Package ‘brms’

September 23, 2024
Encoding UTF-8
Type Package
Title Bayesian Regression Models using 'Stan'
Version 2.22.0
Date 2024-09-20
Depends R (>=3.6.0), Rcpp (>=0.12.0), methods

Imports rstan (>=2.29.0), ggplot2 (>=2.0.0), loo (>= 2.8.0),
posterior (>= 1.6.0), Matrix (>= 1.1.1), mgcv (>= 1.8-13),
rstantools (>= 2.1.1), bayesplot (>= 1.5.0), bridgesampling (>=
0.3-0), glue (>= 1.3.0), rlang (>= 1.0.0), future (>= 1.19.0),
future.apply (>= 1.0.0), matrixStats, nlegslv, nlme, coda,
abind, stats, utils, parallel, grDevices, backports

Suggests testthat (>= 0.9.1), emmeans (>= 1.4.2), cmdstanr (>= 0.5.0),
projpred (>= 2.0.0), priorsense (>= 1.0.0), shinystan (>=
2.4.0), splines2 (>= 0.5.0), RWiener, rtdists, extraDistr,
processx, mice, spdep, mnormt, Ime4, MCMCglmm, ape, arm,
statmod, digest, diffobj, R.rsp, gtable, shiny, knitr,
rmarkdown

Description Fit Bayesian generalized (non-)linear multivariate multilevel models
using 'Stan' for full Bayesian inference. A wide range of distributions
and link functions are supported, allowing users to fit -- among others --
linear, robust linear, count data, survival, response times, ordinal,
zero-inflated, hurdle, and even self-defined mixture models all in a
multilevel context. Further modeling options include both theory-driven and
data-driven non-linear terms, auto-correlation structures, censoring and
truncation, meta-analytic standard errors, and quite a few more.
In addition, all parameters of the response distribution can be predicted
in order to perform distributional regression. Prior specifications are
flexible and explicitly encourage users to apply prior distributions that
actually reflect their prior knowledge. Models can easily be evaluated and
compared using several methods assessing posterior or prior predictions.
References: Biirkner (2017) <doi:10.18637/jss.v080.101>;
Biirkner (2018) <doi:10.32614/RJ-2018-017>;
Biirkner (2021) <doi:10.18637/jss.v100.105>; Carpenter et al. (2017)

1

https://doi.org/10.18637/jss.v080.i01
https://doi.org/10.32614/RJ-2018-017
https://doi.org/10.18637/jss.v100.i05

2 Contents

<doi:10.18637/jss.v076.i101>.
LazyData true
NeedsCompilation no
License GPL-2

URL https://github.com/paul-buerkner/brms,

https://discourse.mc-stan.org/, https://paulbuerkner.com/brms/
BugReports https://github.com/paul-buerkner/brms/issues

Additional_repositories https://stan-dev.r-universe.dev/
VignetteBuilder knitr, R.rsp
RoxygenNote 7.3.2

Author Paul-Christian Biirkner [aut, cre],
Jonah Gabry [ctb],
Sebastian Weber [ctb],
Andrew Johnson [ctb],
Martin Modrak [ctb],
Hamada S. Badr [ctb],
Frank Weber [ctb],
Aki Vehtari [ctb],
Mattan S. Ben-Shachar [ctb],
Hayden Rabel [ctb],
Simon C. Mills [ctb],
Stephen Wild [ctb],
Ven Popov [ctb]

Maintainer Paul-Christian Biirkner <paul .buerkner@gmail . com>
Repository CRAN
Date/Publication 2024-09-23 13:00:29 UTC

Contents
brms-package L e 6
addition-terms e e e e e e e e 8
add_criterion 10
add_1o0 . . . e 12
add_rstan_model e e 13
1 13
AMMA . . . v v e e e e e e e e e e e e e e 14
asS.bIMSPrior e 15
as.data.frame.brmsfit Lo 16
as.mcme.brmsfit L L L e e 17
AsymLaplace e 18
AULOCOT-TEIIMS . . . o v v v e v e 19
autocor.brmsfit L 19

bayes_factorbrmsfit 20

https://doi.org/10.18637/jss.v076.i01
https://github.com/paul-buerkner/brms
https://discourse.mc-stan.org/
https://paulbuerkner.com/brms/
https://github.com/paul-buerkner/brms/issues
https://stan-dev.r-universe.dev/

Contents

3
bayes_R2.brmsfit 21
BetaBinomial e 23
bridge_samplerbrmsfit 23
brm e 25
brmsfamily 33
brmsfit-class e e e 39
brmsformula 40
brmsformula-helpers 49
brmshypothesis 52
brmsterms e 53
brm_multiple 54
o 1 58
coef.brmsfit 59
combine_models e 60
COMPATC_IC . .« v v v v v e i e e e e e e e e e e e e e e e e e 61
conditional_effects.brmsfit 62
conditional_smooths.brmsfit 67
CONSLANL i e e e e e e e e e e e e e 69
control_params e e e e e e 70
COT_AT . . o v v e e e e e e e e e e e s 71
COT_AIMA .+ v v v v v v e e e e e e e e e e e 72
COr_DIMS o . e e e e e e e e e e e e 73
COT_CAT . v v v e e e e e e e e e e e e e e e 73
COT_COSY « « v e e e e e e e e e e e e e e e e e e 75
cor_fixed e 75
070 S 1 76
COT_SAT . & o v v v e e e e e e e e s 77
COSY v v v e et e e e e e e e e e e 78
create_priorsense_data.brmsfito L o 79
CS e e e e e e e 80
custom_family 81
default_prior e e e e 84
default_priordefault oL 85
density_ratio e e 87
diagnostic-quantitieso e e 88
Dirichlet e e e e 89
draws-brms e e 89
draws-index-brms e e 91
emmeans-brms-helpers L L 92
epilepsy e 94
ExGaussian 95
expose_functions.brmsfit 96
exXppl . . e e 96
family.brmsfit 97
fcor . . L e e 97
fitted.brmsfit L e e 98
fixef.brmsfit 100

Frechet e 101

Contents

GenExtremeValue e e e 102
get dpar e e e 103
get_refmodel.brmsfit 104
BD - e e e e 106
0 P 108
horseshoe e 109
Hurdle e 112
hypothesis.brmsfit e 113
mnhaler e e e e 115
InvGaussian e 117
inv_logit_scaled 117
is.bhrmsfit . .. L e e e e 118
is.brmsfit_multiple 118
is.brmsformula 119
IS.brmsprioro e e e e e e e 119
ISOIMStErmMS v o o e e e e e e e e e e e e 119
IS.COr_DIMS . . . o o o e 120
issmvbrmsformula e 120
ISMVDIMSIEIMS o e ot e 121
kfoldbrmsfit. e 121
kfold_predict 124
kidney e e 125
[aSSO e e e 126
launch_shinystan.brmsfito o 127
LogisticNormal e e 128
logit_scaled L e e 129
logmlo 129
log_likbrmsfit. oL 130
loo.brmsfit e e e e 131
loo_compare.brmsfit 133
loo_model_weights.brmsfit oo 134
loo_moment_match.brmsfit 135
loo_predict.brmsfit L. 137
loo_R2.brmsfit 139
loo_subsample.brmsfit oL 140
J0SS . o e e e e e e 141
MA . o ot v e e e e e e e e e e e 142
make _conditions e 143
mceme_plotbrmsfit oL 144
1101 146
ML . oot e e e e e e e e e e 147
MIXEUTE o o e o e 148
1010 0 150
MIMC . . . v v v et e e e e e e e e e e e e e e e e e 152
MO & & v o v e e e e e e e e e e e e 153
model_weights.brmsfit 154
MultiNormal e e 155

MultiStudentT e 156

Contents

5
mvbind . .. 157
mvbrmsformula oL 157
ngrps.brmsfit oL 158
nsamples.brmsfito 159
opencl . . . L L e e e 159
pairsbrmsfito 160
PANAMES v v v e e e e e e e e e e e e e e e e e 161
plot.brmsfit e e e 161
posterior_average.brmsfito oL 163
posterior_epred.brmsfit oL 165
posterior_interval.brmsfit oL o 167
posterior_linpred.brmsfito oL oL 168
posterior_predict.brmsfit oo 169
posterior_samples.brmsfito 172
posterior_smooths.brmsfit Lo 173
POSEETIOr_SUMMAIY o v v bttt e e e et e e e e 175
posterior_table 176
post_prob.brmsfit e e 177
pp_average.brmsfit L L e 178
pp_check.brmsfit 180
pp_mixture.brmsfit 182
predictbrmsfit L. e 184
predictive_error.brmsfit L. oL L 187
predictive_interval.brmsfit 188
prepare_predictions.brmsfito 189
print.brmsfit e 191
print.brmsprior L. e 192
prior_draws.brmsfit oL 192
prior_summary.brmsfit 193
psisbrmsfit 194
R2D2 . . e 195
ranef.brmsfit. oL 197
read_csv_as_stanfit L e 198
recompile_model 199
reloo.brmsfito 200
TENAME_PATS .« « . v v o v v e 201
residuals.brmsfit 202
TESLIUCTULE .« . . o v v v e i e e et e e e e e e e e e e e 204
restructure.brmsfit Lo 205
rows2labels L 206
S e e 206
SAT © o e e e e e e e e e e 207
SAVE_PATS v v v v e 209
SEL_PIIOT . . o o o o i e e e e e e e e 210
Shifted_Lognormal 215
SkewNormal e 217
stancode e e e e 218

stancode.brmsfit L L 219

6 brms-package

stancode.default 220
standata L . L L e e e e 222
standata.brmsfit L e e 223
standata.default 224
SANVAT v o e e e e e e e e e e e e 226
StudentT e e 228
summary.brmsfito 229
theme_black e 230
theme default e 231
threading e 231
L'] 5 P 232
update.brmsfit L e e e 233
update.brmsfit_multiple 234
update_adterms e e e e e e e e e e e e e 235
validate_ newdata e e 236
validate_prior e e e e e e 237
VarCorr.brmsfit e e e 239
veov.brmsfit L e e 240
VonMISES o e e e e e 241
waic.brmsfit L e e e 242
WIENer e e e 243
Zerolnflated 245
Index 247
brms-package Bayesian Regression Models using ’Stan’
Description

The brms package provides an interface to fit Bayesian generalized multivariate (non-)linear mul-
tilevel models using Stan, which is a C++ package for obtaining full Bayesian inference (see
https://mc-stan.org/). The formula syntax is an extended version of the syntax applied in
the Ime4 package to provide a familiar and simple interface for performing regression analyses.

Details

The main function of brms is brm, which uses formula syntax to specify a wide range of complex
Bayesian models (see brmsformula for details). Based on the supplied formulas, data, and addi-
tional information, it writes the Stan code on the fly via stancode, prepares the data via standata
and fits the model using Stan.

Subsequently, a large number of post-processing methods can be applied: To get an overview on
the estimated parameters, summary or conditional_effects are perfectly suited. Detailed visual
analyses can be performed by applying the pp_check and stanplot methods, which both rely on
the bayesplot package. Model comparisons can be done via 1oo and waic, which make use of the
loo package as well as via bayes_factor which relies on the bridgesampling package. For a full
list of methods to apply, type methods(class = "brmsfit").

https://mc-stan.org/

brms-package 7

Because brms is based on Stan, a C++ compiler is required. The program Rtools (available on
https://cran.r-project.org/bin/windows/Rtools/) comes with a C++ compiler for Win-
dows. On Mac, you should use Xcode. For further instructions on how to get the compilers running,
see the prerequisites section at the RStan-Getting-Started page.

When comparing other packages fitting multilevel models to brms, keep in mind that the latter
needs to compile models before actually fitting them, which will require between 20 and 40 seconds
depending on your machine, operating system and overall model complexity.

Thus, fitting smaller models may be relatively slow as compilation time makes up the majority of
the whole running time. For larger / more complex models however, fitting my take several minutes
or even hours, so that the compilation time won’t make much of a difference for these models.

See vignette("brms_overview") and vignette("brms_multilevel”) for a general introduc-
tion and overview of brms. For a full list of available vignettes, type vignette(package = "brms").

Author(s)

Maintainer: Paul-Christian Biirkner <paul .buerkner@gmail . com>

Other contributors:

* Jonah Gabry [contributor]

¢ Sebastian Weber [contributor]
¢ Andrew Johnson [contributor]
e Martin Modrak [contributor]
e Hamada S. Badr [contributor]
¢ Frank Weber [contributor]

¢ Aki Vehtari [contributor]

e Mattan S. Ben-Shachar [contributor]
* Hayden Rabel [contributor]

e Simon C. Mills [contributor]
 Stephen Wild [contributor]

* Ven Popov [contributor]

References
Paul-Christian Buerkner (2017). brms: An R Package for Bayesian Multilevel Models Using Stan.
Journal of Statistical Software, 80(1), 1-28. doi:10.18637/jss.v080.101

Paul-Christian Buerkner (2018). Advanced Bayesian Multilevel Modeling with the R Package
brms. The R Journal. 10(1), 395-411. doi:10.32614/RJ-2018-017

The Stan Development Team. Stan Modeling Language User’s Guide and Reference Manual.
https://mc-stan.org/users/documentation/.

Stan Development Team (2020). RStan: the R interface to Stan. R package version 2.21.2. https:
//mc-stan.org/

See Also

brm, brmsformula, brmsfamily, brmsfit

https://cran.r-project.org/bin/windows/Rtools/
https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started
https://mc-stan.org/users/documentation/
https://mc-stan.org/
https://mc-stan.org/

addition-terms

addition-terms

Additional Response Information

Description

Provide additional information on the response variable in brms models, such as censoring, trun-
cation, or known measurement error. Detailed documentation on the use of each of these functions
can be found in the Details section of brmsformula (under "Additional response information").

Usage

resp_se(x, sigma = FALSE)

resp_weights(x, scale = FALSE)

resp_trials(x)
resp_thres(x, gr = NA)
resp_cat(x)

resp_dec(x)

resp_bhaz(gr = NA, df = 5,

resp_cens(x, y2 = NA)

resp_trunc(lb = -Inf, ub = Inf)

resp_mi(sdy = NA)
resp_index(x)
resp_rate(denom)
resp_subset(x)
resp_vreal(...)

resp_vint(...)

Arguments

X A vector; Ideally a single variable defined in the data (see Details). Allowed
values depend on the function: resp_se and resp_weights require positive

numeric values.

resp_trials, resp_thres, and resp_cat require positive

integers. resp_dec requires @ and 1, or alternatively 'lower' and 'upper'.

addition-terms

sigma

scale

gr
df

y2

1b
ub

sdy

denom

Details

resp_subset requires @ and 1, or alternatively FALSE and TRUE. resp_cens re-
quires 'left’', 'none', 'right', and 'interval' (or equivalently -1, @, 1, and
2) to indicate left, no, right, or interval censoring. resp_index does not make
any requirements other than the value being unique for each observation.

Logical; Indicates whether the residual standard deviation parameter sigma should
be included in addition to the known measurement error. Defaults to FALSE for
backwards compatibility, but setting it to TRUE is usually the better choice.

Logical; Indicates whether weights should be scaled so that the average weight
equals one. Defaults to FALSE.

A vector of grouping indicators.
Degrees of freedom of baseline hazard splines for Cox models.

For resp_vreal, vectors of real values. For resp_vint, vectors of integer val-
ues. In Stan, these variables will be named vreall, vreal2, ..., and vint1,
vint2, ..., respectively.

A vector specifying the upper bounds in interval censoring. Will be ignored
for non-interval censored observations. However, it should NOT be NA even
for non-interval censored observations to avoid accidental exclusion of these
observations.

A numeric vector or single numeric value specifying the lower truncation bound.
A numeric vector or single numeric value specifying the upper truncation bound.

Optional known measurement error of the response treated as standard devia-
tion. If specified, handles measurement error and (completely) missing values
at the same time using the plausible-values-technique.

A vector of positive numeric values specifying the denominator values from
which the response rates are computed.

These functions are almost solely useful when called in formulas passed to the brms package.
Within formulas, the resp_ prefix may be omitted. More information is given in the ’Details’
section of brmsformula (under "Additional response information").

It is highly recommended to use a single data variable as input for x (instead of a more complicated
expression) to make sure all post-processing functions work as expected.

Value

A list of additional response information to be processed further by brms.

See Also

brm, brmsformula

10 add_criterion

Examples

Not run:

Random effects meta-analysis

nstudies <- 20

true_effects <- rnorm(nstudies, 0.5, 0.2)

sei <- runif(nstudies, 0.05, 0.3)

outcomes <- rnorm(nstudies, true_effects, sei)

datal <- data.frame(outcomes, sei)

fit1l <- brm(outcomes | se(sei, sigma = TRUE) ~ 1,
data = datal)

summary (fit1)

Probit regression using the binomial family

n <- sample(1:10, 100, TRUE) # number of trials

success <- rbinom(100, size = n, prob = 0.4)

X <= rnorm(100)

data2 <- data.frame(n, success, x)

fit2 <- brm(success | trials(n) ~ x, data = data2,
family = binomial("probit"))

summary (fit2)

Survival regression modeling the time between the first

and second recurrence of an infection in kidney patients.

fit3 <- brm(time | cens(censored) ~ age * sex + disease + (1|patient),
data = kidney, family = lognormal())

summary (fit3)

Poisson model with truncated counts

fit4 <- brm(count | trunc(ub = 104) ~ zBase * Trt,
data = epilepsy, family = poisson())

summary (fit4)

End(Not run)

add_criterion Add model fit criteria to model objects

Description

Add model fit criteria to model objects

Usage
add_criterion(x, ...)
S3 method for class 'brmsfit'

add_criterion(
X,

add_criterion

criterion,
model_name = NULL,
overwrite = FALSE,
file = NULL,
force_save = FALSE,

11

)
Arguments
X An R object typically of class brmsfit.
Further arguments passed to the underlying functions computing the model fit
criteria. If you are recomputing an already stored criterion with other . . . argu-
ments, make sure to set overwrite = TRUE.
criterion Names of model fit criteria to compute. Currently supported are "1o0”, "waic”,

model_name

"kfold", "loo_subsample”, "bayes_R2" (Bayesian R-squared), "loo_R2" (LOO-
adjusted R-squared), and "marglik” (log marginal likelihood).

Optional name of the model. If NULL (the default) the name is taken from the
call to x.

overwrite Logical; Indicates if already stored fit indices should be overwritten. Defaults
to FALSE. Setting it to TRUE is useful for example when changing additional
arguments of an already stored criterion.

file Either NULL or a character string. In the latter case, the fitted model object

force_save

Details

including the newly added criterion values is saved via saveRDS in a file named
after the string supplied in file. The . rds extension is added automatically. If
x was already stored in a file before, the file name will be reused automatically
(with a message) unless overwritten by file. In any case, file only applies if
new criteria were actually added via add_criterion or if force_save was set
to TRUE.

Logical; only relevant if file is specified and ignored otherwise. If TRUE, the
fitted model object will be saved regardless of whether new criteria were added
via add_criterion.

Functions add_loo and add_waic are aliases of add_criterion with fixed values for the criterion

argument.

Value

An object of the same class as x, but with model fit criteria added for later usage.

Examples

Not run:

fit <- brm(count ~ Trt, data = epilepsy)
add both LOO and WAIC at once
fit <- add_criterion(fit, c("loo”, "waic"))

print(fit$criteria$loo)
print(fit$criteria$waic)

End(Not run)

add_loo

add_loo

Add model fit criteria to model objects

Description

Deprecated aliases of add_criterion.

Usage

add_loo(x, model_name = NULL, ...)
add_waic(x, model_name = NULL, ...)
add_ic(x, ...)

S3 method for class 'brmsfit'

add_ic(x, ic = "loo", model_name = NULL, ...)
add_ic(x, ...) <- value
Arguments
X An R object typically of class brmsfit.
model_name Optional name of the model. If NULL (the default) the name is taken from the

call to x.

Further arguments passed to the underlying functions computing the model fit
criteria. If you are recomputing an already stored criterion with other . . . argu-
ments, make sure to set overwrite = TRUE.

ic, value

n n

Names of model fit criteria to compute. Currently supported are "1oo”, "waic”,

"kfold", "R2" (R-squared), and "marglik” (log marginal likelihood).

Value

An object of the same class as x, but with model fit criteria added for later usage. Previously

computed criterion objects will be overwritten.

add_rstan_model 13

add_rstan_model Add compiled rstan models to brmsfit objects

Description

Compile a stanmodel and add it to a brmsfit object. This enables some advanced functionality
of rstan, most notably log_prob and friends, to be used with brms models fitted with other Stan
backends.

Usage

add_rstan_model(x, overwrite = FALSE)

Arguments

X A brmsfit object to be updated.

overwrite Logical. If TRUE, overwrite any existing stanmodel. Defaults to FALSE.
Value

A (possibly updated) brmsfit object.

ar Set up AR(p) correlation structures

Description

Set up an autoregressive (AR) term of order p in brms. The function does not evaluate its arguments
— it exists purely to help set up a model with AR terms.

Usage

ar(time = NA, gr = NA, p = 1, cov = FALSE)

Arguments
time An optional time variable specifying the time ordering of the observations. By
default, the existing order of the observations in the data is used.
gr An optional grouping variable. If specified, the correlation structure is assumed
to apply only to observations within the same grouping level.
p A non-negative integer specifying the autoregressive (AR) order of the ARMA

structure. Default is 1.

14 arma

cov A flag indicating whether ARMA effects should be estimated by means of resid-
ual covariance matrices. This is currently only possible for stationary ARMA
effects of order 1. If the model family does not have natural residuals, latent
residuals are added automatically. If FALSE (the default), a regression formu-
lation is used that is considerably faster and allows for ARMA effects of order
higher than 1 but is only available for gaussian models and some of its gener-
alizations.

Value
An object of class 'arma_term', which is a list of arguments to be interpreted by the formula
parsing functions of brms.

See Also

autocor-terms, arma, ma

Examples

Not run:

data("LakeHuron")

LakeHuron <- as.data.frame(LakeHuron)

fit <- brm(x ~ ar(p = 2), data = LakeHuron)
summary (fit)

End(Not run)

arma Set up ARMA(p,q) correlation structures

Description
Set up an autoregressive moving average (ARMA) term of order (p, q) in brms. The function does
not evaluate its arguments — it exists purely to help set up a model with ARMA terms.

Usage
arma(time = NA, gr = NA, p=1, q =1, cov = FALSE)

Arguments
time An optional time variable specifying the time ordering of the observations. By
default, the existing order of the observations in the data is used.
gr An optional grouping variable. If specified, the correlation structure is assumed
to apply only to observations within the same grouping level.
p A non-negative integer specifying the autoregressive (AR) order of the ARMA

structure. Default is 1.

as.brmsprior 15

q A non-negative integer specifying the moving average (MA) order of the ARMA
structure. Default is 1.

cov A flag indicating whether ARMA effects should be estimated by means of resid-
ual covariance matrices. This is currently only possible for stationary ARMA
effects of order 1. If the model family does not have natural residuals, latent
residuals are added automatically. If FALSE (the default), a regression formu-
lation is used that is considerably faster and allows for ARMA effects of order
higher than 1 but is only available for gaussian models and some of its gener-
alizations.

Value
An object of class 'arma_term', which is a list of arguments to be interpreted by the formula
parsing functions of brms.

See Also

autocor-terms, ar, ma,

Examples

Not run:

data("LakeHuron")

LakeHuron <- as.data.frame(LakeHuron)

fit <- brm(x ~ arma(p = 2, q = 1), data = LakeHuron)
summary (fit)

End(Not run)

as.brmsprior Transform into a brmsprior object

Description

Try to transform an object into a brmsprior object.

Usage

as.brmsprior(x)

Arguments

X An object to be transformed.

Value

A brmsprior object if the transformation was possible.

16 as.data.frame.brmsfit

as.data.frame.brmsfit Extract Posterior Draws

Description

Extract posterior draws in conventional formats as data.frames, matrices, or arrays.

Usage

S3 method for class 'brmsfit'
as.data.frame(

X,

row.names = NULL,

optional = TRUE,

pars = NA,
variable = NULL,
draw = NULL,

subset = NULL,

)

S3 method for class 'brmsfit'
as.matrix(x, pars = NA, variable = NULL, draw = NULL, subset = NULL, ...)

S3 method for class 'brmsfit'

as.array(x, pars = NA, variable = NULL, draw = NULL, subset = NULL, ...)
Arguments
X A brmsfit object or another R object for which the methods are defined.

row.names, optional
Unused and only added for consistency with the as.data. frame generic.

pars Deprecated alias of variable. For reasons of backwards compatibility, pars is
interpreted as a vector of regular expressions by default unless fixed = TRUE is
specified.

variable A character vector providing the variables to extract. By default, all variables

are extracted.

draw The draw indices to be select. Subsetting draw indices will lead to an automatic
merging of chains.

subset Deprecated alias of draw.

