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arl_lg Univariate Gaussian model with AR(1) latent process

Description

Constructs a simple Gaussian model where the state dynamics follow an AR(1) process.

Usage
ar1_lg(y, rho, sigma, mu, sd_y, beta, xreg = NULL)
Arguments
y A vector or a ts object of observations.
rho A prior for autoregressive coefficient. Should be an object of class bssm_prior.
sigma A prior for the standard deviation of noise of the AR-process. Should be an
object of class bssm_prior
mu A fixed value or a prior for the stationary mean of the latent AR(1) process.
Should be an object of class bssm_prior or scalar value defining a fixed mean
such as 0.
sd_y A prior for the standard deviation of observation equation.
beta A prior for the regression coefficients. Should be an object of class bssm_prior
or bssm_prior_list (in case of multiple coefficients) or missing in case of no
covariates.
xreg A matrix containing covariates with number of rows matching the length of y.
Can also be ts, mts or similar object convertible to matrix.
Value

An object of class ar1_1g.
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Examples
set.seed(1)
mu <- 2
rho <- 0.7
sd_y <- 0.1
sigma <- 0.5
beta <- -1
X <- rnorm(30)
z <~y <- numeric(30)
z[1] <= rnorm(1, mu, sigma / sqrt(1 - rho*2))
y[1] <- rnorm(1, beta * x[1] + z[1], sd_y)
for(i in 2:30) {
z[i] <= rnorm(1, mu * (1 - rho) + rho *x z[i - 1], sigma)
y[il <= rnorm(1, beta * x[i] + z[i], sd_y)
3
model <- ar1_lg(y, rho = uniform(@.5, -1, 1),
sigma = halfnormal(1, 10), mu = normal(@, @, 1),
sd_y = halfnormal(1, 10),
xreg = x, beta = normal(@, 0, 1))
out <- run_mcmc(model, iter = 2e4)
summary(out, return_se = TRUE)
ari_ng Non-Gaussian model with AR(1) latent process
Description
Constructs a simple non-Gaussian model where the state dynamics follow an AR(1) process.
Usage
arl_ng(y, rho, sigma, mu, distribution, phi, u, beta, xreg = NULL)
Arguments
y A vector or a ts object of observations.
rho A prior for autoregressive coefficient. Should be an object of class bssm_prior.
sigma A prior for the standard deviation of noise of the AR-process. Should be an
object of class bssm_prior
mu A fixed value or a prior for the stationary mean of the latent AR(1) process.
Should be an object of class bssm_prior or scalar value defining a fixed mean
such as 0.
distribution Distribution of the observed time series. Possible choices are "poisson”, "binomial”

"gamma”, and "negative binomial”.

s
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phi

beta

xreg

Value

Additional parameter relating to the non-Gaussian distribution. For negative
binomial distribution this is the dispersion term, for gamma distribution this is
the shape parameter, and for other distributions this is ignored. Should an object
of class bssm_prior or a positive scalar.

A vector of positive constants for non-Gaussian models. For Poisson, gamma,
and negative binomial distribution, this corresponds to the offset term. For bi-
nomial, this is the number of trials.

A prior for the regression coefficients. Should be an object of class bssm_prior
or bssm_prior_list (in case of multiple coefficients) or missing in case of no
covariates.

A matrix containing covariates with number of rows matching the length of y.
Can also be ts, mts or similar object convertible to matrix.

An object of class ar1_ng.

Examples

model <- ari_ng(discoveries, rho = uniform(@.5,-1,1),
sigma = halfnormal(@.1, 1), mu = normal(e, @, 1),

distribution = "poisson")
out <- run_mcmc(model, iter = le4, mcmc_type = "approx”,
output_type = "summary")

ts.plot(cbind(discoveries, exp(out$alphahat)), col = 1:2)

set.seed(1)
n <- 30

phi <- 2
rho <- 0.9
sigma <- 0.1
beta <- 0.5

u <- rexp(n, 0.1)

x <= rnorm(n)

z <- y <- numeric(n)

z[1] <= rnorm(1,

@, sigma / sqrt(1 - rho*2))

y[1] <= rnbinom(1, mu = u * exp(beta * x[1] + z[1]), size = phi)

for(i in 2:n) {

z[i] <= rnorm(1, rho * z[i - 1], sigma)
y[il <- rnbinom(1, mu = u * exp(beta * x[i] + z[i]), size = phi)

}

model <- ar1_ng(y, rho = uniform_prior(@.9, o, 1),
sigma = gamma_prior(@.1, 2, 10), mu = @.,
phi = gamma_prior(2, 2, 1), distribution = "negative binomial”,

xreg = x, beta

= normal_prior(@.5, @, 1), u = u)
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as.data.frame.mcmc_output
Convert MCMC Output to data.frame

Description

Converts the MCMC output of run_mcmc to data. frame.

Usage

## S3 method for class 'mcmc_output'

as.data.frame(

X,
row.names,
optional,

variable = c("theta”, "states"),

times,

states,

expand = TRUE,
use_times = TRUE,

Arguments

X

Object of class mcmc_output from run_mcmc.

row.names Ignored.

optional Ignored.

variable
times
states

expand

use_times

Return samples of "theta" (default) or "states”?

A vector of indices. In case of states, what time points to return? Default is all.
A vector of indices. In case of states, what states to return? Default is all.

Should the jump-chain be expanded? Defaults to TRUE. For expand = FALSE

and always for [IS-MCMC, the resulting data.frame contains variable weight (=

counts * IS-weights).

If TRUE (default), transforms the values of the time variable to match the ts at-

tribute of the input to define. If FALSE, time is based on the indexing starting

from 1.

Ignored.

See Also

as_draws which converts the output for as_draws object.
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Examples

data("poisson_series”)

model <- bsm_ng(y = poisson_series,

sd_slope = halfnormal(@.1, 0.1),

sd_level = halfnormal(0.1, 1),
distribution = "poisson")

out <- run_mcmc(model, iter = 2000, particles = 10)
head(as.data.frame(out, variable = "theta"))
head(as.data.frame(out, variable = "state"))

# don't expand the jump chain:
head(as.data.frame(out, variable = "theta”, expand = FALSE))

# IS-weighted version:
out_is <- run_mcmc(model, iter = 2000, particles = 10,

mcmc_type = "is2")
head(as.data.frame(out_is, variable = "theta"))
asymptotic_var Asymptotic Variance of IS-type Estimators
Description

The asymptotic variance MCMCSE”2 is based on Corollary 1 of Vihola et al. (2020) from weighted
samples from IS-MCMC. The default method is based on the integrated autocorrelation time (IACT)
by Sokal (1997) which seem to work well for reasonable problems, but it is also possible to use the
Geyer’s method as implemented in ess_mean of the posterior package.

Usage
asymptotic_var(x, w, method = "sokal")
Arguments
X A numeric vector of samples.
w A numeric vector of weights. If missing, set to 1 (i.e. no weighting is assumed).
method Method for computing IACT. Default is "sokal”, other option "geyer".
Value

A single numeric value of asymptotic variance estimate.
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References

Vihola M, Helske J, Franks J. (2020). Importance sampling type estimators based on approximate
marginal Markov chain Monte Carlo. Scand J Statist. 1-38. https://doi.org/10.1111/sjos.12492

Sokal A. (1997). Monte Carlo Methods in Statistical Mechanics: Foundations and New Algorithms.
In: DeWitt-Morette C, Cartier P, Folacci A (eds) Functional Integration. NATO ASI Series (Series
B: Physics), vol 361. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0319-8_6

Gelman, A, Carlin J B, Stern H S, Dunson, D B, Vehtari A, Rubin D B. (2013). Bayesian Data
Analysis, Third Edition. Chapman and Hall/CRC.

Vehtari A, Gelman A, Simpson D, Carpenter B, Biirkner P-C. (2021). Rank-normalization, fold-
ing, and localization: An improved Rhat for assessing convergence of MCMC. Bayesian analysis,
16(2):667-718. https://doi.org/10.1214/20-BA1221

Examples

set.seed(1)

n <- le4

X <- numeric(n)

phi <- 0.7

for(t in 2:n) x[t] <- phi * x[t-1] + rnorm(1)
w <- rexp(n, 0.5 * exp(0.001 * x*2))

# different methods:

asymptotic_var(x, w, method = "sokal")
asymptotic_var(x, w, method = "geyer")

data("negbin_model")

# can be obtained directly with summary method
d <- suppressWarnings(as_draws(negbin_model))
sqrt(asymptotic_var(d$sd_level, d$weight))

as_bssm Convert KFAS Model to bssm Model

Description

Converts SSModel object of KFAS package to general bssm model of type ssm_ulg, ssm_mlg,
ssm_ung or ssm_mng. As KFAS supports formula syntax for defining e.g. regression and cyclic
components it maybe sometimes easier to define the model with KFAS: : SSModel and then convert
for the bssm style with as_bssm.

Usage

as_bssm(model, kappa = 100, ...)
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Arguments
model Object of class SSModel.
kappa For SSModel object, a prior variance for initial state used to replace exact diffuse
elements of the original model.
Additional arguments to model building functions of bssm (such as prior and
updating functions, C, and D).
Value

An object of class ssm_ulg, ssm_mlg, ssm_ung or ssm_mng.

Examples

library("KFAS")
model_KFAS <- SSModel(Nile ~
SSMtrend(1, Q = 2, P1 = 1e4), H = 2)
model_bssm <- as_bssm(model_KFAS)
loglLik (model_KFAS)
loglLik(model_bssm)

as_draws_df.mcmc_output
Convert run_memc Output to draws_df Format

Description
Converts MCMC output from run_mcmc call to a draws_df format of the posterior package. This
enables the use of diagnostics and plotting methods of posterior and bayesplot packages.
Usage

## S3 method for class 'mcmc_output'
as_draws_df (x, times, states, ...)

## S3 method for class 'mcmc_output'’

as_draws(x, times, states, ...)
Arguments
X An object of class mcmc_output.
times A vector of indices defining which time points to return? Default is all. If 0, no

samples for the states are extracted.

states A vector of indices defining which states to return. Default is all. If 0, no
samples for the states are extracted.

Ignored.
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Value

A draws_df object.

Note

The jump chain representation is automatically expanded by as_draws, but if run_mcmc used IS-
MCMC method, the output contains additional weight column corresponding to the IS-weights
(without counts), which is ignored by posterior and bayesplot, i.e. those results correspond to
approximate MCMC.

Examples

model <- bsm_lg(Nile,
sd_y = tnormal(init = 100, mean = 100, sd = 100, min = 0@),
sd_level = tnormal(init = 5@, mean = 50, sd = 100, min = @),
al = 1000, P1 = 500"2)

fit1 <- run_mcmc(model, iter = 2000)
draws <- as_draws(fit1)

head(draws, 4)
estimate_ess(draws$sd_y)
summary(fit1, return_se = TRUE)

# More chains:

model$thetal] <- c(50, 150) # change initial value
fit2 <- run_mcmc(model, iter = 2000, verbose = FALSE)
model$thetal[] <- c(150, 50) # change initial value
fit3 <- run_mcmc(model, iter = 2000, verbose = FALSE)

# it is actually enough to transform first mcmc_output to draws object,
# rest are transformed automatically inside bind_draws
draws <- posterior::bind_draws(as_draws(fit1),

as_draws(fit2), as_draws(fit3), along = "chain")

posterior::rhat(draws$sd_y)

bootstrap_filter Bootstrap Filtering

Description

Function bootstrap_filter performs a bootstrap filtering with stratification resampling.
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Usage

bootstrap_filter(model, particles, ...)

## S3 method for class 'lineargaussian'
bootstrap_filter(

model,

particles,

seed = sample(.Machine$integer.max, size = 1),

)

## S3 method for class 'nongaussian'
bootstrap_filter(

model,

particles,

seed = sample(.Machine$integer.max, size = 1),

)

## S3 method for class 'ssm_nlg'
bootstrap_filter(

model,

particles,

seed = sample(.Machine$integer.max, size = 1),

)

## S3 method for class 'ssm_sde'
bootstrap_filter(

model,

particles,

L,

seed = sample(.Machine$integer.max, size = 1),

)
Arguments

model A model object of class bssm_model.

particles Number of particles as a positive integer. Suitable values depend on the model
and the data, and while larger values provide more accurate estimates, the run
time also increases with respect to the number of particles, so it is generally a
good idea to test the filter first with a small number of particles, e.g., less than
100.
Ignored.

seed Seed for the C++ RNG (positive integer).

L Positive integer defining the discretization level for SDE models.
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Value

List with samples (alpha) from the filtering distribution and corresponding weights (weights), as
well as filtered and predicted states and corresponding covariances (at, att, Pt, Ptt), and estimated
log-likelihood (logLik).

References

Gordon, NJ, Salmond, DJ, Smith, AFM (1993) Novel approach to nonlinear/non-Gaussian Bayesian
state estimation. IEE Proceedings F, 140(2), p. 107-113.

Examples

set.seed(1)

x <= cumsum(rnorm(50))

y <= rnorm(50, x, 0.5)

model <- bsm_lg(y, sd_y = 0.5, sd_level =1, P1 = 1)

out <- bootstrap_filter(model, particles = 1000)
ts.plot(cbind(y, x, out$att), col = 1:3)
ts.plot(cbind(kfilter(model)$att, out$att), col = 1:3)

data("poisson_series")
model <- bsm_ng(poisson_series, sd_level = 0.1, sd_slope = 0.01,
P1 = diag(1, 2), distribution = "poisson")

out <- bootstrap_filter(model, particles = 100)
ts.plot(cbind(poisson_series, exp(out$att[, 11)), col = 1:2)

bsm_lg Basic Structural (Time Series) Model

Description

Constructs a basic structural model with local level or local trend component and seasonal compo-
nent.

Usage

bsm_lg(
Y,
sd_y,
sd_level,
sd_slope,
sd_seasonal,
beta,
xreg = NULL,
period,
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al = NULL,
P1 = NULL,
D = NULL,
C = NULL

Arguments

y
sd_y

sd_level

sd_slope

sd_seasonal

beta

xreg

period

al

P1

Value
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A vector or a ts object of observations.

Standard deviation of the noise of observation equation. Should be an object of
class bssm_prior or scalar value defining a known value such as 0.

Standard deviation of the noise of level equation. Should be an object of class
bssm_prior or scalar value defining a known value such as 0.

Standard deviation of the noise of slope equation. Should be an object of class
bssm_prior, scalar value defining a known value such as 0, or missing, in which
case the slope term is omitted from the model.

Standard deviation of the noise of seasonal equation. Should be an object of
class bssm_prior, scalar value defining a known value such as 0, or missing, in
which case the seasonal term is omitted from the model.

A prior for the regression coefficients. Should be an object of class bssm_prior
or bssm_prior_list (in case of multiple coefficients) or missing in case of no
covariates.

A matrix containing covariates with number of rows matching the length of y.
Can also be ts, mts or similar object convertible to matrix.

Length of the seasonal pattern. Must be a positive value greater than 2 and less
than the length of the input time series. Default is frequency(y), which can
also return non-integer value (in which case error is given).

