Package ‘buildr’

October 12, 2022
Title Organize & Run Build Scripts Comfortably
Version 0.1.1

Description Working with reproducible reports or any other
similar projects often require to run the script that builds the
output file in a specified way. 'buildr' can help you organize, modify
and comfortably run those scripts. The package provides a set of
functions that interactively guides you through the process and that
are available as 'RStudio' Addin, meaning you can set up the keyboard
shortcuts, enabling you to choose and run the desired build script
with one keystroke anywhere anytime.

License GPL (>= 3)
URL https://netique.github.io/buildr/

BugReports https://github.com/netique/buildr/issues/

Imports rstudioapi, usethis, readr, glue, stringr, magrittr, tibble,
utils

Encoding UTF-8
RoxygenNote 7.2.1

Suggests knitr, rmarkdown, roxygen?2, testthat (>= 3.0.0), spelling,
pkgdown

VignetteBuilder knitr

Config/testthat/edition 3

Language en-US

NeedsCompilation no

Author Jan Netik [aut, cre] (<https://orcid.org/0000-0002-3888-3203>)
Maintainer Jan Netik <netikja@gmail.com>

Repository CRAN

Date/Publication 2022-08-13 12:40:02 UTC

https://netique.github.io/buildr/
https://github.com/netique/buildr/issues/
https://orcid.org/0000-0002-3888-3203

2 aim

R topics documented:

AM . . L e e e e e e e e e e e e e e 2
build 3
edit_makefile 4
edit_shortcuts e 4
NPt . . e e e e e e 5
Index 7
aim Set Makefile Target
Description

aim() looks for an existing Makefile, reads its content, and offers a list of discovered Makefile
targets (denoting build scripts, in our case), all in an interactive way. When the session is not
interactive, or you know the name of the desired target, you can declare it directly in the target
argument.

Usage
aim(target = NULL)

Arguments

target Character. The name of the Makefile target to set.

Value

No return value. Called for side effects.

Author(s)
Jan Netik

See Also

Other functions from buildr trinity: build(), init()

Examples

Not run:

We have several build scripts in our project root

and we want to select script called "build_all.R":

aim(target = "all") # note that "build_" is stripped out by default

End(Not run)

build 3

build Run Selected Build Script

Description

build() is the final function in the workflow, as it instructs 'RStudio’ Build pane to take the first
rule in the Makefile (set previously with aim()) and runs the respective recipe.

Usage

build()

Details

The *Rstudio’ Build pane is not allways visible and set to take Makefiles. However, the build()
ensures that everything is set properly and if not, it offers you to automatically edit necessary set-
tings automatically for you. Note that this action forces "RStudio’ user interface (UI) to reload and
you have to call build() again afterwards.

Value

No return value. Called for side effects.

Author(s)

Jan Netik

See Also

Other functions from buildr trinity: aim(), init()

Examples

Not run:
build()

End(Not run)

4 edit_shortcuts

edit_makefile Edit Makefile

Description

Opens Makefile, if present in the project root.

Usage
edit_makefile()

Value

No return value. Called for side effect.

See Also
The documentation for GNU Make.

edit_shortcuts Show RStudio Keyboard Shortcuts Popup

Description
Shows popup window with RStudio keyboard shortcuts. Uses rstudioapi. Applicable only in
RStudio and in interactive session.

Usage

edit_shortcuts()

Details

You can quicky reach out solicited addin function by typing it in the Filter. .. box in the very top
of the popup window. Then double click at the blank space just next to the addin function name
and press down desired key or key combination. Apply the changes and from now on, just call the
function with one keystroke.

Value

No return value. Called for side effect.

Examples

Not run:
edit_schortcuts()

End(Not run)

https://www.gnu.org/software/make/manual/html_node/

init 5

init Discover Build Scripts & Create Makefile

Description

init() looks for .R scripts in a project root (current working directory) that contain a specified
prefix and separator. Then, it creates a Makefile with rules describing how to run discovered
scripts.

Usage

init(
prefix = "build”,

n o n

sep = "_°,
path = ".",
ignore_case = TRUE,

command_args = ""

)
Arguments

prefix Character. Prefix that solicited build scripts have in common. It is trimmed
and stripped in the list of Makefile targets because of redundancy. Default to
"build".

sep Character. Separator between prefix and "body" of a build script filename. It
is also stripped in the list of Makefile targets because of redundancy. Default
to underscore (i.e. "_").

path Character. Path being searched. Default to the project root (i.e. ".", the current
working directory, call getwd() to print it). See list.files for more details
on the topic.

ignore_case Logical. Should the search be case-sensitive? Default to FALSE.

command_args Single character. Command argument(s) to include after the recipe call. Com-
mand argument can be picked up by your script with commandArgs. See vignette("know_your_buildr”
for more details. Empty string by default (not in use).

Details

The build script names should all follow a common pattern that is both human and machine readable.
Filename should incorporate a prefix ("build" by default) and the "body" describing what the given
script builds. Those two essential parts are separated by underscore (i.e. "_") by default as it helps
with the readibility. Both parts are configurable (see below), but we encourage you not to make
any changes. Do not forget that build scripts are matched for a prefix and separator concatenated
together, so the script named "build.R" won’t be recognized, as it doesn’t begin with "build_".
Follow the example below on how to include "build.R".

6 init
Value

No return value. Called for side effects.

Author(s)
Jan Netik

See Also

Other functions from buildr trinity: aim(), build()

Examples

Not run:
if you stick with the defaults, run:
init()

if you want to include "build.R",
you have to tell {buildr} to

use an empty separator, like:
init(sep = "")

End(Not run)

Index

« file
aim, 2
build, 3
init, 5
* functions from buildr trinity
aim, 2
build, 3
init, 5
* misc
aim, 2
build, 3
init, 5
« utilities
aim, 2
build, 3
init, 5

aim, 2, 3,6
build, 2, 3, 6
commandArgs, 5

edit_makefile, 4
edit_shortcuts, 4

init, 2, 3,5

list.files, 5

	aim
	build
	edit_makefile
	edit_shortcuts
	init
	Index

