sigma_df_post <- tt + u_sigma_df_prior # Posterior degrees of freedom

# Initial values
beta <- matrix(c(1, -4), k_w, r)
u_sigma_i <- diag(1 / .0001, k)
g_i <- u_sigma_i

# Data containers
draws_alpha <- matrix(NA, k_alpha, iterations)
draws_beta <- matrix(NA, k_beta, iterations)
draws_pi <- matrix(NA, k * k_w, iterations)
draws_gamma <- matrix(NA, k_gamma, iterations)
draws_sigma <- matrix(NA, k^2, iterations)

# Start Gibbs sampler
for (draw in 1:draws) {

# Draw conditional mean parameters
temp <- post_coint_kls(y = y, beta = beta, w = w, x = x, sigma_i = u_sigma_i,

v_i = v_i, p_tau_i = p_tau_i, g_i = g_i,
gamma_mu_prior = a_mu_prior,
gamma_v_i_prior = a_v_i_prior)

alpha <- temp$alpha
beta <- temp$beta
Pi <- temp$Pi
gamma <- temp$Gamma

# Draw variance-covariance matrix
u <- y - Pi %*% w - matrix(gamma, k) %*% x
u_sigma_scale_post <- solve(tcrossprod(u) +

v_i * alpha %*% tcrossprod(crossprod(beta, p_tau_i) %*% beta, alpha))
u_sigma_i <- matrix(rWishart(1, u_sigma_df_post, u_sigma_scale_post)[,, 1], k)
u_sigma <- solve(u_sigma_i)

# Update g_i
g_i <- u_sigma_i

# Store draws
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if (draw > burnin) {
draws_alpha[, draw - burnin] <- alpha
draws_beta[, draw - burnin] <- beta
draws_pi[, draw - burnin] <- Pi
draws_gamma[, draw - burnin] <- gamma
draws_sigma[, draw - burnin] <- u_sigma

}
}

# Number of non-deterministic coefficients
k_nondet <- (k_x - 4) * k

# Generate bvec object
bvec_est <- bvec(y = data$data$Y, w = data$data$W,

x = data$data$X[, 1:6],
x_d = data$data$X[, 7:10],
Pi = draws_pi,
Gamma = draws_gamma[1:k_nondet,],
C = draws_gamma[(k_nondet + 1):nrow(draws_gamma),],
Sigma = draws_sigma)

# Thin posterior draws
bvec_est <- thin(bvec_est, thin = 5)

# Transfrom VEC output to VAR output
bvar_form <- bvec_to_bvar(bvec_est)

bvs Bayesian Variable Selection

Description

bvs employs Bayesian variable selection as proposed by Korobilis (2013) to produce a vector of
inclusion parameters for the coefficient matrix of a VAR model.

Usage

bvs(y, z, a, lambda, sigma_i, prob_prior, include = NULL)

Arguments

y a K × T matrix of the endogenous variables.

z a KT ×M matrix of explanatory variables.

a an M-dimensional vector of parameter draws. If time varying parameters are
used, an M × T coefficient matrix can be provided.

lambda an M ×M inclusion matrix that should be updated.

sigma_i the inverse variance-covariance matrix. If the variance-covariance matrix is time
varying, a KT ×K matrix can be provided.
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prob_prior an M-dimensional vector of prior inclusion probabilities.

include an integer vector specifying the positions of variables, which should be included
in the BVS algorithm. If NULL (default), BVS will be applied to all variables.

Details

The function employs Bayesian variable selection as proposed by Korobilis (2013) to produce a
vector of inclusion parameters, which are the diagonal elements of the inclusion matrix Λ for the
VAR model

yt = ZtΛat + ut,

where ut ∼ N(0,Σt). yt is a K-dimensional vector of endogenous variables and Zt = x′t ⊗ IK is
a K ×M matrix of regressors with xt as a vector of regressors.

Value

A matrix of inclusion parameters on its diagonal.

References

Korobilis, D. (2013). VAR forecasting using Bayesian variable selection. Journal of Applied Econo-
metrics, 28(2), 204–230. doi:10.1002/jae.1271

Examples

# Load data
data("e1")
data <- diff(log(e1)) * 100

# Generate model data
temp <- gen_var(data, p = 2, deterministic = "const")

y <- t(temp$data$Y)
z <- temp$data$SUR

tt <- ncol(y)
m <- ncol(z)

# Priors
a_mu_prior <- matrix(0, m)
a_v_i_prior <- diag(0.1, m)

# Prior for inclusion parameter
prob_prior <- matrix(0.5, m)

# Initial value of Sigma
sigma <- tcrossprod(y) / tt
sigma_i <- solve(sigma)

lambda <- diag(1, m)

https://doi.org/10.1002/jae.1271
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z_bvs <- z %*% lambda

a <- post_normal_sur(y = y, z = z_bvs, sigma_i = sigma_i,
a_prior = a_mu_prior, v_i_prior = a_v_i_prior)

lambda <- bvs(y = y, z = z, a = a, lambda = lambda,
sigma_i = sigma_i, prob_prior = prob_prior)

dfm Bayesian Dynamic Factor Model Objects

Description

dfm is used to create objects of class "dfm".

A plot function for objects of class "dfm".

Usage

dfm(x, lambda = NULL, fac, sigma_u = NULL, a = NULL, sigma_v = NULL)

## S3 method for class 'dfm'
plot(x, ci = 0.95, ...)

Arguments

x an object of class "dfm", usually, a result of a call to dfm.

lambda an MN × S matrix of MCMC coefficient draws of factor loadings of the mea-
surement equation.

fac an NT × S matrix of MCMC draws of the factors in the transition equation,
where the first N rows correspond to the N factors in period 1 and the next N
rows to the factors in period 2 etc.

sigma_u an M × S matrix of MCMC draws for the error variances of the measurement
equation.

a a pN2 × S matrix of MCMC coefficient draws of the transition equation.

sigma_v an N ×S matrix of MCMC draws for the error variances of the transition equa-
tion.

ci interval used to calculate credible bands.

... further graphical parameters.
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Details

The function produces a standardised object from S draws of a Gibbs sampler (after the burn-in
phase) for the dynamic factor model (DFM) with measurement equation

xt = λft + ut,

where xt is an M × 1 vector of observed variables, ft is an N × 1 vector of unobserved factors and
λ is the corresponding M ×N matrix of factor loadings. ut is an M × 1 error term.

The transition equation is

ft =

p∑
i=1

Aift−i + vt,

where Ai is an N ×N coefficient matrix and vt is an N × 1 error term.

Value

An object of class "dfm" containing the following components, if specified:

x the standardised time-series object of observable variables.

lambda an S × MN "mcmc" object of draws of factor loadings of the measurement
equation.

factor an S ×NT "mcmc" object of draws of factors.

sigma_u an S ×M "mcmc" object of variance draws of the measurement equation.

a an S × pN2 "mcmc" object of coefficient draws of the transition equation.

sigma_v an S ×N "mcmc" object of variance draws of the transition equation.

specifications a list containing information on the model specification.

Examples

# Load data
data("bem_dfmdata")

# Generate model data
model <- gen_dfm(x = bem_dfmdata, p = 1, n = 1,

iterations = 20, burnin = 10)
# Number of iterations and burnin should be much higher.

# Add prior specifications
model <- add_priors(model,

lambda = list(v_i = .01),
sigma_u = list(shape = 5, rate = 4),
a = list(v_i = .01),
sigma_v = list(shape = 5, rate = 4))

# Obtain posterior draws
object <- dfmpost(model)
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# Load data
data("bem_dfmdata")

# Generate model data
model <- gen_dfm(x = bem_dfmdata, p = 1, n = 1,

iterations = 20, burnin = 10)
# Number of iterations and burnin should be much higher.

# Add prior specifications
model <- add_priors(model,

lambda = list(v_i = .01),
sigma_u = list(shape = 5, rate = 4),
a = list(v_i = .01),
sigma_v = list(shape = 5, rate = 4))

# Obtain posterior draws
object <- draw_posterior(model)

# Plot factors
plot(object)

dfmpost Posterior Simulation for Dynamic Factor Models

Description

Produces draws from the posterior distributions of Bayesian dynamic factor models.

Usage

dfmpost(object)

Arguments

object an object of class "dfmodel", usually, a result of a call to gen_dfm in combina-
tion with add_priors.

Details

The function implements the posterior simulation algorithm for Bayesian dynamic factor models.

The implementation follows the description in Chan et al. (2019) and C++ is used to reduce calcu-
lation time.

Value

An object of class "dfm".
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References

Chan, J., Koop, G., Poirier, D. J., & Tobias J. L. (2019). Bayesian econometric methods (2nd ed.).
Cambridge: Cambridge University Press.

Examples

# Load data
data("bem_dfmdata")

# Generate model data
model <- gen_dfm(x = bem_dfmdata, p = 1, n = 1,

iterations = 20, burnin = 10)
# Number of iterations and burnin should be much higher.

# Add prior specifications
model <- add_priors(model,

lambda = list(v_i = .01),
sigma_u = list(shape = 5, rate = 4),
a = list(v_i = .01),
sigma_v = list(shape = 5, rate = 4))

# Obtain posterior draws
object <- dfmpost(model)

draw_posterior Posterior Simulation

Description

Forwards model input to posterior simulation functions. This is a generic function.

Usage

draw_posterior(object, ...)

Arguments

object a list of model specifications. Usually, the output of a call to gen_var, gen_vec
or gen_dfm in combination with add_priors.

... arguments passed forward to method.
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draw_posterior.bvarmodel

Posterior Simulation

Description

Forwards model input to posterior simulation functions.

Usage

## S3 method for class 'bvarmodel'
draw_posterior(object, FUN = NULL, mc.cores = NULL, ...)

Arguments

object a list of model specifications, which should be passed on to function FUN. Usu-
ally, the output of a call to gen_var in combination with add_priors.