Prior means for the initial states (level, slope, seasonals). Defaults to vector of
ZEros.

Prior covariance matrix for the initial states (level, slope, seasonals).Default is
diagonal matrix with 100 on the diagonal.

Intercept terms for observation equation, given as a length n numeric vector or
a scalar in case of time-invariant intercept.

Intercept terms for state equation, given as a m times n matrix or m times 1
matrix in case of time-invariant intercept.

An object of class bsm_1g.

Examples

set.seed(1)
n <- 50
X <= rnorm(n)
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level <- numeric(n)

level[1] <- rnorm(1)

for (i in 2:n) levell[i] <- rnorm(1, -0.2 + levell[i-1], sd = 0.1)
y <= rnorm(n, 2.1 + x + level)

model <- bsm_lg(y, sd_y = halfnormal(l, 5), sd_level = 0.1, al = level[1],

P1 = matrix(@, 1, 1), xreg = x, beta = normal(1, 0, 1),
D=2.1, C =matrix(-0.2, 1, 1))

ts.plot(cbind(fast_smoother(model), level), col = 1:2)

prior <- uniform(@.1 * sd(logl@(UKgas)), @, 1)

# period here is redundant as frequency(UKgas) = 4

model_UKgas <- bsm_lg(logl1@(UKgas), sd_y = prior, sd_level = prior,
sd_slope = prior, sd_seasonal = prior, period = 4)

# Note small number of iterations for CRAN checks

mcmc_out <- run_mcmc(model_UKgas, iter = 5000)

summary(memc_out, return_se = TRUE)

# Use the summary method from coda:

summary (expand_sample(mcmc_out, "theta"))$stat
mcme_out$thetalwhich.max(memc_out$posterior), ]

sqrt((fit <- StructTS(logl@(UKgas), type = "BSM"))$coef)[c(4, 1:3)]

bsm_ng

bsm_ng Non-Gaussian Basic Structural (Time Series) Model

Description

Constructs a non-Gaussian basic structural model with local level or local trend component, a sea-

sonal component, and regression component (or subset of these components).

Usage

bsm_ng(
Y,
sd_level,
sd_slope,
sd_seasonal,
sd_noise,
distribution,
phi,
u,
beta,
xreg = NULL,
period,
al = NULL,
P1 = NULL,
C = NULL
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Arguments

y
sd_level

sd_slope

sd_seasonal

sd_noise

distribution

phi

beta

xreg

period

al

P1

Value
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A vector or a ts object of observations.

Standard deviation of the noise of level equation. Should be an object of class
bssm_prior or scalar value defining a known value such as 0.

Standard deviation of the noise of slope equation. Should be an object of class
bssm_prior, scalar value defining a known value such as 0, or missing, in which
case the slope term is omitted from the model.

Standard deviation of the noise of seasonal equation. Should be an object of
class bssm_prior, scalar value defining a known value such as 0, or missing, in
which case the seasonal term is omitted from the model.

A prior for the standard deviation of the additional noise term to be added to lin-
ear predictor, defined as an object of class bssm_prior. If missing, no additional
noise term is used.

Distribution of the observed time series. Possible choices are "poisson”, "binomial”,

"gamma”, and "negative binomial”.

Additional parameter relating to the non-Gaussian distribution. For negative
binomial distribution this is the dispersion term, for gamma distribution this is
the shape parameter, and for other distributions this is ignored. Should an object
of class bssm_prior or a positive scalar.

A vector of positive constants for non-Gaussian models. For Poisson, gamma,
and negative binomial distribution, this corresponds to the offset term. For bi-
nomial, this is the number of trials.

A prior for the regression coefficients. Should be an object of class bssm_prior
or bssm_prior_list (in case of multiple coefficients) or missing in case of no
covariates.

A matrix containing covariates with number of rows matching the length of y.
Can also be ts, mts or similar object convertible to matrix.

Length of the seasonal pattern. Must be a positive value greater than 2 and less
than the length of the input time series. Default is frequency(y), which can
also return non-integer value (in which case error is given).

Prior means for the initial states (level, slope, seasonals). Defaults to vector of
ZEros.

Prior covariance matrix for the initial states (level, slope, seasonals).Default is
diagonal matrix with 100 on the diagonal.

Intercept terms for state equation, given as am x n or m x 1 matrix.

An object of class bsm_ng.

Examples

# Same data as in Vihola, Helske, Franks (2020)
data(poisson_series)
s <- sd(log(pmax(@.1, poisson_series)))
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model <- bsm_ng(poisson_series, sd_level = uniform(@.115, @, 2 * s),
sd_slope = uniform(@.004, @, 2 * s), P1 = diag(@.1, 2),

distribution = "poisson”)

out <- run_mcmc(model, iter = 1e5, particles = 10)
summary (out, variable = "theta”, return_se = TRUE)
# should be about ©.093 and 0.016

summary (out, variable = "states"”, return_se = TRUE,

states = 1, times = c(1, 100))
# should be about -0.075, 2.618

model <- bsm_ng(Seatbelts[, "VanKilled"], distribution = "poisson”,
sd_level = halfnormal(@.01, 1),
sd_seasonal = halfnormal(@.01, 1),
beta = normal(@, 0, 10),
xreg = Seatbelts[, "law"],
# default values, just for illustration
period = 12L,
al = rep(@, 1 + 11), # level + period - 1 seasonal states
P1 = diag(1, 12),
matrix(e, 12, 1),
rep(1, nrow(Seatbelts)))

c O
1

set.seed(123)

mcmc_out <- run_mcmc(model, iter = 5000, particles = 10, mcmc_type = "da")
mcmc_out$acceptance_rate

theta <- expand_sample(mcmc_out, "theta")

plot(theta)

summary (theta)

library("ggplot2")
ggplot(as.data.frame(thetal,1:2]), aes(x = sd_level, y = sd_seasonal)) +

geom_point() + stat_density2d(aes(fill = ..level.., alpha = ..level..),
geom = "polygon”) + scale_fill_continuous(low = "green"”, high = "blue"”) +
guides(alpha = "none")

# Traceplot using as.data.frame method for MCMC output
library("dplyr")
as.data.frame(mcmc_out) |>

filter(variable == "sd_level”) |>

ggplot(aes(y = value, x = iter)) + geom_line()

# Model with slope term and additional noise to linear predictor to capture
# excess variation
model2 <- bsm_ng(Seatbelts[, "VanKilled"], distribution = "poisson”,
sd_level = halfnormal(@.01, 1),
sd_seasonal = halfnormal(@.01, 1),
beta = normal(e, o, 10),
xreg = Seatbelts[, "law"],

bsm_ng
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sd_slope = halfnormal(@.01, 0.1),
sd_noise = halfnormal(0.01, 1))

# instead of extra noise term, model using negative binomial distribution:
model3 <- bsm_ng(Seatbelts[, "VanKilled"],

distribution = "negative binomial”,

sd_level = halfnormal(e@.o1, 1),

sd_seasonal = halfnormal(@.01, 1),

beta = normal(e, @, 10),

xreg = Seatbelts[, "law"],

sd_slope = halfnormal(0.01, 0.1),

phi = gamma_prior(1, 5, 5))

bssm Bayesian Inference of State Space Models

Description

This package contains functions for efficient Bayesian inference of state space models (SSMs). For
details, see the package vignette and the R Journal paper.

Details
The model is assumed to be either

» Exponential family state space model, where the state equation is linear Gaussian, and the
conditional observation density is either Gaussian, Poisson, binomial, negative binomial or
Gamma density.

* Basic stochastic volatility model.

* General non-linear model with Gaussian noise terms.

* Model with continuous SDE dynamics.
Missing values in response series are allowed as per SSM theory and can be automatically predicted,
but there can be no missing values in the system matrices of the model.
The package contains multiple functions for building the model:

* bsm_lg for basic univariate structural time series model (BSM), ar1 for univariate noisy

AR(1) process, and ssm_ulg and ssm_mlg for arbitrary linear gaussian model with univari-
ate/multivariate observations.

¢ The non-Gaussian versions (where observations are non-Gaussian) of the above models can
be constructed using the functions bsm_ng, ar1_ng, ssm_ung and ssm_mng.

* An univariate stochastic volatility model can be defined using a function svm.

* For non-linear models, user must define the model using C++ snippets and the the function
ssm_nlg. See details in the growth_model vignette.

* Diffusion models can be defined with the function ssm_sde, again using the C++ snippets.
See sde_model vignette for details.
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See the corresponding functions for some examples and details.

After building the model, the model can be estimated via run_mcmc function. The documentation
of this function gives some examples. The bssm package includes several MCMC sampling and
sequential Monte Carlo methods for models outside classic linear-Gaussian framework. For defini-
tions of the currently supported models and methods, usage of the package as well as some theory
behind the novel IS-MCMC and -APF algorithms, see Helske and Vihola (2021), Vihola, Helske,
Franks (2020), and the package vignettes.

The output of the run_mcmc can be analysed by extracting the posterior samples of the latent
states and hyperparameters using as.data. frame, as_draws, expand_sample, and summary meth-
ods, as well as fitted and predict methods. Some MCMC diagnostics checks are available
via check_diagnostics function, some of which are also provided via the print method of the
run_mcmc output. Functionality of the ggplot2 and bayesplot, can be used to visualize the pos-
terior draws or their summary statistics, and further diagnostics checks can be performed with the
help of the posterior and coda packages.

References

Helske J, Vihola M (2021). bssm: Bayesian Inference of Non-linear and Non-Gaussian State Space
Models in R. The R Journal (2021) 13:2, 578-589. https://doi.org/10.32614/RJ-2021-103

Vihola, M, Helske, J, Franks, J. (2020). Importance sampling type estimators based on approximate
marginal Markov chain Monte Carlo. Scand J Statist. 1-38. https://doi.org/10.1111/sjos.12492

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016.

Gabry J, Mahr T (2022). “bayesplot: Plotting for Bayesian Models.” R package version 1.9.0,
https://mc-stan.org/bayesplot.

Biirkner P, Gabry J, Kay M, Vehtari A (2022). “posterior: Tools for Working with Posterior Distri-
butions.” R package version 1.2.1, https://mc-stan.org/posterior.

Martyn Plummer, Nicky Best, Kate Cowles and Karen Vines (2006). CODA: Convergence Diag-
nosis and Output Analysis for MCMC, R News, vol 6, 7-11.

Examples

# Create a local level model (latent random walk + noise) to the Nile
# dataset using the bsm_lg function:
model <- bsm_lg(Nile,

sd_y = tnormal(init = 100, mean = 100, sd = 100, min = 0),

sd_level = tnormal(init = 5@, mean = 50, sd = 100, min = @),

al = 1000, P1 = 500"2)

# the priors for the unknown paramters sd_y and sd_level were defined
# as trunctated normal distributions, see ?bssm_prior for details

# Run the MCMC for 2000 iterations (notice the small number of iterations to
# comply with the CRAN's check requirements)
fit <- run_mcmc(model, iter = 2000)

# Some diagnostics checks:
check_diagnostics(fit)
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# print some summary information:
fit

# traceplots:
plot(fit)

# extract the summary statistics for state variable
sumr <- summary(fit,variable = "states")

# visualize

library("ggplot2")

ggplot(sumr, aes(time, Mean)) +
geom_ribbon(aes(ymin = *2.5%", ymax = “97.5%‘),alpha = 0.25) +
geom_line() +
theme_bw()

check_diagnostics Quick Diagnostics Checks for run_mcmc Output

Description

Prints out the acceptance rate, smallest effective sample sizes (ESS) and largest Rhat values for
a quick first check that the sampling worked. For further checks, see e.g. bayesplot and coda
packages.

Usage

check_diagnostics(x)

Arguments

X Results object of class mcmc_output from run_mcmc.

Details

For methods other than IS-MCMC, the estimates are based on the improved diagnostics from the
posterior package.For IS-MCMC, these Rhat, bulk-ESS, and tail-ESS estimates are based on the
approximate posterior which should look reasonable, otherwise the IS-correction does not make
much sense. For IS-MCMC, ESS estimates based on a weighted posterior are also computed.

Examples

set.seed(1)
n <- 30

phi <- 2
rho <- 9.9
sigma <- 0.1
beta <- 0.5
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u <- rexp(n, 0.1)
X <= rnorm(n)
z <=y <- numeric(n)
z[1] <- rnorm(1, @, sigma / sqrt(1 - rho*2))
y[1] <- rnbinom(1, mu = u * exp(beta * x[1] + z[1]), size = phi)
for(i in 2:n) {
z[i] <= rnorm(1, rho * z[i - 1], sigma)
y[il <- rnbinom(1, mu = u * exp(beta * x[i] + z[i]), size = phi)

}

model <- ar1_ng(y, rho = uniform_prior(@.9, o, 1),
sigma = gamma_prior(@.1, 2, 10), mu = @.,
phi = gamma_prior(2, 2, 1), distribution = "negative binomial”,
xreg = x, beta = normal_prior(0.5, @, 1), u = u)

out <- run_mcmc(model, iter = 1000, particles = 10)
check_diagnostics(out)

cpp_example_model Example C++ Codes for Non-Linear and SDE Models

Description

Example C++ Codes for Non-Linear and SDE Models

Usage

cpp_example_model (example, return_code = FALSE)

Arguments
example Name of the example model. Run cpp_example_model("abc") to get the
names of possible models.
return_code If TRUE, will not compile the model but only returns the corresponding code.
Value

Returns pointers to the C++ snippets defining the model, or in case of return_code = TRUE, returns
the example code without compiling.

Examples

cpp_example_model ("sde_poisson_QOU"”, return_code = TRUE)
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drownings Deaths by drowning in Finland in 1969-2019

Description

Dataset containing number of deaths by drowning in Finland in 1969-2019, corresponding popula-
tion sizes (in hundreds of thousands), and yearly average summer temperatures (June to August),
based on simple unweighted average of three weather stations: Helsinki (Southern Finland), Jy-
vaskyla (Central Finland), and Sodankyla (Northern Finland).

Format

A time series object containing 51 observations.

Source

Statistics Finland https://stat.fi/tup/tilastotietokannat/index_en.html.

Examples

data("drownings")

model <- bsm_ng(drownings[, "deaths"”], u = drownings[, "population”],
xreg = drownings[, "summer_temp"], distribution = "poisson”,
beta = normal(o, 0, 1),
sd_level = gamma_prior(@.1,2, 10), sd_slope = gamma_prior(@, 2, 10))

fit <- run_mcmc(model, iter = 5000,
output_type = "summary"”, mcmc_type = "approx”)
fit
ts.plot(model$y/model$u, exp(fit$alphahatl[, 11), col = 1:2)

ekf (Iterated) Extended Kalman Filtering

Description

Function ekf runs the (iterated) extended Kalman filter for the given non-linear Gaussian model
of class ssm_nlg, and returns the filtered estimates and one-step-ahead predictions of the states o
given the data up to time ¢.