Further arguments to be passed to the corresponding as_draws_* methods as
well as to subset_draws.

Value

A data.frame, matrix, or array containing the posterior draws.

as.mcmc.brmsfit 17

See Also

as_draws, subset_draws

as.memc.brmsfit (Deprecated) Extract posterior samples for use with the coda package

Description

The as.mcme method is deprecated. We recommend using the more modern and consistent as_draws_*
extractor functions of the posterior package instead.

Usage

S3 method for class 'brmsfit'
as.mecmc(
X,
pars = NA,
fixed = FALSE,
combine_chains = FALSE,
inc_warmup = FALSE,

)
Arguments
X An R object typically of class brmsfit
pars Names of parameters for which posterior samples should be returned, as given
by a character vector or regular expressions. By default, all posterior samples of
all parameters are extracted.
fixed Indicates whether parameter names should be matched exactly (TRUE) or treated

as regular expressions (FALSE). Default is FALSE.
combine_chains Indicates whether chains should be combined.

inc_warmup Indicates if the warmup samples should be included. Default is FALSE. Warmup
samples are used to tune the parameters of the sampling algorithm and should
not be analyzed.

currently unused

Value

If combine_chains = TRUE an mcmc object is returned. If combine_chains = FALSE an memc. list
object is returned.

18 AsymLaplace

AsymLaplace The Asymmetric Laplace Distribution

Description

Density, distribution function, quantile function and random generation for the asymmetric Laplace
distribution with location mu, scale sigma and asymmetry parameter quantile.

Usage

dasym_laplace(x, mu = @, sigma = 1, quantile = 0.5, log = FALSE)

pasym_laplace(
q,
mu = 0,
sigma = 1,
quantile = 0.5,
lower.tail = TRUE,

log.p = FALSE
)
gasym_laplace(

P,

mu = @,

sigma = 1,

quantile = 0.5,
lower.tail = TRUE,
log.p = FALSE

)

rasym_laplace(n, mu = @, sigma = 1, quantile = 0.5)

Arguments
X, q Vector of quantiles.
mu Vector of locations.
sigma Vector of scales.
quantile Asymmetry parameter corresponding to quantiles in quantile regression (hence
the name).
log Logical; If TRUE, values are returned on the log scale.
lower.tail Logical; If TRUE (default), return P(X <= x). Else, return P(X > x) .
log.p Logical; If TRUE, values are returned on the log scale.
p Vector of probabilities.

n Number of draws to sample from the distribution.

autocor-terms 19

Details

See vignette("brms_families") for details on the parameterization.

autocor-terms Autocorrelation structures

Description

Specify autocorrelation terms in brms models. Currently supported terms are arma, ar, ma, cosy,
unstr, sar, car, and fcor. Terms can be directly specified within the formula, or passed to the
autocor argument of brmsformula in the form of a one-sided formula. For deprecated ways of
specifying autocorrelation terms, see cor_brms.

Details

The autocor term functions are almost solely useful when called in formulas passed to the brms
package. They do not evaluate its arguments — but exist purely to help set up a model with autocor-
relation terms.

See Also

brmsformula, acformula, arma, ar, ma, cosy, unstr, sar, car, fcor

Examples

specify autocor terms within the formula
y ~x +arma(p =1, q=1) + car(M)

specify autocor terms in the 'autocor' argument
bf(y ~ x, autocor = ~ arma(p =1, q = 1) + car(M))

specify autocor terms via 'acformula'
bf(y ~ x) + acformula(~ arma(p =1, g = 1) + car(M))

autocor.brmsfit (Deprecated) Extract Autocorrelation Objects

Description

(Deprecated) Extract Autocorrelation Objects

Usage

S3 method for class 'brmsfit'
autocor(object, resp = NULL, ...)

autocor(object, ...)

20 bayes_factor.brmsfit

Arguments
object An object of class brmsfit.
resp Optional names of response variables. If specified, predictions are performed
only for the specified response variables.
Currently unused.
Value

A cor_brms object or a list of such objects for multivariate models. Not supported for models fitted
with brms 2.11.1 or higher.

bayes_factor.brmsfit Bayes Factors from Marginal Likelihoods

Description

Compute Bayes factors from marginal likelihoods.

Usage
S3 method for class 'brmsfit'
bayes_factor(x1, x2, log = FALSE, ...)
Arguments
x1 A brmsfit object
X2 Another brmsfit object based on the same responses.
log Report Bayes factors on the log-scale?

Additional arguments passed to bridge_sampler.

Details

Computing the marginal likelihood requires samples of all variables defined in Stan’s parameters
block to be saved. Otherwise bayes_factor cannot be computed. Thus, please set save_all_pars
= TRUE in the call to brm, if you are planning to apply bayes_factor to your models.

The computation of Bayes factors based on bridge sampling requires a lot more posterior samples
than usual. A good conservative rule of thumb is perhaps 10-fold more samples (read: the default
of 4000 samples may not be enough in many cases). If not enough posterior samples are provided,
the bridge sampling algorithm tends to be unstable, leading to considerably different results each
time it is run. We thus recommend running bayes_factor multiple times to check the stability of
the results.

More details are provided under bridgesampling: :bayes_factor.

See Also

bridge_sampler, post_prob

bayes_R2.brmsfit

Examples
Not run:
model with the treatment effect
fitl <= brm(

count ~ zAge + zBase + Trt,

data = epilepsy, family = negbinomial(),
prior = prior(normal(@, 1), class = b),
save_all_pars = TRUE

)
summary (fit1)

model without the treatment effect

fit2 <= brm(
count ~ zAge + zBase,
data = epilepsy, family = negbinomial(),
prior = prior(normal(@, 1), class = b),
save_all_pars = TRUE

)

summary (fit2)

compute the bayes factor
bayes_factor(fitl, fit2)

End(Not run)

21

bayes_R2.brmsfit Compute a Bayesian version of R-squared for regression models

Description

Compute a Bayesian version of R-squared for regression models

Usage

S3 method for class 'brmsfit'
bayes_R2(

object,

resp = NULL,

summary = TRUE,

robust = FALSE,

probs = c(0.025, 0.975),

Arguments

object An object of class brmsfit.

22

resp

summary

robust

probs

Details

bayes_R2.brmsfit

Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

Should summary statistics be returned instead of the raw values? Default is
TRUE.

If FALSE (the default) the mean is used as the measure of central tendency and
the standard deviation as the measure of variability. If TRUE, the median and the
median absolute deviation (MAD) are applied instead. Only used if summary is
TRUE.

The percentiles to be computed by the quantile function. Only used if summary
is TRUE.

Further arguments passed to posterior_epred, which is used in the computa-
tion of the R-squared values.

For an introduction to the approach, see Gelman et al. (2018) and https://github.com/jgabry/

bayes_R2/.

Value

If summary = TRUE, an M x C matrix is returned (M = number of response variables and ¢ =
length(probs) + 2) containing summary statistics of the Bayesian R-squared values. If summary
= FALSE, the posterior draws of the Bayesian R-squared values are returned in an S x M matrix (S
is the number of draws).

References

Andrew Gelman, Ben Goodrich, Jonah Gabry & Aki Vehtari. (2018). R-squared for Bayesian
regression models, The American Statistician. 10.1080/00031305.2018.1549100 (Preprint avail-
able at https://stat.columbia.edu/~gelman/research/published/bayes_R2_v3.pdf)

Examples

Not run:

fit <- brm(mpg ~ wt + cyl, data = mtcars)

summary (fit)
bayes_R2(fit)

compute R2 with new data
nd <- data.frame(mpg = c(10, 20, 30), wt = c(4, 3, 2), cyl = c(8, 6, 4))
bayes_R2(fit, newdata = nd)

End(Not run)

https://github.com/jgabry/bayes_R2/
https://github.com/jgabry/bayes_R2/
https://stat.columbia.edu/~gelman/research/published/bayes_R2_v3.pdf

BetaBinomial 23

BetaBinomial The Beta-binomial Distribution

Description

Cumulative density & mass functions, and random number generation for the Beta-binomial distri-
bution using the following re-parameterisation of the Stan Beta-binomial definition:

* mu = alpha * beta mean probability of trial success.

e phi = (1 -mu) * beta precision or over-dispersion, component.

Usage
dbeta_binomial(x, size, mu, phi, log = FALSE)

pbeta_binomial(q, size, mu, phi, lower.tail = TRUE, log.p = FALSE)

rbeta_binomial(n, size, mu, phi)

Arguments
X, q Vector of quantiles.
size Vector of number of trials (zero or more).
mu Vector of means.
phi Vector of precisions.
log Logical; If TRUE, values are returned on the log scale.
lower.tail Logical; If TRUE (default), return P(X <= x). Else, return P(X > x) .
log.p Logical; If TRUE, values are returned on the log scale.
n Number of draws to sample from the distribution.

bridge_sampler.brmsfit
Log Marginal Likelihood via Bridge Sampling

Description

Computes log marginal likelihood via bridge sampling, which can be used in the computation of
bayes factors and posterior model probabilities. The brmsfit method is just a thin wrapper around
the corresponding method for stanfit objects.

Usage

S3 method for class 'brmsfit'
bridge_sampler(samples, recompile = FALSE, ...)

https://mc-stan.org/docs/2_29/functions-reference/beta-binomial-distribution.html

24 bridge_sampler.brmsfit

Arguments
samples A brmsfit object.
recompile Logical, indicating whether the Stan model should be recompiled. This may be
necessary if you are running bridge sampling on another machine than the one
used to fit the model. No recompilation is done by default.
Additional arguments passed to bridge_sampler.stanfit.
Details

Computing the marginal likelihood requires samples of all variables defined in Stan’s parameters
block to be saved. Otherwise bridge_sampler cannot be computed. Thus, please set save_pars =
save_pars(all = TRUE) in the call to brm, if you are planning to apply bridge_sampler to your
models.

The computation of marginal likelihoods based on bridge sampling requires a lot more posterior
draws than usual. A good conservative rule of thump is perhaps 10-fold more draws (read: the de-
fault of 4000 draws may not be enough in many cases). If not enough posterior draws are provided,
the bridge sampling algorithm tends to be unstable leading to considerably different results each
time it is run. We thus recommend running bridge_sampler multiple times to check the stability
of the results.

More details are provided under bridgesampling: :bridge_sampler.

See Also

bayes_factor, post_prob

Examples

Not run:

model with the treatment effect

fit1 <= brm(
count ~ zAge + zBase + Trt,
data = epilepsy, family = negbinomial(),
prior = prior(normal(@, 1), class = b),
save_pars = save_pars(all = TRUE)

)

summary (fit1)

bridge_sampler(fit1)

model without the treatment effect

fit2 <= brm(
count ~ zAge + zBase,
data = epilepsy, family = negbinomial(),
prior = prior(normal(@, 1), class = b),
save_pars = save_pars(all = TRUE)

)

summary (fit2)

bridge_sampler(fit2)

End(Not run)

brm 25

brm Fit Bayesian Generalized (Non-)Linear Multivariate Multilevel Mod-
els

Description

Fit Bayesian generalized (non-)linear multivariate multilevel models using Stan for full Bayesian
inference. A wide range of distributions and link functions are supported, allowing users to fit —
among others — linear, robust linear, count data, survival, response times, ordinal, zero-inflated,
hurdle, and even self-defined mixture models all in a multilevel context. Further modeling options
include non-linear and smooth terms, auto-correlation structures, censored data, meta-analytic stan-
dard errors, and quite a few more. In addition, all parameters of the response distributions can
be predicted in order to perform distributional regression. Prior specifications are flexible and ex-
plicitly encourage users to apply prior distributions that actually reflect their beliefs. In addition,
model fit can easily be assessed and compared with posterior predictive checks and leave-one-out
cross-validation.

Usage
brm(

formula,
data,
family = gaussian(),
prior = NULL,
autocor = NULL,
data2 = NULL,
cov_ranef = NULL,
sample_prior = "no",
sparse = NULL,
knots = NULL,

drop_unused_levels = TRUE,

stanvars = NULL,

stan_funs = NULL,

fit = NA,

save_pars = getOption("brms.save_pars”, NULL),
save_ranef = NULL,

save_mevars = NULL,

save_all_pars = NULL,

init = NULL,

inits = NULL,

chains = 4,

iter = 2000,

warmup = floor(iter/2),
thin =1

cores = getOption("mc.cores”, 1),
threads = getOption("brms.threads”, NULL),
opencl = getOption("brms.opencl”, NULL),

26

normalize = getOption("brms.normalize”, TRUE),
control = NULL,

algorithm = getOption("brms.algorithm”, "sampling"),
backend = getOption("brms.backend”, "rstan"),
future = getOption("future”, FALSE),

silent = 1,

seed = NA,

save_model = NULL,

stan_model_args = list(),

file = NULL,

file_compress = TRUE,

file_refit = getOption("brms.file_refit”, "never"),

brm

empty = FALSE,

rename

Arguments

formula

data

family

prior

autocor

data?2

cov_ranef

TRUE,

An object of class formula, brmsformula, or mvbrmsformula (or one that can
be coerced to that classes): A symbolic description of the model to be fitted.
The details of model specification are explained in brmsformula.

An object of class data.frame (or one that can be coerced to that class) con-
taining data of all variables used in the model.

A description of the response distribution and link function to be used in the
model. This can be a family function, a call to a family function or a character
string naming the family. Every family function has a 1ink argument allowing to
specify the link function to be applied on the response variable. If not specified,
default links are used. For details of supported families see brmsfamily. By
default, a linear gaussian model is applied. In multivariate models, family
might also be a list of families.

One or more brmsprior objects created by set_prior or related functions and
combined using the ¢ method or the + operator. See also default_prior for
more help.

(Deprecated) An optional cor_brms object describing the correlation structure
within the response variable (i.e., the *autocorrelation’). See the documentation
of cor_brms for a description of the available correlation structures. Defaults to
NULL, corresponding to no correlations. In multivariate models, autocor might
also be a list of autocorrelation structures. It is now recommend to specify auto-
correlation terms directly within formula. See brmsformula for more details.

A named list of objects containing data, which cannot be passed via argument
data. Required for some objects used in autocorrelation structures to specify
dependency structures as well as for within-group covariance matrices.

(Deprecated) A list of matrices that are proportional to the (within) covariance
structure of the group-level effects. The names of the matrices should corre-
spond to columns in data that are used as grouping factors. All levels of the
grouping factor should appear as rownames of the corresponding matrix. This

brm

sample_prior

sparse

knots

27

argument can be used, among others to model pedigrees and phylogenetic ef-
fects. It is now recommended to specify those matrices in the formula interface
using the gr and related functions. See vignette("brms_phylogenetics"”)
for more details.

Indicate if draws from priors should be drawn additionally to the posterior draws.
Options are "no” (the default), "yes"”, and "only". Among others, these draws
can be used to calculate Bayes factors for point hypotheses via hypothesis.
Please note that improper priors are not sampled, including the default improper
priors used by brm. See set_prior on how to set (proper) priors. Please also
note that prior draws for the overall intercept are not obtained by default for
technical reasons. See brmsformula how to obtain prior draws for the intercept.
If sample_priorissetto "only", draws are drawn solely from the priors ignor-
ing the likelihood, which allows among others to generate draws from the prior
predictive distribution. In this case, all parameters must have proper priors.

(Deprecated) Logical; indicates whether the population-level design matrices
should be treated as sparse (defaults to FALSE). For design matrices with many
zeros, this can considerably reduce required memory. Sampling speed is cur-
rently not improved or even slightly decreased. It is now recommended to use
the sparse argument of brmsformula and related functions.

Optional list containing user specified knot values to be used for basis construc-
tion of smoothing terms. See gamm for more details.

drop_unused_levels

stanvars

stan_funs

fit

save_pars

save_ranef

save_mevars

save_all_pars

Should unused factors levels in the data be dropped? Defaults to TRUE.

An optional stanvars object generated by function stanvar to define additional
variables for use in Stan’s program blocks.

(Deprecated) An optional character string containing self-defined Stan func-
tions, which will be included in the functions block of the generated Stan code.
It is now recommended to use the stanvars argument for this purpose instead.

An instance of S3 class brmsfit derived from a previous fit; defaults to NA. If
fit is of class brmsfit, the compiled model associated with the fitted result is
re-used and all arguments modifying the model code or data are ignored. It is
not recommended to use this argument directly, but to call the update method,
instead.

An object generated by save_pars controlling which parameters should be
saved in the model. The argument has no impact on the model fitting itself.

(Deprecated) A flag to indicate if group-level effects for each level of the group-
ing factor(s) should be saved (default is TRUE). Set to FALSE to save memory.
The argument has no impact on the model fitting itself.

(Deprecated) A flag to indicate if draws of latent noise-free variables obtained
by using me and mi terms should be saved (default is FALSE). Saving these draws
allows to better use methods such as predict with the latent variables but leads
to very large R objects even for models of moderate size and complexity.

(Deprecated) A flag to indicate if draws from all variables defined in Stan’s
parameters block should be saved (default is FALSE). Saving these draws is
required in order to apply the methods bridge_sampler, bayes_factor, and

28

init

inits
chains
iter

warmup

thin

cores

threads

opencl

normalize

control

brm

post_prob. Can be set globally for the current R session via the "brms. save_pars”

option (see options).

Initial values for the sampler. If NULL (the default) or "random”, Stan will ran-
domly generate initial values for parameters in a reasonable range. If @, all
parameters are initialized to zero on the unconstrained space. This option is
sometimes useful for certain families, as it happens that default random initial
values cause draws to be essentially constant. Generally, setting init =0 is
worth a try, if chains do not initialize or behave well. Alternatively, init can
be a list of lists containing the initial values, or a function (or function name)
generating initial values. The latter options are mainly implemented for inter-
nal testing but are available to users if necessary. If specifying initial values
using a list or a function then currently the parameter names must correspond
to the names used in the generated Stan code (not the names used in R). For
more details on specifying initial values you can consult the documentation of
the selected backend.

(Deprecated) Alias of init.
Number of Markov chains (defaults to 4).
Number of total iterations per chain (including warmup; defaults to 2000).

A positive integer specifying number of warmup (aka burnin) iterations. This
also specifies the number of iterations used for stepsize adaptation, so warmup
draws should not be used for inference. The number of warmup should not be
larger than iter and the default is iter/2.

Thinning rate. Must be a positive integer. Set thin > 1 to save memory and
computation time if iter is large.

Number of cores to use when executing the chains in parallel, which defaults to
1 but we recommend setting the mc. cores option to be as many processors as
the hardware and RAM allow (up to the number of chains). For non-Windows
OS in non-interactive R sessions, forking is used instead of PSOCK clusters.

Number of threads to use in within-chain parallelization. For more control over
the threading process, threads may also be a brmsthreads object created by
threading. Within-chain parallelization is experimental! We recommend its
use only if you are experienced with Stan’s reduce_sum function and have a
slow running model that cannot be sped up by any other means. Can be set glob-
ally for the current R session via the "brms. threads” option (see options).

The platform and device IDs of the OpenCL device to use for fitting using GPU
support. If you don’t know the IDs of your OpenCL device, c(0,0) is most
likely what you need. For more details, see opencl. Can be set globally for the
current R session via the "brms.opencl” option

Logical. Indicates whether normalization constants should be included in the
Stan code (defaults to TRUE). Setting it to FALSE requires Stan version >=2.25 to
work. If FALSE, sampling efficiency may be increased but some post processing
functions such as bridge_sampler will not be available. Can be controlled
globally for the current R session via the ‘brms.normalize* option.

A named list of parameters to control the sampler’s behavior. It defaults to
NULL so all the default values are used. The most important control parameters

brm 29

are discussed in the ’Details’ section below. For a comprehensive overview see
stan.

algorithm Character string naming the estimation approach to use. Options are "sampling”
for MCMC (the default), "meanfield” for variational inference with indepen-
dent normal distributions, "fullrank” for variational inference with a multi-
variate normal distribution, "pathfinder” for the pathfinder algorithm, "laplace”
for the laplace approximation, or "fixed_param” for sampling from fixed pa-
rameter values. Can be set globally for the current R session via the "brms.algorithm”
option (see options).

backend Character string naming the package to use as the backend for fitting the Stan
model. Options are "rstan” (the default) or "cmdstanr”. Can be set globally
for the current R session via the "brms.backend"” option (see options). Details
on the rstan and cmdstanr packages are available at https://mc-stan.org/
rstan/ and https://mc-stan.org/cmdstanr/, respectively. Additionally a
"mock” backend is available to make testing brms and packages that depend on
it easier. The "mock” backend does not actually do any fitting, it only checks
the generated Stan code for correctness and then returns whatever is passed in
an additional mock_fit argument as the result of the fit.

future Logical; If TRUE, the future package is used for parallel execution of the chains
and argument cores will be ignored. Can be set globally for the current R
session via the "future” option. The execution type is controlled via plan (see
the examples section below).

silent Verbosity level between @ and 2. If 1 (the default), most of the informational
messages of compiler and sampler are suppressed. If 2, even more messages
are suppressed. The actual sampling progress is still printed. Set refresh =0 to
turn this off as well. If using backend = "rstan” you can also set open_progress
= FALSE to prevent opening additional progress bars.

seed The seed for random number generation to make results reproducible. If NA (the
default), Stan will set the seed randomly.

save_model Either NULL or a character string. In the latter case, the model’s Stan code is
saved via cat in a text file named after the string supplied in save_model.

stan_model_args
A list of further arguments passed to rstan: : stan_model for backend = "rstan”
or to cmdstanr: :cmdstan_model for backend = "cmdstanr”, which allows to
change how models are compiled.

file Either NULL or a character string. In the latter case, the fitted model object is
saved via saveRDS in a file named after the string supplied in file. The .rds
extension is added automatically. If the file already exists, brm will load and
return the saved model object instead of refitting the model. Unless you specity
the file_refit argument as well, the existing files won’t be overwritten, you
have to manually remove the file in order to refit and save the model under an
existing file name. The file name is stored in the brmsfit object for later usage.

file_compress Logical or a character string, specifying one of the compression algorithms sup-
ported by saveRDS. If the file argument is provided, this compression will be
used when saving the fitted model object.

https://mc-stan.org/rstan/
https://mc-stan.org/rstan/
https://mc-stan.org/cmdstanr/

30 brm

file_refit Modifies when the fit stored via the file argument is re-used. Can be set glob-
ally for the current R session via the "brms. file_refit” option (see options).
For "never” (default) the fit is always loaded if it exists and fitting is skipped.
For "always” the model is always refitted. If set to "on_change"”, brms will
refit the model if model, data or algorithm as passed to Stan differ from what is
stored in the file. This also covers changes in priors, sample_prior, stanvars,
covariance structure, etc. If you believe there was a false positive, you can use
brmsfit_needs_refit to see why refit is deemed necessary. Refit will not be
triggered for changes in additional parameters of the fit (e.g., initial values, num-
ber of iterations, control arguments, ...). A known limitation is that a refit will
be triggered if within-chain parallelization is switched on/off.

empty Logical. If TRUE, the Stan model is not created and compiled and the corre-
sponding 'fit' slot of the brmsfit object will be empty. This is useful if you
have estimated a brms-created Stan model outside of brms and want to feed it
back into the package.

rename For internal use only.

Further arguments passed to Stan. For backend = "rstan” the arguments are
passed to sampling or vb. For backend = "cmdstanr" the arguments are passed
to the cmdstanr: :sample or cmdstanr: :variational method.

Details

Fit a generalized (non-)linear multivariate multilevel model via full Bayesian inference using Stan.
A general overview is provided in the vignettes vignette(”"brms_overview") and vignette("brms_multilevel™).
For a full list of available vignettes see vignette(package = "brms").

Formula syntax of brms models

Details of the formula syntax applied in brms can be found in brmsformula.
Families and link functions

Details of families supported by brms can be found in brmsfamily.

Prior distributions

Priors should be specified using the set_prior function. Its documentation contains detailed in-
formation on how to correctly specify priors. To find out on which parameters or parameter classes
priors can be defined, use default_prior. Default priors are chosen to be non or very weakly
informative so that their influence on the results will be negligible and you usually don’t have to
worry about them. However, after getting more familiar with Bayesian statistics, I recommend you
to start thinking about reasonable informative priors for your model parameters: Nearly always,
there is at least some prior information available that can be used to improve your inference.