FUN the function to be applied to each model in argument object. If NULL (default),
the internal functions bvarpost is used.

mc.cores the number of cores to use, i.e. at most how many child processes will be run si-
multaneously. The option is initialized from environment variable MC_CORES
if set. Must be at least one, and parallelization requires at least two cores.

... further arguments passed to or from other methods.

Value

For multiple models a list of objects of class bvarlist. For a single model the object has the class
of the output of the applied posterior simulation function. In case the package’s own functions are
used, this will result in an object of class "bvar".

Examples

# Load data
data("e1")
e1 <- diff(log(e1)) * 100

# Generate model
model <- gen_var(e1, p = 1:2, deterministic = 2,

iterations = 100, burnin = 10)
# Chosen number of iterations and burn-in should be much higher.

# Add priors
model <- add_priors(model)

# Obtain posterior draws
object <- draw_posterior(model)
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draw_posterior.bvecmodel

Posterior Simulation for Vector Error Correction Models

Description

Forwards model input to posterior simulation functions for vector error correction models.

Usage

## S3 method for class 'bvecmodel'
draw_posterior(object, FUN = NULL, mc.cores = NULL, ...)

Arguments

object a list of model specifications, which should be passed on to function FUN. Usu-
ally, the output of a call to gen_vec in combination with add_priors.

FUN the function to be applied to each list element in argument object. If NULL
(default), the internal function bvecpost is used.

mc.cores the number of cores to use, i.e. at most how many child processes will be run si-
multaneously. The option is initialized from environment variable MC_CORES
if set. Must be at least one, and parallelization requires at least two cores.

... further arguments passed to or from other methods.

Value

For multiple models a list of objects of class bvarlist. For a single model the object has the class
of the output of the applied posterior simulation function. In case the package’s own functions are
used, this will be "bvec".

References

Koop, G., León-González, R., & Strachan R. W. (2010). Efficient posterior simulation for coin-
tegrated models with priors on the cointegration space. Econometric Reviews, 29(2), 224–242.
doi:10.1080/07474930903382208

Koop, G., León-González, R., & Strachan R. W. (2011). Bayesian inference in a time varying coin-
tegration model. Journal of Econometrics, 165(2), 210–220. doi:10.1016/j.jeconom.2011.07.007

Examples

# Load data
data("e6")
e6 <- e6 * 100

# Generate model
model <- gen_vec(e6, p = 1, r = 1, const = "restricted",

https://doi.org/10.1080/07474930903382208
https://doi.org/10.1016/j.jeconom.2011.07.007
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iterations = 10, burnin = 10)
# Chosen number of iterations and burn-in should be much higher.

# Add priors
model <- add_priors(model)

# Obtain posterior draws
object <- draw_posterior(model)

draw_posterior.dfmodel

Posterior Simulation

Description

Forwards model input to posterior simulation functions.

Usage

## S3 method for class 'dfmodel'
draw_posterior(object, FUN = NULL, mc.cores = NULL, ...)

Arguments

object a list of model specifications, which should be passed on to function FUN. Usu-
ally, the output of a call to gen_var, gen_vec or gen_dfm in combination with
add_priors.

FUN the function to be applied to each list element in argument object. If NULL
(default), the internal functions bvarpost is used for VAR model, bvecpost for
VEC models and dfmpost for dynamic factor models.

mc.cores the number of cores to use, i.e. at most how many child processes will be run si-
multaneously. The option is initialized from environment variable MC_CORES
if set. Must be at least one, and parallelization requires at least two cores.

... further arguments passed to or from other methods.

Value

For multiple models a list of objects of class bvarlist. For a single model the object has the class
of the output of the applied posterior simulation function. In case the package’s own functions are
used, this will be "bvar", "bvec" or "dfm".
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Examples

# Load data
data("e1")
e1 <- diff(log(e1)) * 100

# Generate model
model <- gen_var(e1, p = 1:2, deterministic = 2,

iterations = 100, burnin = 10)
# Chosen number of iterations and burn-in should be much higher.

# Add priors
model <- add_priors(model)

# Obtain posterior draws
object <- draw_posterior(model)

e1 West German economic time series data

Description

The data set contains quarterly, seasonally adjusted time series for West German fixed investment,
disposable income, and consumption expenditures in billions of DM from 1960Q1 to 1982Q4.
It was produced from file E1 of the data sets associated with Lütkepohl (2007). Raw data are
available at http://www.jmulti.de/download/datasets/e1.dat and were originally obtained
from Deutsche Bundesbank.

Usage

data("e1")

Format

A named time-series object with 92 rows and 3 variables:

invest fixed investment.

income disposable income.

cons consumption expenditures.

References

Lütkepohl, H. (2006). New introduction to multiple time series analysis (2nd ed.). Berlin: Springer.

http://www.jmulti.de/download/datasets/e1.dat
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e6 German interest and inflation rate data

Description

The data set contains quarterly, seasonally unadjusted time series for German long-term interest
and inflation rates from 1972Q2 to 1998Q4. It was produced from file E6 of the data sets as-
sociated with Lütkepohl (2007). Raw data are available at http://www.jmulti.de/download/
datasets/e6.dat and were originally obtained from Deutsche Bundesbank and Deutsches Institut
für Wirtschaftsforschung.

Usage

data("e6")

Format

A named time-series object with 107 rows and 2 variables:

R nominal long-term interest rate (Umlaufsrendite).

Dp ∆ log of GDP deflator.

Details

The data cover West Germany until 1990Q2 and all of Germany aferwards. The values refer to the
last month of a quarter.

References

Lütkepohl, H. (2006). New introduction to multiple time series analysis (2nd ed.). Berlin: Springer.

fevd Forecast Error Variance Decomposition A generic function used to
calculate forecast error varianc decompositions.

Description

A plot function for objects of class "bvarfevd".

Usage

fevd(object, ...)

## S3 method for class 'bvarfevd'
plot(x, ...)

http://www.jmulti.de/download/datasets/e6.dat
http://www.jmulti.de/download/datasets/e6.dat
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Arguments

object an object of class "bvar".
... further graphical parameters.
x an object of class "bvarfevd", usually, a result of a call to fevd.

Examples

# Load data
data("e1")
e1 <- diff(log(e1)) * 100

# Generate model data
model <- gen_var(e1, p = 2, deterministic = 2,

iterations = 100, burnin = 10)
# Chosen number of iterations and burnin should be much higher.

# Add prior specifications
model <- add_priors(model)

# Obtain posterior draws
object <- draw_posterior(model)

# Obtain FEVD
vd <- fevd(object, response = "cons")

# Plot
plot(vd)

fevd.bvar Forecast Error Variance Decomposition

Description

Produces the forecast error variance decomposition of a Bayesian VAR model.

Usage

## S3 method for class 'bvar'
fevd(
object,
response = NULL,
n.ahead = 5,
type = "oir",
normalise_gir = FALSE,
period = NULL,
...

)
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Arguments

object an object of class "bvar", usually, a result of a call to bvar or bvec_to_bvar.
response name of the response variable.
n.ahead number of steps ahead.
type type of the impulse responses used to calculate forecast error variable decompo-

sitions. Possible choices are orthogonalised oir (default) and generalised gir
impulse responses.

normalise_gir logical. Should the GIR-based FEVD be normalised?
period integer. Index of the period, for which the variance decomposition should be

generated. Only used for TVP or SV models. Default is NULL, so that the poste-
rior draws of the last time period are used.

... further arguments passed to or from other methods.

Details

The function produces forecast error variance decompositions (FEVD) for the VAR model

A0yt =

p∑
i=1

Aiyt−i + ut,

with ut ∼ N(0,Σ). For non-structural models matrix A0 is set to the identiy matrix and can
therefore be omitted, where not relevant.
If the FEVD is based on the orthogonalised impulse resonse (OIR), the FEVD will be calculated as

ωOIRjk,h =

∑h−1
i=0 (e′jΦiPek)2∑h−1
i=0 (e′jΦiΣΦ′iej)

,

where Φi is the forecast error impulse response for the ith period, P is the lower triangular Choleski
decomposition of the variance-covariance matrix Σ, ej is a selection vector for the response variable
and ek a selection vector for the impulse variable.
If type = "sir", the structural FEVD will be calculated as

ωSIRjk,h =

∑h−1
i=0 (e′jΦiA

−1
0 ek)2∑h−1

i=0 (e′jΦiA
−1
0 A−1′

0 Φ′iej)
,

where σjj is the diagonal element of the jth variable of the variance covariance matrix.
If type = "gir", the generalised FEVD will be calculated as

ωGIRjk,h =
σ−1
jj

∑h−1
i=0 (e′jΦiΣek)2∑h−1

i=0 (e′jΦiΣΦ′iej)
,

where σjj is the diagonal element of the jth variable of the variance covariance matrix.
If type = "sgir", the structural generalised FEVD will be calculated as

ωSGIRjk,h =
σ−1
jj

∑h−1
i=0 (e′jΦiA

−1
0 Σek)2∑h−1

i=0 (e′jΦiA
−1
0 ΣA−1′

0 Φ′iej)
.
Since GIR-based FEVDs do not add up to unity, they can be normalised by setting normalise_gir
= TRUE.
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Value

A time-series object of class "bvarfevd".

References

Lütkepohl, H. (2006). New introduction to multiple time series analysis (2nd ed.). Berlin: Springer.

Pesaran, H. H., & Shin, Y. (1998). Generalized impulse response analysis in linear multivariate
models. Economics Letters, 58, 17-29.

Examples

# Load data
data("e1")
e1 <- diff(log(e1)) * 100

# Generate models
model <- gen_var(e1, p = 2, deterministic = 2,

iterations = 100, burnin = 10)

# Add priors
model <- add_priors(model)

# Obtain posterior draws
object <- draw_posterior(model)

# Obtain FEVD
vd <- fevd(object, response = "cons")

# Plot FEVD
plot(vd)

gen_dfm Dynamic Factor Model Input

Description

gen_dfm produces the input for the estimation of a dynamic factor model (DFM).