Usage

ekf(model, iekf_iter = @)


https://stat.fi/tup/tilastotietokannat/index_en.html
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Arguments
model Model of class ssm_nlg.
iekf_iter Non-negative integer. The default zero corresponds to normal EKF, whereas
iekf_iter > @ corresponds to iterated EKF with iekf_iter iterations.
Value

List containing the log-likelihood, one-step-ahead predictions at and filtered estimates att of states,
and the corresponding variances Pt and Ptt.

Examples

# Takes a while on CRAN
set.seed(1)
mu <- -0.2
rho <- 0.7
sigma_y <- 0.1
sigma_x <- 1
X <= numeric(50)
x[1] <= rnorm(1, mu, sigma_x / sqrt(1 - rho*2))
for(i in 2:length(x)) {
x[i] <= rnorm(1, mu * (1 - rho) + rho * x[i - 1], sigma_x)
3
y <= rnorm(50, exp(x), sigma_y)

pntrs <- cpp_example_model("nlg_ar_exp")

model_nlg <- ssm_nlg(y =y, al = pntrs$al, P1 = pntrs$P1,
Z = pntrs$Z_fn, H = pntrs$H_fn, T = pntrs$T_fn, R = pntrs$R_fn,
Z_gn = pntrs$Z_gn, T_gn = pntrs$T_gn,
theta = c(mu= mu, rho = rho,
log_sigma_x = log(sigma_x), log_sigma_y = log(sigma_y)),
log_prior_pdf = pntrs$log_prior_pdf,
n_states = 1, n_etas = 1, state_names = "state")

out_ekf <- ekf(model_nlg, iekf_iter = @)
out_iekf <- ekf(model_nlg, iekf_iter = 5)
ts.plot(cbind(x, out_ekf$att, out_iekf$att), col = 1:3)

ekf_smoother Extended Kalman Smoothing

Description

Function ekf_smoother runs the (iterated) extended Kalman smoother for the given non-linear
Gaussian model of class ssm_nlg, and returns the smoothed estimates of the states and the cor-
responding variances. Function ekf_fast_smoother computes only smoothed estimates of the
states.
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Usage

ekf_smoother(model, iekf_iter = 0)

ekf_fast_smoother(model, iekf_iter = @)

Arguments
model Model of class ssm_nlg.
iekf_iter Non-negative integer. The default zero corresponds to normal EKF, whereas
iekf_iter > @ corresponds to iterated EKF with iekf_iter iterations.
Value

List containing the log-likelihood, smoothed state estimates alphahat, and the corresponding vari-
ances Vt and Ptt.

Examples

# Takes a while on CRAN
set.seed(1)
mu <- -0.2
rho <- 0.7
sigma_y <- 0.1
sigma_x <- 1
x <- numeric(50)
x[1] <= rnorm(1, mu, sigma_x / sqrt(1 - rho*2))
for(i in 2:length(x)) {
x[i] <= rnorm(1, mu * (1 - rho) + rho * x[i - 1], sigma_x)
3
y <- rnorm(length(x), exp(x), sigma_y)

pntrs <- cpp_example_model("nlg_ar_exp")

model_nlg <- ssm_nlg(y =y, al = pntrs$al, P1 = pntrs$P1,
Z = pntrs$Z_fn, H = pntrs$H_fn, T = pntrs$T_fn, R = pntrs$R_fn,
Z_gn = pntrs$Z_gn, T_gn = pntrs$T_gn,
theta = c(mu= mu, rho = rho,
log_sigma_x = log(sigma_x), log_sigma_y = log(sigma_y)),
log_prior_pdf = pntrs$log_prior_pdf,
n_states = 1, n_etas = 1, state_names = "state")

out_ekf <- ekf_smoother(model_nlg, iekf_iter = @)
out_iekf <- ekf_smoother(model_nlg, iekf_iter = 1)
ts.plot(cbind(x, out_ekf$alphahat, out_iekf$alphahat), col = 1:3)
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ekpf_filter Extended Kalman Particle Filtering

Description

Function ekpf_filter performs a extended Kalman particle filtering with stratification resampling,
based on Van Der Merwe et al (2001).

Usage

ekpf_filter(model, particles, ...)

## S3 method for class 'ssm_nlg'
ekpf_filter(
model,
particles,
seed = sample(.Machine$integer.max, size = 1),

Arguments
model Model of class ssm_nlg.
particles Number of particles as a positive integer. Suitable values depend on the model
and the data, and while larger values provide more accurate estimates, the run
time also increases with respect to the number of particles, so it is generally a
good idea to test the filter first with a small number of particles, e.g., less than
100.
Ignored.
seed Seed for the C++ RNG (positive integer).
Value

A list containing samples, filtered estimates and the corresponding covariances, weights, and an
estimate of log-likelihood.

References

Van Der Merwe, R., Doucet, A., De Freitas, N., & Wan, E. A. (2001). The unscented particle filter.
In Advances in neural information processing systems (pp. 584-590).

Examples

# Takes a while
set.seed(1)

n <- 50

X <=y <- numeric(n)
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y[1] <= rnorm(1, exp(x[1]1), @.1)
for(i in 1:(n-1)) {

x[i+1] <= rnorm(1, sin(x[i]), ©.1)
y[i+1] <- rnorm(1, exp(x[i+1]), 0.1)
3

pntrs <- cpp_example_model("nlg_sin_exp")

model_nlg <- ssm_nlg(y =y, al = pntrs$al, P1 = pntrs$P1,
Z = pntrs$Z_fn, H = pntrs$H_fn, T = pntrs$T_fn, R = pntrs$R_fn,
Z_gn = pntrs$Z_gn, T_gn = pntrs$T_gn,
theta = c(log_H = log(0.1), log_R = log(0.1)),
log_prior_pdf = pntrs$log_prior_pdf,
n_states = 1, n_etas = 1, state_names = "state")

out <- ekpf_filter(model_nlg, particles = 100)
ts.plot(cbind(x, out$at[1:n], out$att[1:n]), col = 1:3)

estimate_ess Effective Sample Size for IS-type Estimators

Description

Computes the effective sample size (ESS) based on weighted posterior samples.

Usage
estimate_ess(x, w, method = "sokal")
Arguments
X A numeric vector of samples.
w A numeric vector of weights. If missing, set to 1 (i.e. no weighting is assumed).
method Method for computing the ESS. Default is "sokal”, other option are "geyer"
(see also asymptotic_var).
Details

The asymptotic variance MCMCSE”2 is based on Corollary 1 of Vihola et al. (2020) which is used
to compute an estimate for the ESS using the identity ESS(x) = var(x) / MCMCSE"2 where var(x)
is the posterior variance of x assuming independent samples.

Value

A single numeric value of effective sample size estimate.
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References

Vihola, M, Helske, J, Franks, J. (2020). Importance sampling type estimators based on approximate
marginal Markov chain Monte Carlo. Scand J Statist. 1-38. https://doi.org/10.1111/sjos.12492

Sokal A. (1997). Monte Carlo Methods in Statistical Mechanics: Foundations and New Algorithms.
In: DeWitt-Morette C, Cartier P, Folacci A (eds) Functional Integration. NATO ASI Series (Series
B: Physics), vol 361. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0319-8_6

Gelman, A, Carlin J B, Stern H S, Dunson, D B, Vehtari A, Rubin D B. (2013). Bayesian Data
Analysis, Third Edition. Chapman and Hall/CRC.

Examples

set.seed(1)

n <- le4

X <- numeric(n)

phi <- 0.7

for(t in 2:n) x[t] <- phi * x[t-1] + rnorm(1)
w <- rexp(n, 0.5 * exp(0.001 * x*2))

# different methods:

estimate_ess(x, w, method = "sokal")
estimate_ess(x, w, method = "geyer")
exchange Pound/Dollar daily exchange rates
Description

Dataset containing daily log-returns from 1/10/81-28/6/85 as in Durbin and Koopman (2012).

Format

A vector of length 945.

Source

The data used to be available on the www.ssfpack.com/DKbook.html but this page is does not seem
to be available anymore.

References

James Durbin, Siem Jan Koopman (2012). Time Series Analysis by State Space Methods. Oxford
University Press. https://doi.org/10.1093/acprof:0s0/9780199641178.001.0001
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Examples

# Don't test on CRAN as complains about parallelisation
data("exchange”)

model <- svm(exchange, rho = uniform(0.97,-0.999,0.999),
sd_ar = halfnormal(@.175, 2), mu = normal(-0.87, 0, 2))

out <- particle_smoother(model, particles = 500)
plot.ts(cbind(model$y, exp(out$alphahat)))

expand_sample Expand the Jump Chain representation

Description

The MCMC algorithms of bssm use a jump chain representation where we store the accepted values
and the number of times we stayed in the current value. Although this saves bit memory and is
especially convenient for IS-corrected MCMC, sometimes we want to have the usual sample paths
(for example for drawing traceplots). Function expand_sample returns the expanded sample based
on the counts (in form of coda: :mcmc object. Note that for the IS-MCMC the expanded sample
corresponds to the approximate posterior, i.e., the weights are ignored.

Usage
expand_sample(x, variable = "theta", times, states, by_states = TRUE)
Arguments
X Output from run_mcmc.
variable Expand parameters "theta"” or states "states”.
times A vector of indices. In case of states, what time points to expand? Default is all.
states A vector of indices. In case of states, what states to expand? Default is all.
by_states If TRUE (default), return list by states. Otherwise by time.
Details

This functions is mostly for backwards compatibility, methods as.data. frame and as_draws pro-
duce likely more convenient output.

Value

An object of class "mcmc” of the coda package.

See Also

as.data.frame.mcmc_output and as_draws.mcmc_output.
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Examples

set.seed(1)

n <- 50

x <= cumsum(rnorm(n))

y <= rnorm(n, Xx)

model <- bsm_lg(y, sd_y = gamma_prior(1, 2, 2),
sd_level = gamma_prior(1, 2, 2))

fit <- run_mcmc(model, iter = 1e4)

# Traceplots for theta

plot.ts(expand_sample(fit, variable = "theta"))

# Traceplot for x_5

plot.ts(expand_sample(fit, variable = "states”, times = 5,
states = 1)$level)

fast_smoother Kalman Smoothing

Description

Methods for Kalman smoothing of the states. Function fast_smoother computes only smoothed
estimates of the states, and function smoother computes also smoothed variances.

Usage

fast_smoother(model, ...)

## S3 method for class 'lineargaussian'
fast_smoother(model, ...)

smoother (model, ...)

## S3 method for class 'lineargaussian'

smoother(model, ...)
Arguments
model Model to be approximated. Should be of class bsm_ng, ar1_ng svm, ssm_ung,

or ssm_mng, or ssm_nlg, i.e. non-gaussian or non-linear bssm_model.

Ignored.

Details

For non-Gaussian models, the smoothing is based on the approximate Gaussian model.

Value

Matrix containing the smoothed estimates of states, or a list with the smoothed states and the vari-
ances.
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Examples

model <- bsm_lg(Nile,

sd_level = tnormal(120, 100, 20, min = @),

sd_y = tnormal(50, 50, 25, min = @),

al = 1000, P1 = 200)
ts.plot(cbind(Nile, fast_smoother(model)), col = 1:2)
model <- bsm_lg(Nile,

sd_y = tnormal(120, 100, 20, min = @),

sd_level = tnormal(5@, 50, 25, min = @),

al = 1000, P1 = 500%2)

out <- smoother(model)
ts.plot(cbind(Nile, out$alphahat), col = 1:2)
ts.plot(sqrt(out$Vvt[1, 1, 1))

fitted.mcmc_output Fitted for State Space Model

Description

Returns summary statistics from the posterior predictive distribution of the mean.

Usage
## S3 method for class 'mcmc_output'’
fitted(object, model, probs = c(0.025, 0.975), ...)
Arguments
object Results object of class mcmc_output from run_mcmc based on the input model.
model A bssm_model object.
probs Numeric vector defining the quantiles of interest. Default is c(@.025, 0.975).
Ignored.
Examples

prior <- uniform(@.1 x sd(logl@(UKgas)), @, 1)

model <- bsm_lg(logl10@(UKgas), sd_y = prior, sd_level = prior,
sd_slope = prior, sd_seasonal = prior, period = 4)

fit <- run_mcmc(model, iter = 1e4)

res <- fitted(fit, model)

head(res)
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gaussian_approx Gaussian Approximation of Non-Gaussian/Non-linear State Space
Model

Description

Returns the approximating Gaussian model which has the same conditional mode of p(alphaly,
theta) as the original model. This function is rarely needed itself, and is mainly available for testing
and debugging purposes.

Usage
gaussian_approx(model, max_iter, conv_tol, ...)

## S3 method for class 'nongaussian'
gaussian_approx(model, max_iter = 100, conv_tol = 1e-08, ...)

## S3 method for class 'ssm_nlg'

gaussian_approx(model, max_iter = 100, conv_tol = 1e-08, iekf_iter =0, ...)
Arguments

model Model to be approximated. Should be of class bsm_ng, ar1_ng svm, ssm_ung,
or ssm_mng, or ssm_nlg, i.e. non-gaussian or non-linear bssm_model.

max_iter Maximum number of iterations as a positive integer. Default is 100 (although
typically only few iterations are needed).

conv_tol Positive tolerance parameter. Default is le-8. Approximation is claimed to
be converged when the mean squared difference of the modes of is less than
conv_tol.
Ignored.

iekf_iter For non-linear models, non-negative number of iterations in iterated EKF (de-

faults to 0, i.e. normal EKF). Used only for models of class ssm_nlg.

Value

Returns linear-Gaussian SSM of class ssm_ulg or ssm_mlg which has the same conditional mode
of p(alphaly, theta) as the original model.

References

Koopman, SJ and Durbin J (2012). Time Series Analysis by State Space Methods. Second edition.
Oxford: Oxford University Press.

Vihola, M, Helske, J, Franks, J. (2020). Importance sampling type estimators based on approximate
marginal Markov chain Monte Carlo. Scand J Statist. 1-38. https://doi.org/10.1111/sjos.12492
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Examples

data("poisson_series”)

model <- bsm_ng(y = poisson_series, sd_slope = 0.01, sd_level = 0.1,
distribution = "poisson")

out <- gaussian_approx(model)

for(i in 1:7)

cat("Number of iterations used: ", i, ", y[1] =",
gaussian_approx(model, max_iter = i, conv_tol = @)$y[1]1, "\n", sep ="")
iact Integrated Autocorrelation Time
Description

Estimates the integrated autocorrelation time (IACT) based on Sokal (1997). Note that the estimator
is not particularly good for very short series x (say < 100), but that is not very practical for MCMC
applications anyway.

Usage

iact(x)

Arguments

X A numeric vector.

Value

A single numeric value of IACT estimate.