Adjusting the sampling behavior of Stan

In addition to choosing the number of iterations, warmup draws, and chains, users can control the
behavior of the NUTS sampler, by using the control argument. The most important reason to use
control is to decrease (or eliminate at best) the number of divergent transitions that cause a bias
in the obtained posterior draws. Whenever you see the warning "There were x divergent transitions
after warmup." you should really think about increasing adapt_delta. To do this, write control =
list(adapt_delta = <x>), where <x> should usually be value between 0.8 (current default) and
1. Increasing adapt_delta will slow down the sampler but will decrease the number of divergent
transitions threatening the validity of your posterior draws.

brm 31

Another problem arises when the depth of the tree being evaluated in each iteration is exceeded.
This is less common than having divergent transitions, but may also bias the posterior draws. When
it happens, Stan will throw out a warning suggesting to increase max_treedepth, which can be
accomplished by writing control = list(max_treedepth = <x>) with a positive integer <x> that
should usually be larger than the current default of 10. For more details on the control argument
see stan.

Value

An object of class brmsfit, which contains the posterior draws along with many other useful infor-
mation about the model. Use methods(class = "brmsfit") for an overview on available methods.

Author(s)

Paul-Christian Buerkner <paul . buerkner@gmail. com>

References

Paul-Christian Buerkner (2017). brms: An R Package for Bayesian Multilevel Models Using Stan.
Journal of Statistical Software, 80(1), 1-28. doi:10.18637/jss.v080.101

Paul-Christian Buerkner (2018). Advanced Bayesian Multilevel Modeling with the R Package
brms. The R Journal. 10(1), 395-411. doi:10.32614/RJ-2018-017

See Also

brms, brmsformula, brmsfamily, brmsfit

Examples

Not run:
Poisson regression for the number of seizures in epileptic patients
fitl <= brm(

count ~ zBase * Trt + (1|patient),

data = epilepsy, family = poisson(),

prior = prior(normal(@, 10), class = b) +

prior(cauchy(@, 2), class = sd)

)

generate a summary of the results
summary (fit1)

plot the MCMC chains as well as the posterior distributions
plot(fit1)

predict responses based on the fitted model
head(predict(fit1))

plot conditional effects for each predictor
plot(conditional_effects(fit1), ask = FALSE)

investigate model fit

32

loo(fit1)
pp_check(fit1)

Ordinal regression modeling patient's rating of inhaler instructions
category specific effects are estimated for variable 'treat'
fit2 <- brm(rating ~ period + carry + cs(treat),
data = inhaler, family = sratio("”logit"),
prior = set_prior(”"normal(@,5)"), chains = 2)
summary (fit2)
plot(fit2, ask = FALSE)
WAIC(fit2)

Survival regression modeling the time between the first

and second recurrence of an infection in kidney patients.

fit3 <- brm(time | cens(censored) ~ age * sex + disease + (1|patient),
data = kidney, family = lognormal())

summary (fit3)

plot(fit3, ask = FALSE)

plot(conditional_effects(fit3), ask = FALSE)

Probit regression using the binomial family

ntrials <- sample(1:10, 100, TRUE)

success <- rbinom(100, size = ntrials, prob = 0.4)

X <= rnorm(100)

data4 <- data.frame(ntrials, success, x)

fit4 <- brm(success | trials(ntrials) ~ x, data = data4,
family = binomial("probit"))

summary (fit4)

Non-linear Gaussian model
fit5 <= brm(
bf(cum ~ ult * (1 - exp(-(dev/theta)”*omega)),
ult ~ 1 + (1]AY), omega ~ 1, theta ~ 1,

nl = TRUE),
data = loss, family = gaussian(),
prior = c(
prior(normal (5000, 1000), nlpar = "ult"),
prior(normal(1, 2), nlpar = "omega"),
prior(normal (45, 10), nlpar = "theta")
),
control = list(adapt_delta = 0.9)
)
summary (fit5)

conditional_effects(fit5)

Normal model with heterogeneous variances
data_het <- data.frame(
y = c¢(rnorm(50), rnorm(50, 1, 2)),

brm

brmsfamily 33

x = factor(rep(c("a", "b"), each = 50))
)
fit6 <- brm(bf(y ~ x, sigma ~ @ + x), data = data_het)
summary (fit6)
plot(fit6)
conditional_effects(fit6)

extract estimated residual SDs of both groups
sigmas <- exp(as.data.frame(fit6, variable = "“*b_sigma_", regex = TRUE))
ggplot(stack(sigmas), aes(values)) +

geom_density(aes(fill = ind))

Quantile regression predicting the 25%-quantile

fit7 <- brm(bf(y ~ x, quantile = 0.25), data = data_het,
family = asym_laplace())

summary (fit7)

conditional_effects(fit7)

use the future package for more flexible parallelization
library(future)

plan(multisession, workers = 4)

fit7 <- update(fit7, future = TRUE)

fit a model manually via rstan

scode <- stancode(count ~ Trt, data = epilepsy)

sdata <- standata(count ~ Trt, data = epilepsy)

stanfit <- rstan::stan(model_code = scode, data = sdata)
feed the Stan model back into brms

fit8 <- brm(count ~ Trt, data = epilepsy, empty = TRUE)
fit8$fit <- stanfit

fit8 <- rename_pars(fit8)

summary (fit8)

End(Not run)

brmsfamily Special Family Functions for brms Models

Description

Family objects provide a convenient way to specify the details of the models used by many model
fitting functions. The family functions presented here are for use with brms only and will **not**
work with other model fitting functions such as glm or glmer. However, the standard family func-
tions as described in family will work with brms. You can also specify custom families for use in
brms with the custom_family function.

34 brmsfamily

Usage

brmsfamily(
family,
link = NULL,
link_sigma = "log",
link_shape = "log",
link_nu = "logm1",
link_phi = "log",
link_kappa = "log",
link_beta = "log",
link_zi = "logit",
link_hu = "logit",
link_zoi = "logit",
link_coi = "logit",
link_disc = "log",
link_bs = "log",
link_ndt = "log",
link_bias = "logit",
link_xi = "loglp”,
link_alpha = "identity”,
link_quantile = "logit",
threshold = "flexible"”,
refcat = NULL

)

student(link = "identity”, link_sigma = "log”, link_nu = "logml")
bernoulli(link = "logit")
beta_binomial(link = "logit”, link_phi = "log")

negbinomial(link = "log", link_shape = "log")

geometric(link "log")
lognormal(link = "identity", link_sigma = "log")

shifted_lognormal(link = "identity"”, link_sigma = "log”, link_ndt = "log")

skew_normal (1ink "identity"”, link_sigma = "log", link_alpha = "identity")

exponential(link = "log")

weibull(link

"log", link_shape = "log")
frechet(link = "log", link_nu = "logm1")

gen_extreme_value(link = "identity"”, link_sigma = "log"”, link_xi = "loglp")

brmsfamily 35

exgaussian(link = "identity”, link_sigma = "log", link_beta = "log")
wiener(

link = "identity",

link_bs = "log",

link_ndt = "log",

link_bias = "logit"
)

Beta(link = "logit", link_phi = "log")

dirichlet(link = "logit"”, link_phi = "log", refcat = NULL)
logistic_normal(link = "identity", link_sigma = "log", refcat = NULL)
von_mises(link = "tan_half"”, link_kappa = "log")

asym_laplace(link = "identity", link_sigma = "log", link_quantile = "logit")
cox(link = "log")

hurdle_poisson(link = "log", link_hu = "logit")

hurdle_negbinomial(link = "log”, link_shape = "log", link_hu = "logit")
hurdle_gamma(link = "log", link_shape = "log"”, link_hu = "logit")
hurdle_lognormal (link = "identity”, link_sigma = "log"”, link_hu = "logit")

hurdle_cumulative(

link = "logit",
link_hu = "logit",
link_disc = "log",
threshold = "flexible"

)
zero_inflated_beta(link = "logit", link_phi = "log", link_zi = "logit")

zero_one_inflated_beta(
link = "logit",
link_phi = "log",
link_zoi = "logit",
link_coi = "logit"

)

zero_inflated_poisson(link = "log", link_zi = "logit")

36 brmsfamily

zero_inflated_negbinomial(link = "log"”, link_shape = "log"”, link_zi = "logit")
zero_inflated_binomial(link = "logit"”, link_zi = "logit")

zero_inflated_beta_binomial(
link = "logit",
link_phi = "log",
link_zi = "logit”

)

categorical(link = "logit"”, refcat = NULL)

multinomial(link = "logit", refcat = NULL)

cumulative(link = "logit", link_disc = "log", threshold = "flexible"”)

sratio(link = "logit"”, link_disc = "log”, threshold = "flexible")
cratio(link = "logit"”, link_disc = "log"”, threshold = "flexible")

acat(link = "logit", link_disc = "log", threshold = "flexible")

Arguments

family A character string naming the distribution family of the response variable to be
used in the model. Currently, the following families are supported: gaussian,
student, binomial, bernoulli, beta-binomial, poisson, negbinomial, geometric,
Gamma, skew_normal, lognormal, shifted_lognormal, exgaussian, wiener,
inverse.gaussian, exponential, weibull, frechet,Beta, dirichlet, von_mises,
asym_laplace, gen_extreme_value, categorical, multinomial, cumulative,
cratio, sratio, acat, hurdle_poisson, hurdle_negbinomial, hurdle_gamma,
hurdle_lognormal, hurdle_cumulative, zero_inflated_binomial, zero_inflated_beta_binomia
zero_inflated_beta, zero_inflated_negbinomial, zero_inflated_poisson,
and zero_one_inflated_beta.

link A specification for the model link function. This can be a name/expression or
character string. See the *Details’ section for more information on link functions
supported by each family.

link_sigma Link of auxiliary parameter sigma if being predicted.

link_shape Link of auxiliary parameter shape if being predicted.

link_nu Link of auxiliary parameter nu if being predicted.

link_phi Link of auxiliary parameter phi if being predicted.

link_kappa Link of auxiliary parameter kappa if being predicted.

link_beta Link of auxiliary parameter beta if being predicted.

link_zi Link of auxiliary parameter zi if being predicted.

link_hu Link of auxiliary parameter hu if being predicted.

link_zoi Link of auxiliary parameter zoi if being predicted.

brmsfamily 37

link_coi Link of auxiliary parameter coi if being predicted.
link_disc Link of auxiliary parameter disc if being predicted.
link_bs Link of auxiliary parameter bs if being predicted.
link_ndt Link of auxiliary parameter ndt if being predicted.
link_bias Link of auxiliary parameter bias if being predicted.
link_xi Link of auxiliary parameter x1i if being predicted.
link_alpha Link of auxiliary parameter alpha if being predicted.

link_quantile Link of auxiliary parameter quantile if being predicted.

threshold A character string indicating the type of thresholds (i.e. intercepts) used in
an ordinal model. "flexible” provides the standard unstructured thresholds,
"equidistant” restricts the distance between consecutive thresholds to the
same value, and "sum_to_zero" ensures the thresholds sum to zero.

refcat Optional name of the reference response category used in categorical, multinomial,
dirichlet and logistic_normal models. If NULL (the default), the first cat-
egory is used as the reference. If NA, all categories will be predicted, which
requires strong priors or carefully specified predictor terms in order to lead to an
identified model.

Details

Below, we list common use cases for the different families. This list is not ment to be exhaustive.

» Family gaussian can be used for linear regression.
* Family student can be used for robust linear regression that is less influenced by outliers.
» Family skew_normal can handle skewed responses in linear regression.

» Families poisson, negbinomial, and geometric can be used for regression of unbounded
count data.

* Families bernoulli, binomial, and beta_binomial can be used for binary regression (i.e.,
most commonly logistic regression).

» Families categorical and multinomial can be used for multi-logistic regression when there
are more than two possible outcomes.

» Families cumulative, cratio (’continuation ratio’), sratio (’stopping ratio’), and acat (’ad-
jacent category’) leads to ordinal regression.

e Families Gamma, weibull, exponential, lognormal, frechet, inverse.gaussian, and cox
(Cox proportional hazards model) can be used (among others) for time-to-event regression
also known as survival regression.

* Families weibull, frechet, and gen_extreme_value (’generalized extreme value’) allow
for modeling extremes.

» Families beta, dirichlet, and logistic_normal can be used to model responses represent-
ing rates or probabilities.

» Family asym_laplace allows for quantile regression when fixing the auxiliary quantile pa-
rameter to the quantile of interest.

38 brmsfamily

» Family exgaussian ("exponentially modified Gaussian’) and shifted_lognormal are espe-
cially suited to model reaction times.

* Family wiener provides an implementation of the Wiener diffusion model. For this family,
the main formula predicts the drift parameter ’delta’ and all other parameters are modeled as
auxiliary parameters (see brmsformula for details).

e Families hurdle_poisson, hurdle_negbinomial, hurdle_gamma, hurdle_lognormal, zero_inflated_poisson,
zero_inflated_negbinomial, zero_inflated_binomial, zero_inflated_beta_binomial,
zero_inflated_beta, zero_one_inflated_beta, and hurdle_cumulative allow to esti-
mate zero-inflated and hurdle models. These models can be very helpful when there are many
zeros in the data (or ones in case of one-inflated models) that cannot be explained by the
primary distribution of the response.

Below, we list all possible links for each family. The first link mentioned for each family is the
default.

e Families gaussian, student, skew_normal, exgaussian, asym_laplace, and gen_extreme_value
support the links (as names) identity, log, inverse, and softplus.

¢ Families poisson, negbinomial, geometric, zero_inflated_poisson, zero_inflated_negbinomial,
hurdle_poisson, and hurdle_negbinomial support log, identity, sqrt, and softplus.

e Families binomial, bernoulli, beta_binomial, zero_inflated_binomial, zero_inflated_beta_binomial,
Beta, zero_inflated_beta, and zero_one_inflated_beta support logit, probit, probit_approx,
cloglog, cauchit, identity, and log.

* Families cumulative, cratio, sratio, acat, and hurdle_cumulative support logit, probit,
probit_approx, cloglog, and cauchit.

* Families categorical, multinomial, and dirichlet support logit.

» Families Gamma, weibull, exponential, frechet, and hurdle_gamma support log, identity,
inverse, and softplus.

* Families lognormal and hurdle_lognormal support identity and inverse.

» Family logistic_normal supports identity.

* Family inverse.gaussian supports 1/mu*2, inverse, identity, log, and softplus.

* Family von_mises supports tan_half and identity.

* Family cox supports log, identity, and softplus for the proportional hazards parameter.

» Family wiener supports identity, log, and softplus for the main parameter which repre-

sents the drift rate.

Please note that when calling the Gamma family function of the stats package, the default link will
be inverse instead of log although the latter is the default in brms. Also, when using the family
functions gaussian, binomial, poisson, and Gamma of the stats package (see family), special link
functions such as softplus or cauchit won’t work. In this case, you have to use brmsfamily to
specify the family with corresponding link function.

See Also

brm, family, customfamily

brmsfit-class 39

Examples

create a family object

(fam1l <- student(”"log"))

alternatively use the brmsfamily function
(fam2 <- brmsfamily("student”, "log"))

both leads to the same object
identical(faml, fam2)

brmsfit-class Class brmsfit of models fitted with the brms package

Description

Models fitted with the brms package are represented as a brmsfit object, which contains the pos-
terior draws (samples), model formula, Stan code, relevant data, and other information.

Details

See methods(class = "brmsfit") for an overview of available methods.

Slots

formula A brmsformula object.

data A data.frame containing all variables used in the model.
data2 A list of data objects which cannot be passed via data.
prior A brmsprior object containing information on the priors used in the model.
stanvars A stanvars object.

model The model code in Stan language.

exclude The names of the parameters for which draws are not saved.
algorithm The name of the algorithm used to fit the model.

backend The name of the backend used to fit the model.

threads An object of class ‘brmsthreads® created by threading.
opencl An object of class ‘brmsopencl‘ created by opencl.

stan_args Named list of additional control arguments that were passed to the Stan backend di-
rectly.

fit An object of class stanfit among others containing the posterior draws.

basis An object that contains a small subset of the Stan data created at fitting time, which is needed
to process new data correctly.

criteria Anempty list for adding model fit criteria after estimation of the model.
file Optional name of a file in which the model object was stored in or loaded from.

version The versions of brms and rstan with which the model was fitted.

40

See Also

brmsformula

family (Deprecated) A brmsfamily object.

autocor (Deprecated) An cor_brms object containing the autocorrelation structure if specified.
ranef (Deprecated) A data.frame containing the group-level structure.

cov_ranef (Deprecated) A 1ist of customized group-level covariance matrices.

stan_funs (Deprecated) A character string of length one or NULL.

data.name (Deprecated) The name of data as specified by the user.

brms, brm, brmsformula, brmsfamily

brmsformula

Set up a model formula for use in brms

Description

Usage

brmsformula(

formula,

flist = NULL,
family = NULL,
autocor = NULL,
nl = NULL,

loop = NULL,
center = NULL,
cmc = NULL,
sparse = NULL,
decomp = NULL,
unused = NULL

Arguments

formula

Set up a model formula for use in the brms package allowing to define (potentially non-linear)
additive multilevel models for all parameters of the assumed response distribution.

An object of class formula (or one that can be coerced to that class): a symbolic

description of the model to be fitted. The details of model specification are given
in ’Details’.

Additional formula objects to specify predictors of non-linear and distributional
parameters. Formulas can either be named directly or contain names on their
left-hand side. Alternatively, it is possible to fix parameters to certain values by
passing numbers or character strings in which case arguments have to be named
to provide the parameter names. See ’Details’ for more information.

brmsformula 41

flist Optional list of formulas, which are treated in the same way as formulas passed
via the . .. argument.
family Same argument as in brm. If family is specified in brmsformula, it will over-

write the value specified in other functions.

autocor An optional formula which contains autocorrelation terms as described in autocor-terms
or alternatively a cor_brms object (deprecated). If autocor is specified in
brmsformula, it will overwrite the value specified in other functions.

nl Logical; Indicates whether formula should be treated as specifying a non-linear
model. By default, formula is treated as an ordinary linear model formula.

loop Logical; Only used in non-linear models. Indicates if the computation of the
non-linear formula should be done inside (TRUE) or outside (FALSE) a loop over
observations. Defaults to TRUE.

center Logical; Indicates if the population-level design matrix should be centered,
which usually increases sampling efficiency. See the 'Details’ section for more
information. Defaults to TRUE for distributional parameters and to FALSE for
non-linear parameters.

cme Logical; Indicates whether automatic cell-mean coding should be enabled when
removing the intercept by adding @ to the right-hand of model formulas. De-
faults to TRUE to mirror the behavior of standard R formula parsing.

sparse Logical; indicates whether the population-level design matrices should be treated
as sparse (defaults to FALSE). For design matrices with many zeros, this can con-
siderably reduce required memory. Sampling speed is currently not improved or
even slightly decreased.

decomp Optional name of the decomposition used for the population-level design matrix.
Defaults to NULL that is no decomposition. Other options currently available are
"QR" for the QR decomposition that helps in fitting models with highly corre-
lated predictors.

unused An optional formula which contains variables that are unused in the model but
should still be stored in the model’s data frame. This can be useful, for example,
if those variables are required for post-processing the model.

Details

General formula structure
The formula argument accepts formulas of the following syntax:
response | aterms ~ pterms + (gterms | group)

The pterms part contains effects that are assumed to be the same across observations. We call them
’population-level” or ’overall’ effects, or (adopting frequentist vocabulary) fixed’ effects. The op-
tional gterms part may contain effects that are assumed to vary across grouping variables specified
in group. We call them ’group-level’ or ’varying’ effects, or (adopting frequentist vocabulary) ’ran-
dom’ effects, although the latter name is misleading in a Bayesian context. For more details type
vignette("brms_overview") and vignette("brms_multilevel”).

Group-level terms

Multiple grouping factors each with multiple group-level effects are possible. (Of course we can
also run models without any group-level effects.) Instead of | you may use | | in grouping terms to

42

brmsformula

prevent correlations from being modeled. Equivalently, the cor argument of the gr function can be
used for this purpose, for example, (1 + x || g) is equivalent to (1 + x | gr(g, cor = FALSE)).

It is also possible to model different group-level terms of the same grouping factor as correlated
(even across different formulas, e.g., in non-linear models) by using |<ID>| instead of |. All group-
level terms sharing the same ID will be modeled as correlated. If, for instance, one specifies the
terms (1+x|i|g) and (1+z|i]g) somewhere in the formulas passed to brmsformula, correlations
between the corresponding group-level effects will be estimated. In the above example, i is not a
variable in the data but just a symbol to indicate correlations between multiple group-level terms.
Equivalently, the id argument of the gr function can be used as well, for example, (1 +x | gr(g,
id="i")).

If levels of the grouping factor belong to different sub-populations, it may be reasonable to assume
a different covariance matrix for each of the sub-populations. For instance, the variation within the
treatment group and within the control group in a randomized control trial might differ. Suppose
that y is the outcome, and x is the factor indicating the treatment and control group. Then, we
could estimate different hyper-parameters of the varying effects (in this case a varying intercept) for
treatment and control group viay ~ x + (1 | gr(subject, by =x)).

You can specify multi-membership terms using the mm function. For instance, a multi-membership
term with two members could be (1 | mm(g1, g2)), where g1 and g2 specify the first and second
member, respectively. Moreover, if a covariate x varies across the levels of the grouping-factors g1
and g2, we can save the respective covariate values in the variables x1 and x2 and then model the
varying effect as (1 + mmc(x1, x2) | mm(g1, g2)).

Special predictor terms

Flexible non-linear smooth terms can modeled using the s and t2 functions in the pterms part of
the model formula. This allows to fit generalized additive mixed models (GAMM:s) with brms. The
implementation is similar to that used in the gamm4 package. For more details on this model class
see gam and gamm.

Gaussian process terms can be fitted using the gp function in the pterms part of the model formula.
Similar to smooth terms, Gaussian processes can be used to model complex non-linear relationships,
for instance temporal or spatial autocorrelation. However, they are computationally demanding and
are thus not recommended for very large datasets or approximations need to be used.

The pterms and gterms parts may contain four non-standard effect types namely monotonic, mea-
surement error, missing value, and category specific effects, which can be specified using terms of

the form mo(predictor), me(predictor, sd_predictor), mi(predictor), and cs(<predictors>),

respectively. Category specific effects can only be estimated in ordinal models and are explained in
more detail in the package’s main vignette (type vignette("brms_overview")). The other three
effect types are explained in the following.

A monotonic predictor must either be integer valued or an ordered factor, which is the first dif-
ference to an ordinary continuous predictor. More importantly, predictor categories (or integers)
are not assumed to be equidistant with respect to their effect on the response variable. Instead,
the distance between adjacent predictor categories (or integers) is estimated from the data and may
vary across categories. This is realized by parameterizing as follows: One parameter takes care of
the direction and size of the effect similar to an ordinary regression parameter, while an additional
parameter vector estimates the normalized distances between consecutive predictor categories. A
main application of monotonic effects are ordinal predictors that can this way be modeled without
(falsely) treating them as continuous or as unordered categorical predictors. For more details and
examples see vignette("brms_monotonic").

brmsformula 43

Quite often, predictors are measured and as such naturally contain measurement error. Although
most researchers are well aware of this problem, measurement error in predictors is ignored in
most regression analyses, possibly because only few packages allow for modeling it. Notably,
measurement error can be handled in structural equation models, but many more general regression
models (such as those featured by brms) cannot be transferred to the SEM framework. In brms,
effects of noise-free predictors can be modeled using the me (for *measurement error’) function.
If, say, y is the response variable and x is a measured predictor with known measurement error
sdx, we can simply include it on the right-hand side of the model formula via y ~ me(x, sdx).
This can easily be extended to more general formulas. If x2 is another measured predictor with
corresponding error sdx2 and z is a predictor without error (e.g., an experimental setting), we can
model all main effects and interactions of the three predictors in the well known manner: y ~ me(x,
sdx) * me(x2, sdx2) * z. The me function is soft deprecated in favor of the more flexible and
consistent mi function (see below).

When a variable contains missing values, the corresponding rows will be excluded from the data by
default (row-wise exclusion). However, quite often we want to keep these rows and instead estimate
the missing values. There are two approaches for this: (a) Impute missing values before the model
fitting for instance via multiple imputation (see brm_multiple for a way to handle multiple imputed
datasets). (b) Impute missing values on the fly during model fitting. The latter approach is explained
in the following. Using a variable with missing values as predictors requires two things, First, we
need to specify that the predictor contains missings that should to be imputed. If, say, y is the
primary response, x is a predictor with missings and z is a predictor without missings, we go for y
~mi(x) +z. Second, we need to model x as an additional response with corresponding predictors
and the addition term mi (). In our example, we could write x | mi() ~ z. Measurement error may
be included via the sdy argument, say, x | mi(sdy = se) ~ z. See mi for examples with real data.

Autocorrelation terms

Autocorrelation terms can be directly specified inside the pterms part as well. Details can be found
in autocor-terms.

Additional response information

Another special of the brms formula syntax is the optional aterms part, which may contain multiple
terms of the form fun(<variable>) separated by + each providing special information on the
response variable. fun can be replaced with either se, weights, subset, cens, trunc, trials,
cat, dec, rate, vreal, or vint. Their meanings are explained below (see also addition-terms).