Usage

gen_dfm(x, p = 2, n = 1, iterations = 50000, burnin = 5000)
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Arguments

x a time-series object of stationary endogenous variables.
p an integer vector of the lag order of the measurement equation. See ’Details’.
n an integer vector of the number of factors. See ’Details’.
iterations an integer of MCMC draws excluding burn-in draws (defaults to 50000).
burnin an integer of MCMC draws used to initialize the sampler (defaults to 5000).

These draws do not enter the computation of posterior moments, forecasts etc.

Details

The function produces the variable matrices of dynamic factor models (DFM) with measurement
equation

xt = λft + ut,

where xt is an M × 1 vector of observed variables, ft is an N × 1 vector of unobserved factors and
λ is the corresponding M ×N matrix of factor loadings. ut is an M × 1 error term.

The transition equation is

ft =

p∑
i=1

Aift−i + vt,

where Ai is an N ×N coefficient matrix and vt is an N × 1 error term.

If integer vectors are provided as arguments p or n, the function will produce a distinct model for
all possible combinations of those specifications.

Value

An object of class 'dfmodel', which contains the following elements:

data A list of data objects, which can be used for posterior simulation. Element X is a
time-series object of normalised observable variables, i.e. each column has zero
mean and unity variance.

model A list of model specifications.

References

Chan, J., Koop, G., Poirier, D. J., & Tobias, J. L. (2019). Bayesian Econometric Methods (2nd ed.).
Cambridge: University Press.

Lütkepohl, H. (2007). New introduction to multiple time series analysis (2nd ed.). Berlin: Springer.

Examples

# Load data
data("bem_dfmdata")

# Generate model data
model <- gen_dfm(x = bem_dfmdata, p = 1, n = 1,

iterations = 5000, burnin = 1000)
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gen_var Vector Autoregressive Model Input

Description

gen_var produces the input for the estimation of a vector autoregressive (VAR) model.

Usage

gen_var(
data,
p = 2,
exogen = NULL,
s = NULL,
deterministic = "const",
seasonal = FALSE,
structural = FALSE,
tvp = FALSE,
sv = FALSE,
fcst = NULL,
iterations = 50000,
burnin = 5000

)

Arguments

data a time-series object of endogenous variables.
p an integer vector of the lag order (default is p = 2).
exogen an optional time-series object of external regressors.
s an optional integer vector of the lag order of the external regressors (default is s

= 2).
deterministic a character specifying which deterministic terms should be included. Available

values are "none", "const" (default) for an intercept, "trend" for a linear trend,
and "both" for an intercept with a linear trend.

seasonal logical. If TRUE, seasonal dummy variables are generated as additional determin-
istic terms. The amount of dummies depends on the frequency of the time-series
object provided in data.

structural logical indicating whether data should be prepared for the estimation of a struc-
tural VAR model.

tvp logical indicating whether the model parameters are time varying.
sv logical indicating whether time varying error variances should be estimated by

employing a stochastic volatility algorithm.
fcst integer. Number of observations saved for forecasting evaluation.
iterations an integer of MCMC draws excluding burn-in draws (defaults to 50000).
burnin an integer of MCMC draws used to initialize the sampler (defaults to 5000).

These draws do not enter the computation of posterior moments, forecasts etc.
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Details

The function produces the data matrices for vector autoregressive (VAR) models, which can also
include unmodelled, non-deterministic variables:

A0yt =

p∑
i=1

Aiyt−i +

s∑
i=0

Bixt−i + CDt + ut,

where yt is a K-dimensional vector of endogenous variables, A0 is a K ×K coefficient matrix of
contemporaneous endogenous variables, Ai is a K×K coefficient matrix of endogenous variables,
xt is an M-dimensional vector of exogenous regressors andBi its correspondingK×M coefficient
matrix. Dt is an N-dimensional vector of deterministic terms and C its corresponding K × N
coefficient matrix. p is the lag order of endogenous variables, s is the lag order of exogenous
variables, and ut is an error term.

If an integer vector is provided as argument p or s, the function will produce a distinct model for all
possible combinations of those specifications.

If tvp is TRUE, the respective coefficients of the above model are assumed to be time varying. If sv
is TRUE, the error covariance matrix is assumed to be time varying.

Value

An object of class 'bvarmodel', which contains the following elements:

data A list of data objects, which can be used for posterior simulation. Element Y is
a time-series object of dependent variables. Element Z is a time-series object of
the regressors and element SUR is the corresponding matrix of regressors in SUR
form.

model A list of model specifications.

References

Chan, J., Koop, G., Poirier, D. J., & Tobias, J. L. (2019). Bayesian Econometric Methods (2nd ed.).
Cambridge: University Press.

Lütkepohl, H. (2006). New introduction to multiple time series analysis (2nd ed.). Berlin: Springer.

Examples

# Load data
data("e1")
e1 <- diff(log(e1))

# Generate model data
data <- gen_var(e1, p = 0:2, deterministic = "const")
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gen_vec Vector Error Correction Model Input

Description

gen_vec produces the input for the estimation of a vector error correction (VEC) model.

Usage

gen_vec(
data,
p = 2,
exogen = NULL,
s = 2,
r = NULL,
const = NULL,
trend = NULL,
seasonal = NULL,
structural = FALSE,
tvp = FALSE,
sv = FALSE,
fcst = NULL,
iterations = 50000,
burnin = 5000

)

Arguments

data a time-series object of endogenous variables.

p an integer vector of the lag order of the series in the (levels) VAR. Thus, the
resulting model’s lag will be p− 1. See ’Details’.

exogen an optional time-series object of external regressors.

s an optional integer vector of the lag order of the exogenous variables of the
series in the (levels) VAR. Thus, the resulting model’s lag will be s − 1. See
’Details’.

r an integer vector of the cointegration rank. See ’Details’.

const a character specifying whether a constant term enters the error correction term
("restricted") or the non-cointegration term as an "unrestricted" variable.
If NULL (default) no constant term will be added.

trend a character specifying whether a trend term enters the error correction term
("restricted") or the non-cointegration term as an "unrestricted" variable.
If NULL (default) no constant term will be added.

seasonal a character specifying whether seasonal dummies should be included in the error
correction term ("restricted") or in the non-cointegreation term as "unrestricted"
variables. If NULL (default) no seasonal terms will be added. The amount of



50 gen_vec

dummy variables will be automatically detected and depends on the frequency
of the time-series object provided in data.

structural logical indicating whether data should be prepared for the estimation of a struc-
tural VAR model.

tvp logical indicating whether the model parameters are time varying.

sv logical indicating whether time varying error variances should be estimated by
employing a stochastic volatility algorithm.

fcst integer. Number of observations saved for forecasting evaluation.

iterations an integer of MCMC draws excluding burn-in draws (defaults to 50000).

burnin an integer of MCMC draws used to initialize the sampler (defaults to 5000).
These draws do not enter the computation of posterior moments, forecasts etc.

Details

The function produces the variable matrices of vector error correction (VEC) models, which can
also include exogenous variables:

∆yt = Πwt +

p−1∑
i=1

Γi∆yt−i +

s−1∑
i=0

Υi∆xt−i + CURdURt + ut,

where ∆yt is a K × 1 vector of differenced endogenous variables, wt is a (K + M + NR) × 1
vector of cointegration variables, Π is a K × (K + M + NR) matrix of cointegration parameters,
Γi is a K × K coefficient matrix of endogenous variables, ∆xt is a M × 1 vector of differenced
exogenous regressors, Υi is a K ×M coefficient matrix of exogenous regressors, dURt is a N × 1
vector of deterministic terms, and CUR is a K×NUR coefficient matrix of deterministic terms that
do not enter the cointegration term. p is the lag order of endogenous variables and s is the lag order
of exogenous variables of the corresponding VAR model. ut is a K × 1 error term.

If an integer vector is provided as argument p, s or r, the function will produce a distinct model for
all possible combinations of those specifications.

If tvp is TRUE, the respective coefficients of the above model are assumed to be time varying. If sv
is TRUE, the error covariance matrix is assumed to be time varying.

Value

An object of class 'bvecmodel', which contains the following elements:

data A list of data objects, which can be used for posterior simulation. Element Y is
a time-series object of dependent variables. Element W is a timer-series object
of variables in the cointegration term and element X is a time-series object of
variables that do not enter the cointegration term. Element SUR contains a matrix
of element X in its SUR form.

model A list of model specifications.

References

Lütkepohl, H. (2006). New introduction to multiple time series analysis (2nd ed.). Berlin: Springer.
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Examples

# Load data
data("e6")

# Generate model data
data <- gen_vec(e6, p = 4, const = "unrestricted", season = "unrestricted")

inclusion_prior Prior Inclusion Probabilities

Description

Prior inclusion probabilities as required for stochastic search variable selection (SSVS) à la George
et al. (2008) and Bayesian variable selection (BVS) à la Korobilis (2013).

Usage

inclusion_prior(
object,
prob = 0.5,
exclude_deterministics = TRUE,
minnesota_like = FALSE,
kappa = c(0.8, 0.5, 0.5, 0.8)

)

Arguments

object an object of class "bvarmodel", usually, a result of a call to gen_var or gen_vec.

prob a numeric specifying the prior inclusion probability of all model parameters.
exclude_deterministics

logical. If TRUE (default), the vector of the positions of included variables does
not include the positions of deterministic terms.

minnesota_like logical. If TRUE, the prior inclusion probabilities of the parameters are calculated
in a similar way as the Minnesota prior. See ’Details’.

kappa a numeric vector of four elements containing the prior inclusion probabilities of
coefficients that correspond to own lags of endogenous variables, to endogenous
variables, which do not correspond to own lags, to exogenous variables and
deterministic terms, respectively. Only used if minnesota_like = TRUE. See
’Details’.
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Details

If minnesota_like = TRUE, prior inclusion probabilities π1 are calculated as

κ1

r for own lags of endogenous variables,
κ2

r for other endogenous variables,
κ3

1+r for exogenous variables,
κ4 for deterministic variables,

for lag r with κ1, κ2, κ3, κ4 as the first, second, third and forth element in kappa, respectively.