References

Sokal A. (1997) Monte Carlo Methods in Statistical Mechanics: Foundations and New Algorithms.
In: DeWitt-Morette C., Cartier P., Folacci A. (eds) Functional Integration. NATO ASI Series (Series
B: Physics), vol 361. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0319-8_6

Examples

set.seed(1)

n <- 1000
X <- numeric(n)
phi <- 0.8

for(t in 2:n) x[t] <- phi * x[t-1] + rnorm(1)
iact(x)
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importance_sample Importance Sampling from non-Gaussian State Space Model

Description

Returns nsim samples from the approximating Gaussian model with corresponding (scaled) impor-
tance weights. Probably mostly useful for comparing KFAS and bssm packages.

Usage

importance_sample(model, nsim, use_antithetic, max_iter, conv_tol, seed, ...)

## S3 method for class 'nongaussian'
importance_sample(

model,

nsim,

use_antithetic = TRUE,

max_iter = 100,

conv_tol = 1e-08,

seed = sample(.Machine$integer.max, size = 1),

)
Arguments
model Model of class bsm_ng, ar1_ng svm, ssm_ung, or ssm_mng.
nsim Number of samples (positive integer). Suitable values depend on the model and

the data, and while larger values provide more accurate estimates, the run time
also increases with respect to to the number of samples, so it is generally a good
idea to test the filter first with a small number of samples, e.g., less than 100.

use_antithetic Logical. If TRUE (default), use antithetic variable for location in simulation
smoothing. Ignored for ssm_mng models.

max_iter Maximum number of iterations as a positive integer. Default is 100 (although
typically only few iterations are needed).

conv_tol Positive tolerance parameter. Default is le-8. Approximation is claimed to
be converged when the mean squared difference of the modes of is less than
conv_tol.

seed Seed for the C++ RNG (positive integer).
Ignored.

Examples

data("sexratio”, package = "KFAS")

model <- bsm_ng(sexratio[, "Male"”], sd_level = 0.001,
u = sexratio[, "Total"],
distribution = "binomial")
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imp <- importance_sample(model, nsim = 1000)

est <- matrix(NA, 3, nrow(sexratio))
for(i in 1:ncol(est)) {
est[, i] <- diagis::weighted_quantile(exp(imp$alphali, 1, 1), imp$weights,
prob = c(0.05,0.5,0.95))
3

ts.plot(t(est),lty = c(2,1,2))

kfilter Kalman Filtering

Description

Function kfilter runs the Kalman filter for the given model, and returns the filtered estimates and
one-step-ahead predictions of the states av; given the data up to time ¢.

Usage
kfilter(model, ...)

## S3 method for class 'lineargaussian'
kfilter(model, ...)

## S3 method for class 'nongaussian'
kfilter(model, ...)

Arguments
model Model of class 1lineargaussian, nongaussian or ssm_nlg.
Ignored.
Details

For non-Gaussian models, the filtering is based on the approximate Gaussian model.

Value
List containing the log-likelihood (approximate in non-Gaussian case), one-step-ahead predictions
at and filtered estimates att of states, and the corresponding variances Pt and Ptt up to the time
point n+1 where n is the length of the input time series.

See Also

bootstrap_filter
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Examples

x <= cumsum(rnorm(20))

y <= x + rnorm(20, sd = 0.1)

model <- bsm_lg(y, sd_level = 1, sd_y = 0.1)
ts.plot(cbind(y, x, kfilter(model)$att), col = 1:3)

loglik.lineargaussian Extract Log-likelihood of a State Space Model of class bssm_model

Description

Computes the log-likelihood of a state space model defined by bssm package.

Usage

## S3 method for class 'lineargaussian'
loglLik(object, ...)

## S3 method for class 'nongaussian'
logLik(
object,
particles,
method = "psi”,
max_iter = 100,
conv_tol = 1e-08,
seed = sample(.Machine$integer.max, size = 1),

)
## S3 method for class 'ssm_nlg'
logLik(

object,

particles,

method = "bsf",

max_iter = 100,

conv_tol = 1e-08,

iekf_iter = 0,

seed = sample(.Machine$integer.max, size = 1),

)

## S3 method for class 'ssm_sde'
loglik(
object,
particles,
L,
seed = sample(.Machine$integer.max, size = 1),
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Arguments

object

particles

method

max_iter

conv_tol
seed

iekf_iter

Value

A numeric value.

References
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Model of class bssm_model.
Ignored.

Number of samples for particle filter (non-negative integer). If 0, approximate
log-likelihood is returned either based on the Gaussian approximation or EKF,
depending on the method argument.

Sampling method. For Gaussian and non-Gaussian models with linear dynam-
ics,options are "bsf" (bootstrap particle filter, default for non-linear models)
and "psi"” (y-APF, the default for other models). For-nonlinear models option
"ekf" uses EKF/IEKF-based particle filter (or just EKF/IEKF approximation in
the case of particles = 0).

Maximum number of iterations used in Gaussian approximation, as a positive
integer. Default is 100 (although typically only few iterations are needed).

Positive tolerance parameter used in Gaussian approximation. Default is 1e-8.
Seed for the C++ RNG (positive integer).

Non-negative integer. If zero (default), first approximation for non-linear Gaus-
sian models is obtained from extended Kalman filter. If iekf_iter > 0, iterated
extended Kalman filter is used with iekf_iter iterations.

Integer defining the discretization level defined as (2”L).

Durbin, J., & Koopman, S. (2002). A Simple and Efficient Simulation Smoother for State Space
Time Series Analysis. Biometrika, 89(3), 603-615.

Shephard, N., & Pitt, M. (1997). Likelihood Analysis of Non-Gaussian Measurement Time Series.
Biometrika, 84(3), 653-667.

Gordon, NJ, Salmond, DJ, Smith, AFM (1993). Novel approach to nonlinear/non-Gaussian Bayesian
state estimation. IEE Proceedings-F, 140, 107-113.

Vihola, M, Helske, J, Franks, J. Importance sampling type estimators based on approximate marginal
Markov chain Monte Carlo. Scand J Statist. 2020; 1-38. https://doi.org/10.1111/sjos.12492

Van Der Merwe, R, Doucet, A, De Freitas, N, Wan, EA (2001). The unscented particle filter. In
Advances in neural information processing systems, p 584-590.

Jazwinski, A 1970. Stochastic Processes and Filtering Theory. Academic Press.

Kitagawa, G (1996). Monte Carlo filter and smoother for non-Gaussian nonlinear state space mod-
els. Journal of Computational and Graphical Statistics, 5, 1-25.
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See Also

particle_smoother

Examples

model <- ssm_ulg(y = ¢c(1,4,3), Z=1, H=1, T=1, R=1)

loglik(model)

model <- ssm_ung(y = c(1,4,3), Z=1, T=1, R=0.5, P1 = 2,
distribution = "poisson")

model2 <- bsm_ng(y = c(1,4,3), sd_level = 0.5, P1 = 2,
distribution = "poisson")

loglik(model, particles = @)

loglik(model2, particles = @)

loglLik(model, particles = 10, seed = 1)

loglik(model2, particles = 10, seed = 1)

negbin_model Estimated Negative Binomial Model of Helske and Vihola (2021)

Description

This model was used in Helske and Vihola (2021), but with larger number of iterations. Here only
2000 iterations were used in order to reduce the size of the model object in CRAN.

Format

A object of class mcmc_output.

References

Helske J, Vihola M (2021). bssm: Bayesian Inference of Non-linear and Non-Gaussian State Space
Models in R. The R Journal (2021) 13:2, 578-589. https://doi.org/10.32614/RJ-2021-103

Examples

# reproducing the model:
data(”"negbin_series")
# Construct model for bssm
bssm_model <- bsm_ng(negbin_series[, "y"],
xreg = negbin_series[, "x"],
beta = normal(@, o, 10),
phi = halfnormal(1, 10),
sd_level = halfnormal(0.1, 1),
sd_slope = halfnormal(@.01, 0.1),
al = c(0, ), P1 = diag(c(10, 0.1)*2),
distribution = "negative binomial")
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# In the paper we used 60000 iterations with first 10000 as burnin
fit_bssm <- run_mcmc(bssm_model, iter = 2000, particles = 10, seed = 1)
fit_bssm

negbin_series Simulated Negative Binomial Time Series Data

Description

See example for code for reproducing the data. This was used in Helske and Vihola (2021).

Format

A time series mts object with 200 time points and two series.

References

Helske J, Vihola M (2021). bssm: Bayesian Inference of Non-linear and Non-Gaussian State Space
Models in R. The R Journal (2021) 13:2, 578-589. https://doi.org/10.32614/RJ-2021-103

See Also

negbin_model

Examples

# The data was generated as follows:
set.seed(123)

n <- 200

sd_level <- 0.1

drift <- 9.01

beta <- -0.9

phi <- 5

level <- cumsum(c(5, drift + rnorm(n - 1, sd = sd_level)))
X <= 3 + (1:n) *x drift + sin(1:n + runif(n, -1, 1))
y <= rnbinom(n, size = phi, mu = exp(beta * x + level))
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particle_smoother Particle Smoothing

Description

Function particle_smoother performs particle smoothing based on either bootstrap particle filter
(Gordon et al. 1993), v-auxiliary particle filter (1)-APF) (Vihola et al. 2020), extended Kalman
particle filter (Van Der Merwe et al. 2001), or its version based on iterated EKF (Jazwinski, 1970).
The smoothing phase is based on the filter-smoother algorithm by Kitagawa (1996).

Usage

particle_smoother(model, particles, ...)

## S3 method for class 'lineargaussian'
particle_smoother(

model,

particles,

method = "psi”,

seed = sample(.Machine$integer.max, size = 1),

)

## S3 method for class 'nongaussian'
particle_smoother(

model,

particles,

method = "psi”,

seed = sample(.Machine$integer.max, size = 1),
max_iter = 100,

conv_tol = 1e-08,

)

## S3 method for class 'ssm_nlg'
particle_smoother(

model,

particles,

method = "bsf",

seed = sample(.Machine$integer.max, size = 1),
max_iter = 100,

conv_tol 1e-08,

iekf_iter = 0,

)

## S3 method for class 'ssm_sde'
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particle_smoother(

model,

particles,

L,

seed = sample(.Machine$integer.max, size = 1),

Arguments

model

particles

method

seed

max_iter

conv_tol

iekf_iter

Details

A model object of class bssm_model.

Number of particles as a positive integer. Suitable values depend on the model,
the data, and the chosen algorithm. While larger values provide more accurate
estimates, the run time also increases with respect to the number of particles, so
it is generally a good idea to test the filter first with a small number of particles,
e.g., less than 100.

Ignored.

Choice of particle filter algorithm. For Gaussian and non-Gaussian models with
linear dynamics, options are "bsf"” (bootstrap particle filter, default for non-
linear models) and "psi” (y)-APF, the default for other models), and for non-
linear models option "ekf" (extended Kalman particle filter) is also available.

Seed for the C++ RNG (positive integer).

Maximum number of iterations used in Gaussian approximation, as a positive
integer. Default is 100 (although typically only few iterations are needed).

Positive tolerance parameter used in Gaussian approximation. Default is 1e-8.

Non-negative integer. If zero (default), first approximation for non-linear Gaus-
sian models is obtained from extended Kalman filter. If iekf_iter > 0, iterated
extended Kalman filter is used with iekf_iter iterations.

Positive integer defining the discretization level for SDE model.

See one of the vignettes for 1)-APF in case of nonlinear models.

Value

List with samples (alpha) from the smoothing distribution and corresponding weights (weights),
as well as smoothed means and covariances (alphahat and Vt) of the states and estimated log-
likelihood (logLik).

References

Gordon, NJ, Salmond, DJ, Smith, AFM (1993). Novel approach to nonlinear/non-Gaussian Bayesian
state estimation. IEE Proceedings-F, 140, 107-113. https://doi.org/10.1049/ip-f-2.1993.0015

Vihola, M, Helske, J, Franks, J. Importance sampling type estimators based on approximate marginal
Markov chain Monte Carlo. Scand J Statist. 2020; 1-38. https://doi.org/10.1111/sjos.12492
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Van Der Merwe, R, Doucet, A, De Freitas, N, Wan, EA (2001). The unscented particle filter. In
Advances in neural information processing systems, p 584-590.

Jazwinski, A 1970. Stochastic Processes and Filtering Theory. Academic Press.

Kitagawa, G (1996). Monte Carlo filter and smoother for non-Gaussian nonlinear state space mod-
els. Journal of Computational and Graphical Statistics, 5, 1-25. https://doi.org/10.2307/1390750

Examples

set.seed(1)

x <= cumsum(rnorm(100))

y <= rnorm(100, x)

model <- ssm_ulg(y, Z2=1, T=1, R=1, H=1, P1 =1)

system.time(out <- particle_smoother(model, particles = 1000))

# same with simulation smoother:

system.time(out2 <- sim_smoother(model, particles = 1000,
use_antithetic = TRUE))

ts.plot(out$alphahat, rowMeans(out2), col = 1:2)

plot.memc_output Trace and Density Plots for mcmc_output

Description

Plots the trace and density plots of the hyperparameters theta from the MCMC run by run_mcmc.

Usage
## S3 method for class 'mcmc_output'
plot(x, ...)
Arguments
X Object of class mecmc_output from run_mcmc.
Further arguments to bayesplot::mcmc_combo.
Details

For further visualization (of the states), you can extract the posterior samples with as.data. frame
and as_draws methods to be used for example with the bayesplot or ggplot2 packages.

Value

The output object from bayesplot::mcmc_combo.

Note

For IS-MCMC, these plots correspond to the approximate (non-weighted) samples .
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See Also

check_diagnostics for a quick diagnostics statistics of the model.

Examples

data("negbin_model")
# Note the very small number of iterations, so the plots look bad
plot(negbin_model)

poisson_series Simulated Poisson Time Series Data

Description

See example for code for reproducing the data. This was used in Vihola, Helske, Franks (2020).

Format

A vector of length 100.

References

Vihola, M, Helske, J, Franks, J (2020). Importance sampling type estimators based on approximate
marginal Markov chain Monte Carlo. Scand J Statist. 1-38. https://doi.org/10.1111/sjos.12492

Examples

# The data was generated as follows:

set.seed(321)

slope <- cumsum(c(@, rnorm(99, sd = 0.01)))

y <- rpois(100, exp(cumsum(slope + c(@, rnorm(99, sd = 0.1)))))

post_correct Run Post-correction for Approximate MCMC using 1)-APF

Description

Function post_correct updates previously obtained approximate MCMC output with post-correction
weights leading to asymptotically exact weighted posterior, and returns updated MCMC output
where components weights, posterior, alpha, alphahat, and Vt are updated (depending on the
original output type).
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Usage

post_correct(
model,
mcmc_output,
particles,
threads = 1L,
is_type = "is2",
seed = sample(.Machine$integer.max, size = 1)

)
Arguments
model Model of class nongaussian or ssm_nlg.
mcmc_output An output from run_mcmc used to compute the MAP estimate of theta. While
the intended use assumes this is from approximate MCMC, it is not actually
checked, i.e., it is also possible to input previous (asymptotically) exact output.
particles Number of particles for )-APF (positive integer). Suitable values depend on the
model and the data, but often relatively small value less than say 50 is enough.
See also suggest_N
threads Number of parallel threads (positive integer, default is 1).
is_type Type of IS-correction. Possible choices are "is3"” for simple importance sam-
pling (weight is computed for each MCMC iteration independently), "is2" for
jump chain importance sampling type weighting (default), or "is1" for impor-
tance sampling type weighting where the number of particles used forweight
computations is proportional to the length of the jump chain block.
seed Seed for the C++ RNG (positive integer).
Value

The original object of class mcmc_output with updated weights, log-posterior values and state sam-
ples or summaries (depending on the mcmc_output$mcmec_type).