For families gaussian, student and skew_normal, it is possible to specify standard errors of the
observations, thus allowing to perform meta-analysis. Suppose that the variable yi contains the
effect sizes from the studies and sei the corresponding standard errors. Then, fixed and random
effects meta-analyses can be conducted using the formulas yi | se(sei) ~1and yi | se(sei) ~ 1
+ (1]study), respectively, where study is a variable uniquely identifying every study. If desired,
meta-regression can be performed via yi | se(sei) ~ 1+ mod1 +mod2 + (1]|study) or

yi | se(sei) ~1+modl +mod2+ (1 +modl +mod2]|study), where mod1 and mod2 represent mod-
erator variables. By default, the standard errors replace the parameter sigma. To model sigma in
addition to the known standard errors, set argument sigma in function se to TRUE, for instance, yi
| se(sei, sigma=TRUE) ~ 1.

For all families, weighted regression may be performed using weights in the aterms part. In-
ternally, this is implemented by multiplying the log-posterior values of each observation by their
corresponding weights. Suppose that variable wei contains the weights and that yi is the response
variable. Then, formula yi | weights(wei) ~ predictors implements a weighted regression.

44

brmsformula

For multivariate models, subset may be used in the aterms part, to use different subsets of the data
in different univariate models. For instance, if sub is a logical variable and y is the response of one
of the univariate models, we may write y | subset(sub) ~ predictors so that y is predicted only
for those observations for which sub evaluates to TRUE.

For log-linear models such as poisson models, rate may be used in the aterms part to specify the
denominator of a response that is expressed as a rate. The numerator is given by the actual response
variable and has a distribution according to the family as usual. Using rate(denom) is equivalent
to adding offset(log(denom)) to the linear predictor of the main parameter but the former is
arguably more convenient and explicit.

With the exception of categorical and ordinal families, left, right, and interval censoring can be
modeled through y | cens(censored) ~ predictors. The censoring variable (named censored
in this example) should contain the values 'left', 'none', 'right', and 'interval' (or equiva-
lently -1, @, 1, and 2) to indicate that the corresponding observation is left censored, not censored,
right censored, or interval censored. For interval censored data, a second variable (let’s call it y2)
has to be passed to cens. In this case, the formula has the structure y | cens(censored, y2) ~
predictors. While the lower bounds are given in y, the upper bounds are given in y2 for interval
censored data. Intervals are assumed to be open on the left and closed on the right: (y, y21].

With the exception of categorical and ordinal families, the response distribution can be truncated
using the trunc function in the addition part. If the response variable is truncated between, say, 0
and 100, we can specify this via yi | trunc(lb =0, ub =100) ~ predictors. Instead of numbers,
variables in the data set can also be passed allowing for varying truncation points across observa-
tions. Defining only one of the two arguments in trunc leads to one-sided truncation.

For all continuous families, missing values in the responses can be imputed within Stan by using
the addition term mi. This is mostly useful in combination with mi predictor terms as explained
above under ’Special predictor terms’.

For families binomial and zero_inflated_binomial, addition should contain a variable indi-
cating the number of trials underlying each observation. In lme4 syntax, we may write for in-
stance cbind(success, n - success), which is equivalent to success | trials(n) in brms syn-
tax. If the number of trials is constant across all observations, say 10, we may also write success
| trials(10). Please note that the cbind() syntax will not work in brms in the expected way
because this syntax is reserved for other purposes.

For all ordinal families, aterms may contain a term thres(number) to specify the number thresh-
olds (e.g, thres(6)), which should be equal to the total number of response categories - 1. If not
given, the number of thresholds is calculated from the data. If different threshold vectors should be
used for different subsets of the data, the gr argument can be used to provide the grouping variable
(e.g, thres(6, gr = item), if itemis the grouping variable). In this case, the number of thresholds
can also be a variable in the data with different values per group.

A deprecated quasi alias of thres() is cat() with which the total number of response categories
(i.e., number of thresholds + 1) can be specified.

In Wiener diffusion models (family wiener) the addition term dec is mandatory to specify the
(vector of) binary decisions corresponding to the reaction times. Non-zero values will be treated as
a response on the upper boundary of the diffusion process and zeros will be treated as a response
on the lower boundary. Alternatively, the variable passed to dec might also be a character vector
consisting of 'lower' and 'upper'.

All families support the index addition term to uniquely identify each observation of the corre-
sponding response variable. Currently, index is primarily useful in combination with the subset

brmsformula 45

addition and mi terms.

For custom families, it is possible to pass an arbitrary number of real and integer vectors via the addi-

tion terms vreal and vint, respectively. An example is provided in vignette('brms_customfamilies').
To pass multiple vectors of the same data type, provide them separated by commas inside a single

vreal or vint statement.

Multiple addition terms of different types may be specified at the same time using the + operator. For
example, the formula formula =yi | se(sei) + cens(censored) ~ 1 implies a censored meta-
analytic model.

The addition argument disp (short for dispersion) has been removed in version 2.0. You may
instead use the distributional regression approach by specifying sigma ~ 1 + of fset (log(xdisp))
or shape ~ 1 + of fset(log(xdisp)), where xdisp is the variable being previously passed to disp.

Parameterization of the population-level intercept

By default, the population-level intercept (if incorporated) is estimated separately and not as part
of population-level parameter vector b As a result, priors on the intercept also have to be speci-
fied separately. Furthermore, to increase sampling efficiency, the population-level design matrix
X is centered around its column means X_means if the intercept is incorporated. This leads to a
temporary bias in the intercept equal to <X_means, b>, where <, > is the scalar product. The bias
is corrected after fitting the model, but be aware that you are effectively defining a prior on the
intercept of the centered design matrix not on the real intercept. You can turn off this special han-
dling of the intercept by setting argument center to FALSE. For more details on setting priors on
population-level intercepts, see set_prior.

This behavior can be avoided by using the reserved (and internally generated) variable Intercept.
Instead of y ~ x, you may write y ~ @ + Intercept + x. This way, priors can be defined on the real
intercept, directly. In addition, the intercept is just treated as an ordinary population-level effect and
thus priors defined on b will also apply to it. Note that this parameterization may be less efficient
than the default parameterization discussed above.

Formula syntax for non-linear models

In brms, it is possible to specify non-linear models of arbitrary complexity. The non-linear model
can just be specified within the formula argument. Suppose, that we want to predict the response
y through the predictor x, where x is linked to y through y = alpha - beta * lambda”x, with pa-
rameters alpha, beta, and 1ambda. This is certainly a non-linear model being defined via formula
=y ~ alpha - beta * lambda“*x (addition arguments can be added in the same way as for ordinary
formulas). To tell brms that this is a non-linear model, we set argument nl to TRUE. Now we have
to specify a model for each of the non-linear parameters. Let’s say we just want to estimate those
three parameters with no further covariates or random effects. Then we can pass alpha + beta +
lambda ~ 1 or equivalently (and more flexible) alpha ~ 1, beta ~ 1, lambda ~ 1 to the ... argu-
ment. This can, of course, be extended. If we have another predictor z and observations nested
within the grouping factor g, we may write for instance alpha ~ 1, beta~1+z+ (1]g), lambda
~ 1. The formula syntax described above applies here as well. In this example, we are using z and
g only for the prediction of beta, but we might also use them for the other non-linear parameters
(provided that the resulting model is still scientifically reasonable).

By default, non-linear covariates are treated as real vectors in Stan. However, if the data of the
covariates is of type ‘integer‘ in R (which can be enforced by the ‘as.integer* function), the Stan
type will be changed to an integer array. That way, covariates can also be used for indexing purposes
in Stan.

46

brmsformula

Non-linear models may not be uniquely identified and / or show bad convergence. For this reason
it is mandatory to specify priors on the non-linear parameters. For instructions on how to do that,
see set_prior. For some examples of non-linear models, see vignette(”"brms_nonlinear™).

Formula syntax for predicting distributional parameters

It is also possible to predict parameters of the response distribution such as the residual standard
deviation sigma in gaussian models or the hurdle probability hu in hurdle models. The syntax
closely resembles that of a non-linear parameter, for instance sigma ~ x + s(z) + (1+x|g). For
some examples of distributional models, see vignette("brms_distreg"”).

Parameter mu exists for every family and can be used as an alternative to specifying terms in
formula. If both mu and formula are given, the right-hand side of formula is ignored. Accordingly,
specifying terms on the right-hand side of both formula and mu at the same time is deprecated. In
future versions, formula might be updated by mu.

The following are distributional parameters of specific families (all other parameters are treated
as non-linear parameters): sigma (residual standard deviation or scale of the gaussian, student,
skew_normal, lognormal exgaussian, and asym_laplace families); shape (shape parameter of
the Gamma, weibull, negbinomial, and related zero-inflated / hurdle families); nu (degrees of
freedom parameter of the student and frechet families); phi (precision parameter of the beta
and zero_inflated_beta families); kappa (precision parameter of the von_mises family); beta
(mean parameter of the exponential component of the exgaussian family); quantile (quantile pa-
rameter of the asym_laplace family); zi (zero-inflation probability); hu (hurdle probability); zoi
(zero-one-inflation probability); coi (conditional one-inflation probability); disc (discrimination)
for ordinal models; bs, ndt, and bias (boundary separation, non-decision time, and initial bias of
the wiener diffusion model). By default, distributional parameters are modeled on the log scale if
they can be positive only or on the logit scale if the can only be within the unit interval.

Alternatively, one may fix distributional parameters to certain values. However, this is mainly useful
when models become too complicated and otherwise have convergence issues. We thus suggest to
be generally careful when making use of this option. The quantile parameter of the asym_laplace
distribution is a good example where it is useful. By fixing quantile, one can perform quantile
regression for the specified quantile. For instance, quantile = @.25 allows predicting the 25%-
quantile. Furthermore, the bias parameter in drift-diffusion models, is assumed to be 0.5 (i.e. no
bias) in many applications. To achieve this, simply write bias = @.5. Other possible applications
are the Cauchy distribution as a special case of the Student-t distribution with nu = 1, or the geomet-
ric distribution as a special case of the negative binomial distribution with shape = 1. Furthermore,
the parameter disc ("discrimination’) in ordinal models is fixed to 1 by default and not estimated,
but may be modeled as any other distributional parameter if desired (see examples). For reasons of
identification, 'disc' can only be positive, which is achieved by applying the log-link.

In categorical models, distributional parameters do not have fixed names. Instead, they are named
after the response categories (excluding the first one, which serves as the reference category), with
the prefix 'mu’. If, for instance, categories are named catl, cat2, and cat3, the distributional
parameters will be named mucat2 and mucat3.

Some distributional parameters currently supported by brmsformula have to be positive (a negative
standard deviation or precision parameter does not make any sense) or are bounded between 0 and
1 (for zero-inflated / hurdle probabilities, quantiles, or the initial bias parameter of drift-diffusion
models). However, linear predictors can be positive or negative, and thus the log link (for positive
parameters) or logit link (for probability parameters) are used by default to ensure that distributional
parameters are within their valid intervals. This implies that, by default, effects for such distribu-
tional parameters are estimated on the log / logit scale and one has to apply the inverse link function

brmsformula 47

to get to the effects on the original scale. Alternatively, it is possible to use the identity link to
predict parameters on their original scale, directly. However, this is much more likely to lead to
problems in the model fitting, if the parameter actually has a restricted range.

See also brmsfamily for an overview of valid link functions.
Formula syntax for mixture models

The specification of mixture models closely resembles that of non-mixture models. If not specified
otherwise (see below), all mean parameters of the mixture components are predicted using the right-
hand side of formula. All types of predictor terms allowed in non-mixture models are allowed in
mixture models as well.

Distributional parameters of mixture distributions have the same name as those of the corresponding
ordinary distributions, but with a number at the end to indicate the mixture component. For instance,
if you use family mixture(gaussian, gaussian), the distributional parameters are sigmal and
sigma2. Distributional parameters of the same class can be fixed to the same value. For the above
example, we could write sigma2 = "sigmal” to make sure that both components have the same
residual standard deviation, which is in turn estimated from the data.

In addition, there are two types of special distributional parameters. The first are named mu<ID>, that
allow for modeling different predictors for the mean parameters of different mixture components.
For instance, if you want to predict the mean of the first component using predictor x and the mean
of the second component using predictor z, you can write mul ~ x as well as mu2 ~ z. The second
are named theta<ID>, which constitute the mixing proportions. If the mixing proportions are fixed
to certain values, they are internally normalized to form a probability vector. If one seeks to predict
the mixing proportions, all but one of the them has to be predicted, while the remaining one is used
as the reference category to identify the model. The so-called ’softmax’ transformation is applied
on the linear predictor terms to form a probability vector.

For more information on mixture models, see the documentation of mixture.
Formula syntax for multivariate models

Multivariate models may be specified using mvbind notation or with help of the mvbf function.
Suppose that y1 and y2 are response variables and x is a predictor. Then mvbind(y1, y2) ~ x
specifies a multivariate model. The effects of all terms specified at the RHS of the formula are
assumed to vary across response variables. For instance, two parameters will be estimated for x,
one for the effect on y1 and another for the effect on y2. This is also true for group-level effects.
When writing, for instance, mvbind(y1, y2) ~ x + (1+x]|g), group-level effects will be estimated
separately for each response. To model these effects as correlated across responses, use the ID
syntax (see above). For the present example, this would look as follows: mvbind(y1, y2) ~x +
(1+x]2]g). Of course, you could also use any value other than 2 as ID.

It is also possible to specify different formulas for different responses. If, for instance, y1 should be

predicted by x and y2 should be predicted by z, we could write mvbf (y1 ~ x, y2 ~ z). Alternatively,

multiple brmsformula objects can be added to specify a joint multivariate model (see ’Examples’).
Value

An object of class brmsformula, which is essentially a 1ist containing all model formulas as well

as some additional information.

See Also

mvbrmsformula, brmsformula-helpers

48

Examples

multilevel model with smoothing terms
brmsformula(y ~ x1*x2 + s(z) + (1+x1[1) + (1]g2))

additionally predict 'sigma'
brmsformula(y ~ x1*x2 + s(z) + (1+x1|1) + (1]g2),
sigma ~ x1 + (1]|g2))

use the shorter alias 'bf'

(formulal <- brmsformula(y ~ x + (x]|g)))
(formula2 <- bf(y ~ x + (x]|g)))

will be TRUE

identical(formulal, formula2)

incorporate censoring
bf(y | cens(censor_variable) ~ predictors)

define a simple non-linear model
bf(y ~ al - a2*x, al + a2 ~ 1, nl = TRUE)

predict al and a2 differently
bf(y ~ al - a2*x, al ~ 1, a2 ~ x + (x|g), nl = TRUE)

correlated group-level effects across parameters

bf(y ~ al - a2*x, al ~ 1+ (1 |2] g), a2 ~ x + (x |2| g), nl = TRUE)
alternative but equivalent way to specify the above model

bf(y ~ al - a2*x, a1l ~ 1 + (1 | gr(g, id = 2)),
a2 ~ x + (x| gr(g, id = 2)), nl = TRUE)

define a multivariate model
bf (mvbind(yl, y2) ~ x * z + (1]|g))

define a zero-inflated model
also predicting the zero-inflation part
bf(y ~ x x z + (1+x|ID1|g), zi ~ x + (1]ID1]|g))

specify a predictor as monotonic
bf(y ~ mo(x) + more_predictors)

for ordinal models only

specify a predictor as category specific

bf(y ~ cs(x) + more_predictors)

add a category specific group-level intercept
bf(y ~ cs(x) + (es(1)18))

specify parameter 'disc'

bf(y ~ person + item, disc ~ item)

specify variables containing measurement error
bf(y ~ me(x, sdx))

specify predictors on all parameters of the wiener diffusion model

the main formula models the drift rate 'delta'’

brmsformula

brmsformula-helpers 49

bf(rt | dec(decision) ~ x, bs ~ x, ndt ~ x, bias ~ x)

fix the bias parameter to 0.5
bf(rt | dec(decision) ~ x, bias = 0.5)

specify different predictors for different mixture components
mix <- mixture(gaussian, gaussian)
bf(y ~ 1, mul ~ x, mu2 ~ z, family = mix)

fix both residual standard deviations to the same value
bf(y ~ x, sigma2 = "sigmal”, family = mix)

use the '+' operator to specify models
bf(y ~ 1) +
nlf(sigma ~ a * exp(b * x), a ~ x) +
1f(b ~ z + (1]|g), dpar = "sigma") +
gaussian()

specify a multivariate model using the '+' operator
bf(yl ~ x + (11g)) +

gaussian() + cor_ar(~1|g) +

bf(y2 ~ z) + poisson()

specify correlated residuals of a gaussian and a poisson model
forml <- bf(yl ~ 1 + x + (1|c|obs), sigma = 1) + gaussian()
form2 <- bf(y2 ~ 1 + x + (1]c|obs)) + poisson()

model missing values in predictors
bf(bmi ~ age * mi(chl)) +
bf(chl | mi() ~ age) +
set_rescor(FALSE)

model sigma as a function of the mean
bf(y ~ eta, nl = TRUE) +

If(eta ~ 1 + x) +

nlf(sigma ~ tau * sqrt(eta)) +

1f(tau ~ 1)

brmsformula-helpers Linear and Non-linear formulas in brms

Description

Helper functions to specify linear and non-linear formulas for use with brmsformula.

Usage
nlf(formula, ..., flist = NULL, dpar = NULL, resp = NULL, loop = NULL)

1f¢(
flist = NULL,
dpar = NULL,
resp = NULL,
center = NULL,
cmc = NULL,

sparse = NULL,
decomp = NULL
)

acformula(autocor, resp = NULL)

brmsformula-helpers

set_nl(nl = TRUE, dpar = NULL, resp = NULL)

set_rescor(rescor = TRUE)

set_mecor (mecor

Arguments

formula

flist

dpar

resp

loop

center

cme

= TRUE)

Non-linear formula for a distributional parameter. The name of the distribu-
tional parameter can either be specified on the left-hand side of formula or via
argument dpar.

Additional formula objects to specify predictors of non-linear and distributional
parameters. Formulas can either be named directly or contain names on their
left-hand side. Alternatively, it is possible to fix parameters to certain values by
passing numbers or character strings in which case arguments have to be named
to provide the parameter names. See ’Details’ for more information.

Optional list of formulas, which are treated in the same way as formulas passed
via the . .. argument.

Optional character string specifying the distributional parameter to which the
formulas passed via . .. and flist belong.

Optional character string specifying the response variable to which the formulas
passed via . .. and flist belong. Only relevant in multivariate models.

Logical; Only used in non-linear models. Indicates if the computation of the
non-linear formula should be done inside (TRUE) or outside (FALSE) a loop over
observations. Defaults to TRUE.

Logical; Indicates if the population-level design matrix should be centered,
which usually increases sampling efficiency. See the *Details’ section for more
information. Defaults to TRUE for distributional parameters and to FALSE for
non-linear parameters.

Logical; Indicates whether automatic cell-mean coding should be enabled when
removing the intercept by adding @ to the right-hand of model formulas. De-
faults to TRUE to mirror the behavior of standard R formula parsing.

brmsformula-helpers

sparse

decomp

autocor

nl

rescor

mecor

Value

51

Logical; indicates whether the population-level design matrices should be treated
as sparse (defaults to FALSE). For design matrices with many zeros, this can con-
siderably reduce required memory. Sampling speed is currently not improved or
even slightly decreased.

Optional name of the decomposition used for the population-level design matrix.
Defaults to NULL that is no decomposition. Other options currently available are
"QR" for the QR decomposition that helps in fitting models with highly corre-
lated predictors.

A one sided formula containing autocorrelation terms. All none autocorrelation
terms in autocor will be silently ignored.

Logical; Indicates whether formula should be treated as specifying a non-linear
model. By default, formula is treated as an ordinary linear model formula.

Logical; Indicates if residual correlation between the response variables should
be modeled. Currently this is only possible in multivariate gaussian and student
models. Only relevant in multivariate models.

Logical; Indicates if correlations between latent variables defined by me terms
should be modeled. Defaults to TRUE.

For 1f and nlf a list that can be passed to brmsformula or added to an existing brmsformula
or mvbrmsformula object. For set_nl and set_rescor a logical value that can be added to an
existing brmsformula or mvbrmsformula object.

See Also

brmsformula, mvbrmsformula

Examples

add more formulas to the model

bf(y ~ 1) +

nlf(sigma ~ a * exp(b * x)) +
1If(a~x, b~z + (11g) +

gaussian()

specify 'nl' later on
bf(y ~ a * inv_logit(x * b)) +

1If(a + b ~2z) +

set_nl(TRUE)

specify a multivariate model
bf(yl ~ x + (11g)) +

bf(y2 ~ z) +

set_rescor (TRUE)

add autocorrelation terms
bf(y ~ x) + acformula(~ arma(p = 1, g = 1) + car(W))

52

brmshypothesis

brmshypothesis

Descriptions of brmshypothesis Objects

Description

A brmshypothesis object contains posterior draws as well as summary statistics of non-linear
hypotheses as returned by hypothesis.

Usage

S3 method for class 'brmshypothesis'
print(x, digits = 2, chars = 20, ...)

S3 method for class 'brmshypothesis'

plot(
X y
nvariables =
N = NULL,
ignore_prior
chars = 40,
colors = NULL
theme = NULL,
ask = TRUE,
plot = TRUE,

)

Arguments

X

digits

chars

nvariables

N

ignore_prior

colors

theme

ask

5,

= FALSE,

’

An object of class brmsfit.

Minimal number of significant digits, see print.default.

Maximum number of characters of each hypothesis to print or plot. If NULL,

print the full hypotheses. Defaults to 20.
Currently ignored.
The number of variables (parameters) plotted per page.

Deprecated alias of nvariables.

A flag indicating if prior distributions should also be plotted. Only used if priors

were specified on the relevant parameters.

Two values specifying the colors of the posterior and prior density respectively.
If NULL (the default) colors are taken from the current color scheme of the

bayesplot package.

A theme object modifying the appearance of the plots. For some basic themes

see ggtheme and theme_default.

Logical; indicates if the user is prompted before a new page is plotted. Only

used if plot is TRUE.

brmsterms 53

plot Logical; indicates if plots should be plotted directly in the active graphic device.
Defaults to TRUE.

Details
The two most important elements of a brmshypothesis object are hypothesis, which is a data.frame
containing the summary estimates of the hypotheses, and samples, which is a data.frame containing
the corresponding posterior draws.

See Also

hypothesis

brmsterms Parse Formulas of brms Models

Description

Parse formulas objects for use in brms.

Usage

brmsterms(formula, ...)

Default S3 method:
brmsterms(formula, ...)

S3 method for class 'brmsformula’
brmsterms(formula, check_response = TRUE, resp_rhs_all = TRUE, ...)

S3 method for class 'mvbrmsformula'

brmsterms(formula, ...)
Arguments
formula An object of class formula, brmsformula, or mvbrmsformula (or one that can

be coerced to that classes): A symbolic description of the model to be fitted.
The details of model specification are explained in brmsformula.

Further arguments passed to or from other methods.

check_response Logical; Indicates whether the left-hand side of formula (i.e. response variables
and addition arguments) should be parsed. If FALSE, formula may also be one-
sided.

resp_rhs_all Logical; Indicates whether to also include response variables on the right-hand
side of formula . $allvars, where . represents the output of brmsterms.

54 brm_multiple

Details

This is the main formula parsing function of brms. It should usually not be called directly, but
is exported to allow package developers making use of the formula syntax implemented in brms.
As long as no other packages depend on this functions, it may be changed without deprecation
warnings, when new features make this necessary.

Value

An object of class brmsterms or mvbrmsterms (for multivariate models), which is a 1ist containing
all required information initially stored in formula in an easier to use format, basically a list of
formulas (not an abstract syntax tree).

See Also

brm, brmsformula, mvbrmsformula

brm_multiple Run the same brms model on multiple datasets

Description

Run the same brms model on multiple datasets and then combine the results into one fitted model
object. This is useful in particular for multiple missing value imputation, where the same model is
fitted on multiple imputed data sets. Models can be run in parallel using the future package.

Usage
brm_multiple(
formula,
data,
family = gaussian(),
prior = NULL,
data2 = NULL,

autocor = NULL,
cov_ranef = NULL,

sample_prior = c("no"”, "yes", "only"),
sparse = NULL,
knots = NULL,

stanvars = NULL,
stan_funs = NULL,
silent = 1,
recompile = FALSE,
combine = TRUE,

fit = NA,
algorithm = getOption("brms.algorithm”, "sampling”),
seed = NA,

file = NULL,

brm_multiple

55

file_compress = TRUE,
file_refit = getOption("brms.file_refit”, "never"),

Arguments

formula

data

family

prior

data?2

autocor

cov_ranef

sample_prior

An object of class formula, brmsformula, or mvbrmsformula (or one that can
be coerced to that classes): A symbolic description of the model to be fitted.
The details of model specification are explained in brmsformula.