For vector error correction models the function generates prior inclusion probabilities for differ-
enced variables and unrestricted deterministc terms as described above. For variables in the error
correction term prior inclusion probabilites are calculated as

κ1 fow own levels of endogenous variables,
κ2 for levels of other endogenous variables,
κ3 for levels of exogenous variables,
κ4 for deterministic variables.

Value

A list containing a matrix of prior inclusion probabilities and an integer vector specifying the posi-
tions of variables, which should be included in the variable selction algorithm.

References

George, E. I., Sun, D., & Ni, S. (2008). Bayesian stochastic search for VAR model restrictions.
Journal of Econometrics, 142(1), 553–580. doi:10.1016/j.jeconom.2007.08.017

Korobilis, D. (2013). VAR forecasting using Bayesian variable selection. Journal of Applied Econo-
metrics, 28(2), 204–230. doi:10.1002/jae.1271

Examples

# Prepare data
data("e1")

# Generate model input
object <- gen_var(e1)

# Obtain inclusion prior
pi_prior <- inclusion_prior(object)

https://doi.org/10.1016/j.jeconom.2007.08.017
https://doi.org/10.1002/jae.1271
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irf Impulse Response Function A generic function used to calculate im-
pulse response functions.

Description

A plot function for objects of class "bvarirf".

Usage

irf(x, ...)

## S3 method for class 'bvarirf'
plot(x, ...)

Arguments

x an object of class "bvarirf", usually, a result of a call to irf.

... further graphical parameters.

Examples

# Load data
data("e1")
e1 <- diff(log(e1)) * 100

# Generate model data
model <- gen_var(e1, p = 2, deterministic = 2,

iterations = 100, burnin = 10)
# Number of iterations and burnin should be much higher.

# Add prior specifications
model <- add_priors(model)

# Optain posterior draws
object <- draw_posterior(model)

# Calculate IR
ir <- irf(object, impulse = "invest", response = "cons")

# Plot IR
plot(ir)
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irf.bvar Impulse Response Function

Description

Computes the impulse response coefficients of an object of class "bvar" for n.ahead steps.

Usage

## S3 method for class 'bvar'
irf(
x,
impulse = NULL,
response = NULL,
n.ahead = 5,
ci = 0.95,
shock = 1,
type = "feir",
cumulative = FALSE,
keep_draws = FALSE,
period = NULL,
...

)

Arguments

x an object of class "bvar", usually, a result of a call to bvar or bvec_to_bvar.

impulse name of the impulse variable.

response name of the response variable.

n.ahead number of steps ahead.

ci a numeric between 0 and 1 specifying the probability mass covered by the cred-
ible intervals. Defaults to 0.95.

shock size of the shock.

type type of the impulse response. Possible choices are forecast error "feir" (de-
fault), orthogonalised "oir", structural "sir", generalised "gir", and structural
generalised "sgir" impulse responses.

cumulative logical specifying whether a cumulative IRF should be calculated.

keep_draws logical specifying whether the function should return all draws of the posterior
impulse response function. Defaults to FALSE so that the median and the credible
intervals of the posterior draws are returned.

period integer. Index of the period, for which the IR should be generated. Only used
for TVP or SV models. Default is NULL, so that the posterior draws of the last
time period are used.

... further arguments passed to or from other methods.
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Details

The function produces different types of impulse responses for the VAR model

A0yt =

p∑
i=1

Aiyt−i + ut,

with ut ∼ N(0,Σ).

Forecast error impulse responses Φi are obtained by recursions

Φi =

i∑
j=1

Φi−jAj , i = 1, 2, ..., h

with Φ0 = IK .

Orthogonalised impulse responses Θo
i are calculated as Θo

i = ΦiP , where P is the lower triangular
Choleski decomposition of Σ.

Structural impulse responses Θs
i are calculated as Θs

i = ΦiA
−1
0 .

(Structural) Generalised impulse responses for variable j, i.e. Θg
j i are calculated as Θg

ji = σ
−1/2
jj ΦiA

−1
0 Σej ,

where σjj is the variance of the jth diagonal element of Σ and ei is a selection vector containing
one in its jth element and zero otherwise. If the "bvar" object does not contain draws of A0, it is
assumed to be an identity matrix.

Value

A time-series object of class "bvarirf" and if keep_draws = TRUE a simple matrix.

References

Lütkepohl, H. (2006). New introduction to multiple time series analysis (2nd ed.). Berlin: Springer.

Pesaran, H. H., Shin, Y. (1998). Generalized impulse response analysis in linear multivariate mod-
els. Economics Letters, 58, 17-29.

Examples

# Load data
data("e1")
e1 <- diff(log(e1)) * 100

# Generate model data
model <- gen_var(e1, p = 2, deterministic = 2,

iterations = 100, burnin = 10)
# Chosen number of iterations and burnin should be much higher.

# Add prior specifications
model <- add_priors(model)

# Obtain posterior draws
object <- draw_posterior(model)
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# Obtain IR
ir <- irf(object, impulse = "invest", response = "cons")

# Plot IR
plot(ir)

kalman_dk Durbin and Koopman Simulation Smoother

Description

An implementation of the Kalman filter and backward smoothing algorithm proposed by Durbin
and Koopman (2002).

Usage

kalman_dk(y, z, sigma_u, sigma_v, B, a_init, P_init)

Arguments

y a K × T matrix of endogenous variables.

z a KT ×M matrix of explanatory variables.

sigma_u the constantK×K error variance-covariance matrix. For time varying variance-
covariance matrices a KT ×K can be specified.

sigma_v the constant M ×M coefficient variance-covariance matrix. For time varying
variance-covariance matrices a MT ×M can be specified.

B an M ×M autocorrelation matrix of the transition equation.

a_init an M-dimensional vector of initial states.

P_init an M ×M variance-covariance matrix of the initial states.

Details

The function uses algorithm 2 from Durbin and Koopman (2002) to produce a draw of the state
vector at for t = 1, ..., T for a state space model with measurement equation

yt = Ztat + ut

and transition equation
at+1 = Btat + vt,

where ut ∼ N(0,Σu,t) and vt ∼ N(0,Σv,t). yt is a K-dimensional vector of endogenous variables
and Zt = z′t ⊗ IK is a K ×M matrix of regressors with zt as a vector of regressors.

The algorithm takes into account Jarociński (2015), where a possible missunderstanding in the
implementation of the algorithm of Durbin and Koopman (2002) is pointed out. Following that
note the function sets the mean of the initial state to zero in the first step of the algorithm.
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Value

A M × T + 1 matrix of state vector draws.

References

Durbin, J., & Koopman, S. J. (2002). A simple and efficient simulation smoother for state space
time series analysis. Biometrika, 89(3), 603–615.

Jarociński, M. (2015). A note on implementing the Durbin and Koopman simulation smoother.
Computational Statistics and Data Analysis, 91, 1–3. doi:10.1016/j.csda.2015.05.001

Examples

# Load data
data("e1")
data <- diff(log(e1))

# Generate model data
temp <- gen_var(data, p = 2, deterministic = "const")
y <- t(temp$data$Y)
z <- temp$data$SUR
k <- nrow(y)
tt <- ncol(y)
m <- ncol(z)

# Priors
a_mu_prior <- matrix(0, m)
a_v_i_prior <- diag(0.1, m)

a_Q <- diag(.0001, m)

# Initial value of Sigma
sigma <- tcrossprod(y) / tt
sigma_i <- solve(sigma)

# Initial values for Kalman filter
y_init <- y * 0
a_filter <- matrix(0, m, tt + 1)

# Initialise the Kalman filter
for (i in 1:tt) {

y_init[, i] <- y[, i] - z[(i - 1) * k + 1:k,] %*% a_filter[, i]
}
a_init <- post_normal_sur(y = y_init, z = z, sigma_i = sigma_i,

a_prior = a_mu_prior, v_i_prior = a_v_i_prior)
y_filter <- matrix(y) - z %*% a_init
y_filter <- matrix(y_filter, k) # Reshape

# Kalman filter and backward smoother
a_filter <- kalman_dk(y = y_filter, z = z, sigma_u = sigma,

sigma_v = a_Q, B = diag(1, m),

https://doi.org/10.1016/j.csda.2015.05.001
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a_init = matrix(0, m), P_init = a_Q)

a <- a_filter + matrix(a_init, m, tt + 1)

loglik_normal Calculates the log-likelihood of a multivariate normal distribution.

Description

Calculates the log-likelihood of a multivariate normal distribution.

Usage

loglik_normal(u, sigma)

Arguments

u a K × T matrix of residuals.

sigma a K ×K or KT ×K variance-covariance matrix.

Details

The log-likelihood is calculated for each vector in period t as

−K
2

ln 2π − 1

2
ln |Σt| −

1

2
u′tΣ

−1
t ut

, where ut = yt − µt.

Examples

# Load data
data("e1")
e1 <- diff(log(e1))

# Generate VAR model
data <- gen_var(e1, p = 2, deterministic = "const")
y <- t(data$data$Y)
x <- t(data$data$Z)

# LS estimate
ols <- tcrossprod(y, x) %*% solve(tcrossprod(x))

# Residuals
u <- y - ols %*% x # Residuals

# Covariance matrix
sigma <- tcrossprod(u) / ncol(u)
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# Log-likelihood
loglik_normal(u = u, sigma = sigma)

minnesota_prior Minnesota Prior

Description

Calculates the Minnesota prior for a VAR model.