References

Doucet A, Pitt M K, Deligiannidis G, Kohn R (2018). Efficient implementation of Markov chain
Monte Carlo when using an unbiased likelihood estimator. Biometrika, 102, 2, 295-313, https://doi.org/10.1093/biomet/asu07

Vihola M, Helske J, Franks J (2020). Importance sampling type estimators based on approximate
marginal Markov chain Monte Carlo. Scand J Statist. 1-38. https://doi.org/10.1111/sjos.12492

Examples

set.seed(1)

n <- 300

x1 <= sin((2 * pi / 12) * 1:n)
x2 <= cos((2 * pi / 12) * 1:n)
alpha <- numeric(n)

alphal[1] <- @
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rho <- 0.7
sigma <- 2
mu <- 1

for(i in 2:n) {
alphal[i] <- rnorm(1, mu * (1 - rho) + rho * alpha[i-1], sigma)
3
u <- rpois(n, 50)
y <- rbinom(n, size = u, plogis(@.5 * x1 + x2 + alpha))

ts.plot(y / u)

model <- arl_ng(y, distribution = "binomial”,
rho = uniform(@.5, -1, 1), sigma = gamma_prior(1, 2, 0.001),
mu = normal(@, 0, 10),
xreg = cbind(x1,x2), beta = normal(c(@, @), 0, 5),
u=u)

out_approx <- run_mcmc(model, mcmc_type = "approx”,
local_approx = FALSE, iter = 50000)

out_is2 <- post_correct(model, out_approx, particles = 30,
threads = 2)
out_is2$time

summary (out_approx, return_se = TRUE)
summary (out_is2, return_se = TRUE)

# latent state

library("dplyr")

library("ggplot2")

state_approx <- as.data.frame(out_approx, variable = "states") |[>
group_by(time) |>
summarise(mean = mean(value))

state_exact <- as.data.frame(out_is2, variable = "states") |>
group_by(time) |>
summarise(mean = weighted.mean(value, weight))

dplyr::bind_rows(approx = state_approx,
exact = state_exact, .id = "method”) |>
filter(time > 200) |>

ggplot(aes(time, mean, colour = method)) +
geom_line() +
theme_bw()

# posterior means

p_approx <- predict(out_approx, model, type = "mean”,
nsim = 1000, future = FALSE) |>
group_by(time) |>
summarise(mean = mean(value))

p_exact <- predict(out_is2, model, type = "mean",
nsim = 1000, future = FALSE) |>
group_by(time) |>

43
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summarise(mean = mean(value))

dplyr: :bind_rows(approx = p_approx,
exact = p_exact, .id = "method”) [>
filter(time > 200) |>

ggplot(aes(time, mean, colour = method)) +
geom_line() +
theme_bw()

predict.memc_output Predictions for State Space Models

Description

Draw samples from the posterior predictive distribution for future time points given the posterior
draws of hyperparameters 6 and latent state alpha,, 41 returned by run_mcmc. Function can also be

used to draw samples from the posterior predictive distribution p(g1, . .., Jn|Y1, - - -, Yn)-
Usage
## S3 method for class 'mcmc_output'
predict(
object,
model,
nsim,
type = "response”,
future = TRUE,
seed = sample(.Machine$integer.max, size = 1),
)
Arguments
object Results object of class memc_output from run_mcmc.
model A bssm_model object. Should have same structure and class as the original
model which was used in run_mcmc, in order to plug the posterior samples of
the model parameters to the right places. It is also possible to input the original
model for obtaining predictions for past time points. In this case, set argument
future to FALSE.
nsim Positive integer defining number of samples to draw. Should be less than or
equal to sum(object$counts) i.e. the number of samples in the MCMC output.
Default is to use all the samples.
type Type of predictions. Possible choices are "mean” "response”, or "state”

level.
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future

seed

Value

45

Default is TRUE, in which case predictions are for the future, using posterior
samples of (theta, alpha_T+1) i.e. the posterior samples of hyperparameters and
latest states. Otherwise it is assumed that model corresponds to the original
model.

Seed for the C++ RNG (positive integer). Note that this affects only the C++
side, and predict also uses R side RNG for subsampling, so for replicable
results you should call set. seed before predict.

Ignored.

A data.frame consisting of samples from the predictive posterior distribution.

See Also

fitted for in-sample predictions.

Examples

library("graphics")

y <- logl1@(JohnsonJohnson)

prior <- uniform(0.01, @, 1)

model <- bsm_lg(window(y, end = c(1974, 4)), sd_y = prior,
sd_level = prior, sd_slope = prior, sd_seasonal = prior)

mcmc_results <- run_mcmc(model, iter = 5000)
future_model <- model
future_model$y <- ts(rep(NA, 25),
start = tsp(model$y)[2] + 2 x deltat(model$y),
frequency = frequency(model$y))

# use "state” for illustrative purposes, we could use type = "mean” directly
pred <- predict(mcmc_results, model = future_model, type = "state",
nsim = 1000)

library("dplyr")

sumr_fit <- as.data.frame(mcmc_results, variable = "states") |>
group_by(time, iter) [>
mutate(signal =
value[variable == "level”] +
value[variable == "seasonal_1"]) |>

group_by(time) |>

summarise(mean

= mean(signal),

lwr = quantile(signal, 0.025),
upr = quantile(signal, 0.975))

sumr_pred <- pred |>

group_by(time, sample) |>
mutate(signal =
value[variable == "level”"] +
value[variable == "seasonal_1"]) |>
group_by(time) |>
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summarise(mean = mean(signal),
lwr = quantile(signal, 0.025),
upr = quantile(signal, 0.975))

# If we used type = "mean”, we could do
# sumr_pred <- pred |>

#  group_by(time) |>

#  summarise(mean = mean(value),

# lwr = quantile(value, 0.025),

# upr = quantile(value, 0.975))

library("ggplot2")
rbind(sumr_fit, sumr_pred) |>
ggplot(aes(x = time, y = mean)) +
geom_ribbon(aes(ymin = lwr, ymax = upr),
fill = "#92f0a8", alpha = 0.25) +
geom_line(colour = "#92f0a8") +
theme_bw() +
geom_point(data = data.frame(
mean = logl1@(JohnsonJohnson),
time = time(JohnsonJohnson)))

# Posterior predictions for past observations:

yrep <- predict(mcmc_results, model = model, type = "response”,
future = FALSE, nsim = 1000)
meanrep <- predict(mcmc_results, model = model, type = "mean”,

future = FALSE, nsim = 1000)

sumr_yrep <- yrep |>
group_by(time) |>
summarise(earnings = mean(value),
lwr = quantile(value, 0.025),
upr = quantile(value, 0.975)) |>
mutate(interval = "Observations”)

sumr_meanrep <- meanrep |>
group_by(time) |>
summarise(earnings = mean(value),
lwr = quantile(value, 0.025),
upr = quantile(value, 0.975)) |>
mutate(interval = "Mean")

rbind(sumr_meanrep, sumr_yrep) |>
mutate(interval =
factor(interval, levels = c("Observations”, "Mean"))) |>
ggplot(aes(x = time, y = earnings)) +
geom_ribbon(aes(ymin = lwr, ymax = upr, fill = interval),
alpha = 0.75) +
theme_bw() +
geom_point(data = data.frame(
earnings = model$y,
time = time(model$y)))



print.mcmc_output 47

print.memc_output Print Results from MCMC Run

Description

Prints some basic summaries from the MCMC run by run_mcmc.

Usage
## S3 method for class 'mcmc_output'
print(x, ...)
Arguments
X Object of class memc_output from run_mcmc.
Ignored.
Examples

data("negbin_model”)
print(negbin_model)

run_mcmc Bayesian Inference of State Space Models

Description

Adaptive Markov chain Monte Carlo simulation for SSMs using Robust Adaptive Metropolis algo-
rithm by Vihola (2012). Several different MCMC sampling schemes are implemented, see param-
eter arguments, package vignette, Vihola, Helske, Franks (2020) and Helske and Vihola (2021) for
details.

Usage

run_mcmc(model, ...)

## S3 method for class 'lineargaussian'
run_mcmc (

model,

iter,

output_type = "full”,

burnin = floor(iter/2),

thin = 1,

gamma = 2/3,
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target_acceptance = 0.234,

S,
end_adaptive_phase = FALSE,
threads = 1,

seed = sample(.Machine$integer.max, size
verbose,

)

## S3 method for class 'nongaussian'
run_mcmc (

model,

iter,

particles,

output_type = "full”,

mcme_type = "is2",

sampling_method = "psi”,

burnin = floor(iter/2),

thin = 1,

gamma = 2/3,

target_acceptance = 0.234,

S,

end_adaptive_phase = FALSE,

local_approx = TRUE,

threads = 1,

seed = sample(.Machine$integer.max, size

max_iter = 100,

conv_tol = 1e-08,

verbose,

)

## S3 method for class 'ssm_nlg'
run_mcmc (
model,
iter,
particles,
output_type = "full"”,
mcmc_type = "is2",
sampling_method = "bsf",
burnin = floor(iter/2),
thin = 1,
gamma = 2/3,
target_acceptance = 0.234,
S,
end_adaptive_phase = FALSE,
threads = 1,
seed = sample(.Machine$integer.max, size

D,

D,

D,

run_mcmec
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max_iter =
conv_tol =

verbose,

)
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100,
1e-08,
iekf_iter = 0,

## S3 method for class 'ssm_sde'

run_mcmc (
model,
iter,
particles,

output_type = "full”,

mcmc_type
L_c,
L_f,

niszn’

burnin = floor(iter/2),

thin = 1,
gamma = 2/

3,

target_acceptance = 0.234,

S,

end_adaptive_phase = FALSE,

threads =

1,

seed = sample(.Machine$integer.max, size = 1),

verbose,

Arguments

model

iter

output_type

burnin

thin

Model of class bssm_model.
Ignored.

A positive integer defining the total number of MCMC iterations. Suitable value
depends on the model, data, and the choice of specific algorithms (mcmc_type
and sampling_method). As increasing iter also increases run time, it is is
generally good idea to first test the performance with a small values, e.g., less
than 10000.

Either "full” (default, returns posterior samples from the posterior p(c, 0|y)),
"theta"” (for marginal posterior of theta), or "summary” (return the mean and
variance estimates of the states and posterior samples of theta). See details.

A positive integer defining the length of the burn-in period which is disregarded
from the results. Defaults to iter / 2. Note that all MCMC algorithms of bssm
use adaptive MCMC during the burn-in period in order to find good proposal
distribution.

A positive integer defining the thinning rate. All the MCMC algorithms in bssm
use the jump chain representation (see refs), and the thinning is applied to these
blocks. Defaults to 1. For IS-corrected methods, larger value can also be statisti-
cally more effective. Note: With output_type = "summary", the thinning does
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not affect the computations of the summary statistics in case of pseudo-marginal
methods.

gamma Tuning parameter for the adaptation of RAM algorithm. Must be between 0 and
1.
target_acceptance

Target acceptance rate for MCMC. Defaults to 0.234. Must be between 0 and 1.

S Matrix defining the initial value for the lower triangular matrix of the RAM algo-
rithm, so that the covariance matrix of the Gaussian proposal distribution is S'S”.
Note that for some parameters (currently the standard deviation, dispersion, and
autoregressive parameters of the BSM and AR(1) models) the sampling is done
in unconstrained parameter space, i.e. internal_theta = log(theta) (and logit(rho)
or AR coefficient).

end_adaptive_phase
Logical, if TRUE, S is held fixed after the burnin period. Default is FALSE.

threads Number of threads for state simulation. Positive integer (default is 1). Note that
parallel computing is only used in the post-correction phase of IS-MCMC and
when sampling the states in case of (approximate) Gaussian models.

seed Seed for the C++ RNG (positive integer).

verbose If TRUE, prints a progress bar to the console. If missing, defined by rlang: :is_interactive.
Set to FALSE if number of iterations is less than 50.

particles A positive integer defining the number of state samples per MCMC iteration for
models other than linear-Gaussian models. Ignored if mcmc_type is "approx” or
"ekf". Suitable values depend on the model, the data, mcmc_type and sampling_method.
While large values provide more accurate estimates, the run time also increases
with respect to to the number of particles, so it is generally a good idea to test
the run time firstwith a small number of particles, e.g., less than 100.

mcme_type What type of MCMC algorithm should be used for models other than linear-
Gaussian models? Possible choices are "pm” for pseudo-marginal MCMC, "da”
for delayed acceptance version of PMCMC , "approx" for approximate infer-
ence based on the Gaussian approximation of the model, "ekf" for approximate
inference using extended Kalman filter (for ssm_nlg), or one of the three impor-
tance sampling type weighting schemes: "is3" for simple importance sampling
(weight is computed for each MCMC iteration independently), "is2" for jump
chain importance sampling type weighting (default), or "is1" for importance
sampling type weighting where the number of particles used for weight compu-
tations is proportional to the length of the jump chain block.

sampling_method
Method for state sampling when for models other than linear-Gaussian mod-
els. If "psi”, ¥-APF is used (default). If "spdk”, non-sequential importance
sampling based on Gaussian approximation is used. If "bsf”, bootstrap filter
is used. If "ekf", particle filter based on EKF-proposals are used (only for
ssm_nlg models).

local_approx If TRUE (default), Gaussian approximation needed for some of the methods is
performed at each iteration. If FALSE, approximation is updated only once at the
start of the MCMC using the initial model.
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max_iter Maximum number of iterations used in Gaussian approximation, as a positive
integer. Default is 100 (although typically only few iterations are needed).

conv_tol Positive tolerance parameter used in Gaussian approximation.

iekf_iter Non-negative integer. The default zero corresponds to normal EKF, whereas

iekf_iter > @ corresponds to iterated EKF with iekf_iter iterations. Used
only for models of class ssm_nlg.

L_c, L_f For ssm_sde models, Positive integer values defining the discretization levels for
first and second stages (defined as 2”L). For pseudo-marginal methods ("pm"),
maximum of these is used.

Details

For linear-Gaussian models, option "summary"” does not simulate states directly but computes the
posterior means and variances of states using fast Kalman smoothing. This is slightly faster, more
memory efficient and more accurate than calculations based on simulation smoother. In other cases,
the means and covariances are computed using the full output of particle filter instead of subsam-
pling one of these as in case of output_type = "full”. The states are sampled up to the time point
n+1 where n is the length of the input time series i.e. the last values are one-step-ahead predictions.
(for predicting further, see ?predict.mcmc_output).