A list of data.frames each of which will be used to fit a separate model. Alter-
natively, a mids object from the mice package.

A description of the response distribution and link function to be used in the
model. This can be a family function, a call to a family function or a character
string naming the family. Every family function has a 1ink argument allowing to
specify the link function to be applied on the response variable. If not specified,
default links are used. For details of supported families see brmsfamily. By
default, a linear gaussian model is applied. In multivariate models, family
might also be a list of families.

One or more brmsprior objects created by set_prior or related functions and
combined using the ¢ method or the + operator. See also default_prior for
more help.

A list of named lists each of which will be used to fit a separate model. Each
of the named lists contains objects representing data which cannot be passed via
argument data (see brm for examples). The length of the outer list should match
the length of the list passed to the data argument.

(Deprecated) An optional cor_brms object describing the correlation structure
within the response variable (i.e., the "autocorrelation’). See the documentation
of cor_brms for a description of the available correlation structures. Defaults to
NULL, corresponding to no correlations. In multivariate models, autocor might
also be a list of autocorrelation structures. It is now recommend to specify auto-
correlation terms directly within formula. See brmsformula for more details.

(Deprecated) A list of matrices that are proportional to the (within) covariance
structure of the group-level effects. The names of the matrices should corre-
spond to columns in data that are used as grouping factors. All levels of the
grouping factor should appear as rownames of the corresponding matrix. This
argument can be used, among others to model pedigrees and phylogenetic ef-
fects. It is now recommended to specify those matrices in the formula interface
using the gr and related functions. See vignette("brms_phylogenetics")
for more details.

Indicate if draws from priors should be drawn additionally to the posterior draws.
Options are "no” (the default), "yes”, and "only"”. Among others, these draws
can be used to calculate Bayes factors for point hypotheses via hypothesis.
Please note that improper priors are not sampled, including the default improper
priors used by brm. See set_prior on how to set (proper) priors. Please also
note that prior draws for the overall intercept are not obtained by default for
technical reasons. See brmsformula how to obtain prior draws for the intercept.

brm_multiple

If sample_priorissetto "only", draws are drawn solely from the priors ignor-
ing the likelihood, which allows among others to generate draws from the prior
predictive distribution. In this case, all parameters must have proper priors.

sparse (Deprecated) Logical; indicates whether the population-level design matrices
should be treated as sparse (defaults to FALSE). For design matrices with many
zeros, this can considerably reduce required memory. Sampling speed is cur-
rently not improved or even slightly decreased. It is now recommended to use
the sparse argument of brmsformula and related functions.

knots Optional list containing user specified knot values to be used for basis construc-
tion of smoothing terms. See gamm for more details.

stanvars An optional stanvars object generated by function stanvar to define additional
variables for use in Stan’s program blocks.

stan_funs (Deprecated) An optional character string containing self-defined Stan func-
tions, which will be included in the functions block of the generated Stan code.
It is now recommended to use the stanvars argument for this purpose instead.

silent Verbosity level between @ and 2. If 1 (the default), most of the informational
messages of compiler and sampler are suppressed. If 2, even more messages
are suppressed. The actual sampling progress is still printed. Set refresh =0 to
turn this off as well. If using backend = "rstan” you can also set open_progress
= FALSE to prevent opening additional progress bars.

recompile Logical, indicating whether the Stan model should be recompiled for every im-
puted data set. Defaults to FALSE. If NULL, brm_multiple tries to figure out
internally, if recompilation is necessary, for example because data-dependent
priors have changed. Using the default of no recompilation should be fine in
most cases.

combine Logical; Indicates if the fitted models should be combined into a single fitted
model object via combine_models. Defaults to TRUE.

fit An instance of S3 class brmsfit_multiple derived from a previous fit; defaults
to NA. If fit is of class brmsfit_multiple, the compiled model associated with
the fitted result is re-used and all arguments modifying the model code or data
are ignored. It is not recommended to use this argument directly, but to call the
update method, instead.

n

algorithm Character string naming the estimation approach to use. Options are "sampling
for MCMC (the default), "meanfield” for variational inference with indepen-
dent normal distributions, "fullrank” for variational inference with a multi-
variate normal distribution, "pathfinder” for the pathfinder algorithm, "laplace”
for the laplace approximation, or "fixed_param” for sampling from fixed pa-
rameter values. Can be set globally for the current R session via the "brms.algorithm”
option (see options).

seed The seed for random number generation to make results reproducible. If NA (the
default), Stan will set the seed randomly.

file Either NULL or a character string. In the latter case, the fitted model object is
saved via saveRDS in a file named after the string supplied in file. The .rds
extension is added automatically. If the file already exists, brm will load and
return the saved model object instead of refitting the model. Unless you specify

brm_multiple

file_compress

file_refit

Details

57

the file_refit argument as well, the existing files won’t be overwritten, you
have to manually remove the file in order to refit and save the model under an
existing file name. The file name is stored in the brmsfit object for later usage.

Logical or a character string, specifying one of the compression algorithms sup-
ported by saveRDS. If the file argument is provided, this compression will be
used when saving the fitted model object.

Modifies when the fit stored via the file argument is re-used. Can be set glob-
ally for the current R session via the "brms. file_refit” option (see options).
For "never” (default) the fit is always loaded if it exists and fitting is skipped.
For "always” the model is always refitted. If set to "on_change”, brms will
refit the model if model, data or algorithm as passed to Stan differ from what is
stored in the file. This also covers changes in priors, sample_prior, stanvars,
covariance structure, etc. If you believe there was a false positive, you can use
brmsfit_needs_refit to see why refit is deemed necessary. Refit will not be
triggered for changes in additional parameters of the fit (e.g., initial values, num-
ber of iterations, control arguments, ...). A known limitation is that a refit will
be triggered if within-chain parallelization is switched on/off.

Further arguments passed to brm.

The combined model may issue false positive convergence warnings, as the MCMC chains corre-
sponding to different datasets may not necessarily overlap, even if each of the original models did
converge. To find out whether each of the original models converged, subset the draws belonging
to the individual models and then run convergence diagnostics. See Examples below for details.

Value

If combine = TRUE

a brmsfit_multiple object, which inherits from class brmsfit and behaves

essentially the same. If combine = FALSE a list of brmsfit objects.

Examples

Not run:
library(mice)
m<-5

imp <- mice(nhanes2, m = m)

fit the model using mice and 1m
fit_imp1 <- with(Im(bmi ~ age + hyp + chl), data = imp)

summary (pool (fit_

imp1))

fit the model using brms
fit_imp2 <- brm_multiple(bmi ~ age + hyp + chl, data = imp, chains = 1)

summary (fit_imp2)

plot(fit_imp2, variable = "*b_", regex = TRUE)

investigate convergence of the original models
library(posterior)
draws <- as_draws_array(fit_imp2)

58 car

every dataset has just one chain here
draws_per_dat <- lapply(1:m, \(i) subset_draws(draws, chain = i))
lapply(draws_per_dat, summarise_draws, default_convergence_measures())

use the future package for parallelization

library(future)

plan(multisession, workers = 4)

fit_imp3 <- brm_multiple(bmi ~ age + hyp + chl, data = imp, chains = 1)
summary (fit_imp3)

End(Not run)

car Spatial conditional autoregressive (CAR) structures

Description
Set up an spatial conditional autoregressive (CAR) term in brms. The function does not evaluate
its arguments — it exists purely to help set up a model with CAR terms.

Usage
car(M, gr = NA, type = "escar")

Arguments
M Adjacency matrix of locations. All non-zero entries are treated as if the two
locations are adjacent. If gr is specified, the row names of M have to match the
levels of the grouping factor.
gr An optional grouping factor mapping observations to spatial locations. If not
specified, each observation is treated as a separate location. It is recommended
to always specify a grouping factor to allow for handling of new data in post-
processing methods.
type Type of the CAR structure. Currently implemented are "escar” (exact sparse
CAR), "esicar” (exact sparse intrinsic CAR), "icar"” (intrinsic CAR), and
"bym2". More information is provided in the ’Details’ section.
Details

The escar and esicar types are implemented based on the case study of Max Joseph (https://
github.com/mbjoseph/CARstan). The icar and bym2 type is implemented based on the case study
of Mitzi Morris (https://mc-stan.org/users/documentation/case-studies/icar_stan.html).

Value

An object of class 'car_term', which is a list of arguments to be interpreted by the formula parsing
functions of brms.

https://github.com/mbjoseph/CARstan
https://github.com/mbjoseph/CARstan
https://mc-stan.org/users/documentation/case-studies/icar_stan.html

coef.brmsfit 59

See Also

autocor-terms

Examples

Not run:

generate some spatial data
east <- north <- 1:10

Grid <- expand.grid(east, north)
K <- nrow(Grid)

set up distance and neighbourhood matrices
distance <- as.matrix(dist(Grid))

W <- array(@, c(K, K))

W[distance == 1] <- 1

rownames(W) <- T:nrow(W)

generate the covariates and response data
x1 <= rnorm(K)
x2 <= rnorm(K)
theta <- rnorm(K, sd = 0.05)
phi <- rmulti_normal(
1, mu = rep(@, K), Sigma = 0.4 * exp(-0.1 % distance)
)
eta <- x1 + x2 + phi
prob <- exp(eta) / (1 + exp(eta))
size <- rep(50, K)
y <- rbinom(n = K, size = size, prob = prob)
g <- 1:length(y)
dat <- data.frame(y, size, x1, x2, g)

fit a CAR model

fit <- brm(y | trials(size) ~ x1 + x2 + car(W, gr = g),
data = dat, data2 = list(W = W),
family = binomial())

summary (fit)

End(Not run)

coef.brmsfit Extract Model Coefficients

Description

Extract model coefficients, which are the sum of population-level effects and corresponding group-
level effects

60 combine_models

Usage

S3 method for class 'brmsfit'

coef(object, summary = TRUE, robust = FALSE, probs = c(0.025, 0.975), ...)
Arguments

object An object of class brmsfit.

summary Should summary statistics be returned instead of the raw values? Default is

TRUE.
robust If FALSE (the default) the mean is used as the measure of central tendency and

the standard deviation as the measure of variability. If TRUE, the median and the
median absolute deviation (MAD) are applied instead. Only used if summary is
TRUE.

probs The percentiles to be computed by the quantile function. Only used if summary
is TRUE.

Further arguments passed to fixef.brmsfit and ranef.brmsfit.

Value

A list of 3D arrays (one per grouping factor). If summary is TRUE, the 1st dimension contains the
factor levels, the 2nd dimension contains the summary statistics (see posterior_summary), and the
3rd dimension contains the group-level effects. If summary is FALSE, the 1st dimension contains the
posterior draws, the 2nd dimension contains the factor levels, and the 3rd dimension contains the
group-level effects.

Examples

Not run:
fit <- brm(count ~ zAge + zBase * Trt + (1+Trt]|visit),
data = epilepsy, family = gaussian(), chains = 2)
extract population and group-level coefficients separately
fixef(fit)
ranef (fit)
extract combined coefficients
coef (fit)

End(Not run)

combine_models Combine Models fitted with brms

Description

Combine multiple brmsfit objects, which fitted the same model. This is usefully for instance when
having manually run models in parallel.

compare_ic 61

Usage
combine_models(..., mlist = NULL, check_data = TRUE)
Arguments
One or more brmsfit objects.
mlist Optional list of one or more brmsfit objects.
check_data Logical; indicates if the data should be checked for being the same across mod-
els (defaults to TRUE). Setting it to FALSE may be useful for instance when com-
bining models fitted on multiple imputed data sets.
Details

This function just takes the first model and replaces its stanfit object (slot fit) by the combined
stanfit objects of all models.

Value

A brmsfit object.

compare_ic Compare Information Criteria of Different Models

Description

Compare information criteria of different models fitted with waic or loo. Deprecated and will be
removed in the future. Please use 1oo_compare instead.

Usage
compare_ic(..., x = NULL, ic = c("loo", "waic”, "kfold"))
Arguments
At least two objects returned by waic or loo. Alternatively, brmsfit objects
with information criteria precomputed via add_ic may be passed, as well.
X A list containing the same types of objects as can be passed via
ic The name of the information criterion to be extracted from brmsfit objects.
Ignored if information criterion objects are only passed directly.
Details

See 1loo_compare for the recommended way of comparing models with the loo package.

Value

An object of class iclist.

62 conditional_effects.brmsfit

See Also

loo, 1loo_compare add_criterion

Examples

Not run:

model with population-level effects only

fit1l <- brm(rating ~ treat + period + carry,
data = inhaler)

waicl <- waic(fit1)

model with an additional varying intercept for subjects

fit2 <- brm(rating ~ treat + period + carry + (1|subject),
data = inhaler)

waic2 <- waic(fit2)

compare both models
compare_ic(waicl, waic2)

End(Not run)

conditional_effects.brmsfit
Display Conditional Effects of Predictors

Description

Display conditional effects of one or more numeric and/or categorical predictors including two-way
interaction effects.

Usage

S3 method for class 'brmsfit'
conditional_effects(
X,
effects = NULL,
conditions = NULL,
int_conditions = NULL,
re_formula = NA,

prob = 0.95,
robust = TRUE,
method = "posterior_epred”,

spaghetti = FALSE,
surface = FALSE,
categorical = FALSE,
ordinal = FALSE,
transform = NULL,

conditional_effects.brmsfit 63

resolution = 100,

select_points = 0,
too_far
probs =

)

conditional_effects(x, ...)

S3 method for class 'brms_conditional_effects'

plot(
X’

ncol = NULL,

points = getOption("brms.plot_points", FALSE),
rug = getOption("brms.plot_rug"”, FALSE),
mean = TRUE,

jitter_width = 0,

stype = c("contour”, "raster"),
line_args = list(),

cat_args = list(),

errorbar_args = list(),

surface_args = list(),

spaghetti_args = list(),

point_args = list(),

rug_args = list(),

facet_args = list(),

theme = NULL,
ask = TRUE,
plot = TRUE,
)
Arguments
X An object of class brmsfit.
effects An optional character vector naming effects (main effects or interactions) for
which to compute conditional plots. Interactions are specified by a : between
variable names. If NULL (the default), plots are generated for all main effects and
two-way interactions estimated in the model. When specifying effects man-
ually, all two-way interactions (including grouping variables) may be plotted
even if not originally modeled.
conditions An optional data. frame containing variable values to condition on. Each effect

defined in effects will be plotted separately for each row of conditions. Val-
ues in the cond__ column will be used as titles of the subplots. If cond__ is not
given, the row names will be used for this purpose instead. It is recommended
to only define a few rows in order to keep the plots clear. See make_conditions
for an easy way to define conditions. If NULL (the default), numeric variables
will be conditionalized by using their means and factors will get their first level

64

int_conditions

re_formula

prob

robust

method

spaghetti

surface

categorical

ordinal

transform

resolution

select_points

conditional_effects.brmsfit

assigned. NA values within factors are interpreted as if all dummy variables of
this factor are zero. This allows, for instance, to make predictions of the grand
mean when using sum coding.

An optional named 1ist whose elements are vectors of values of the variables
specified in effects. At these values, predictions are evaluated. The names of
int_conditions have to match the variable names exactly. Additionally, the
elements of the vectors may be named themselves, in which case their names
appear as labels for the conditions in the plots. Instead of vectors, functions
returning vectors may be passed and are applied on the original values of the
corresponding variable. If NULL (the default), predictions are evaluated at the
mean and at mean + / — sd for numeric predictors and at all categories for
factor-like predictors.

A formula containing group-level effects to be considered in the conditional
predictions. If NULL, include all group-level effects; if NA (default), include no
group-level effects.

A value between 0 and 1 indicating the desired probability to be covered by the
uncertainty intervals. The default is 0.95.

If TRUE (the default) the median is used as the measure of central tendency. If
FALSE the mean is used instead.

Method used to obtain predictions. Can be set to "posterior_epred” (the de-
fault), "posterior_predict”, or "posterior_linpred”. For more details, see
the respective function documentations.

Logical. Indicates if predictions should be visualized via spaghetti plots. Only
applied for numeric predictors. If TRUE, it is recommended to set argument
ndraws to a relatively small value (e.g., 100) in order to reduce computation
time.

Logical. Indicates if interactions or two-dimensional smooths should be visu-
alized as a surface. Defaults to FALSE. The surface type can be controlled via
argument stype of the related plotting method.

Logical. Indicates if effects of categorical or ordinal models should be shown in
terms of probabilities of response categories. Defaults to FALSE.

(Deprecated) Please use argument categorical. Logical. Indicates if effects in
ordinal models should be visualized as a raster with the response categories on
the y-axis. Defaults to FALSE.

A function or a character string naming a function to be applied on the predicted
responses before summary statistics are computed. Only allowed if method =
"posterior_predict”.

Number of support points used to generate the plots. Higher resolution leads to
smoother plots. Defaults to 100. If surface is TRUE, this implies 10000 support
points for interaction terms, so it might be necessary to reduce resolution
when only few RAM is available.

Positive number. Only relevant if points or rug are set to TRUE: Actual data
points of numeric variables that are too far away from the values specified in
conditions can be excluded from the plot. Values are scaled into the unit inter-
val and then points more than select_points from the values in conditions
are excluded. By default, all points are used.

conditional_effects.brmsfit 65

too_far

probs

ncol

points

rug

mean

jitter_width

stype

line_args

cat_args

errorbar_args

surface_args

spaghetti_args
point_args
rug_args
facet_args

theme

ask

plot

Positive number. For surface plots only: Grid points that are too far away from
the actual data points can be excluded from the plot. too_far determines what
is too far. The grid is scaled into the unit square and then grid points more than
too_far from the predictor variables are excluded. By default, all grid points
are used. Ignored for non-surface plots.

(Deprecated) The quantiles to be used in the computation of uncertainty inter-
vals. Please use argument prob instead.

Further arguments such as draw_ids or ndraws passed to posterior_predict
or posterior_epred.

Number of plots to display per column for each effect. If NULL (default), ncol
is computed internally based on the number of rows of conditions.

Logical. Indicates if the original data points should be added via geom_jitter.
Default is FALSE. Can be controlled globally via the brms.plot_points option.
Note that only those data points will be added that match the specified conditions
defined in conditions. For categorical predictors, the conditions have to match
exactly. For numeric predictors, argument select_points is used to determine,
which points do match a condition.

Logical. Indicates if a rug representation of predictor values should be added
via geom_rug. Default is FALSE. Depends on select_points in the same way
as points does. Can be controlled globally via the brms.plot_rug option.

Logical. Only relevant for spaghetti plots. If TRUE (the default), display the
mean regression line on top of the regression lines for each sample.

Only used if points = TRUE: Amount of horizontal jittering of the data points.
Mainly useful for ordinal models. Defaults to @ that is no jittering.

Indicates how surface plots should be displayed. Either "contour” or "raster"”.

Only used in plots of continuous predictors: A named list of arguments passed
to geom_smooth.

Only used in plots of categorical predictors: A named list of arguments passed
to geom_point.

Only used in plots of categorical predictors: A named list of arguments passed
to geom_errorbar.

Only used in surface plots: A named list of arguments passed to geom_contour
or geom_raster (depending on argument stype).

Only used in spaghetti plots: A named list of arguments passed to geom_smooth.
Only used if points = TRUE: A named list of arguments passed to geom_jitter.
Only used if rug = TRUE: A named list of arguments passed to geom_rug.

Only used if if multiple conditions are provided: A named list of arguments
passed to facet_wrap.

A theme object modifying the appearance of the plots. For some basic themes
see ggtheme and theme_default.

Logical; indicates if the user is prompted before a new page is plotted. Only
used if plot is TRUE.

Logical; indicates if plots should be plotted directly in the active graphic device.
Defaults to TRUE.

66 conditional_effects.brmsfit

Details

When creating conditional_effects for a particular predictor (or interaction of two predictors),
one has to choose the values of all other predictors to condition on. By default, the mean is used
for continuous variables and the reference category is used for factors, but you may change these
values via argument conditions. This also has an implication for the points argument: In the
created plots, only those points will be shown that correspond to the factor levels actually used in
the conditioning, in order not to create the false impression of bad model fit, where it is just due to
conditioning on certain factor levels.

To fully change colors of the created plots, one has to amend both scale_colour and scale_fill.
See scale_colour_grey or scale_colour_gradient for more details.

Value

An object of class 'brms_conditional_effects' which is a named list with one data.frame per
effect containing all information required to generate conditional effects plots. Among others, these
data.frames contain some special variables, namely estimate__ (predicted values of the response),
se__ (standard error of the predicted response), lower__ and upper__ (lower and upper bounds
of the uncertainty interval of the response), as well as cond__ (used in faceting when conditions
contains multiple rows).

The corresponding plot method returns a named list of ggplot objects, which can be further cus-
tomized using the ggplot2 package.

Examples

Not run:
fit <- brm(count ~ zAge + zBase * Trt + (1 | patient),
data = epilepsy, family = poisson())

plot all conditional effects
plot(conditional_effects(fit), ask = FALSE)

change colours to grey scale
library(ggplot2)
ce <- conditional_effects(fit, "zBase:Trt")
plot(ce, plot = FALSE)[[1]1] +
scale_color_grey() +
scale_fill_grey()

only plot the conditional interaction effect of 'zBase:Trt'

for different values for 'zAge'

conditions <- data.frame(zAge = c(-1, 0, 1))

plot(conditional_effects(fit, effects = "zBase:Trt",
conditions = conditions))

also incorporate group-level effects variance over patients
also add data points and a rug representation of predictor values
plot(conditional_effects(fit, effects = "zBase:Trt",
conditions = conditions, re_formula = NULL),
points = TRUE, rug = TRUE)

conditional_smooths.brmsfit 67

change handling of two-way interactions
int_conditions <- list(
zBase = setNames(c(-2, 1, @), c("b", "c", "a"))

)

conditional_effects(fit, effects = "Trt:zBase”,
int_conditions = int_conditions)

conditional_effects(fit, effects = "Trt:zBase",

int_conditions = list(zBase = quantile))

fit a model to illustrate how to plot 3-way interactions
fit3way <- brm(count ~ zAge * zBase * Trt, data = epilepsy)
conditions <- make_conditions(fit3way, "zAge")
conditional_effects(fit3way, "zBase:Trt"”, conditions = conditions)
only include points close to the specified values of zAge
ce <- conditional_effects(

fit3way, "zBase:Trt", conditions = conditions,

select_points = 0.1

)
plot(ce, points = TRUE)

End(Not run)

conditional_smooths.brmsfit
Display Smooth Terms

Description

Display smooth s and t2 terms of models fitted with brms.

Usage

S3 method for class 'brmsfit'
conditional_smooths(
X,
smooths = NULL,
int_conditions = NULL,
prob = 0.95,
spaghetti = FALSE,
resolution = 100,
too_far = 0,
ndraws = NULL,
draw_ids = NULL,
nsamples = NULL,
subset = NULL,
probs = NULL,

68

conditional _smooths.brmsfit

conditional_smooths(x, ...)

Arguments

X

smooths

int_conditions

prob

spaghetti

resolution

too_far

ndraws

draw_ids

nsamples
subset

probs

Details

An object of class brmsfit.

Optional character vector of smooth terms to display. If NULL (the default) all
smooth terms are shown.

An optional named 1ist whose elements are vectors of values of the variables
specified in effects. At these values, predictions are evaluated. The names of
int_conditions have to match the variable names exactly. Additionally, the
elements of the vectors may be named themselves, in which case their names
appear as labels for the conditions in the plots. Instead of vectors, functions
returning vectors may be passed and are applied on the original values of the
corresponding variable. If NULL (the default), predictions are evaluated at the
mean and at mean + / — sd for numeric predictors and at all categories for
factor-like predictors.

A value between 0 and 1 indicating the desired probability to be covered by the
uncertainty intervals. The default is 0.95.

Logical. Indicates if predictions should be visualized via spaghetti plots. Only
applied for numeric predictors. If TRUE, it is recommended to set argument
ndraws to a relatively small value (e.g., 100) in order to reduce computation
time.

Number of support points used to generate the plots. Higher resolution leads to
smoother plots. Defaults to 100. If surface is TRUE, this implies 10000 support
points for interaction terms, so it might be necessary to reduce resolution
when only few RAM is available.

Positive number. For surface plots only: Grid points that are too far away from
the actual data points can be excluded from the plot. too_far determines what
is too far. The grid is scaled into the unit square and then grid points more than
too_far from the predictor variables are excluded. By default, all grid points
are used. Ignored for non-surface plots.

Positive integer indicating how many posterior draws should be used. If NULL
(the default) all draws are used. Ignored if draw_ids is not NULL.

An integer vector specifying the posterior draws to be used. If NULL (the default),
all draws are used.