Usage

minnesota_prior(
object,
kappa0 = 2,
kappa1 = 0.5,
kappa2 = NULL,
kappa3 = 5,
max_var = NULL,
coint_var = FALSE,
sigma = "AR"

)

Arguments

object an object of class "bvarmodel", usually, a result of a call to gen_var or gen_vec.
kappa0 a numeric specifying the prior variance of coefficients that correspond to own

lags of endogenous variables.
kappa1 a numeric specifying the size of the prior variance of endogenous variables,

which do not correspond to own lags, relative to argument kappa0.
kappa2 a numeric specifying the size of the prior variance of non-deterministic exoge-

nous variables relative to argument kappa0. Default is NULL, which indicates
that the formula for the calculation of the prior variance of deterministic terms
is used for all exogenous variables.

kappa3 a numeric specifying the size of the prior variance of deterministic terms relative
to argument kappa0.

max_var a positive numeric specifying the maximum prior variance that is allowed for
coefficients of non-deterministic variables. If NULL (default), the prior variances
are not limited.

coint_var a logical specifying whether the model is a cointegrated VAR model, for which
the prior means of first own lags should be set to one.

sigma either "AR" (default) or "VAR" indicating that the variances of the endogenous
variables σ2 are calculated based on a univariate AR regression or a least squares
estimate of the VAR form, respectively. In both cases all deterministic variables
are used in the regressions, if they appear in the model.
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Details

The function calculates the Minnesota prior of a VAR model. For the endogenous variable i the
prior variance of the lth lag of regressor j is obtained as

κ0

l2
for own lags of endogenous variables,

κ0κ1

l2
σ2
i

σ2
j

for endogenous variables other than own lags,

κ0κ2

(l + 1)2

σ2
i

σ2
j

for exogenous variables,

κ0κ3σ
2
i for deterministic terms,

where σi is the residual standard deviation of variable i of an unrestricted LS estimate. For exoge-
nous variables σi is the sample standard deviation.

For VEC models the function only provides priors for the non-cointegration part of the model. The
residual standard errors σi are based on an unrestricted LS regression of the endogenous variables
on the error correction term and the non-cointegration regressors.

Value

A list containing a matrix of prior means and the precision matrix of the cofficients and the inverse
variance-covariance matrix of the error term, which was obtained by an LS estimation.

References

Chan, J., Koop, G., Poirier, D. J., & Tobias, J. L. (2020). Bayesian Econometric Methods (2nd ed.).
Cambridge: University Press.

Lütkepohl, H. (2006). New introduction to multiple time series analysis (2nd ed.). Berlin: Springer.

Examples

# Load data
data("e1")
data <- diff(log(e1))

# Generate model input
object <- gen_var(data)

# Obtain Minnesota prior
prior <- minnesota_prior(object)
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plot.bvarlist Plotting Posterior Draws of Bayesian VAR or VEC Models

Description

A plot function for objects of class "bvarlist".

Usage

## S3 method for class 'bvarlist'
plot(x, ci = 0.95, type = "hist", model = NULL, ...)

Arguments

x an object of class "bvarlist", usually, a result of a call to draw_posterior.

ci interval used to calculate credible bands for time-varying parameters.

type either "hist" (default) for histograms, "trace" for a trace plot, or "boxplot"
for a boxplot. Only used for parameter draws of constant coefficients.

model numeric or integer indicating for which models in argument "x" plots should be
produced.

... further graphical parameters.

plot.bvarprd Plotting Forecasts of BVAR Models

Description

A plot function for objects of class "bvarprd".

Usage

## S3 method for class 'bvarprd'
plot(x, n.pre = NULL, ...)

Arguments

x an object of class "bvarprd", usually, a result of a call to predict.bvar.

n.pre number of plotted observations that precede the forecasts. If NULL (default), all
available obervations will be plotted.

... further graphical parameters.
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Examples

# Load data
data("e1")
e1 <- diff(log(e1)) * 100

# Generate model data
model <- gen_var(e1, p = 2, deterministic = 2,

iterations = 100, burnin = 10)

# Add prior specifications
model <- add_priors(model)

# Obtain posterior draws
object <- draw_posterior(model)

# Calculate forecasts
pred <- predict(object, new_d = rep(1, 10))

# Plot forecasts
plot(pred)

post_coint_kls Posterior Draw for Cointegration Models

Description

Produces a draw of coefficients for cointegration models with a prior on the cointegration space as
proposed in Koop et al. (2010) and a draw of non-cointegration coefficients from a normal density.

Usage

post_coint_kls(
y,
beta,
w,
sigma_i,
v_i,
p_tau_i,
g_i,
x = NULL,
gamma_mu_prior = NULL,
gamma_v_i_prior = NULL

)
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Arguments

y a K × T matrix of differenced endogenous variables.

beta a M × r cointegration matrix β.

w a M × T matrix of variables in the cointegration term.

sigma_i an inverse of the K ×K variance-covariance matrix.

v_i a numeric between 0 and 1 specifying the shrinkage of the cointegration space
prior.

p_tau_i an inverted M ×M matrix specifying the central location of the cointegration
space prior of sp(β).

g_i a K ×K matrix.

x a N × T matrix of differenced regressors and unrestricted deterministic terms.

gamma_mu_prior a KN × 1 prior mean vector of non-cointegration coefficients.
gamma_v_i_prior

an invertedKN×KN prior covariance matrix of non-cointegration coefficients.

Details

The function produces posterior draws of the coefficient matrices α, β and Γ for the model

yt = αβ′wt−1 + Γzt + ut,

where yt is a K-dimensional vector of differenced endogenous variables. wt is an M × 1 vector
of variables in the cointegration term, which include lagged values of endogenous and exogenous
variables in levels and restricted deterministic terms. zt is an N-dimensional vector of differenced
endogenous and exogenous explanatory variabes as well as unrestricted deterministic terms. The
error term is ut ∼ Σ.

Draws of the loading matrix α are obtained using the prior on the cointegration space as proposed
in Koop et al. (2010). The posterior covariance matrix is

V α =
[(
v−1(β′P−1

τ β)⊗G−1

)
+
(
ZZ ′ ⊗ Σ−1

)]−1

and the posterior mean by
α = V α + vec(Σ−1Y Z ′),

where Y is aK×T matrix of differenced endogenous variables and Z = β′W withW as anM×T
matrix of variables in the cointegration term.

For a given prior mean vector Γ and prior covariance matrix VΓ the posterior covariance matrix of
non-cointegration coefficients in Γ is obtained by

V Γ =
[
V −1

Γ +
(
XX ′ ⊗ Σ−1

)]−1

and the posterior mean by
Γ = V Γ

[
V −1

Γ Γ + vec(Σ−1Y X ′)
]
,

where X is an M × T matrix of explanatory variables, which do not enter the cointegration term.
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Draws of the cointegration matrix β are obtained using the prior on the cointegration space as
proposed in Koop et al. (2010). The posterior covariance matrix of the unrestricted cointegration
matrix B is

V B =
[(
A′G−1A⊗ v−1P−1

τ

)
+
(
A′Σ−1A⊗WW ′

)]−1

and the posterior mean by
B = V B + vec(WY −1

B Σ−1A),

where YB = Y − ΓX and A = α(α′α)−
1
2 .

The final draws of α and β are calculated using β = B(B′B)−
1
2 and α = A(B′B)

1
2 .

Value

A named list containing the following elements:

alpha a draw of the K × r loading matrix.

beta a draw of the M × r cointegration matrix.

Pi a draw of the K ×M cointegration matrix Π = αβ′.

Gamma a draw of the K ×N coefficient matrix for non-cointegration parameters.

References

Koop, G., León-González, R., & Strachan R. W. (2010). Efficient posterior simulation for coin-
tegrated models with priors on the cointegration space. Econometric Reviews, 29(2), 224-242.
doi:10.1080/07474930903382208

Examples

# Load data
data("e6")

# Generate model data
temp <- gen_vec(e6, p = 1, r = 1)
y <- t(temp$data$Y)
ect <- t(temp$data$W)

k <- nrow(y) # Endogenous variables
tt <- ncol(y) # Number of observations

# Initial value of Sigma
sigma <- tcrossprod(y) / tt
sigma_i <- solve(sigma)

# Initial values of beta
beta <- matrix(c(1, -4), k)

# Draw parameters
coint <- post_coint_kls(y = y, beta = beta, w = ect, sigma_i = sigma_i,

v_i = 0, p_tau_i = diag(1, k), g_i = sigma_i)

https://doi.org/10.1080/07474930903382208
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post_coint_kls_sur Posterior Draw for Cointegration Models

Description

Produces a draw of coefficients for cointegration models in SUR form with a prior on the cointe-
gration space as proposed in Koop et al. (2010) and a draw of non-cointegration coefficients from a
normal density.

Usage

post_coint_kls_sur(
y,
beta,
w,
sigma_i,
v_i,
p_tau_i,
g_i,
x = NULL,
gamma_mu_prior = NULL,
gamma_v_i_prior = NULL,
svd = FALSE

)

Arguments

y a K × T matrix of differenced endogenous variables.

beta a M × r cointegration matrix β, where β′β = I .

w a M × T matrix of variables in the cointegration term.

sigma_i the inverse of the constant K × K error variance-covariance matrix. For time
varying variance-covariance matrics a KT ×K can be provided.

v_i a numeric between 0 and 1 specifying the shrinkage of the cointegration space
prior.

p_tau_i an inverted M ×M matrix specifying the central location of the cointegration
space prior of sp(β).

g_i a K × K or KT × K matrix. If the matrix is KT × K, the function will
automatically produce aK×K matrix containing the means of the time varying
K ×K covariance matrix.

x a KT × NK matrix of differenced regressors and unrestricted deterministic
terms.

gamma_mu_prior a KN × 1 prior mean vector of non-cointegration coefficients.
gamma_v_i_prior

an invertedKN×KN prior covariance matrix of non-cointegration coefficients.
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svd logical. If TRUE the singular value decomposition is used to determine the root
of the posterior covariance matrix. Default is FALSE which means that the eigen-
value decomposition is used.