Initial values for the sampling are taken from the model object (model$theta). If you want to
continue from previous run, you can reconstruct your original model by plugging in the previously
obtained parameters to model$theta, providing the S matrix for the RAM algorithm and setting
burnin = @. See example. Note however, that this is not identical as running all the iterations once,
due to the RNG "discontinuity" and because even without burnin bssm does include "theta_0" i.e.
the initial theta in the final chain (even with burnin=0).

Value

An object of class mcmc_output.

References

Vihola M (2012). Robust adaptive Metropolis algorithm with coerced acceptance rate. Statistics
and Computing, 22(5), p 997-1008. https://doi.org/10.1007/s11222-011-9269-5

Vihola, M, Helske, J, Franks, J (2020). Importance sampling type estimators based on approximate
marginal Markov chain Monte Carlo. Scand J Statist. 1-38. https://doi.org/10.1111/sjos.12492

Helske J, Vihola M (2021). bssm: Bayesian Inference of Non-linear and Non-Gaussian State Space
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Examples

model <- arl1_lg(LakeHuron, rho = uniform(@.5,-1,1),
sigma = halfnormal(1, 10), mu = normal(500, 500, 500),
sd_y = halfnormal(1, 10))

mcmc_results <- run_mcmc(model, iter = 2e4)
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summary (mcmc_results, return_se = TRUE)

sumr <- summary(mcmc_results, variable = "states")
library("ggplot2")
ggplot(sumr, aes(time, Mean)) +
geom_ribbon(aes(ymin = *2.5%", ymax = ‘97.5%"), alpha = 0.25) +
geom_line() + theme_bw() +
geom_point(data = data.frame(Mean = LakeHuron, time = time(LakeHuron)),
col = 2)

# Continue from the previous run
model$thetal[] <- mcmc_results$thetalnrow(memc_results$theta), 1
run_more <- run_mcmc(model, S = mcmc_results$S, iter = 1000, burnin = 0)

set.seed(1)
n <- 50
slope <- cumsum(c(@, rnorm(n - 1, sd = 0.001)))
level <- cumsum(slope + c(@, rnorm(n - 1, sd = 0.2)))
y <- rpois(n, exp(level))
poisson_model <- bsm_ng(y,
sd_level = halfnormal(@.01, 1),
sd_slope = halfnormal(@.01, 0.1),
P1 = diag(c(10, ©.1)), distribution = "poisson")

# Note small number of iterations for CRAN checks

mcmc_out <- run_mcmc(poisson_model, iter = 1000, particles = 10,
mcmc_type = "da")

summary (mcmc_out, what = "theta"”, return_se = TRUE)

set.seed(123)

n <- 50
sd_level <- 0.1
drift <- 9.01
beta <- -0.9
phi <- 5

level <- cumsum(c(5, drift + rnorm(n - 1, sd = sd_level)))
X <= 3 + (1:n) *x drift + sin(1:n + runif(n, -1, 1))
y <= rnbinom(n, size = phi, mu = exp(beta * x + level))

model <- bsm_ng(y, xreg = X,
beta = normal(o, @, 10),
phi = halfnormal(1, 10),
sd_level = halfnormal(0.1, 1),
sd_slope = halfnormal(0.01, 0.1),
al = c(9, @), P1 = diag(c(10, 0.1)"2),
distribution = "negative binomial”)

# run IS-MCMC
# Note small number of iterations for CRAN checks
fit <- run_mcmc(model, iter = 4000,

particles = 10, mcmc_type = "is2", seed = 1)

run_mcmec
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# extract states
d_states <- as.data.frame(fit, variable = "states”, time = 1:n)

library("dplyr")
library("ggplot2")

# compute summary statistics
level_sumr <- d_states |>
filter(variable == "level”) |>
group_by(time) |>
summarise(mean = diagis::weighted_mean(value, weight),
lwr = diagis::weighted_quantile(value, weight,
0.025),
upr = diagis::weighted_quantile(value, weight,
0.975))

# visualize

level_sumr |> ggplot(aes(x = time, y = mean)) +
geom_line() +
geom_line(aes(y = lwr), linetype "dashed”, na.rm = TRUE) +
geom_line(aes(y = upr), linetype = "dashed”, na.rm = TRUE) +
theme_bw() +
theme(legend.title = element_blank()) +
xlab("Time") + ylab("Level”)

# theta
d_theta <- as.data.frame(fit, variable = "theta")
ggplot(d_theta, aes(x = value)) +

geom_density(aes(weight = weight), adjust = 2, fill = "#92f0a8") +
facet_wrap(~ variable, scales = "free") +
theme_bw()

# Bivariate Poisson model:

set.seed(1)
x <= cumsum(c(3, rnorm(19, sd = 0.5)))
y <= cbhind(

rpois(20, exp(x)),

rpois(20, exp(x)))

prior_fn <- function(theta) {

# half-normal prior using transformation

dnorm(exp(theta), @, 1, log = TRUE) + theta # plus jacobian term
3

update_fn <- function(theta) {
list(R = array(exp(theta), c(1, 1, 1)))
}

model <- ssm_mng(y =y, Z = matrix(1,2,1), T =1,
R=0.1, P1 =1, distribution = "poisson”,
init_theta = log(0.1),
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prior_fn = prior_fn, update_fn = update_fn)

# Note small number of iterations for CRAN checks
out <- run_mcmc(model, iter = 4000, mcmc_type = "approx")

sumr <- as.data.frame(out, variable = "states") |[>
group_by(time) |> mutate(value = exp(value)) |>
summarise(mean = mean(value),
ymin = quantile(value, ©.05), ymax = quantile(value, 0.95))
ggplot(sumr, aes(time, mean)) +
geom_ribbon(aes(ymin = ymin, ymax = ymax),alpha = 0.25) +
geom_line() +

geom_line(data = data.frame(mean = y[, 1], time = 1:20),
colour = "tomato") +
geom_line(data = data.frame(mean = y[, 2], time = 1:20),
colour = "tomato") +
theme_bw()
sim_smoother Simulation Smoothing
Description

Function sim_smoother performs simulation smoothing i.e. simulates the states from the condi-
tional distribution p(«|y, #) for linear-Gaussian models.

Usage

sim_smoother(model, nsim, seed, use_antithetic = TRUE, ...)

## S3 method for class 'lineargaussian'
sim_smoother(
model,
nsim = 1,
seed = sample(.Machine$integer.max, size = 1),
use_antithetic = TRUE,

## S3 method for class 'nongaussian'
sim_smoother(
model,
nsim = 1,
seed = sample(.Machine$integer.max, size = 1),
use_antithetic = TRUE,
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Arguments

model Model of class bsm_lg, ar1_1g ssm_ulg, or ssm_mlg, or one of the non-gaussian
models bsm_ng, ar1_ng svm, ssm_ung, or ssm_mng.

nsim Number of samples (positive integer). Suitable values depend on the model and
the data, and while larger values provide more accurate estimates, the run time
also increases with respect to to the number of samples, so it is generally a good
idea to test the filter first with a small number of samples, e.g., less than 100.

seed Seed for the C++ RNG (positive integer).

use_antithetic Logical. If TRUE (default), use antithetic variable for location in simulation
smoothing. Ignored for ssm_mng models.

Ignored.

Details

For non-Gaussian/non-linear models, the simulation is based on the approximating Gaussian model.

Value

An array containing the generated samples.

Examples

# only missing data, simulates from prior
model <- bsm_lg(rep(NA, 25), sd_level = 1,
sd_y = 1)
# use antithetic variable for location
sim <- sim_smoother(model, nsim = 4, use_antithetic = TRUE, seed = 1)
ts.plot(sim[, 1, 1)
cor(sim[, 1, 1)

ssm_mlg General multivariate linear Gaussian state space models

Description

Construct an object of class ssm_mlg by directly defining the corresponding terms of the model.

Usage

ssm_mlg(
Y,

al = NULL,
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P1 = NULL,
init_theta = numeric(@),
D = NULL,
C = NULL,

state_names,
update_fn = default_update_fn,
prior_fn = default_prior_fn

)
Arguments

y Observations as multivariate time series or matrix with dimensions n x p.

z System matrix Z of the observation equation as p X m matrix or p X m X n array.
Lower triangular matrix H of the observation. Either a scalar or a vector of
length n.

T System matrix T of the state equation. Either a m x m matrix oram x m x n
array.

R Lower triangular matrix R the state equation. Either a m x k matrix or am x k x
n array.

al Prior mean for the initial state as a vector of length m.

P1 Prior covariance matrix for the initial state as m X m matrix.

init_theta Initial values for the unknown hyperparameters theta (i.e. unknown variables
excluding latent state variables).

D Intercept terms for observation equation, given as a p X n matrix.

C Intercept terms for state equation, given as m X n matrix.

state_names A character vector defining the names of the states.

update_fn A function which returns list of updated model components given input vector
theta. This function should take only one vector argument which is used to create
list with elements named as Z, H, T, R, al, P1, D, and C, where each element
matches the dimensions of the original model It’s best to check the internal
dimensions with str(model_object) as the dimensions of input arguments can
differ from the final dimensions. If any of these components is missing, it is
assumed to be constant wrt. theta.

prior_fn A function which returns log of prior density given input vector theta.

Details

The general multivariate linear-Gaussian model is defined using the following observational and
state equations:

y+ = Dy + Zyay + Hyeq, (observation equation)
a1 = Cy + Tyay + Ryny, (transition equation)
where ¢, ~ N(0,1,), n. ~ N(0,Ix) and a1 ~ N (a1, P) independently of each other. Here p is

the number of time series and k is the number of disturbance terms (which can be less than m, the
number of states).
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The update_fn function should take only one vector argument which is used to create list with
elements named as Z, HT, R, a1, P1, D, and C, where each element matches the dimensions of the
original model. If any of these components is missing, it is assumed to be constant wrt. theta. Note
that while you can input say R as m x k matrix for ssm_mlg, update_fn should return R as m x k x
1 in this case. It might be useful to first construct the model without updating function

Value

An object of class ssm_mlg.

Examples

data("GlobalTemp”, package = "KFAS")
model_temp <- ssm_mlg(GlobalTemp, H = matrix(c(0.15,0.05,0, 0.05), 2, 2),
R =0.05 Z = matrix(1, 2, 1), T =1, P1 = 10,
state_names = "temperature”,
# using default values, but being explicit for testing purposes
D = matrix(@, 2, 1), C = matrix(@, 1, 1))
ts.plot(cbind(model_temp$y, smoother(model_temp)$alphahat), col = 1:3)

ssm_mng General Non-Gaussian State Space Model

Description

Construct an object of class ssm_mng by directly defining the corresponding terms of the model.

Usage
ssm_mng(
Y,
zZ,
T,
R,
al = NULL,
P71 = NULL,
distribution,
phi =1,
u,
init_theta = numeric(@),
D = NULL,
C = NULL,

state_names,
update_fn = default_update_fn,
prior_fn = default_prior_fn



58

Arguments

al
P1
distribution

phi

init_theta

D
C
state_names

update_fn

prior_fn

Details

ssm_mng

Observations as multivariate time series or matrix with dimensions n x p.
System matrix Z of the observation equation as p X m matrix or p X m X n array.
System matrix T of the state equation. Either a m x m matrix oram x m x n
array.

Lower triangular matrix R the state equation. Either a m x k matrix or am x k x
n array.

Prior mean for the initial state as a vector of length m.
Prior covariance matrix for the initial state as m x m matrix.

A vector of distributions of the observed series. Possible choices are "poisson”,
"binomial”, "negative binomial”, "gamma", and "gaussian".

Additional parameters relating to the non-Gaussian distributions. For negative
binomial distribution this is the dispersion term, for gamma distribution this
is the shape parameter, for Gaussian this is standard deviation, and for other
distributions this is ignored.

A matrix of positive constants for non-Gaussian models (of same dimensions as
y). For Poisson, gamma, and negative binomial distribution, this corresponds to
the offset term. For binomial, this is the number of trials (and as such should be
integer(ish)).

Initial values for the unknown hyperparameters theta (i.e. unknown variables
excluding latent state variables).

Intercept terms for observation equation, given as p X n matrix.

Intercept terms for state equation, given as m X n matrix.

A character vector defining the names of the states.

A function which returns list of updated model components given input vector
theta. This function should take only one vector argument which is used to create
list with elements named as Z, T, R, a1, P1, D, C, and phi, where each element
matches the dimensions of the original model. If any of these components is
missing, it is assumed to be constant wrt. theta. It’s best to check the internal

dimensions with str(model_object) as the dimensions of input arguments can
differ from the final dimensions.

A function which returns log of prior density given input vector theta.

The general multivariate non-Gaussian model is defined using the following observational and state

equations:

p'(yi| Dt + Ziavt), (observation equation)

a1 = Cy + Tyay + Ryny, (transition equation)

where 1; ~ N(0,I;) and a1 ~ N(ay, P;) independently of each other, and p‘(y;|.) is either
Poisson, binomial, gamma, Gaussian, or negative binomial distribution for each observation series
i = 1,...,p. Here k is the number of disturbance terms (which can be less than m, the number of

states).
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Value

An object of class ssm_mng.

Examples

set.seed(1)

n <- 20

x <= cumsum(rnorm(n, sd = 0.5))
phi <- 2

y <= cbind(

rgamma(n, shape = phi, scale = exp(x) / phi),
rbinom(n, 10, plogis(x)))

Z <- matrix(1, 2, 1)
T <=1

R <- 0.5

al <- 0

P1 <=1

update_fn <- function(theta) {
list(R = array(theta[1], c(1, 1, 1)), phi = c(thetal[2], 1))
3

prior_fn <- function(theta) {
ifelse(all(theta > @), sum(dnorm(theta, @, 1, log = TRUE)), -Inf)

}

model <- ssm_mng(y, Z, T, R, al, P1, phi = c(2, 1),
init_theta = c(0.5, 2),
distribution = c("gamma"”, "binomial),
u = cbind(1, rep(10, n)),
update_fn = update_fn, prior_fn = prior_fn,
state_names = "random_walk",
# using default values, but being explicit for testing purposes
D = matrix(@, 2, 1), C = matrix(@, 1, 1))

# smoothing based on approximating gaussian model
ts.plot(cbind(y, fast_smoother(model)),
col = 1:3, 1ty = c(1, 1, 2))

ssm_nlg General multivariate nonlinear Gaussian state space models

Description

Constructs an object of class ssm_nlg by defining the corresponding terms of the observation and
state equation.
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Usage

ssm_nlg(

theta,

known_params

ssm_nlg

= NA,

known_tv_params = matrix(NA),

n_states,
n_etas,

log_prior_pdf,
time_varying = rep(TRUE, 4),

state_names

Arguments

y
Z,H, T,R

Z_gn, T_gn

al
P1
theta

known_params

known_tv_params

n_states
n_etas

log_prior_pdf

time_varying

state_names

pasted("state"”, 1:n_states)

Observations as multivariate time series (or matrix) of length n.

An external pointers (object of class externalptr) for the C++ functions which
define the corresponding model functions.