Deprecated alias of ndraws.
Deprecated alias of draw_ids.

(Deprecated) The quantiles to be used in the computation of uncertainty inter-
vals. Please use argument prob instead.

Currently ignored.

Two-dimensional smooth terms will be visualized using either contour or raster plots.

constant 69

Value

For the brmsfit method, an object of class brms_conditional_effects. See conditional_effects
for more details and documentation of the related plotting function.

Examples

Not run:

set.seed(0)

dat <- mgcv::gamSim(1, n = 200, scale = 2)

fit <= brm(y ~ s(x@) + s(x1) + s(x2) + s(x3), data = dat)

show all smooth terms

plot(conditional_smooths(fit), rug = TRUE, ask = FALSE)

show only the smooth term s(x2)
plot(conditional_smooths(fit, smooths = "s(x2)"), ask = FALSE)

fit and plot a two-dimensional smooth term
fit2 <- brm(y ~ t2(x@, x2), data = dat)

ms <- conditional_smooths(fit2)

plot(ms, stype = "contour")

plot(ms, stype = "raster"”)

End(Not run)

constant Constant priors in brms

Description

Function used to set up constant priors in brms. The function does not evaluate its arguments — it
exists purely to help set up the model.

Usage

constant(const, broadcast = TRUE)

Arguments
const Numeric value, vector, matrix of values to which the parameters should be fixed
to. Can also be a valid Stan variable in the model.
broadcast Should const be automatically broadcasted to the correct size of the parameter?
Defaults to TRUE. If you supply vectors or matrices in const or vector/matrix
valued Stan variables, you need to set broadcast to TRUE (see Examples).
Value

A named list with elements const and broadcast.

70 control_params

See Also

set_prior

Examples

stancode(count ~ Base + Age, data = epilepsy,
prior = prior(constant(1), class = "b"))

will fail parsing because brms will try to broadcast a vector into a vector
stancode(count ~ Base + Age, data = epilepsy,

prior = prior(constant(alpha), class = "b"),

stanvars = stanvar(c(1, @), name = "alpha"))

stancode(count ~ Base + Age, data = epilepsy,
prior = prior(constant(alpha, broadcast = FALSE), class = "b"),
stanvars = stanvar(c(1, @), name = "alpha"))

control_params Extract Control Parameters of the NUTS Sampler

Description

Extract control parameters of the NUTS sampler such as adapt_delta or max_treedepth.

Usage

control_params(x, ...)

S3 method for class 'brmsfit'

control_params(x, pars = NULL, ...)
Arguments
X An R object

Currently ignored.

pars Optional names of the control parameters to be returned. If NULL (the default)
all control parameters are returned. See stan for more details.

Value

A named list with control parameter values.

cor_ar

71

cor_ar

(Deprecated) AR(p) correlation structure

Description

This function is deprecated. Please see ar for the new syntax. This function is a constructor for the
cor_arma class, allowing for autoregression terms only.

Usage

cor_ar(formula

Arguments

formula

cov

Details

=~1, p=1, cov = FALSE)

A one sided formula of the form ~ t, or ~t | g, specifying a time covariate
t and, optionally, a grouping factor g. A covariate for this correlation struc-
ture must be integer valued. When a grouping factor is present in formula, the
correlation structure is assumed to apply only to observations within the same
grouping level; observations with different grouping levels are assumed to be
uncorrelated. Defaults to ~ 1, which corresponds to using the order of the obser-
vations in the data as a covariate, and no groups.

A non-negative integer specifying the autoregressive (AR) order of the ARMA
structure. Default is 1.

A flag indicating whether ARMA effects should be estimated by means of resid-
ual covariance matrices. This is currently only possible for stationary ARMA
effects of order 1. If the model family does not have natural residuals, latent
residuals are added automatically. If FALSE (the default) a regression formula-
tion is used that is considerably faster and allows for ARMA effects of order
higher than 1 but is only available for gaussian models and some of its gener-
alizations.

AR refers to autoregressive effects of residuals, which is what is typically understood as autoregres-
sive effects. However, one may also model autoregressive effects of the response variable, which is
called ARR in brms.

Value

An object of class cor_arma containing solely autoregression terms.

See Also

cor_arma

72

Examples

cor_arma

cor_ar(~visit|patient, p = 2)

cor_arma

(Deprecated) ARMA(p,q) correlation structure

Description

This function is deprecated. Please see arma for the new syntax. This functions is a constructor for
the cor_arma class, representing an autoregression-moving average correlation structure of order

(p. Q).

Usage

cor_arma(formula = ~1, p =0, q =0, r =0, cov = FALSE)

Arguments

formula

cov

Value

A one sided formula of the form ~ t, or ~t | g, specifying a time covariate
t and, optionally, a grouping factor g. A covariate for this correlation struc-
ture must be integer valued. When a grouping factor is present in formula, the
correlation structure is assumed to apply only to observations within the same
grouping level; observations with different grouping levels are assumed to be
uncorrelated. Defaults to ~ 1, which corresponds to using the order of the obser-
vations in the data as a covariate, and no groups.

A non-negative integer specifying the autoregressive (AR) order of the ARMA
structure. Default is 0.

A non-negative integer specifying the moving average (MA) order of the ARMA
structure. Default is O.

No longer supported.

A flag indicating whether ARMA effects should be estimated by means of resid-
ual covariance matrices. This is currently only possible for stationary ARMA
effects of order 1. If the model family does not have natural residuals, latent
residuals are added automatically. If FALSE (the default) a regression formula-
tion is used that is considerably faster and allows for ARMA effects of order
higher than 1 but is only available for gaussian models and some of its gener-
alizations.

An object of class cor_arma, representing an autoregression-moving-average correlation structure.

See Also

cor_ar, cor_ma

cor_brms 73

Examples

cor_arma(~ visit | patient, p =2, q = 2)

cor_brms (Deprecated) Correlation structure classes for the brms package

Description

Classes of correlation structures available in the brms package. cor_brms is not a correlation
structure itself, but the class common to all correlation structures implemented in brms.

Available correlation structures

cor_arma autoregressive-moving average (ARMA) structure, with arbitrary orders for the autore-
gressive and moving average components

cor_ar autoregressive (AR) structure of arbitrary order
cor_ma moving average (MA) structure of arbitrary order
cor_car Spatial conditional autoregressive (CAR) structure
cor_sar Spatial simultaneous autoregressive (SAR) structure

cor_fixed fixed user-defined covariance structure

See Also

cor_arma, cor_ar, cor_ma, cor_car, cor_sar, cor_fixed

cor_car (Deprecated) Spatial conditional autoregressive (CAR) structures

Description

These function are deprecated. Please see car for the new syntax. These functions are constructors
for the cor_car class implementing spatial conditional autoregressive structures.

Usage

cor_car(W, formula = ~1, type = "escar")

cor_icar(W, formula = ~1)

74 cor_car

Arguments
W Adjacency matrix of locations. All non-zero entries are treated as if the two
locations are adjacent. If formula contains a grouping factor, the row names of
W have to match the levels of the grouping factor.
formula An optional one-sided formula of the form ~ 1 | g, where g is a grouping factor
mapping observations to spatial locations. If not specified, each observation is
treated as a separate location. It is recommended to always specify a grouping
factor to allow for handling of new data in post-processing methods.
type Type of the CAR structure. Currently implemented are "escar” (exact sparse
CAR), "esicar” (exact sparse intrinsic CAR), "icar"” (intrinsic CAR), and
"bym2". More information is provided in the 'Details’ section.
Details

The escar and esicar types are implemented based on the case study of Max Joseph (https://
github.com/mbjoseph/CARstan). The icar and bym2 type is implemented based on the case study
of Mitzi Morris (https://mc-stan.org/users/documentation/case-studies/icar_stan.html).

Examples

Not run:

generate some spatial data
east <- north <- 1:10

Grid <- expand.grid(east, north)
K <- nrow(Grid)

set up distance and neighbourhood matrices
distance <- as.matrix(dist(Grid))

W <- array(@, c(K, K))

W[distance == 1] <- 1

generate the covariates and response data
x1 <= rnorm(K)
x2 <= rnorm(K)
theta <- rnorm(K, sd = 0.05)
phi <- rmulti_normal(
1, mu = rep(@, K), Sigma = 0.4 * exp(-0.1 % distance)
)
eta <- x1 + x2 + phi
prob <- exp(eta) / (1 + exp(eta))
size <- rep(50, K)
y <= rbinom(n = K, size = size, prob = prob)
dat <- data.frame(y, size, x1, x2)

fit a CAR model

fit <- brm(y | trials(size) ~ x1 + x2, data = dat,
family = binomial(), autocor = cor_car(W))

summary (fit)

End(Not run)

https://github.com/mbjoseph/CARstan
https://github.com/mbjoseph/CARstan
https://mc-stan.org/users/documentation/case-studies/icar_stan.html

cor_cosy 75

cor_cos eprecate ompoun mmet orrelation Structure
y (Dep d) Compound Symmetry (COSY) Correlation S

Description

This function is deprecated. Please see cosy for the new syntax. This functions is a constructor
for the cor_cosy class, representing a compound symmetry structure corresponding to uniform

correlation.
Usage
cor_cosy(formula = ~1)
Arguments
formula A one sided formula of the form ~ t, or ~t | g, specifying a time covariate
t and, optionally, a grouping factor g. A covariate for this correlation struc-
ture must be integer valued. When a grouping factor is present in formula, the
correlation structure is assumed to apply only to observations within the same
grouping level; observations with different grouping levels are assumed to be
uncorrelated. Defaults to ~ 1, which corresponds to using the order of the obser-
vations in the data as a covariate, and no groups.
Value

An object of class cor_cosy, representing a compound symmetry correlation structure.

Examples

cor_cosy(~ visit | patient)

cor_fixed (Deprecated) Fixed user-defined covariance matrices

Description

This function is deprecated. Please see fcor for the new syntax. Define a fixed covariance matrix
of the response variable for instance to model multivariate effect sizes in meta-analysis.

Usage

cor_fixed(V)

76 cor_ma

Arguments
\% Known covariance matrix of the response variable. If a vector is passed, it will
be used as diagonal entries (variances) and covariances will be set to zero.
Value

An object of class cor_fixed.

Examples

Not run:

dat <- data.frame(y = rnorm(3))

V <- cbind(c(@.5, 0.3, 0.2), c(0.3, 1, 0.1), c(0.2, 0.1, 0.2))
fit <- brm(y~1, data = dat, autocor = cor_fixed(V))

End(Not run)

cor_ma (Deprecated) MA(q) correlation structure

Description

This function is deprecated. Please see ma for the new syntax. This function is a constructor for the
cor_arma class, allowing for moving average terms only.

Usage

cor_ma(formula = ~1, q = 1, cov = FALSE)

Arguments

formula A one sided formula of the form ~ t, or ~t | g, specifying a time covariate
t and, optionally, a grouping factor g. A covariate for this correlation struc-
ture must be integer valued. When a grouping factor is present in formula, the
correlation structure is assumed to apply only to observations within the same
grouping level; observations with different grouping levels are assumed to be
uncorrelated. Defaults to ~ 1, which corresponds to using the order of the obser-
vations in the data as a covariate, and no groups.

q A non-negative integer specifying the moving average (MA) order of the ARMA
structure. Default is 1.

cov A flag indicating whether ARMA effects should be estimated by means of resid-
ual covariance matrices. This is currently only possible for stationary ARMA
effects of order 1. If the model family does not have natural residuals, latent
residuals are added automatically. If FALSE (the default) a regression formula-
tion is used that is considerably faster and allows for ARMA effects of order
higher than 1 but is only available for gaussian models and some of its gener-
alizations.

cor_sar 77

Value

An object of class cor_arma containing solely moving average terms.

See Also

cor_arma

Examples

cor_ma(~visit|patient, q = 2)

cor_sar (Deprecated) Spatial simultaneous autoregressive (SAR) structures

Description

Thse functions are deprecated. Please see sar for the new syntax. These functions are constructors
for the cor_sar class implementing spatial simultaneous autoregressive structures. The lagsar
structure implements SAR of the response values:

y=pWy+n+e
The errorsar structure implements SAR of the residuals:
y=n+u,u=pWu+e

In the above equations, 7 is the predictor term and e are independent normally or t-distributed
residuals.

Usage

cor_sar(W, type = c("lag", "error"))
cor_lagsar (W)

cor_errorsar(W)

Arguments
W An object specifying the spatial weighting matrix. Can be either the spatial
weight matrix itself or an object of class 1istw or nb, from which the spatial
weighting matrix can be computed.
type Type of the SAR structure. Either "lag"” (for SAR of the response values) or
"error"” (for SAR of the residuals).
Details

Currently, only families gaussian and student support SAR structures.

78 cosy

Value

An object of class cor_sar to be used in calls to brm.

Examples

Not run:

data(oldcol, package = "spdep")

fit1 <- brm(CRIME ~ INC + HOVAL, data = COL.OLD,
autocor = cor_lagsar(COL.nb),
chains = 2, cores = 2)

summary (fit1)

plot(fit1)

fit2 <- brm(CRIME ~ INC + HOVAL, data = COL.OLD,
autocor = cor_errorsar(COL.nb),
chains = 2, cores = 2)

summary (fit2)

plot(fit2)

End(Not run)

cosy Set up COSY correlation structures

Description
Set up a compounds symmetry (COSY) term in brms. The function does not evaluate its arguments
— it exists purely to help set up a model with COSY terms.

Usage

cosy(time = NA, gr = NA)

Arguments
time An optional time variable specifying the time ordering of the observations. By
default, the existing order of the observations in the data is used.
gr An optional grouping variable. If specified, the correlation structure is assumed
to apply only to observations within the same grouping level.
Value

An object of class 'cosy_term', which is a list of arguments to be interpreted by the formula
parsing functions of brms.

See Also

autocor-terms

create_priorsense_data.brmsfit 79

Examples

Not run:

data("1lh")

lh <- as.data.frame(lh)

fit <- brm(x ~ cosy(), data = 1lh)
summary (fit)

End(Not run)

create_priorsense_data.brmsfit
Prior sensitivity: Create priorsense data

Description

The create_priorsense_data.brmsfit method can be used to create the data structure needed
by the priorsense package for performing power-scaling sensitivity analysis. This method is called
automatically when performing powerscaling via powerscale or other related functions, so you
will rarely need to call it manually yourself.

Usage
create_priorsense_data.brmsfit(x, ...)
Arguments
X A brmsfit object.
Currently unused.
Value

A priorsense_data object to be used in conjunction with the priorsense package.

Examples

Not run:

fit a model with non-uniform priors

fit <- brm(rating ~ treat + period + carry,
data = inhaler, family = sratio(),
prior = set_prior(”"normal(@, 9.5)"))

summary (fit)

The following code requires the 'priorsense' package to be installed:
library(priorsense)

perform power-scaling of the prior
powerscale(fit, alpha = 1.5, component = "prior")

80 cs

perform power-scaling sensitivity checks
powerscale_sensitivity(fit)

create power-scaling sensitivity plots (for one variable)
powerscale_plot_dens(fit, variable = "b_treat”)

End(Not run)

cs Category Specific Predictors in brms Models

Description

Category Specific Predictors in brms Models

Usage
cs(expr)
Arguments
expr Expression containing predictors, for which category specific effects should be
estimated. For evaluation, R formula syntax is applied.
Details

For detailed documentation see help(brmsformula) as well as vignette("brms_overview").

This function is almost solely useful when called in formulas passed to the brms package.

See Also

brmsformula

Examples

Not run:
fit <- brm(rating ~ period + carry + cs(treat),
data = inhaler, family = sratio("cloglog"),
prior = set_prior("normal(®@,5)"), chains = 2)
summary (fit)
plot(fit, ask = FALSE)

End(Not run)

custom_family 81

custom_family Custom Families in brms Models

Description

Define custom families (i.e. response distribution) for use in brms models. It allows users to benefit
from the modeling flexibility of brms, while applying their self-defined likelihood functions. All
of the post-processing methods for brmsfit objects can be made compatible with custom fami-
lies. See vignette("brms_customfamilies”) for more details. For a list of built-in families see
brmsfamily.

Usage

custom_family(
name,
dpars = "mu",
links = "identity",
type = c("real”, "int"),
1b = NA,
ub = NA,
vars = NULL,
loop = TRUE,
specials = NULL,
threshold = "flexible"”,
log_lik = NULL,
posterior_predict = NULL,
posterior_epred = NULL,
predict = NULL,
fitted = NULL,
env = parent.frame()

)
Arguments

name Name of the custom family.

dpars Names of the distributional parameters of the family. One parameter must be
named "mu” and the main formula of the model will correspond to that parame-
ter.

links Names of the link functions of the distributional parameters.

type Indicates if the response distribution is continuous ("real”) or discrete ("int").
This controls if the corresponding density function will be named with <name>_1pdf
or <name>_1lpmf.

1b Vector of lower bounds of the distributional parameters. Defaults to NA that is
no lower bound.

ub Vector of upper bounds of the distributional parameters. Defaults to NA that is

no upper bound.

82

vars

loop

specials

threshold

log_lik

custom_family

Names of variables that are part of the likelihood function without being distri-
butional parameters. That is, vars can be used to pass data to the likelihood.
Such arguments will be added to the list of function arguments at the end, after
the distributional parameters. See stanvar for details about adding self-defined
data to the generated Stan model. Addition arguments vreal and vint may be
used for this purpose as well (see Examples below). See also brmsformula and
addition-terms for more details.

Logical; Should the likelihood be evaluated via a loop (TRUE; the default) over
observations in Stan? If FALSE, the Stan code will be written in a vectorized
manner over observations if possible.

A character vector of special options to enable for this custom family. Currently
for internal use only.

Optional threshold type for custom ordinal families. Ignored for non-ordinal
families.

Optional function to compute log-likelihood values of the model in R. This is
only relevant if one wants to ensure compatibility with method log_lik.

posterior_predict

posterior_epred

predict
fitted

env

Details

Optional function to compute posterior prediction of the model in R. This is only
relevant if one wants to ensure compatibility with method posterior_predict.

Optional function to compute expected values of the posterior predictive distri-
bution of the model in R. This is only relevant if one wants to ensure compati-
bility with method posterior_epred.

Deprecated alias of ‘posterior_predict®.
Deprecated alias of ‘posterior_epred‘.

An environment in which certain post-processing functions related to the cus-
tom family can be found, if there were not directly passed to custom_family.
This is only relevant if one wants to ensure compatibility with the methods
log_lik, posterior_predict, or posterior_epred. By default, env is the
environment from which custom_family is called.

The corresponding probability density or mass Stan functions need to have the same name as the
custom family. That is if a family is called myfamily, then the Stan functions should be called
myfamily_lpdf or myfamily_lpmf depending on whether it defines a continuous or discrete distri-

bution.

Value

An object of class customfamily inheriting from class brmsfamily.

See Also

brmsfamily, brmsformula, stanvar

custom_family

Examples

Not run:

demonstrate how to fit a beta-binomial model
generate some fake data

phi <- 0.7

n <- 300

z <= rnorm(n, sd = 0.2)

ntrials <- sample(1:10, n, replace = TRUE)
eta<-1+z

mu <- exp(eta) / (1 + exp(eta))

a <- mu * phi

b <- (1 - mu) * phi

p <- rbeta(n, a, b)

y <- rbinom(n, ntrials, p)

dat <- data.frame(y, z, ntrials)

define a custom family

beta_binomial2 <- custom_family(
"beta_binomial2", dpars = c("mu", "phi"),
links = c("logit"”, "log"), 1lb = c(NA, @),
type = "int", vars = "vint1[n]"

)

define the corresponding Stan density function
stan_density <- "
real beta_binomial2_lpmf(int y, real mu, real phi, int N) {
return beta_binomial_lpmf(y | N, mu * phi, (1 - mu) * phi);
}

"

stanvars <- stanvar(scode = stan_density, block = "functions"”)

fit the model
fit <- brm(y | vint(ntrials) ~ z, data = dat,

family = beta_binomial2, stanvars = stanvars)
summary (fit)

define a *vectorized* custom family (no loop over observations)
notice also that 'vint' no longer has an observation index
beta_binomial2_vec <- custom_family(

"beta_binomial2”, dpars = c("mu”, "phi"),

links = c("logit", "log"), 1lb = c(NA, 0),

type = "int", vars = "vint1"”, loop = FALSE
)

define the corresponding Stan density function
stan_density_vec <- "
real beta_binomial2_lpmf(array[] int y, vector mu, real phi, array[] int N) {
return beta_binomial_lpmf(y | N, mu * phi, (1 - mu) * phi);
}

n

stanvars_vec <- stanvar(scode = stan_density_vec, block = "functions")

84 default_prior

fit the model

fit_vec <- brm(y | vint(ntrials) ~ z, data = dat,
family = beta_binomial2_vec,
stanvars = stanvars_vec)

summary (fit_vec)

End(Not run)

default_prior Default priors for Bayesian models

Description

default_prior is a generic function that can be used to get default priors for Bayesian models. Its
original use is within the brms package, but new methods for use with objects from other packages
can be registered to the same generic.

Usage
default_prior(object, ...)
get_prior(formula, ...)
Arguments
object An object whose class will determine which method will be used. A symbolic
description of the model to be fitted.
Further arguments passed to the specific method.
formula Synonym of object for use in get_prior.
Details

See default_prior.default for the default method applied for brms models. You can view the
available methods by typing methods(default_prior).

Value

Usually, a brmsprior object. See default_prior.default for more details.

See Also

set_prior, default_prior.default

default_prior.default 85

Examples

get all parameters and parameters classes to define priors on
(prior <- default_prior(count ~ zAge + zBase * Trt + (1|patient) + (1|obs),
data = epilepsy, family = poisson()))

default_prior.default Default Priors for brms Models

Description

Get information on all parameters (and parameter classes) for which priors may be specified includ-
ing default priors.

Usage

Default S3 method:
default_prior(
object,
data,
family = gaussian(),
autocor = NULL,
data2 = NULL,
knots = NULL,
drop_unused_levels = TRUE,
sparse = NULL,

)
Arguments

object An object of class formula, brmsformula, or mvbrmsformula (or one that can
be coerced to that classes): A symbolic description of the model to be fitted.
The details of model specification are explained in brmsformula.

data An object of class data.frame (or one that can be coerced to that class) con-
taining data of all variables used in the model.

family A description of the response distribution and link function to be used in the
model. This can be a family function, a call to a family function or a character
string naming the family. Every family function has a 1ink argument allowing to
specify the link function to be applied on the response variable. If not specified,
default links are used. For details of supported families see brmsfamily. By
default, a linear gaussian model is applied. In multivariate models, family
might also be a list of families.

autocor (Deprecated) An optional cor_brms object describing the correlation structure

within the response variable (i.e., the *autocorrelation’). See the documentation
of cor_brms for a description of the available correlation structures. Defaults to

86 default_prior.default

NULL, corresponding to no correlations. In multivariate models, autocor might
also be a list of autocorrelation structures. It is now recommend to specify auto-
correlation terms directly within formula. See brmsformula for more details.

data2 A named list of objects containing data, which cannot be passed via argument
data. Required for some objects used in autocorrelation structures to specify
dependency structures as well as for within-group covariance matrices.

knots Optional list containing user specified knot values to be used for basis construc-
tion of smoothing terms. See gamm for more details.

drop_unused_levels
Should unused factors levels in the data be dropped? Defaults to TRUE.

sparse (Deprecated) Logical; indicates whether the population-level design matrices
should be treated as sparse (defaults to FALSE). For design matrices with many
zeros, this can considerably reduce required memory. Sampling speed is cur-
rently not improved or even slightly decreased. It is now recommended to use
the sparse argument of brmsformula and related functions.

Other arguments for internal usage only.

Value

A brmsprior object. That is, a data.frame with specific columns including prior, class, coef,
and group and several rows, each providing information on a parameter (or parameter class) on
which priors can be specified. The prior column is empty except for internal default priors.

See Also

default_prior, set_prior

Examples

get all parameters and parameters classes to define priors on
(prior <- default_prior(count ~ zAge + zBase * Trt + (1|patient) + (1|obs),
data = epilepsy, family = poisson()))

define a prior on all population-level effects a once
prior$prior[1] <- "normal(@,10)"

define a specific prior on the population-level effect of Trt
prior$prior[5] <- "student_t(1@, @, 5)"

verify that the priors indeed found their way into Stan's model code
stancode(count ~ zAge + zBase * Trt + (1|patient) + (1]obs),

data = epilepsy, family = poisson(),

prior = prior)

density_ratio 87

density_ratio Compute Density Ratios

Description

Compute the ratio of two densities at given points based on draws of the corresponding distributions.