Details

The function produces posterior draws of the coefficient matrices α, β and Γ for the model

yt = αβ′wt−1 + Γzt + ut,

where yt is a K-dimensional vector of differenced endogenous variables. wt is an M × 1 vector
of variables in the cointegration term, which include lagged values of endogenous and exogenous
variables in levels and restricted deterministic terms. zt is an N-dimensional vector of differenced
endogenous and exogenous explanatory variabes as well as unrestricted deterministic terms. The
error term is ut ∼ Σ.

Draws of the loading matrix α are obtained using the prior on the cointegration space as proposed
in Koop et al. (2010). The posterior covariance matrix is

V α =
[(
v−1(β′P−1

τ β)⊗G−1

)
+
(
ZZ ′ ⊗ Σ−1

)]−1

and the posterior mean by
α = V α + vec(Σ−1Y Z ′),

where Y is aK×T matrix of differenced endogenous variables and Z = β′W withW as anM×T
matrix of variables in the cointegration term.

For a given prior mean vector Γ and prior covariance matrix VΓ the posterior covariance matrix of
non-cointegration coefficients in Γ is obtained by

V Γ =
[
V −1

Γ +
(
XX ′ ⊗ Σ−1

)]−1

and the posterior mean by
Γ = V Γ

[
V −1

Γ Γ + vec(Σ−1Y X ′)
]
,

where X is an M × T matrix of explanatory variables, which do not enter the cointegration term.

Draws of the cointegration matrix β are obtained using the prior on the cointegration space as
proposed in Koop et al. (2010). The posterior covariance matrix of the unrestricted cointegration
matrix B is

V B =
[(
A′G−1A⊗ v−1P−1

τ

)
+
(
A′Σ−1A⊗WW ′

)]−1

and the posterior mean by
B = V B + vec(WY −1

B Σ−1A),

where YB = Y − ΓX and A = α(α′α)−
1
2 .

The final draws of α and β are calculated using β = B(B′B)−
1
2 and α = A(B′B)

1
2 .

Value

A named list containing the following elements:

alpha a draw of the K × r loading matrix.
beta a draw of the M × r cointegration matrix.
Pi a draw of the K ×M cointegration matrix Π = αβ′.
Gamma a draw of the K ×N coefficient matrix for non-cointegration parameters.
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References

Koop, G., León-González, R., & Strachan R. W. (2010). Efficient posterior simulation for coin-
tegrated models with priors on the cointegration space. Econometric Reviews, 29(2), 224-242.
doi:10.1080/07474930903382208

Examples

# Load data
data("e6")

# Generate model data
temp <- gen_vec(e6, p = 1, r = 1)
y <- t(temp$data$Y)
ect <- t(temp$data$W)

k <- nrow(y) # Endogenous variables
tt <- ncol(y) # Number of observations

# Initial value of Sigma
sigma <- tcrossprod(y) / tt
sigma_i <- solve(sigma)

# Initial values of beta
beta <- matrix(c(1, -4), k)

# Draw parameters
coint <- post_coint_kls_sur(y = y, beta = beta, w = ect,

sigma_i = sigma_i, v_i = 0, p_tau_i = diag(1, nrow(ect)),
g_i = sigma_i)

post_normal Posterior Draw from a Normal Distribution

Description

Produces a draw of coefficients from a normal posterior density.

Usage

post_normal(y, x, sigma_i, a_prior, v_i_prior)

Arguments

y a K × T matrix of endogenous variables.
x an M × T matrix of explanatory variables.
sigma_i the inverse of the K ×K variance-covariance matrix.
a_prior a KM × 1 numeric vector of prior means.
v_i_prior the inverse of the KM ×KM prior covariance matrix.

https://doi.org/10.1080/07474930903382208
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Details

The function produces a vectorised posterior draw a of the K ×M coefficient matrix A for the
model

yt = Axt + ut,

where yt is a K-dimensional vector of endogenous variables, xt is an M-dimensional vector of
explanatory variabes and the error term is ut ∼ Σ.

For a given prior mean vector a and prior covariance matrix V the posterior covariance matrix is
obtained by

V =
[
V −1 +

(
XX ′ ⊗ Σ−1

)]−1

and the posterior mean by
a = V

[
V −1a+ vec(Σ−1Y X ′)

]
,

where Y is aK×T matrix of the endogenous variables andX is anM×T matrix of the explanatory
variables.

Value

A vector.

References

Lütkepohl, H. (2006). New introduction to multiple time series analysis (2nd ed.). Berlin: Springer.

Examples

# Load data
data("e1")
data <- diff(log(e1))

# Generate model data
temp <- gen_var(data, p = 2, deterministic = "const")
y <- t(temp$data$Y)
x <- t(temp$data$Z)
k <- nrow(y)
tt <- ncol(y)
m <- k * nrow(x)

# Priors
a_mu_prior <- matrix(0, m)
a_v_i_prior <- diag(0.1, m)

# Initial value of inverse Sigma
sigma_i <- solve(tcrossprod(y) / tt)

# Draw parameters
a <- post_normal(y = y, x = x, sigma_i = sigma_i,

a_prior = a_mu_prior, v_i_prior = a_v_i_prior)
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post_normal_covar_const

Posterior Simulation of Error Covariance Coefficients

Description

Produces posterior draws of constant error covariance coefficients.

Usage

post_normal_covar_const(y, u_omega_i, prior_mean, prior_covariance_i)

Arguments

y a K × T matrix of data with K as the number of endogenous variables and T
the number of observations.

u_omega_i matrix of error variances of the measurement equation. Either a K ×K matrix
for constant variances or a KT ×KT matrix for time varying variances.

prior_mean vector of prior means. In case of TVP, this vector is used as initial condition.
prior_covariance_i

inverse prior covariance matrix. In case of TVP, this matrix is used as initial
condition.

Details

For the multivariate model A0yt = ut with ut ∼ N(0,Ωt) the function produces a draw of the
lower triangular part of A0 similar as in Primiceri (2005), i.e., using

yt = Ztψ + ut,

where

Zt =


0 · · · · · · 0
−y1,t 0 · · · 0

0 −y[1,2],t

. . .
...

...
. . . . . . 0

0 · · · 0 −y[1,...,K−1],t


and y[1,...,K−1],t denotes the first to (K − 1)th elements of the vector yt.

Value

A matrix.

References

Primiceri, G. E. (2005). Time varying structural vector autoregressions and monetary policy. The
Review of Economic Studies, 72(3), 821–852. doi:10.1111/j.1467937X.2005.00353.x

https://doi.org/10.1111/j.1467-937X.2005.00353.x
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Examples

# Load example data
data("e1")
y <- log(t(e1))

# Generate artificial draws of other matrices
u_omega_i <- diag(1, 3)
prior_mean <- matrix(0, 3)
prior_covariance_i <- diag(0, 3)

# Obtain posterior draw
post_normal_covar_const(y, u_omega_i, prior_mean, prior_covariance_i)

post_normal_covar_tvp Posterior Simulation of Error Covariance Coefficients

Description

Produces posterior draws of time varying error covariance coefficients.

Usage

post_normal_covar_tvp(y, u_omega_i, v_sigma_i, psi_init)

Arguments

y a K × T matrix of data with K as the number of endogenous variables and T
the number of observations.

u_omega_i matrix of error variances of the measurement equation. Either a K ×K matrix
for constant variances or a KT ×KT matrix for time varying variances.

v_sigma_i matrix of error variances of the state equation. Either an M × M matrix for
constant variances or an MT ×MT matrix for time varying variances, where
M is the number of estimated variables.

psi_init a vector of inital values of the state equation.

Details

For the multivariate model A0,tyt = ut with ut ∼ N(0,Ωt) the function produces a draw of the
lower triangular part of A0,t similar as in Primiceri (2005), i.e., using

yt = Ztψt + ut,

where

Zt =


0 · · · · · · 0
−y1,t 0 · · · 0

0 −y[1,2],t

. . .
...

...
. . . . . . 0

0 · · · 0 −y[1,...,K−1],t


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and y[1,...,K−1],t denotes the first to (K − 1)th elements of the vector yt.

The algorithm of Chan and Jeliazkov (2009) is used to obtain time varying coefficients.

Value

A matrix.

References

Chan, J., & Jeliazkov, I. (2009). Efficient simulation and integrated likelihood estimation in state
space models. International Journal of Mathematical Modelling and Numerical Optimisation,
1(1/2), 101–120. doi:10.1504/IJMMNO.2009.030090

Primiceri, G. E. (2005). Time varying structural vector autoregressions and monetary policy. The
Review of Economic Studies, 72(3), 821–852. doi:10.1111/j.1467937X.2005.00353.x

Examples

# Load example data
data("e1")
y <- log(t(e1))

# Generate artificial draws of other matrices
u_omega_i <- diag(1, 3)
v_sigma_i <- diag(1000, 3)
psi_init <- matrix(0, 3)

# Obtain posterior draw
post_normal_covar_tvp(y, u_omega_i, v_sigma_i, psi_init)

post_normal_sur Posterior Draw from a Normal Distribution

Description

Produces a draw of coefficients from a normal posterior density for a model with seemingly unre-
lated regresssions (SUR).

Usage

post_normal_sur(y, z, sigma_i, a_prior, v_i_prior, svd = FALSE)

Arguments

y a K × T matrix of endogenous variables.

z a KT ×M matrix of explanatory variables.

sigma_i the inverse of the constant K × K error variance-covariance matrix. For time
varying variance-covariance matrics a KT ×K can be provided.

https://doi.org/10.1504/IJMMNO.2009.030090
https://doi.org/10.1111/j.1467-937X.2005.00353.x
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a_prior a Mx1 numeric vector of prior means.

v_i_prior the inverse of the MxM prior covariance matrix.

svd logical. If TRUE the singular value decomposition is used to determine the root
of the posterior covariance matrix. Default is FALSE which means that the eigen-
value decomposition is used.