An external pointers (object of class externalptr) for the C++ functions which
define the gradients of the corresponding model functions.

Prior mean for the initial state as object of class externalptr
Prior covariance matrix for the initial state as object of class externalptr
Parameter vector passed to all model functions.

A vector of known parameters passed to all model functions.

A matrix of known parameters passed to all model functions.
Number of states in the model (positive integer).
Dimension of the noise term of the transition equation (positive integer).

An external pointer (object of class externalptr) for the C++ function which
computes the log-prior density given theta.

Optional logical vector of length 4, denoting whether the values of Z, H, T, and
R vary with respect to time variable (given identical states). If used, this can
speed up some computations.

A character vector containing names for the states.
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Details

The nonlinear Gaussian model is defined as

ye = Z(t,0u,0) + H(t, 6)e;, (observation equation)
a1 = T(t, a4, 0) + R(t,0)n:, (transition equation)

where ¢, ~ N(0,1I,), n. ~ N(0,1I,) and a1 ~ N(aq, Pr) independently of each other, and
functions Z, H, T, R can depend on «a; and parameter vector 6.

Compared to other models, these general models need a bit more effort from the user, as you must
provide the several small C++ snippets which define the model structure. See examples in the
vignette and cpp_example_model.

Value

An object of class ssm_nlg.

Examples

# Takes a while on CRAN

set.seed(1)

n <- 50

x <=y <- numeric(n)

y[1] <= rnorm(1, exp(x[1]1), @.1)
for(i in 1:(n-1)) {

x[i+1] <= rnorm(1, sin(x[il), 0.1)
y[i+1] <= rnorm(1, exp(x[i+1]), 0.1)
3

pntrs <- cpp_example_model("nlg_sin_exp")

model_nlg <- ssm_nlg(y =y, al = pntrs$al, P1 = pntrs$P1,
Z = pntrs$Z_fn, H = pntrs$H_fn, T = pntrs$T_fn, R = pntrs$R_fn,
Z_gn = pntrs$Z_gn, T_gn = pntrs$T_gn,
theta = c(log_H = log(@.1), log_R = log(@0.1)),
log_prior_pdf = pntrs$log_prior_pdf,
n_states = 1, n_etas = 1, state_names = "state")

out <- ekf(model_nlg, iekf_iter = 100)
ts.plot(cbind(x, out$at[1:n], out$att[1:n]), col = 1:3)

ssm_sde Univariate state space model with continuous SDE dynamics

Description

Constructs an object of class ssm_sde by defining the functions for the drift, diffusion and derivative
of diffusion terms of univariate SDE, as well as the log-density of observation equation. We assume
that the observations are measured at integer times (missing values are allowed).
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Usage

ssm_sde(
Y,
drift,
diffusion,
ddiffusion,
obs_pdf,
prior_pdf,
theta,
X0,
positive

Arguments

y Observations as univariate time series (or vector) of length n.
drift, diffusion, ddiffusion

An external pointers for the C++ functions which define the drift, diffusion and
derivative of diffusion functions of SDE.

obs_pdf An external pointer for the C++ function which computes the observational log-
density given the the states and parameter vector theta.

prior_pdf An external pointer for the C++ function which computes the prior log-density
given the parameter vector theta.

theta Parameter vector passed to all model functions.

X0 Fixed initial value for SDE at time 0.

positive If TRUE, positivity constraint is forced by abs in Milstein scheme.

Details

As in case of ssm_nlg models, these general models need a bit more effort from the user, as you
must provide the several small C++ snippets which define the model structure. See vignettes for an
example and cpp_example_model.

Value

An object of class ssm_sde.

Examples

# Takes a while on CRAN

library("sde")

set.seed(1)

# theta_@ = rho = 0.5

# theta_1 nu = 2

# theta_2 = sigma = 0.3

x <- sde.sim(t@ = @, T = 50, X0 = 1, N = 50,
drift = expression(@0.5 * (2 - x)),
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sigma = expression(0.3),
sigma.x = expression(0))
y <- rpois(50, exp(x[-11))

# source c++ snippets
pntrs <- cpp_example_model("sde_poisson_0U")

sde_model <- ssm_sde(y, pntrs$drift, pntrs$diffusion,
pntrs$ddiffusion, pntrs$obs_density, pntrs$prior,
c(rho = 0.5, nu = 2, sigma = 0.3), 1, positive = FALSE)

est <- particle_smoother(sde_model, L = 12, particles = 500)

ts.plot(cbind(x, est$alphahat,
est$alphahat - 2xsqrt(c(est$Vt)),
est$alphahat + 2xsqrt(c(est$Vt))),
col = c(2, 1, 1, 1), 1ty = c(1, 1, 2, 2))

# Takes time with finer mesh, parallelization with IS-MCMC helps a lot
out <- run_mcmc(sde_model, L_c = 4, L_f = 8,

particles = 50, iter = 2e4,

threads = 4L)

ssm_ulg General univariate linear-Gaussian state space models

Description

Construct an object of class ssm_ulg by directly defining the corresponding terms of the model.

Usage
ssm_ulg(
Y,
zZ,
H7
T,
R,
al = NULL,
P1 = NULL,
init_theta = numeric(@),
D = NULL,
C = NULL,

state_names,
update_fn = default_update_fn,
prior_fn = default_prior_fn
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Arguments

Observations as time series (or vector) of length n.

Z System matrix Z of the observation equation. Either a vector of length m, a m x
n matrix, or object which can be coerced to such.

H A vector of standard deviations. Either a scalar or a vector of length n.

T System matrix T of the state equation. Either a m X m matrix oram x m x n
array, or object which can be coerced to such.

R Lower triangular matrix R the state equation. Either a m x k matrix or am x k x
n array, or object which can be coerced to such.

al Prior mean for the initial state as a vector of length m.

P1 Prior covariance matrix for the initial state as m X m matrix.

init_theta Initial values for the unknown hyperparameters theta (i.e. unknown variables
excluding latent state variables).

D Intercept terms D; for the observations equation, given as a scalar or vector of
length n.

C Intercept terms C'; for the state equation, given as a m times 1 or m times n
matrix.

state_names A character vector defining the names of the states.

update_fn A function which returns list of updated model components given input vector
theta. This function should take only one vector argument which is used to create
list with elements named as Z, H, T, R, a1, P1, D, and C, where each element
matches the dimensions of the original model It’s best to check the internal
dimensions with str(model_object) as the dimensions of input arguments can
differ from the final dimensions. If any of these components is missing, it is
assumed to be constant wrt. theta.

prior_fn A function which returns log of prior density given input vector theta.

Details

The general univariate linear-Gaussian model is defined using the following observational and state
equations:

yr = Dy + Zyoy + Hyey, (observation equation)

a1 = Cy + Ty + Rymy, (transition equation)

where €; ~ N(0,1),n: ~ N(0, I}) and oy ~ N (aq, Py) independently of each other. Here k is the
number of disturbance terms which can be less than m, the number of states.

The update_fn function should take only one vector argument which is used to create list with
elements named as Z, H T, R, a1, P1, D, and C, where each element matches the dimensions of the
original model. If any of these components is missing, it is assumed to be constant wrt. theta. Note
that while you can input say R as m x k matrix for ssm_ulg, update_fn should return R as m x k
x 1 in this case. It might be useful to first construct the model without updating function and then
check the expected structure of the model components from the output.
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Value

An object of class ssm_ulg.

Examples

# Regression model with time-varying coefficients
set.seed(1)

n <- 100

x1 <= rnorm(n)

x2 <= rnorm(n)

b1 <= 1 + cumsum(rnorm(n, sd = 0.5))

b2 <- 2 + cumsum(rnorm(n, sd = 0.1))

y <=1+ bl * x1 + b2 * x2 + rnorm(n, sd = 0.1)

Z <- rbind(1, x1, x2)
H<-0.1

T <- diag(3)

R <- diag(c(o, 1, 0.1))
al <- rep(0, 3)

P1 <- diag(10, 3)

# updates the model given the current values of the parameters
update_fn <- function(theta) {
R <- diag(c(@, thetal[1], thetal[21))
dim(R) <- c(3, 3, 1)
list(R = R, H = theta[3])
3
# prior for standard deviations as half-normal(1)
prior_fn <- function(theta) {
if(any(theta < 0)) {

log_p <- -Inf
} else {
log_p <- sum(dnorm(theta, @, 1, log = TRUE))
}
log_p
3

model <- ssm_ulg(y, Z, H, T, R, al, P1,
init_theta = c(1, 0.1, 0.1),
update_fn = update_fn, prior_fn = prior_fn,
state_names = c("level”, "b1", "b2"),
# using default values, but being explicit for testing purposes
C = matrix(@, 3, 1), D = numeric(1))

out <- run_mcmc(model, iter = 5000)

out

sumr <- summary(out, variable = "state"”, times = 1:n)
sumr$true <- c(b1, b2, rep(1, n))

library(ggplot2)

ggplot(sumr, aes(x = time, y = Mean)) +
geom_ribbon(aes(ymin = *2.5%", ymax = ‘97.5%‘), alpha = 0.5) +
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geom_line() +

geom_line(aes(y = true), colour = "red") +
facet_wrap(~ variable, scales = "free") +
theme_bw()

# Perhaps easiest way to construct a general SSM for bssm is to use the
# model building functionality of KFAS:
library("KFAS")

model_kfas <- SSModel(log(drivers) ~ SSMtrend(1, Q = 5e-4)+
SSMseasonal(period = 12, sea.type = "trigonometric”, Q = @) +
log(PetrolPrice) + law, data = Seatbelts, H = 0.005)

# use as_bssm function for conversion, kappa defines the
# prior variance for diffuse states
model_bssm <- as_bssm(model_kfas, kappa = 100)

# define updating function for parameter estimation

# we can use SSModel and as_bssm functions here as well
# (for large model it is more efficient to do this

# "manually” by constructing only necessary matrices,

# i.e., in this case a list with H and Q)

prior_fn <- function(theta) {
if(any(theta < @)) -Inf else sum(dnorm(theta, @, 0.1, log = TRUE))
3

update_fn <- function(theta) {

model_kfas <- SSModel(log(drivers) ~ SSMtrend(1, Q = theta[1]*2)+
SSMseasonal (period = 12,
sea.type = "trigonometric”, Q = thetal[2]"2) +
log(PetrolPrice) + law, data = Seatbelts, H = theta[3]%2)

# the bssm_model object is essentially list so this is fine
as_bssm(model_kfas, kappa = 100, init_theta = init_theta,
update_fn = update_fn, prior_fn = prior_fn)
3

init_theta <- rep(le-2, 3)
names(init_theta) <- c("sd_level”, "sd_seasonal”, "sd_y")

model_bssm <- update_fn(init_theta)

out <- run_mcmc(model_bssm, iter = 10000, burnin = 5000)
out

# Above the regression coefficients are modelled as

# time-invariant latent states.

# Here is an alternative way where we use variable D so that the

# coefficients are part of parameter vector theta. Note however that the

# first option often preferable in order to keep the dimension of theta low.

ssm_ulg
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updatefn2 <- function(theta) {
# note no PetrolPrice or law variables here
model_kfas2 <- SSModel(log(drivers) ~ SSMtrend(1, Q = theta[1]%2)+
SSMseasonal(period = 12, sea.type = "trigonometric”, Q = theta[2]"2),
data = Seatbelts, H = theta[3]%2)

X <- model.matrix(~ -1 + law + log(PetrolPrice), data = Seatbelts)
D <= t(X %x% thetal[4:5])
as_bssm(model_kfas2, D = D, kappa = 100)
3
prior2 <- function(theta) {
if(any(theta[1:3] < 0)) {
-Inf
} else {
sum(dnorm(thetal[1:3], @, 0.1, log = TRUE)) +
sum(dnorm(thetal4:5], @, 10, log = TRUE))

}

}

init_theta <- c(rep(le-2, 3), 0, 0)

names(init_theta) <- c("sd_level”, "sd_seasonal”, "sd_y", "law”, "Petrol")

model_bssm2 <- updatefn2(init_theta)
model_bssm2$theta <- init_theta
model_bssm2$prior_fn <- prior2
model_bssm2$update_fn <- updatefn2

out2 <- run_mcmc(model_bssm2, iter = 10000, burnin = 5000)
out2

ssm_ung General univariate non-Gaussian state space model

Description

Construct an object of class ssm_ung by directly defining the corresponding terms of the model.

Usage

ssm_ung(
Y,

al NULL,

P1 = NULL,
distribution,
phi =1,

u,
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)
Arguments

y Observations as time series (or vector) of length n.

System matrix Z of the observation equation. Either a vector of length m, a m x
n matrix, or object which can be coerced to such.

T System matrix T of the state equation. Either a m x m matrix or am X m X n
array, or object which can be coerced to such.

R Lower triangular matrix R the state equation. Either a m x k matrix oram x k x
n array, or object which can be coerced to such.

al Prior mean for the initial state as a vector of length m.

P1 Prior covariance matrix for the initial state as m x m matrix.

distribution Distribution of the observed time series. Possible choices are "poisson”, "binomial”,
"gamma", and "negative binomial”.

phi Additional parameter relating to the non-Gaussian distribution. For negative
binomial distribution this is the dispersion term, for gamma distribution this is
the shape parameter, and for other distributions this is ignored. Should an object
of class bssm_prior or a positive scalar.

u A vector of positive constants for non-Gaussian models. For Poisson, gamma,
and negative binomial distribution, this corresponds to the offset term. For bi-
nomial, this is the number of trials.

init_theta Initial values for the unknown hyperparameters theta (i.e. unknown variables
excluding latent state variables).

D Intercept terms D; for the observations equation, given as a scalar or vector of
length n.

C Intercept terms C} for the state equation, given as a m times 1 or m times n
matrix.

state_names A character vector defining the names of the states.

update_fn A function which returns list of updated model components given input vector

ssm_ung

init_theta = numeric(0),

D = NULL,

C = NULL,

state_names,

update_fn = default_update_fn,
prior_fn = default_prior_fn

theta. This function should take only one vector argument which is used to create
list with elements named as Z, T, R, al, P1, D, C, and phi, where each element
matches the dimensions of the original model. If any of these components is
missing, it is assumed to be constant wrt. theta. It’s best to check the internal
dimensions with str(model_object) as the dimensions of input arguments can
differ from the final dimensions.

prior_fn A function which returns log of prior density given input vector theta.
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Details

The general univariate non-Gaussian model is defined using the following observational and state
equations:

p(y| Dt + Zray), (observation equation)
ary1 = Cy + Tyay + Ryny, (transition equation)

where n; ~ N(0, I;) and a1 ~ N(aq, P;) independently of each other, and p(y|.) is either Pois-
son, binomial, gamma, or negative binomial distribution. Here k is the number of disturbance terms
which can be less than m, the number of states.

The update_fn function should take only one vector argument which is used to create list with
elements named as Z, phi T, R, a1, P1, D, and C, where each element matches the dimensions of the
original model. If any of these components is missing, it is assumed to be constant wrt. theta. Note
that while you can input say R as m x k matrix for ssm_ung, update_fn should return R as m x k
x 1 in this case. It might be useful to first construct the model without updating function and then
check the expected structure of the model components from the output.