Usage
density_ratio(x, y = NULL, point = @, n = 4096, ...)
Arguments

X Vector of draws from the first distribution, usually the posterior distribution of
the quantity of interest.

y Optional vector of draws from the second distribution, usually the prior distri-
bution of the quantity of interest. If NULL (the default), only the density of x will
be evaluated.

point Numeric values at which to evaluate and compare the densities. Defaults to .

n Single numeric value. Influences the accuracy of the density estimation. See
density for details.

Further arguments passed to density.
Details

In order to achieve sufficient accuracy in the density estimation, more draws than usual are required.
That is you may need an effective sample size of 10,000 or more to reliably estimate the densities.

Value

A vector of length equal to length(point). If y is provided, the density ratio of x against y is
returned. Else, only the density of x is returned.

Examples

X <= rnorm(10000)
y <= rnorm(10000, mean = 1)
density_ratio(x, y, point = c(@, 1))

88 diagnostic-quantities

diagnostic-quantities Extract Diagnostic Quantities of brms Models

Description
Extract quantities that can be used to diagnose sampling behavior of the algorithms applied by Stan
at the back-end of brms.
Usage
S3 method for class 'brmsfit'
log_posterior(object, ...)

S3 method for class 'brmsfit'
nuts_params(object, pars = NULL, ...)

S3 method for class 'brmsfit'
rhat(x, pars = NULL, ...)

S3 method for class 'brmsfit'

neff_ratio(object, pars = NULL, ...)
Arguments
object, x A brmsfit object.

Arguments passed to individual methods.

pars An optional character vector of parameter names. For nuts_params these will
be NUTS sampler parameter names rather than model parameters. If pars is
omitted all parameters are included.

Details

For more details see bayesplot-extractors.

Value

The exact form of the output depends on the method.

Examples
Not run:

fit <- brm(time ~ age * sex, data = kidney)

1p <- log_posterior(fit)
head(1p)

np <- nuts_params(fit)
str(np)

Dirichlet 89

extract the number of divergence transitions
sum(subset(np, Parameter == "divergent__")$Value)

head(rhat(fit))
head(neff_ratio(fit))

End(Not run)

Dirichlet The Dirichlet Distribution

Description

Density function and random number generation for the dirichlet distribution with shape parameter
vector alpha.

Usage

ddirichlet(x, alpha, log = FALSE)

rdirichlet(n, alpha)

Arguments
X Matrix of quantiles. Each row corresponds to one probability vector.
alpha Matrix of positive shape parameters. Each row corresponds to one probability
vector.
log Logical; If TRUE, values are returned on the log scale.
n Number of draws to sample from the distribution.
Details

See vignette("brms_families™) for details on the parameterization.

draws-brms Transform brmsfit to draws objects

Description

Transform a brmsfit object to a format supported by the posterior package.

90 draws-brms

Usage

S3 method for class 'brmsfit'
as_draws(x, variable = NULL, regex = FALSE, inc_warmup = FALSE, ...)

S3 method for class 'brmsfit'
as_draws_matrix(x, variable = NULL, regex = FALSE, inc_warmup = FALSE, ...)

S3 method for class 'brmsfit'
as_draws_array(x, variable = NULL, regex = FALSE, inc_warmup = FALSE, ...)

S3 method for class 'brmsfit'
as_draws_df (x, variable = NULL, regex = FALSE, inc_warmup = FALSE, ...)

S3 method for class 'brmsfit'
as_draws_list(x, variable = NULL, regex = FALSE, inc_warmup = FALSE, ...)

S3 method for class 'brmsfit'

as_draws_rvars(x, variable = NULL, regex = FALSE, inc_warmup = FALSE, ...)
Arguments

X A brmsfit object or another R object for which the methods are defined.

variable A character vector providing the variables to extract. By default, all variables

are extracted.

regex Logical; Should variable should be treated as a (vector of) regular expressions?
Any variable in x matching at least one of the regular expressions will be se-
lected. Defaults to FALSE.

inc_warmup Should warmup draws be included? Defaults to FALSE.

Arguments passed to individual methods (if applicable).

Details

To subset iterations, chains, or draws, use the subset_draws method after transforming the brmsfit
to a draws object.

See Also

draws subset_draws

Examples

Not run:
fit <- brm(count ~ zAge + zBase * Trt + (1|patient),
data = epilepsy, family = poisson())

extract posterior draws in an array format
(draws_fit <- as_draws_array(fit))
posterior::summarize_draws(draws_fit)

draws-index-brms

extract only certain variables
as_draws_array(fit, variable = "r_patient")
as_draws_array(fit, variable = "*b_", regex = TRUE)

extract posterior draws in a random variables format
as_draws_rvars(fit)

End(Not run)

draws-index-brms Index brmsfit objects

Description

Index brmsfit objects

Usage

S3 method for class 'brmsfit'
variables(x, ...)

S3 method for class 'brmsfit'
nvariables(x, ...)

S3 method for class 'brmsfit'
niterations(x)

S3 method for class 'brmsfit'
nchains(x)

S3 method for class 'brmsfit'
ndraws (x)
Arguments

X A brmsfit object or another R object for which the methods are defined.

Arguments passed to individual methods (if applicable).

92 emmeans-brms-helpers

emmeans-brms-helpers Support Functions for emmeans

Description

Functions required for compatibility of brms with emmeans. Users are not required to call these
functions themselves. Instead, they will be called automatically by the emmeans function of the
emmeans package.

Usage
recover_data.brmsfit(
object,
data,
resp = NULL,
dpar = NULL,
nlpar = NULL,

re_formula = NA,
epred = FALSE,

)

emm_basis.brmsfit(
object,
trms,
xlev,
grid,
vcov. ,
resp = NULL,
dpar = NULL,
nlpar = NULL,
re_formula = NA,
epred = FALSE,

Arguments

object An object of class brmsfit.
data, trms, xlev, grid, vcov.
Arguments required by emmeans.

resp Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

dpar Optional name of a predicted distributional parameter. If specified, expected
predictions of this parameters are returned.

emmeans-brms-helpers 93

nlpar Optional name of a predicted non-linear parameter. If specified, expected pre-
dictions of this parameters are returned.

re_formula Optional formula containing group-level effects to be considered in the predic-
tion. If NULL, include all group-level effects; if NA (default), include no group-
level effects.

epred Logical. If TRUE compute predictions of the posterior predictive distribution’s
mean (see posterior_epred.brmsfit) while ignoring arguments dpar and
nlpar. Defaults to FALSE. If you have specified a response transformation
within the formula, you need to set epred to TRUE for emmeans to detect this
transformation.

Additional arguments passed to emmeans.

Details

In order to ensure compatibility of most brms models with emmeans, predictions are not generated
’manually’ via a design matrix and coefficient vector, but rather via posterior_linpred.brmsfit.
This appears to generally work well, but note that it produces an ‘. @linfct® slot that contains the
computed predictions as columns instead of the coefficients.

Examples

Not run:

fit1l <- brm(time | cens(censored) ~ age * sex + disease + (1|patient),
data = kidney, family = lognormal())

summary (fit1)

summarize via 'emmeans'
library(emmeans)

rg <- ref_grid(fit1)

em <- emmeans(rg, "disease")
summary(em, point.est = mean)

obtain estimates for the posterior predictive distribution's mean
epred <- emmeans(fitl, "disease”, epred = TRUE)
summary(epred, point.est = mean)

model with transformed response variable
fit2 <- brm(log(mpg) ~ factor(cyl), data = mtcars)
summary (fit2)

results will be on the log scale by default

emmeans(fit2, ~ cyl)

log transform is detected and can be adjusted automatically
emmeans (fit2, ~ cyl, epred = TRUE, type = "response”)

End(Not run)

94 epilepsy

epilepsy Epileptic seizure counts

Description

Breslow and Clayton (1993) analyze data initially provided by Thall and Vail (1990) concerning
seizure counts in a randomized trial of anti-convulsant therapy in epilepsy. Covariates are treatment,
8-week baseline seizure counts, and age of the patients in years.

Usage

epilepsy

Format
A data frame of 236 observations containing information on the following 9 variables.

Age The age of the patients in years

Base The seizure count at 8-weeks baseline

Trt Either @ or 1 indicating if the patient received anti-convulsant therapy
patient The patient number

visit The session number from 1 (first visit) to 4 (last visit)

count The seizure count between two visits

obs The observation number, that is a unique identifier for each observation
zAge Standardized Age

zBase Standardized Base

Source

Thall, P. F., & Vail, S. C. (1990). Some covariance models for longitudinal count data with overdis-
persion. Biometrics, 46(2), 657-671.

Breslow, N. E., & Clayton, D. G. (1993). Approximate inference in generalized linear mixed mod-
els. Journal of the American Statistical Association, 88(421), 9-25.

Examples

Not run:
poisson regression without random effects.
fit1 <- brm(count ~ zAge + zBase * Trt,

data = epilepsy, family = poisson())
summary (fit1)
plot(fit1)

poisson regression with varying intercepts of patients
as well as normal priors for overall effects parameters.

ExGaussian 95

fit2 <- brm(count ~ zAge + zBase * Trt + (1|patient),
data = epilepsy, family = poisson(),
prior = set_prior(”"normal(0,5)"))

summary (fit2)

plot(fit2)

End(Not run)

ExGaussian The Exponentially Modified Gaussian Distribution

Description
Density, distribution function, and random generation for the exponentially modified Gaussian dis-

tribution with mean mu and standard deviation sigma of the gaussian component, as well as scale
beta of the exponential component.

Usage
dexgaussian(x, mu, sigma, beta, log = FALSE)
pexgaussian(q, mu, sigma, beta, lower.tail = TRUE, log.p = FALSE)

rexgaussian(n, mu, sigma, beta)

Arguments
X, q Vector of quantiles.
mu Vector of means of the combined distribution.
sigma Vector of standard deviations of the gaussian component.
beta Vector of scales of the exponential component.
log Logical; If TRUE, values are returned on the log scale.
lower.tail Logical; If TRUE (default), return P(X <= x). Else, return P(X > x) .
log.p Logical; If TRUE, values are returned on the log scale.
n Number of draws to sample from the distribution.
Details

See vignette("brms_families") for details on the parameterization.

96 exppl

expose_functions.brmsfit
Expose user-defined Stan functions

Description

Export user-defined Stan function and optionally vectorize them. For more details see expose_stan_functions.

Usage
S3 method for class 'brmsfit'
expose_functions(x, vectorize = FALSE, env = globalenv(), ...)
expose_functions(x, ...)
Arguments
X An object of class brmsfit.
vectorize Logical; Indicates if the exposed functions should be vectorized via Vectorize.

Defaults to FALSE.

env Environment where the functions should be made available. Defaults to the
global environment.

Further arguments passed to expose_stan_functions.

expp1l Exponential function plus one.

Description

Computes exp(x) + 1.

Usage

expp1(x)

Arguments

X A numeric or complex vector.

family.brmsfit 97

family.brmsfit Extract Model Family Objects

Description

Extract Model Family Objects

Usage
S3 method for class 'brmsfit'
family(object, resp = NULL, ...)
Arguments
object An object of class brmsfit.
resp Optional names of response variables. If specified, predictions are performed

only for the specified response variables.

Currently unused.

Value

A brmsfamily object or a list of such objects for multivariate models.

fcor Fixed residual correlation (FCOR) structures

Description

Set up a fixed residual correlation (FCOR) term in brms. The function does not evaluate its argu-
ments — it exists purely to help set up a model with FCOR terms.

Usage

fcor(M)

Arguments

M Known correlation/covariance matrix of the response variable. If a vector is
passed, it will be used as diagonal entries (variances) and correlations/covariances
will be set to zero. The actual covariance matrix used in the likelihood is ob-
tained by multiplying M by the square of the residual standard deviation param-
eter sigma estimated as part of the model.

98 fitted.brmsfit

Value

An object of class 'fcor_term', which is a list of arguments to be interpreted by the formula
parsing functions of brms.

See Also

autocor-terms

Examples

Not run:

dat <- data.frame(y = rnorm(3))

V <- cbind(c(@.5, 0.3, 0.2), c(0.3, 1, 0.1), c(0.2, 0.1, 0.2))
fit <= brm(y ~ 1 + fcor(V), data = dat, data2 = list(V = V))

End(Not run)

fitted.brmsfit Expected Values of the Posterior Predictive Distribution

Description

This method is an alias of posterior_epred.brmsfit with additional arguments for obtaining
summaries of the computed draws.

Usage

S3 method for class 'brmsfit'
fitted(

object,

newdata = NULL,

re_formula = NULL,

scale = c("response”, "linear"),
resp = NULL,
dpar = NULL,
nlpar = NULL,

ndraws = NULL,

draw_ids = NULL,

sort = FALSE,

summary = TRUE,

robust = FALSE,

probs = c(0.025, 0.975),

fitted.brmsfit

Arguments

object

newdata

re_formula

scale

resp

dpar

nlpar

ndraws

draw_ids

sort

summary

robust

probs

Value

99

An object of class brmsfit.

An optional data.frame for which to evaluate predictions. If NULL (default), the
original data of the model is used. NA values within factors (excluding grouping
variables) are interpreted as if all dummy variables of this factor are zero. This
allows, for instance, to make predictions of the grand mean when using sum
coding. NA values within grouping variables are treated as a new level.

formula containing group-level effects to be considered in the prediction. If
NULL (default), include all group-level effects; if NA or ~@, include no group-
level effects.

Either "response” or "linear”. If "response”, results are returned on the
scale of the response variable. If "1inear”, results are returned on the scale of
the linear predictor term, that is without applying the inverse link function or
other transformations.

Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

Optional name of a predicted distributional parameter. If specified, expected
predictions of this parameters are returned.

Optional name of a predicted non-linear parameter. If specified, expected pre-
dictions of this parameters are returned.

Positive integer indicating how many posterior draws should be used. If NULL
(the default) all draws are used. Ignored if draw_ids is not NULL.

An integer vector specifying the posterior draws to be used. If NULL (the default),
all draws are used.

Logical. Only relevant for time series models. Indicating whether to return
predicted values in the original order (FALSE; default) or in the order of the time
series (TRUE).

Should summary statistics be returned instead of the raw values? Default is
TRUE..

If FALSE (the default) the mean is used as the measure of central tendency and
the standard deviation as the measure of variability. If TRUE, the median and the
median absolute deviation (MAD) are applied instead. Only used if summary is
TRUE.

The percentiles to be computed by the quantile function. Only used if summary
is TRUE.

Further arguments passed to prepare_predictions that control several aspects
of data validation and prediction.

An array of predicted mean response values. If summary = FALSE the output resembles those of
posterior_epred.brmsfit.

If summary = TRUE the output depends on the family: For categorical and ordinal families, the output
is an N x E x C array, where N is the number of observations, E is the number of summary statistics,

100 fixef. brmsfit

and C is the number of categories. For all other families, the output is an N x E matrix. The num-
ber of summary statistics E is equal to 2 + length(probs): The Estimate column contains point
estimates (either mean or median depending on argument robust), while the Est.Error column
contains uncertainty estimates (either standard deviation or median absolute deviation depending on
argument robust). The remaining columns starting with Q contain quantile estimates as specified
via argument probs.

In multivariate models, an additional dimension is added to the output which indexes along the
different response variables.

See Also

posterior_epred.brmsfit

Examples

Not run:

fit a model

fit <- brm(rating ~ treat + period + carry + (1]|subject),
data = inhaler)

compute expected predictions
fitted_values <- fitted(fit)
head(fitted_values)

plot expected predictions against actual response
dat <- as.data.frame(cbind(Y = standata(fit)$Y, fitted_values))
ggplot(dat) + geom_point(aes(x = Estimate, y = Y))

End(Not run)

fixef.brmsfit Extract Population-Level Estimates

Description

Extract the population-level (*fixed’) effects from a brmsfit object.

Usage

S3 method for class 'brmsfit'
fixef(

object,

summary = TRUE,

robust = FALSE,

probs = ¢(0.025, 0.975),

pars = NULL,

Frechet

Arguments

object

summary

robust

probs

pars

Value

101

An object of class brmsfit.

Should summary statistics be returned instead of the raw values? Default is
TRUE.

If FALSE (the default) the mean is used as the measure of central tendency and
the standard deviation as the measure of variability. If TRUE, the median and the
median absolute deviation (MAD) are applied instead. Only used if summary is
TRUE.

The percentiles to be computed by the quantile function. Only used if summary
is TRUE.

Optional names of coefficients to extract. By default, all coefficients are ex-
tracted.

Currently ignored.

If summary is TRUE, a matrix returned by posterior_summary for the population-level effects. If

summary is FALSE,
effect.

Examples

Not run:

fit <- brm(time |
data =

fixef(fit)

a matrix with one row per posterior draw and one column per population-level

cens(censored) ~ age + sex + disease,
kidney, family = "exponential")

extract only some coefficients

fixef(fit, pars =

End(Not run)

c("age”, "sex"))

Frechet

The Frechet Distribution

Description

Density, distribution function, quantile function and random generation for the Frechet distribution
with location loc, scale scale, and shape shape.

Usage

dfrechet(x, loc =

pfrechet(q, loc

@, scale = 1, shape = 1, log = FALSE)

0, scale

1, shape = 1, lower.tail = TRUE, log.p = FALSE)

102 GenExtreme Value

gfrechet(p, loc = @, scale = 1, shape = 1, lower.tail = TRUE, log.p = FALSE)
rfrechet(n, loc = @, scale = 1, shape = 1)
Arguments
X, q Vector of quantiles.
loc Vector of locations.
scale Vector of scales.
shape Vector of shapes.
log Logical; If TRUE, values are returned on the log scale.
lower.tail Logical; If TRUE (default), return P(X <= x). Else, return P(X > x) .
log.p Logical; If TRUE, values are returned on the log scale.
p Vector of probabilities.
n Number of draws to sample from the distribution.
Details

See vignette("brms_families") for details on the parameterization.

GenExtremeValue The Generalized Extreme Value Distribution

Description
Density, distribution function, and random generation for the generalized extreme value distribution
with location mu, scale sigma and shape xi.

Usage

dgen_extreme_value(x, mu = @, sigma = 1, xi = @, log = FALSE)

pgen_extreme_value(

xi =0,
lower.tail = TRUE,
log.p = FALSE

)

ggen_extreme_value(

get_dpar

xi =0,

103

lower.tail = TRUE,

log.p = FALSE

)

rgen_extreme_value(n, mu = @, sigma = 1, xi = 0)

Arguments

X, q

mu

sigma

X1

log
lower.tail
log.p

p

n

Details

Vector of quantiles.

Vector of locations.

Vector of scales.

Vector of shapes.

Logical; If TRUE, values are returned on the log scale.

Logical; If TRUE (default), return P(X <= x). Else, return P(X > x) .
Logical; If TRUE, values are returned on the log scale.

Vector of probabilities.

Number of draws to sample from the distribution.

See vignette("brms_families") for details on the parameterization.

get_dpar

Draws of a Distributional Parameter

Description

Get draws of a distributional parameter from a brmsprep or mvbrmsprep object. This function is
primarily useful when developing custom families or packages depending on brms. This function
lets callers easily handle both the case when the distributional parameter is predicted directly, via a
(non-)linear predictor or fixed to a constant. See the vignette vignette("brms_customfamilies")
for an example use case.

Usage

get_dpar(prep, dpar, i = NULL, inv_link = NULL)

Arguments

prep
dpar
i

inv_link

A ’brmsprep’ or ‘'mvbrmsprep’ object created by prepare_predictions.
Name of the distributional parameter.

The observation numbers for which predictions shall be extracted. If NULL (the
default), all observation will be extracted. Ignored if dpar is not predicted.
Should the inverse link function be applied? If NULL (the default), the value is
chosen internally. In particular, inv_link is TRUE by default for custom fami-
lies.

104 get_refmodel. brmsfit

Value

If the parameter is predicted and i is NULL or length(i) > 1, an S x N matrix. If the parameter it
not predicted or length(i) == 1, a vector of length S. Here S is the number of draws and N is the
number of observations or length of i if specified.

Examples

Not run:

posterior_predict_my_dist <- function(i, prep, ...) {
mu <- brms::get_dpar(prep, "mu”, i = i)
mypar <- brms::get_dpar(prep, "mypar”, i = i)
my_rng(mu, mypar)

3

End(Not run)

get_refmodel.brmsfit Projection Predictive Variable Selection: Get Reference Model

Description

The get_refmodel.brmsfit method can be used to create the reference model structure which is
needed by the projpred package for performing a projection predictive variable selection. This
method is called automatically when performing variable selection via varsel or cv_varsel, so
you will rarely need to call it manually yourself.

Usage

get_refmodel.brmsfit(
object,
newdata = NULL,
resp = NULL,
cvfun = NULL,
dis = NULL,
latent = FALSE,
brms_seed = NULL,

)
Arguments
object An object of class brmsfit.
newdata An optional data.frame for which to evaluate predictions. If NULL (default), the

original data of the model is used. NA values within factors (excluding grouping
variables) are interpreted as if all dummy variables of this factor are zero. This
allows, for instance, to make predictions of the grand mean when using sum
coding. NA values within grouping variables are treated as a new level.

get_refmodel.brmsfit

resp

cvfun

dis

latent

brms_seed

Details

105

Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

Optional cross-validation function (see get_refmodel for details). If NULL (the
default), cvfun is defined internally based on kfold.brmsfit.

Passed to argument dis of init_refmodel, but leave this at NULL unless pro-
Jjpred complains about it.

See argument latent of extend_family. Setting this to TRUE requires a pro-
jpred version >= 2.4.0.

A seed used to infer seeds for kfold.brmsfit and for sampling group-level
effects for new levels (in multilevel models). If NULL, then set.seed is not
called at all. If not NULL, then the pseudorandom number generator (PRNG)
state is reset (to the state before calling this function) upon exiting this function.

Further arguments passed to init_refmodel.

The extract_model_data function used internally by get_refmodel.brmsfit ignores arguments
wrhs and orhs (a warning is thrown if these are non-NULL). For example, arguments weightsnew
and of fsetnew of proj_linpred, proj_predict, and predict.refmodel are passed to wrhs and

orhs, respectively.

Value

A refmodel object to be used in conjunction with the projpred package.

Examples

Not run:

fit a simple model

fit <- brm(count
data =
summary (fit)

~ zAge + zBase * Trt,
epilepsy, family = poisson())

The following code requires the 'projpred' package to be installed:

library(projpred)

perform variable selection without cross-validation

vs <- varsel(fit)
summary (vs)
plot(vs)

perform variable selection with cross-validation

cv_vs <- cv_varse
summary (cv_vs)
plot(cv_vs)

End(Not run)

1(fit)

106 ap

gp Set up Gaussian process terms in brms

Description

Set up a Gaussian process (GP) term in brms. The function does not evaluate its arguments — it
exists purely to help set up a model with GP terms.

Usage
gp(
by = NA,
k = NA,
cov = "exp_quad”,
iso = TRUE,
gr = TRUE,
cme = TRUE,
scale = TRUE,
c =5/4
)
Arguments
One or more predictors for the GP.
by A numeric or factor variable of the same length as each predictor. In the numeric
vector case, the elements multiply the values returned by the GP. In the factor
variable case, a separate GP is fitted for each factor level.
k Optional number of basis functions for computing Hilbert-space approximate
GPs. If NA (the default), exact GPs are computed.
cov Name of the covariance kernel. Currently supported are "exp_quad” (exponentiated-
quadratic kernel; default), "matern32” (Matern 3/2 kernel), "matern52" (Matern
5/2 kernel), and "exponential” (exponential kernel).
iso A flag to indicate whether an isotropic (TRUE; the default) or a non-isotropic GP
should be used. In the former case, the same amount of smoothing is applied
to all predictors. In the latter case, predictors may have different smoothing.
Ignored if only a single predictor is supplied.
gr Logical; Indicates if auto-grouping should be used (defaults to TRUE). If enabled,
observations sharing the same predictor values will be represented by the same
latent variable in the GP. This will improve sampling efficiency drastically if
the number of unique predictor combinations is small relative to the number of
observations.
cme Logical; Only relevant if by is a factor. If TRUE (the default), cell-mean coding

is used for the by-factor, that is one GP per level is estimated. If FALSE, contrast
GPs are estimated according to the contrasts set for the by-factor.

gp 107

scale Logical; If TRUE (the default), predictors are scaled so that the maximum Eu-
clidean distance between two points is 1. This often improves sampling speed
and convergence. Scaling also affects the estimated length-scale parameters in
that they resemble those of scaled predictors (not of the original predictors) if
scale is TRUE.

c Numeric value only used in approximate GPs. Defines the multiplicative con-
stant of the predictors’ range over which predictions should be computed. A
good default could be ¢ = 5/4 but we are still working on providing better rec-
ommendations.