Details

The function produces a posterior draw of the coefficient vector a for the model

yt = Zta+ ut,

where ut ∼ N(0,Σt). yt is a K-dimensional vector of endogenous variables and Zt = z′t ⊗ IK is a
K ×KM matrix of regressors with zt as a vector of regressors.

For a given prior mean vector a and prior covariance matrix V the posterior covariance matrix is
obtained by

V =

[
V −1 +

T∑
t=1

Z ′tΣ
−1
t Zt

]−1

and the posterior mean by

a = V

[
V −1a+

T∑
t=1

Z ′tΣ
−1
t yt

]
.

Value

A vector.

Examples

# Load data
data("e1")
data <- diff(log(e1))

# Generate model data
temp <- gen_var(data, p = 2, deterministic = "const")
y <- t(temp$data$Y)
z <- temp$data$SUR
k <- nrow(y)
tt <- ncol(y)
m <- ncol(z)

# Priors
a_mu_prior <- matrix(0, m)
a_v_i_prior <- diag(0.1, m)

# Initial value of inverse Sigma
sigma_i <- solve(tcrossprod(y) / tt)

# Draw parameters
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a <- post_normal_sur(y = y, z = z, sigma_i = sigma_i,
a_prior = a_mu_prior, v_i_prior = a_v_i_prior)

ssvs Stochastic Search Variable Selection

Description

ssvs employs stochastic search variable selection as proposed by George et al. (2008) to produce a
draw of the precision matrix of the coefficients in a VAR model.

Usage

ssvs(a, tau0, tau1, prob_prior, include = NULL)

Arguments

a an M-dimensional vector of coefficient draws.

tau0 an M-dimensional vector of prior standard deviations for restricted coefficients
in vector a.

tau1 an M-dimensional vector of prior standard deviations for unrestricted coeffi-
cients in vector a.

prob_prior an M-dimensional vector of prior inclusion probabilites for the coefficients in
vector a.

include an integer vector specifying the positions of coefficients in vector a, which
should be included in the SSVS algorithm. If NULL (default), SSVS will be
applied to all coefficients.

Details

The function employs stochastic search variable selection (SSVS) as proposed by George et al.
(2008) to produce a draw of the diagonal inverse prior covariance matrix V −1 and the corresponding
vector of inclusion parameters λ of the vectorised coefficient matrix a = vec(A) for the VAR model

yt = Axt + ut,

where yt is a K-dimensional vector of endogenous variables, xt is a vector of explanatory variabes
and the error term is ut ∼ Σ.

Value

A named list containing two components:

v_i an M ×M inverse prior covariance matrix.

lambda an M-dimensional vector of inclusion parameters.
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References

George, E. I., Sun, D., & Ni, S. (2008). Bayesian stochastic search for VAR model restrictions.
Journal of Econometrics, 142(1), 553–580. doi:10.1016/j.jeconom.2007.08.017

Examples

# Load data
data("e1")
data <- diff(log(e1))

# Generate model data
temp <- gen_var(data, p = 2, deterministic = "const")
y <- t(temp$data$Y)
x <- t(temp$data$Z)
k <- nrow(y)
tt <- ncol(y)
m <- k * nrow(x)

# Obtain SSVS priors using the semiautomatic approach
priors <- ssvs_prior(temp, semiautomatic = c(0.1, 10))
tau0 <- priors$tau0
tau1 <- priors$tau1

# Prior for inclusion parameter
prob_prior <- matrix(0.5, m)

# Priors
a_mu_prior <- matrix(0, m)
a_v_i_prior <- diag(c(tau1^2), m)

# Initial value of Sigma
sigma_i <- solve(tcrossprod(y) / tt)

# Draw parameters
a <- post_normal(y = y, x = x, sigma_i = sigma_i,

a_prior = a_mu_prior, v_i_prior = a_v_i_prior)

# Run SSVS
lambda <- ssvs(a = a, tau0 = tau0, tau1 = tau1,

prob_prior = prob_prior)

ssvs_prior Stochastic Search Variable Selection Prior

Description

Calculates the priors for a Bayesian VAR model, which employs stochastic search variable selection
(SSVS).

https://doi.org/10.1016/j.jeconom.2007.08.017
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Usage

ssvs_prior(object, tau = c(0.05, 10), semiautomatic = NULL)

Arguments

object an object of class "bvarmodel", usually, a result of a call to gen_var or gen_vec.

tau a numeric vector of two elements containing the prior standard errors of re-
stricted variables (τ0) as its first element and unrestricted variables (τ1) as its
second. Default is c(0.05, 10).

semiautomatic an optional numeric vector of two elements containing the factors by which the
standard errors associated with an unconstrained least squares estimate of the
VAR model are multiplied to obtain the prior standard errors of restricted (τ0)
and unrestricted (τ1) variables. This is the semiautomatic approach described in
George et al. (2008).

Value

A list containing the vectors of prior standard deviations for restricted and unrestricted variables,
respectively.

References

George, E. I., Sun, D., & Ni, S. (2008). Bayesian stochastic search for VAR model restrictions.
Journal of Econometrics, 142(1), 553–580. doi:10.1016/j.jeconom.2007.08.017

Examples

# Prepare data
data("e1")
data <- diff(log(e1))

# Generate model input
object <- gen_var(data)

# Obtain SSVS prior
prior <- ssvs_prior(object, semiautomatic = c(.1, 10))

stochvol_ksc1998 Stochastic Volatility

Description

Produces a draw of log-volatilities.

https://doi.org/10.1016/j.jeconom.2007.08.017
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Usage

stochvol_ksc1998(y, h, sigma, h_init, constant)

Arguments

y a T ×K matrix containing the time series.

h a T ×K vector of the current draw of log-volatilities.

sigma aK×1 vector of variances of log-volatilities, where the ith element corresponds
to the ith column in y.

h_init a K × 1 vector of the initial states of log-volatilities, where the ith element
corresponds to the ith column in y.

constant a K × 1 vector of constants that should be added to y2 before taking the natural
logarithm. The ith element corresponds to the ith column in y. See ’Details’.

Details

For each column in y the function produces a posterior draw of the log-volatility h for the model

yt = e
1
2htεt,

where εt ∼ N(0, 1) and ht is assumed to evolve according to a random walk

ht = ht−1 + ut,

with ut ∼ N(0, σ2).

The implementation is based on the algorithm of Kim, Shephard and Chip (1998) and performs the
following steps:

1. Perform the transformation y∗t = ln(y2
t + constant).

2. Obtain a sample from the seven-component normal mixture for approximating the log-χ2
1

distribution.

3. Obtain a draw of log-volatilities.

The implementation follows the code provided on the website to the textbook by Chan, Koop,
Poirier, and Tobias (2019).

Value

A vector of log-volatility draws.

References

Chan, J., Koop, G., Poirier, D. J., & Tobias J. L. (2019). Bayesian econometric methods (2nd ed.).
Cambridge: Cambridge University Press.

Kim, S., Shephard, N., & Chib, S. (1998). Stochastic volatility. Likelihood inference and com-
parison with ARCH models. Review of Economic Studies 65(3), 361–393. doi:10.1111/1467-
937X.00050

https://doi.org/10.1111/1467-937X.00050
https://doi.org/10.1111/1467-937X.00050
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Examples

data("us_macrodata")
y <- matrix(us_macrodata[, "r"])

# Initialise log-volatilites
h_init <- matrix(log(var(y)))
h <- matrix(rep(h_init, length(y)))

# Obtain draw
stochvol_ksc1998(y - mean(y), h, matrix(.05), h_init, matrix(0.0001))

stochvol_ocsn2007 Stochastic Volatility

Description

Produces a draw of log-volatilities based on Omori, Chib, Shephard and Nakajima (2007).

Usage

stochvol_ocsn2007(y, h, sigma, h_init, constant)

Arguments

y a T ×K matrix containing the time series.

h a T ×K vector of the current draw of log-volatilities.

sigma aK×1 vector of variances of log-volatilities, where the ith element corresponds
to the ith column in y.

h_init a K × 1 vector of the initial states of log-volatilities, where the ith element
corresponds to the ith column in y.

constant a K × 1 vector of constants that should be added to y2 before taking the natural
logarithm. The ith element corresponds to the ith column in y. See ’Details’.

Details

For each column in y the function produces a posterior draw of the log-volatility h for the model

yt = e
1
2htεt,

where εt ∼ N(0, 1) and ht is assumed to evolve according to a random walk

ht = ht−1 + ut,

with ut ∼ N(0, σ2).

The implementation follows the algorithm of Omori, Chib, Shephard and Nakajima (2007) and
performs the following steps:
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1. Perform the transformation y∗t = ln(y2
t + constant).

2. Obtain a sample from the ten-component normal mixture for approximating the log-χ2
1 distri-

bution.

3. Obtain a draw of log-volatilities.

The implementation is an adaption of the code provided on the website to the textbook by Chan,
Koop, Poirier, and Tobias (2019).

Value

A vector of log-volatility draws.

References

Chan, J., Koop, G., Poirier, D. J., & Tobias J. L. (2019). Bayesian econometric methods (2nd ed.).
Cambridge: Cambridge University Press.

Omori, Y., Chib, S., Shephard, N., & Nakajima, J. (2007). Stochastic volatiltiy with leverage.
Fast and efficient likelihood inference. Journal of Econometrics 140(2), 425–449. doi:10.1016/
j.jeconom.2006.07.008

Examples

data("us_macrodata")
y <- matrix(us_macrodata[, "r"])

# Initialise log-volatilites
h_init <- matrix(log(var(y)))
h <- matrix(rep(h_init, length(y)))

# Obtain draw
stochvol_ocsn2007(y - mean(y), h, matrix(.05), h_init, matrix(0.0001))

stoch_vol Stochastic Volatility

Description

Produces a draw of log-volatilities.