Value

An object of class ssm_ung.

Examples
data("drownings"”, package = "bssm")
model <- ssm_ung(drownings[, "deaths"], Z =1, T=1, R =10.2,
al = @, P1 = 10, distribution = "poisson”, u = drownings[, "population”])

# approximate results based on Gaussian approximation
out <- smoother(model)
ts.plot(cbind(model$y / model$u, exp(out$alphahat)), col = 1:2)

suggest_N Suggest Number of Particles for 1)-APF Post-correction

Description

Function estimate_N estimates suitable number particles needed for accurate post-correction of
approximate MCMC.

Usage

suggest_N(
model,
theta,
candidates = seq(1@, 100, by = 10),
replications = 100,
seed = sample(.Machine$integer.max, size = 1)
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Arguments
model Model of class nongaussian or ssm_nlg.
theta A vector of theta corresponding to the model, at which point the standard de-
viation of the log-likelihood is computed. Typically MAP estimate from the
(approximate) MCMC run. Can also be an output from run_mcmc which is then
used to compute the MAP estimate of theta.
candidates A vector of positive integers containing the candidate number of particles to test.

Default is seq(10, 100, by =10).

replications  Positive integer, how many replications should be used for computing the stan-
dard deviations? Default is 100.

seed Seed for the C++ RNG (positive integer).

Details

Function suggest_N estimates the standard deviation of the logarithm of the post-correction weights
at approximate MAP of theta, using various particle sizes and suggest smallest number of particles
which still leads standard deviation less than 1. Similar approach was suggested in the context of
pseudo-marginal MCMC by Doucet et al. (2015), but see also Section 10.3 in Vihola et al (2020).

Value

List with suggested number of particles N and matrix containing estimated standard deviations of
the log-weights and corresponding number of particles.

References

Doucet, A, Pitt, MK, Deligiannidis, G, Kohn, R (2015). Efficient implementation of Markov
chain Monte Carlo when using an unbiased likelihood estimator, Biometrika, 102(2) p. 295-313,
https://doi.org/10.1093/biomet/asu075

Vihola, M, Helske, J, Franks, J (2020). Importance sampling type estimators based on approximate
marginal Markov chain Monte Carlo. Scand J Statist. 1-38. https://doi.org/10.1111/sjos.12492

Examples

set.seed(1)

n <- 300

x1 <= sin((2 * pi / 12) * 1:n)
x2 <= cos((2 * pi / 12) * 1:n)
alpha <- numeric(n)

alpha[1] <- @

rho <- 0.7
sigma <- 1.2
mu <- 1

for(i in 2:n) {
alphali] <= rnorm(1, mu * (1 - rho) + rho * alpha[i-1], sigma)
}
u <- rpois(n, 50)
y <- rbinom(n, size = u, plogis(@0.5 * x1 + x2 + alpha))
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ts.plot(y / u)

model <- ari_ng(y, distribution = "binomial”,
rho = uniform(@.5, -1, 1), sigma = gamma_prior(1, 2, 0.001),
mu = normal(@, 0, 10),
xreg = cbind(x1,x2), beta = normal(c(@, @), 0, 5),

u=u
# theta from earlier approximate MCMC run
# out_approx <- run_mcmc(model, mcmc_type = "approx”,
# iter = 5000)
# theta <- out_approx$theta[which.max(out_approx$posterior), ]

theta <- c(rho = 0.64, sigma = 1.16, mu = 1.1, x1 = 0.56, x2 = 1.28)

estN <- suggest_N(model, theta, candidates = seq(10, 50, by = 10),
replications = 50, seed = 1)

plot(x = estN$results$N, y = estN$results$sd, type = "b")

estNs$N

summary.mcmc_output Summary Statistics of Posterior Samples

Description

This functions returns a data frame containing mean, standard deviations, standard errors, and ef-
fective sample size estimates for parameters and states.

Usage
## S3 method for class 'memc_output'’
summary (
object,
return_se = FALSE,
variable = "theta”,
probs = c(0.025, 0.975),
times,
states,

use_times = TRUE,
method = "sokal”,

Arguments

object Output from run_mcmc
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return_se

variable

probs

times

states

use_times

method

Details

svim

if FALSE (default), computation of standard errors and effective sample sizes is
omitted (as they can take considerable time for models with large number of
states and time points).

Are the summary statistics computed for either "theta” (default), "states”, or
"both"?

A numeric vector defining the quantiles of interest. Defaultis c(@.025, 0.975).

A vector of indices. For states, for what time points the summaries should be
computed? Default is all, ignored if variable = "theta".

A vector of indices. For what states the summaries should be computed?. De-
fault is all, ignored if variable = "theta".

If TRUE (default), transforms the values of the time variable to match the ts at-
tribute of the input to define. If FALSE, time is based on the indexing starting
from 1.

Method for computing integrated autocorrelation time. Default is "sokal”,
other option is "geyer".

Ignored.

For IS-MCMC two types of standard errors are reported. SE-IS can be regarded as the square root
of independent IS variance, whereas SE corresponds to the square root of total asymptotic variance
(see Remark 3 of Vihola et al. (2020)).

Value

If variable is "theta” or "states"”, a data. frame object. If "both”, a list of two data frames.

References

Vihola, M, Helske, J, Franks, J. Importance sampling type estimators based on approximate marginal
Markov chain Monte Carlo. Scand J Statist. 2020; 1-38. https://doi.org/10.1111/sjos.12492

Examples

data("negbin_model")
summary (negbin_model, return_se = TRUE, method = "geyer")
summary(negbin_model, times = c(1, 200), prob = c(0.05, 0.5, 0.95))

svim

Stochastic Volatility Model

Description

Constructs a simple stochastic volatility model with Gaussian errors and first order autoregressive
signal. See the main vignette for details.
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Usage

svm(y, mu, rho, sd_ar, sigma)

Arguments
y A numeric vector or a ts object of observations.
mu A prior for mu parameter of transition equation. Should be an object of class
bssm_prior.
rho A prior for autoregressive coefficient. Should be an object of class bssm_prior.
sd_ar A prior for the standard deviation of noise of the AR-process. Should be an
object of class bssm_prior.
sigma A prior for sigma parameter of observation equation, internally denoted as phi.
Should be an object of class bssm_prior. Ignored if mu is provided. Note that
typically parametrization using mu is preferred due to better numerical proper-
ties and availability of better Gaussian approximation. Most notably the global
approximation approach does not work with sigma parameterization as sigma is
not a parameter of the resulting approximate model.
Value

An object of class svm.

Examples

data("exchange”)

y <- exchange[1:100] # for faster CRAN check

model <- svm(y, rho = uniform(0.98, -0.999, 0.999),

sd_ar = halfnormal(@.15, 5), sigma = halfnormal(0.6, 2))

obj <- function(pars) {
-logLik(svm(y,
rho = uniform(pars[1], -0.999, 0.999),
sd_ar = halfnormal(pars[2], 5),
sigma = halfnormal(pars[3], 2)), particles = 0)
3
opt <- optim(c(@.98, 0.15, 0.6), obj,
lower = c(-0.999, 1e-4, le-4),
upper = c(0.999, 10, 10), method = "L-BFGS-B")
pars <- opt$par
model <- svm(y,
rho = uniform(pars[1],-0.999,0.999),
sd_ar = halfnormal(pars[2], 5),
sigma = halfnormal(pars[3], 2))

# alternative parameterization
model2 <- svm(y, rho = uniform(0.98,-0.999, 0.999),
sd_ar = halfnormal(@.15, 5), mu = normal(@, @, 1))

obj2 <- function(pars) {
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-logLik(svm(y,
rho = uniform(pars[1], -0.999, 0.999),
sd_ar = halfnormal(pars[2], 5),
mu = normal(pars[3], @, 1)), particles = 0)
3
opt2 <- optim(c(0.98, 0.15, @), obj2, lower = c(-0.999, le-4, -Inf),
upper = c(0.999, 10, Inf), method = "L-BFGS-B")
pars2 <- opt2$par
model2 <- svm(y,
rho = uniform(pars2[1],-0.999,0.999),
sd_ar = halfnormal(pars2[2], 5),
mu = normal(pars2[3], 0, 1))

# sigma is internally stored in phi
ts.plot(cbind(model$phi * exp(@.5 * fast_smoother(model)),
exp(0.5 * fast_smoother(model2))), col = 1:2)

ukf Unscented Kalman Filtering

Description

Function ukf runs the unscented Kalman filter for the given non-linear Gaussian model of class
ssm_nlg, and returns the filtered estimates and one-step-ahead predictions of the states «; given the
data up to time ¢.

Usage

ukf(model, alpha = 0.001, beta = 2, kappa = 0)

Arguments
model Model of class ssm_nlg.
alpha Positive tuning parameter of the UKF. Default is 0.001. Smaller the value, closer
the sigma point are to the mean of the state.
beta Non-negative tuning parameter of the UKF. The default value is 2, which is
optimal for Gaussian states.
kappa Non-negative tuning parameter of the UKF, which also affects the spread of
sigma points. Default value is 0.
Value

List containing the log-likelihood, one-step-ahead predictions at and filtered estimates att of states,
and the corresponding variances Pt and Ptt.
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Examples

# Takes a while on CRAN
set.seed(1)
mu <- -0.2
rho <- 0.7
sigma_y <- 0.1
sigma_x <- 1
X <- numeric(50)
x[1] <= rnorm(1, mu, sigma_x / sqrt(1 - rho*2))
for(i in 2:length(x)) {
x[i] <= rnorm(1, mu * (1 - rho) + rho * x[i - 1], sigma_x)
3
y <= rnorm(50, exp(x), sigma_y)

pntrs <- cpp_example_model("nlg_ar_exp")

model_nlg <- ssm_nlg(y =y, al = pntrs$al, P1 = pntrs$P1,
Z = pntrs$Z_fn, H = pntrs$H_fn, T = pntrs$T_fn, R = pntrs$R_fn,
Z_gn = pntrs$Z_gn, T_gn = pntrs$T_gn,
theta = c(mu= mu, rho = rho,
log_sigma_x = log(sigma_x), log_sigma_y = log(sigma_y)),
log_prior_pdf = pntrs$log_prior_pdf,
n_states = 1, n_etas = 1, state_names = "state")

out_iekf <- ekf(model_nlg, iekf_iter = 5)
out_ukf <- ukf(model_nlg, alpha = 0.01, beta = 2, kappa = 1)
ts.plot(chbind(x, out_iekf$att, out_ukf$att), col = 1:3)

uniform_prior Prior objects for bssm models

Description

These simple objects of class bssm_prior are used to construct a prior distributions for the hy-
perparameters theta for some of the model objects of bssm package. Note that these priors do not
include the constant terms as they do not affect the sampling.

Usage

uniform_prior(init, min, max)
uniform(init, min, max)
halfnormal_prior(init, sd)
halfnormal(init, sd)

normal_prior(init, mean, sd)
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normal(init, mean, sd)

tnormal_prior(init, mean, sd, min = -Inf, max = Inf)
tnormal(init, mean, sd, min = -Inf, max = Inf)
gamma_prior(init, shape, rate)

gamma(init, shape, rate)

Arguments
init Initial value for the parameter, used in initializing the model components and as
a starting values in MCMC.
min Lower bound of the uniform and truncated normal prior.
max Upper bound of the uniform and truncated normal prior.
sd Positive value defining the standard deviation of the (underlying i.e. non-truncated)
Normal distribution.
mean Mean of the Normal prior.
shape Positive shape parameter of the Gamma prior.
rate Positive rate parameter of the Gamma prior.
Details

Currently supported priors are

1

maxr—min

e uniform prior (uniform()) with a probability density function (pdf) defined as for

min < theta < max.

* normal (normal()), a normal distribution parameterized via mean and standard deviation, i.e.
N(mean, sd”*2).

* truncated normal distribution (tnormal ()), a normal distribution with known truncation points
(from below and/or above). Ignoring the scaling factors, this corresponds to the pdf of N(mean,
sd*2) when min < theta < max and zero otherwise.

* half-normal (halfnormal()) with a pdf matching the pdf of the truncated normal distribution
with min=0 and max=inf.

* gamma (gamma), a gamma distribution with shape and rate parameterization.

All parameters are vectorized so for regression coefficient vector beta you can define prior for
example as normal(@, @, c(10, 20)).

For the general exponential models, i.e. models built with the ssm_ulg, ssm_ung, ssm_mlg, and
ssm_mng, you can define arbitrary priors by defining the prior_fn function, which takes the one
argument, theta, corresponding to the hyperparameter vector of the model, and returns a log-
density of the (joint) prior (see the R Journal paper and e.g. ssm_ulg for examples). Similarly, the
priors for the non-linear models (ssm_nlg) and SDE models (ssm_sde) are constructed via C++
snippets (see the vignettes for details).
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The longer name versions of the prior functions with _prior ending are identical with shorter
versions and they are available only to avoid clash with R’s primitive function gamma (other long
prior names are just for consistent naming).

Value

object of class bssm_prior or bssm_prior_list in case of multiple priors (i.e. multiple regression
coefficients).

Examples

# create uniform prior on [-1, 1] for one parameter with initial value 0.2:
uniform(init = 0.2, min = -1.0, max = 1.0)

# two normal priors at once i.e. for coefficients beta:
normal(init = c(@.1, 2.5), mean = 0.1, sd = c(1.5, 2.8))

# Gamma prior (not run because autotest tests complain)

# gamma(init = 0.1, shape = 2.5, rate = 1.1)

# Same as

gamma_prior(init = 0.1, shape = 2.5, rate = 1.1)

# Half-normal

halfnormal(init = 0.01, sd = 0.1)

# Truncated normal

tnormal(init = 5.2, mean = 5.0, sd = 3.0, min = 0.5, max = 9.5)

# Further examples for diagnostic purposes:

uniform(c(@, 0.2), c(-1.0, 0.001), c(1.0, 1.2))

normal(c(@, 0.2), c(-1.0, 0.001), c(1.0, 1.2))

tnormal(c(2, 2.2), c(-1.0, 0.001), c(1.0, 1.2), c(1.2, 2), 3.3)
halfnormal(c(@, 0.2), c(1.0, 1.2))

# not run because autotest bug

# gamma(c(@.1, 0.2), c(1.2, 2), c(3.3, 3.3))

# longer versions:

uniform_prior(init = c(@, 0.2), min = c(-1.0, 0.001), max = c(1.0, 1.2))

normal_prior(init = c(@, 0.2), mean = c(-1.0, 0.001), sd = c(1.0, 1.2))

tnormal_prior(init = c(2, 2.2), mean = c(-1.0, 0.001), sd = c(1.0, 1.2),
min = c(1.2, 2), max = 3.3)

halfnormal_prior(init = c(@, 0.2), sd = c(1.0, 1.2))

gamma_prior(init = c(0.1, 0.2), shape = c(1.2, 2), rate = c(3.3, 3.3))
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