Usage

stoch_vol(y, h, sigma, h_init, constant)

https://doi.org/10.1016/j.jeconom.2006.07.008
https://doi.org/10.1016/j.jeconom.2006.07.008
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Arguments

y a T × 1 vector containing the time series.

h a T × 1 vector of log-volatilities.

sigma a numeric of the variance of the log-volatilites.

h_init a numeric of the initial state of log-volatilities.

constant a numeric of the constant that should be added to y2 before taking the natural
logarithm.

Details

The function is a wrapper for function stochvol_ksc1998.

Value

A vector of log-volatility draws.

References

Chan, J., Koop, G., Poirier, D. J., & Tobias J. L. (2019). Bayesian econometric methods (2nd ed.).
Cambridge: Cambridge University Press.

Kim, S., Shephard, N., & Chib, S. (1998). Stochastic volatility. Likelihood inference and com-
parison with ARCH models. Review of Economic Studies 65(3), 361–393. doi:10.1111/1467-
937X.00050

Examples

data("us_macrodata")
y <- matrix(us_macrodata[, "r"])

# Initialise log-volatilites
h_init <- matrix(log(var(y)))
h <- matrix(rep(h_init, length(y)))

# Obtain draw
stoch_vol(y - mean(y), h, matrix(.05), h_init, matrix(0.0001))

summary.bvar Summarising Bayesian VAR Coefficients

Description

summary method for class "bvar".

https://doi.org/10.1111/1467-937X.00050
https://doi.org/10.1111/1467-937X.00050
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Usage

## S3 method for class 'bvar'
summary(object, ci = 0.95, period = NULL, ...)

## S3 method for class 'summary.bvar'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

Arguments

object an object of class "bvar", usually, a result of a call to bvar or bvec_to_bvar.

ci a numeric between 0 and 1 specifying the probability of the credible band. De-
faults to 0.95.

period integer. Index of the period, for which the summary statistics should be gener-
ated. Only used for TVP or SV models. Default is NULL, so that the posterior
draws of the last time period are used.

... further arguments passed to or from other methods.

x an object of class "summary.bvar", usually, a result of a call to summary.bvar.

digits the number of significant digits to use when printing.

Value

summary.bvar returns a list of class "summary.bvar", which contains the following components:

coefficients A list of various summary statistics of the posterior draws of the VAR coeffi-
cients.

sigma A list of various summary statistics of the posterior draws of the variance-
covariance matrix.

specifications a list containing information on the model specification.

summary.bvarlist Summarising Bayesian VAR or VEC Models

Description

summary method for class "bvarlist".

Usage

## S3 method for class 'bvarlist'
summary(object, ...)

Arguments

object an object of class "bvar", usually, a result of a call to draw_posterior.

... further arguments passed to or from other methods.
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Details

The log-likelihood for the calculation of the information criteria is obtained by

LL =
1

R

R∑
i=1

(
T∑
t=1

−K
2

ln 2π − 1

2
ln |Σ(i)

t | −
1

2
(u

(i)′
t (Σ

(i)
t )−1u

(i)
t

)
, where ut = yt − µt. The Akaike, Bayesian and Hannan–Quinn (HQ) information criteria are
calculated as

AIC = 2(Kp+Ms+N)− 2LL

,
BIC = (Kp+Ms+N)ln(T )− 2LL

and
HQ = 2(Kp+Ms+N)ln(ln(T ))− 2LL

, respectively, where K is the number of endogenous variables, p the number of lags of endogenous
variables, M the number of exogenous variables, s the number of lags of exogenous variables, N
the number of deterministic terms and T the number of observations.

Value

summary.bvarlist returns a table of class "summary.bvarlist".

summary.bvec Summarising Bayesian VEC Coefficients

Description

summary method for class "bvec".

Usage

## S3 method for class 'bvec'
summary(object, ci = 0.95, period = NULL, ...)

## S3 method for class 'summary.bvec'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

Arguments

object an object of class "bvec", usually, a result of a call to bvec.
ci a numeric between 0 and 1 specifying the probability of the credible band. De-

faults to 0.95.
period integer. Index of the period of a TVP VEC, for which a summary should be

generated. Only used for TVP models. Default is NULL so that only the most
recent time period is used.

... further arguments passed to or from other methods.
x an object of class "summary.bvec", usually, a result of a call to summary.bvec.
digits the number of significant digits to use when printing.
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Value

summary.bvec returns a list of class "summary.bvec", which contains the following components:

coefficients A list of various summary statistics of the posterior draws of the VAR coeffi-
cients.

sigma A list of various summary statistics of the posterior draws of the variance-
covariance matrix.

specifications a list containing information on the model specification.

summary.dfm Summarising Bayesian Dynamic Factor Models

Description

summary method for class "dfm".

Usage

## S3 method for class 'dfm'
summary(object, ci = 0.95, ...)

Arguments

object an object of class "dfm", usually, a result of a call to dfm.

ci a numeric between 0 and 1 specifying the probability of the credible band. De-
faults to 0.95.

... further arguments passed to or from other methods.

Value

summary.dfm returns a list of class "summary.dfm", which contains the following components:

lambda A list of various summary statistics of the posterior draws of the factor loadings.

factor A list of various summary statistics of the posterior draws of the factors.

sigma_u A list of various summary statistics of the posterior draws of the variance matrix
of the measurement equation.

a A list of various summary statistics of the posterior draws of the factor loadings.

sigma_v A list of various summary statistics of the posterior draws of the variance matrix
of the transition equation.

specifications a list containing information on the model specification.
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thin.bvar Thinning Posterior Draws

Description

Thins the MCMC posterior draws in an object of class "bvar".

Usage

## S3 method for class 'bvar'
thin(x, thin = 10, ...)

Arguments

x an object of class "bvar".

thin an integer specifying the thinning interval between successive values of posterior
draws.

... further arguments passed to or from other methods.

Value

An object of class "bvar".

Examples

# Load data
data("e1")
e1 <- diff(log(e1)) * 100

# Obtain data matrices
model <- gen_var(e1, p = 2, deterministic = 2,

iterations = 100, burnin = 10)
# Chosen number of iterations and burn-in draws should be much higher.

# Add prior specifications
model <- add_priors(model)

# Obtain posterior draws
object <- draw_posterior(model)

object <- thin(object)
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thin.bvarlist Thinning Posterior Draws

Description

Thins the MCMC posterior draws in an object of class "bvarlist".

Usage

## S3 method for class 'bvarlist'
thin(x, thin = 10, ...)

Arguments

x an object of class "bvarlist".

thin an integer specifying the thinning interval between successive values of posterior
draws.

... further arguments passed to or from other methods.

Value

An object of class "bvarlist".

Examples

# Load data
data("e1")
e1 <- diff(log(e1)) * 100

# Generate multiple model matrices
model <- gen_var(e1, p = 1:2, deterministic = 2,

iterations = 100, burnin = 10)

# Add prior specifications
model <- add_priors(model)

# Obtain posterior draws
object <- draw_posterior(model)

# Thin
object <- thin(object)
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thin.bvec Thinning Posterior Draws

Description

Thins the MCMC posterior draws in an object of class "bvec".

Usage

## S3 method for class 'bvec'
thin(x, thin = 10, ...)

Arguments

x an object of class "bvec".

thin an integer specifying the thinning interval between successive values of posterior
draws.

... further arguments passed to or from other methods.

Value

An object of class "bvec".

Examples

# Load data
data("e6")

# Generate model data
model <- gen_vec(e6, p = 2, r = 1,

const = "unrestricted", seasonal = "unrestricted",
iterations = 100, burnin = 10)

# Add prior specifications
model <- add_priors(model)

# Obtain posterior draws
object <- draw_posterior(model)

# Thin
object <- thin(object)
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thin.dfm Thinning Posterior Draws

Description

Thins the MCMC posterior draws in an object of class "dfm".

Usage

## S3 method for class 'dfm'
thin(x, thin = 10, ...)

Arguments

x an object of class "dfm".

thin an integer specifying the thinning interval between successive values of posterior
draws.

... further arguments passed to or from other methods.

Value

An object of class "dfm".

Examples

# Load data
data("bem_dfmdata")

# Generate model data
model <- gen_dfm(x = bem_dfmdata, p = 1, n = 1,

iterations = 20, burnin = 10)
# Number of iterations and burnin should be much higher.

# Add prior specifications
model <- add_priors(model,

lambda = list(v_i = .01),
sigma_u = list(shape = 5, rate = 4),
a = list(v_i = .01),
sigma_v = list(shape = 5, rate = 4))

# Obtain posterior draws
object <- draw_posterior(model)

# Plot factors
object <- thin(object, thin = 2)
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us_macrodata US macroeconomic data

Description

The data set contains quarterly time series for the US CPI inflation rate, unemployment rate, and Fed
Funds rate from 1959Q2 to 2007Q4. It was produced from file "US_macrodata.csv" of the data sets
associated with Chan, Koop, Poirier and Tobias (2019). Raw data are available at https://web.
ics.purdue.edu/~jltobias/second_edition/Chapter20/code_for_exercise_1/US_macrodata.
csv.

Usage

data("us_macrodata")

Format

A named time-series object with 195 rows and 3 variables:

Dp CPI inflation rate.

u unemployment rate.

r Fed Funds rate.

References

Chan, J., Koop, G., Poirier, D. J., & Tobias J. L. (2019). Bayesian econometric methods (2nd ed.).
Cambridge: Cambridge University Press.

https://web.ics.purdue.edu/~jltobias/second_edition/Chapter20/code_for_exercise_1/US_macrodata.csv
https://web.ics.purdue.edu/~jltobias/second_edition/Chapter20/code_for_exercise_1/US_macrodata.csv
https://web.ics.purdue.edu/~jltobias/second_edition/Chapter20/code_for_exercise_1/US_macrodata.csv
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