Details

A GP is a stochastic process, which describes the relation between one or more predictors z =
(21, ...,24) and a response f(z), where d is the number of predictors. A GP is the generalization of
the multivariate normal distribution to an infinite number of dimensions. Thus, it can be interpreted
as a prior over functions. The values of f() at any finite set of locations are jointly multivariate
normal, with a covariance matrix defined by the covariance kernel k,(z;, z;), where p is the vector
of parameters of the GP:

(f(@1), .- f(@n) ~ MVN(O, (kp(i, 25))i j=1)-

The smoothness and general behavior of the function f depends only on the choice of covariance
kernel. For a more detailed introduction to Gaussian processes, see https://en.wikipedia.org/
wiki/Gaussian_process.

For mathematical details on the supported kernels, please see the Stan manual: https://mc-stan.
org/docs/functions-reference/matrix_operations.html under "Gaussian Process Covari-
ance Functions".

Value

An object of class 'gp_term', which is a list of arguments to be interpreted by the formula parsing
functions of brms.

See Also

brmsformula

Examples

Not run:
simulate data using the mgcv package
dat <- mgcv::gamSim(1, n = 30, scale = 2)

fit a simple GP model

fitl <- brm(y ~ gp(x2), dat, chains = 2)

summary (fit1)

mel <- conditional_effects(fitl, ndraws = 200, spaghetti = TRUE)
plot(mel, ask = FALSE, points = TRUE)

fit a more complicated GP model and use an approximate GP for x2

https://en.wikipedia.org/wiki/Gaussian_process
https://en.wikipedia.org/wiki/Gaussian_process
https://mc-stan.org/docs/functions-reference/matrix_operations.html
https://mc-stan.org/docs/functions-reference/matrix_operations.html

108 gar

fit2 <- brm(y ~ gp(x0) + x1 + gp(x2, k = 10) + x3, dat, chains = 2)
summary (fit2)

me2 <- conditional_effects(fit2, ndraws = 200, spaghetti = TRUE)
plot(me2, ask = FALSE, points = TRUE)

fit a multivariate GP model with Matern 3/2 kernel

fit3 <- brm(y ~ gp(x1, x2, cov = "matern32"), dat, chains = 2)
summary (fit3)

me3 <- conditional_effects(fit3, ndraws = 200, spaghetti = TRUE)
plot(me3, ask = FALSE, points = TRUE)

compare model fit
loo(fit1, fit2, fit3)

simulate data with a factor covariate
dat2 <- mgcv::gamSim(4, n = 90, scale = 2)

fit separate gaussian processes for different levels of 'fac'
fit4 <- brm(y ~ gp(x2, by = fac), dat2, chains = 2)

summary (fit4)

plot(conditional_effects(fit4), points = TRUE)

End(Not run)

gr Set up basic grouping terms in brms

Description

Function used to set up a basic grouping term in brms. The function does not evaluate its arguments
— it exists purely to help set up a model with grouping terms. gr is called implicitly inside the
package and there is usually no need to call it directly.

Usage
gr(..., by = NULL, cor = TRUE, id = NA, cov = NULL, dist = "gaussian")
Arguments
One or more terms containing grouping factors.
by An optional factor variable, specifying sub-populations of the groups. For each
level of the by variable, a separate variance-covariance matrix will be fitted.
Levels of the grouping factor must be nested in levels of the by variable.
cor Logical. If TRUE (the default), group-level terms will be modelled as correlated.
id Optional character string. All group-level terms across the model with the same

id will be modeled as correlated (if cor is TRUE). See brmsformula for more
details.

horseshoe 109

cov An optional matrix which is proportional to the withon-group covariance matrix
of the group-level effects. All levels of the grouping factor should appear as row-
names of the corresponding matrix. This argument can be used, among others, to
model pedigrees and phylogenetic effects. See vignette("brms_phylogenetics")
for more details. By default, levels of the same grouping factor are modeled as
independent of each other.

dist Name of the distribution of the group-level effects. Currently "gaussian” is the
only option.

See Also

brmsformula

Examples

Not run:

model using basic 1lme4-style formula

fitl <= brm(count ~ Trt + (1|patient), data = epilepsy)
summary (fit1)

equivalent model using 'gr' which is called anyway internally
fit2 <- brm(count ~ Trt + (1|gr(patient)), data = epilepsy)
summary (fit2)

include Trt as a by variable
fit3 <- brm(count ~ Trt + (1|gr(patient, by = Trt)), data = epilepsy)
summary (fit3)

End(Not run)

horseshoe Regularized horseshoe priors in brms

Description

Function used to set up regularized horseshoe priors and related hierarchical shrinkage priors in
brms. The function does not evaluate its arguments — it exists purely to help set up the model.

Usage

horseshoe(
df =1,
scale_global = 1,
df_global = 1,
scale_slab = 2,
df_slab = 4,

par_ratio = NULL,

110 horseshoe

autoscale = TRUE,
main = FALSE

Arguments

df Degrees of freedom of student-t prior of the local shrinkage parameters. Defaults
to 1.

scale_global Scale of the student-t prior of the global shrinkage parameter. Defaults to 1.
In linear models, scale_global will internally be multiplied by the residual
standard deviation parameter sigma.

df_global Degrees of freedom of student-t prior of the global shrinkage parameter. De-
faults to 1. If df_global is greater 1, the shape of the prior will no longer
resemble a horseshoe and it may be more appropriately called an hierarchical
shrinkage prior in this case.

scale_slab Scale of the Student-t slab. Defaults to 2. The original unregularized horseshoe
prior is obtained by setting scale_slab to infinite, which we can approximate
in practice by setting it to a very large real value.

df_slab Degrees of freedom of the student-t slab. Defaults to 4.

par_ratio Ratio of the expected number of non-zero coefficients to the expected number of
zero coefficients. If specified, scale_global is ignored and internally computed
as par_ratio / sqrt(N), where N is the total number of observations in the
data.

autoscale Logical; indicating whether the horseshoe prior should be scaled using the resid-
ual standard deviation sigma if possible and sensible (defaults to TRUE). Au-
toscaling is not applied for distributional parameters or when the model does
not contain the parameter sigma.

main Logical (defaults to FALSE); only relevant if the horseshoe prior spans multiple
parameter classes. In this case, only arguments given in the single instance
where main is TRUE will be used. Arguments given in other instances of the
prior will be ignored. See the Examples section below.

Details

The horseshoe prior is a special shrinkage prior initially proposed by Carvalho et al. (2009). It
is symmetric around zero with fat tails and an infinitely large spike at zero. This makes it ideal
for sparse models that have many regression coefficients, although only a minority of them is non-
zero. The horseshoe prior can be applied on all population-level effects at once (excluding the
intercept) by using set_prior("horseshoe(1)"). The 1 implies that the student-t prior of the local
shrinkage parameters has 1 degrees of freedom. This may, however, lead to an increased number
of divergent transition in Stan. Accordingly, increasing the degrees of freedom to slightly higher
values (e.g., 3) may often be a better option, although the prior no longer resembles a horseshoe in
this case. Further, the scale of the global shrinkage parameter plays an important role in amount
of shrinkage applied. It defaults to 1, but this may result in too few shrinkage (Piironen & Vehtari,
2016). It is thus possible to change the scale using argument scale_global of the horseshoe
prior, for instance horseshoe(1, scale_global =0.5). In linear models, scale_global will
internally be multiplied by the residual standard deviation parameter sigma. See Piironen and

horseshoe 111

Vehtari (2016) for recommendations how to properly set the global scale. The degrees of freedom
of the global shrinkage prior may also be adjusted via argument df _global. Piironen and Vehtari
(2017) recommend to specifying the ratio of the expected number of non-zero coefficients to the
expected number of zero coefficients par_ratio rather than scale_global directly. As proposed
by Piironen and Vehtari (2017), an additional regularization is applied that only affects non-zero
coefficients. The amount of regularization can be controlled via scale_slab and df_slab. To
make sure that shrinkage can equally affect all coefficients, predictors should be one the same
scale. Generally, models with horseshoe priors a more likely than other models to have divergent
transitions so that increasing adapt_delta from 0.8 to values closer to 1 will often be necessary.
See the documentation of brm for instructions on how to increase adapt_delta.

The prior does not account for scale differences of the terms it is applied on. Accordingly, please
make sure that all these terms have a comparable scale to ensure that shrinkage is applied properly.

Currently, the following classes support the horseshoe prior: b (overall regression coefficients), sds
(SDs of smoothing splines), sdgp (SDs of Gaussian processes), ar (autoregressive coefficients), ma
(moving average coefficients), sderr (SD of latent residuals), sdcar (SD of spatial CAR structures),
sd (SD of varying coefficients).

Value

A character string obtained by match.call() with additional arguments.

References

Carvalho, C. M., Polson, N. G., & Scott, J. G. (2009). Handling sparsity via the horseshoe. Artificial
Intelligence and Statistics. http://proceedings.mlr.press/v5/carvalho@9a

Piironen J. & Vehtari A. (2017). On the Hyperprior Choice for the Global Shrinkage Parame-
ter in the Horseshoe Prior. Artificial Intelligence and Statistics. https://arxiv.org/pdf/1610.
05559v1

Piironen, J., and Vehtari, A. (2017). Sparsity information and regularization in the horseshoe and
other shrinkage priors. Electronic Journal of Statistics. https://arxiv.org/abs/1707.01694

See Also

set_prior

Examples

set_prior(horseshoe(df = 3, par_ratio = 0.1))

specify the horseshoe prior across multiple parameter classes
set_prior(horseshoe(df = 3, par_ratio = 0.1, main = TRUE), class = "b") +
set_prior(horseshoe(), class = "sd")

http://proceedings.mlr.press/v5/carvalho09a
https://arxiv.org/pdf/1610.05559v1
https://arxiv.org/pdf/1610.05559v1
https://arxiv.org/abs/1707.01694

112 Hurdle

Hurdle Hurdle Distributions

Description

Density and distribution functions for hurdle distributions.

Usage
dhurdle_poisson(x, lambda, hu, log = FALSE)
phurdle_poisson(q, lambda, hu, lower.tail = TRUE, log.p = FALSE)
dhurdle_negbinomial(x, mu, shape, hu, log = FALSE)
phurdle_negbinomial(q, mu, shape, hu, lower.tail = TRUE, log.p = FALSE)
dhurdle_gamma(x, shape, scale, hu, log = FALSE)
phurdle_gamma(q, shape, scale, hu, lower.tail = TRUE, log.p = FALSE)
dhurdle_lognormal(x, mu, sigma, hu, log = FALSE)

phurdle_lognormal(qg, mu, sigma, hu, lower.tail = TRUE, log.p = FALSE)

Arguments
X Vector of quantiles.
hu hurdle probability
log Logical; If TRUE, values are returned on the log scale.
q Vector of quantiles.
lower.tail Logical; If TRUE (default), return P(X <= x). Else, return P(X > x) .
log.p Logical; If TRUE, values are returned on the log scale.
mu, lambda location parameter
shape shape parameter
sigma, scale scale parameter

Details

The density of a hurdle distribution can be specified as follows. If 2 = 0 set f(z) = 6. Else set
fl@)=(1-0)xg(x)/(1 — G(0)) where g(z) and G(x) are the density and distribution function
of the non-hurdle part, respectively.

hypothesis.brmsfit

113

hypothesis.brmsfit Non-Linear Hypothesis Testing

Description

Perform non-linear hypothesis testing for all model parameters.

Usage

S3 method for class 'brmsfit'

hypothesis(
X,
hypothesis,
class = "b",

nn

group = ,

scope = c("standard”, "ranef”, "coef"),

alpha = 0.05,

robust = FALSE,

seed = NULL,

)

hypothesis(x,

.2

Default S3 method:

hypothesis(x, hypothesis, alpha = 0.05, robust = FALSE, ...)
Arguments
X An R object. If it is no brmsfit object, it must be coercible to a data. frame.

hypothesis

class

group

scope

In the latter case, the variables used in the hypothesis argument need to corre-
spond to column names of x, while the rows are treated as representing posterior
draws of the variables.

A character vector specifying one or more non-linear hypothesis concerning
parameters of the model.

A string specifying the class of parameters being tested. Default is "b" for
population-level effects. Other typical options are "sd" or "cor". If class =
NULL, all parameters can be tested against each other, but have to be specified
with their full name (see also variables)

Name of a grouping factor to evaluate only group-level effects parameters re-
lated to this grouping factor.

Indicates where to look for the variables specified in hypothesis. If "standard”,
use the full parameter names (subject to the restriction given by class and
group). If "coef” or "ranef”, compute the hypothesis for all levels of the
grouping factor given in "group”, based on the output of coef.brmsfit and
ranef.brmsfit, respectively.

114 hypothesis.brmsfit

alpha The alpha-level of the tests (default is 0.05; see ’Details’ for more information).

robust If FALSE (the default) the mean is used as the measure of central tendency and
the standard deviation as the measure of variability. If TRUE, the median and the
median absolute deviation (MAD) are applied instead.

seed A single numeric value passed to set.seed to make results reproducible.

Currently ignored.

Details

Among others, hypothesis computes an evidence ratio (Evid.Ratio) for each hypothesis. For a
one-sided hypothesis, this is just the posterior probability (Post.Prob) under the hypothesis against
its alternative. That is, when the hypothesis is of the form a > b, the evidence ratio is the ratio of the
posterior probability of a > b and the posterior probability of a < b. In this example, values greater
than one indicate that the evidence in favor of a > b is larger than evidence in favor of a <b. For
an two-sided (point) hypothesis, the evidence ratio is a Bayes factor between the hypothesis and its
alternative computed via the Savage-Dickey density ratio method. That is the posterior density at
the point of interest divided by the prior density at that point. Values greater than one indicate that
evidence in favor of the point hypothesis has increased after seeing the data. In order to calculate
this Bayes factor, all parameters related to the hypothesis must have proper priors and argument
sample_prior of function brm must be set to "yes". Otherwise Evid.Ratio (and Post.Prob) will
be NA. Please note that, for technical reasons, we cannot sample from priors of certain parameters
classes. Most notably, these include overall intercept parameters (prior class "Intercept”) as
well as group-level coefficients. When interpreting Bayes factors, make sure that your priors are
reasonable and carefully chosen, as the result will depend heavily on the priors. In particular, avoid
using default priors.

The Evid.Ratio may sometimes be @ or Inf implying very small or large evidence, respectively, in
favor of the tested hypothesis. For one-sided hypotheses pairs, this basically means that all posterior
draws are on the same side of the value dividing the two hypotheses. In that sense, instead of @ or
Inf, you may rather read it as Evid.Ratio smaller 1 / S or greater S, respectively, where S denotes
the number of posterior draws used in the computations.

The argument alpha specifies the size of the credible interval (i.e., Bayesian confidence interval).
For instance, if we tested a two-sided hypothesis and set alpha = 0.05 (5%) an, the credible interval
will contain 1 - alpha = @.95 (95%) of the posterior values. Hence, alpha * 100% of the posterior
values will lie outside of the credible interval. Although this allows testing of hypotheses in a
similar manner as in the frequentist null-hypothesis testing framework, we strongly argue against
using arbitrary cutoffs (e.g., p < . 05) to determine the ’existence’ of an effect.

Value

A brmshypothesis object.

Author(s)

Paul-Christian Buerkner <paul .buerkner@gmail . com>

See Also

brmshypothesis

inhaler 115

Examples

Not run:

define priors

prior <- c(set_prior(”"normal(@,2)", class = "b"),
set_prior("student_t(10,0,1)", class = "sigma"),
set_prior(”"student_t(10,0,1)", class = "sd"))

fit a linear mixed effects models

fit <- brm(time ~ age + sex + disease + (1 + age|patient),
data = kidney, family = lognormal(),
prior = prior, sample_prior = "yes",
control = list(adapt_delta = 0.95))

perform two-sided hypothesis testing
(hyp1 <- hypothesis(fit, "sexfemale = age + diseasePKD"))
plot(hyp1)

hypothesis(fit, "exp(age) - 3 = 0", alpha

0.01)

perform one-sided hypothesis testing
hypothesis(fit, "diseasePKD + diseaseGN - 3 < @")

hypothesis(fit, "age < Intercept”,
class = "sd"”, group = "patient”)

test the amount of random intercept variance on all variance

h <- paste("sd_patient__Intercept*2 / (sd_patient__Intercept”2 +",
"sd_patient__age*2 + sigma“2) = 0")

(hyp2 <- hypothesis(fit, h, class = NULL))

plot(hyp2)

test more than one hypothesis at once

h <- c("diseaseGN = diseaseAN"”, "2 * diseaseGN - diseasePKD = 0")
(hyp3 <- hypothesis(fit, h))

plot(hyp3, ignore_prior = TRUE)

compute hypotheses for all levels of a grouping factor
hypothesis(fit, "age = 0", scope = "coef”, group = "patient”)

use the default method
dat <- as.data.frame(fit)
str(dat)

hypothesis(dat, "b_age > 0")

End(Not run)

inhaler Clarity of inhaler instructions

116 inhaler

Description

Ezzet and Whitehead (1991) analyze data from a two-treatment, two-period crossover trial to com-
pare 2 inhalation devices for delivering the drug salbutamol in 286 asthma patients. Patients were
asked to rate the clarity of leaflet instructions accompanying each device, using a 4-point ordinal
scale.

Usage

inhaler

Format

A data frame of 572 observations containing information on the following 5 variables.

subject The subject number

rating The rating of the inhaler instructions on a scale ranging from 1 to 4
treat A contrast to indicate which of the two inhaler devices was used
period A contrast to indicate the time of administration

carry A contrast to indicate possible carry over effects

Source

Ezzet, F., & Whitehead, J. (1991). A random effects model for ordinal responses from a crossover
trial. Statistics in Medicine, 10(6), 901-907.

Examples

Not run:
ordinal regression with family "sratio”
fitl <- brm(rating ~ treat + period + carry,
data = inhaler, family = sratio(),
prior = set_prior(”normal(@,5)"))
summary (fit1)
plot(fit1)
ordinal regression with family "cumulative”
and random intercept over subjects
fit2 <- brm(rating ~ treat + period + carry + (1|subject),
data = inhaler, family = cumulative(),
prior = set_prior(”"normal(9,5)"))
summary (fit2)
plot(fit2)

End(Not run)

InvGaussian 117

InvGaussian The Inverse Gaussian Distribution

Description

Density, distribution function, and random generation for the inverse Gaussian distribution with
location mu, and shape shape.

Usage

dinv_gaussian(x, mu shape = 1, log = FALSE)

1
i

pinv_gaussian(q, mu shape = 1, lower.tail = TRUE, log.p = FALSE)

1
-

rinv_gaussian(n, mu = 1, shape = 1)

Arguments
X, q Vector of quantiles.
mu Vector of locations.
shape Vector of shapes.
log Logical; If TRUE, values are returned on the log scale.
lower.tail Logical; If TRUE (default), return P(X <= x). Else, return P(X > x) .
log.p Logical; If TRUE, values are returned on the log scale.
n Number of draws to sample from the distribution.
Details

See vignette("brms_families") for details on the parameterization.

inv_logit_scaled Scaled inverse logit-link

Description

Computes inv_logit(x) * (ub - 1b) + 1b

Usage

inv_logit_scaled(x, 1b = @, ub = 1)

118 is.brmsfit_multiple

Arguments
X A numeric or complex vector.
1b Lower bound defaulting to 0.
ub Upper bound defaulting to 1.
Value

A numeric or complex vector between 1b and ub.

is.brmsfit Checks if argument is a brmsfit object

Description

Checks if argument is a brmsfit object

Usage

is.brmsfit(x)

Arguments

X An R object

is.brmsfit_multiple Checks if argument is a brmsfit_multiple object

Description

Checks if argument is a brmsfit_multiple object

Usage

is.brmsfit_multiple(x)

Arguments

X An R object

is.brmsformula 119

is.brmsformula Checks if argument is a brmsformula object

Description

Checks if argument is a brmsformula object

Usage

is.brmsformula(x)

Arguments
X An R object
is.brmsprior Checks if argument is a brmsprior object
Description

Checks if argument is a brmsprior object

Usage

is.brmsprior(x)

Arguments
X An R object
is.brmsterms Checks if argument is a brmsterms object
Description

Checks if argument is a brmsterms object

Usage

is.brmsterms(x)

Arguments

X An R object

See Also

brmsterms

120 is.mvbrmsformula

is.cor_brms Check if argument is a correlation structure

Description

Check if argument is one of the correlation structures used in brms.

Usage

is.cor_brms(x)
is.cor_arma(x)
is.cor_cosy(x)
is.cor_sar(x)
is.cor_car(x)

is.cor_fixed(x)

Arguments
X An R object.
is.mvbrmsformula Checks if argument is a mvbrmsformula object
Description

Checks if argument is a mvbrmsformula object

Usage

is.mvbrmsformula(x)

Arguments

X An R object

is.mvbrmsterms 121

is.mvbrmsterms Checks if argument is a mvbrmsterms object

Description

Checks if argument is a mvbrmsterms object

Usage

is.mvbrmsterms(x)

Arguments

X An R object

See Also

brmsterms

kfold.brmsfit K-Fold Cross-Validation

Description

Perform exact K-fold cross-validation by refitting the model K times each leaving out one-K'th of
the original data. Folds can be run in parallel using the future package.

Usage
S3 method for class 'brmsfit'
kfold(
X’
K =10,
Ksub = NULL,
folds = NULL,
group = NULL,

joint = FALSE,
compare = TRUE,

resp = NULL,
model_names = NULL,
save_fits = FALSE,
recompile = NULL,
future_args = list()

122

Arguments

X

Ksub

folds

group

joint

compare
resp
model_names

save_fits

recompile

future_args

Details

kfold.brmsfit

A brmsfit object.
Further arguments passed to brm.

The number of subsets of equal (if possible) size into which the data will be
partitioned for performing K-fold cross-validation. The model is refit K times,
each time leaving out one of the K subsets. If K is equal to the total number
of observations in the data then K-fold cross-validation is equivalent to exact
leave-one-out cross-validation.

Optional number of subsets (of those subsets defined by K) to be evaluated. If
NULL (the default), K -fold cross-validation will be performed on all subsets.
If Ksub is a single integer, Ksub subsets (out of all K) subsets will be randomly
chosen. If Ksub consists of multiple integers or a one-dimensional array (created
via as.array) potentially of length one, the corresponding subsets will be used.
This argument is primarily useful, if evaluation of all subsets is infeasible for
some reason.

Determines how the subsets are being constructed. Possible values are NULL
(the default), "stratified"”, "grouped”, or "loo". May also be a vector of
length equal to the number of observations in the data. Alters the way group is
handled. More information is provided in the *Details’ section.

Optional name of a grouping variable or factor in the model. What exactly
is done with this variable depends on argument folds. More information is
provided in the *Details’ section.

Indicates which observations’ log likelihoods shall be considered jointly in the
ELPD computation. If "obs" or FALSE (the default), each observation is consid-
ered separately. This enables comparability of kfold with loo. If "fold", the
joint log likelihoods per fold are used. If "group”, the joint log likelihoods per
group within folds are used (only available if argument group is specified).

A flag indicating if the information criteria of the models should be compared
to each other via 1loo_compare.

Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

If NULL (the default) will use model names derived from deparsing the call. Oth-
erwise will use the passed values as model names.

If TRUE, a component fits is added to the returned object to store the cross-
validated brmsfit objects and the indices of the omitted observations for each
fold. Defaults to FALSE.

Logical, indicating whether the Stan model should be recompiled. This may be
necessary if you are running reloo on another machine than the one used to fit
the model.

A list of further arguments passed to future for additional control over parallel
execution if activated.

The kfold function performs exact K -fold cross-validation. First the data are partitioned into K
folds (i.e. subsets) of equal (or as close to equal as possible) size by default. Then the model is refit

kfold.brmsfit 123

K times, each time leaving out one of the K subsets. If K is equal to the total number of observations
in the data then K-fold cross-validation is equivalent to exact leave-one-out cross-validation (to
which loo is an efficient approximation). The compare_ic function is also compatible with the
objects returned by kfold.

The subsets can be constructed in multiple different ways:

o If both folds and group are NULL, the subsets are randomly chosen so that they have equal
(or as close to equal as possible) size.

» If folds is NULL but group is specified, the data is split up into subsets, each time omitting all
observations of one of the factor levels, while ignoring argument K.

» If folds = "stratified” the subsets are stratified after group using loo: :kfold_split_stratified.
* If folds = "grouped” the subsets are split by group using loo: :kfold_split_grouped.

* If folds = "loo" exact leave-one-out cross-validation will be performed and K will be ignored.
Further, if group is specified, all observations corresponding to the factor level of the currently
predicted single value are omitted. Thus, in this case, the predicted values are only a subset of
the omitted ones.

* If folds is a numeric vector, it must contain one element per observation in the data. Each
element of the vector is an integer in 1:K indicating to which of the K folds the corresponding
observation belongs. There are some convenience functions available in the loo package that
create integer vectors to use for this purpose (see the Examples section below and also the
kfold-helpers page).

When running kfold on a brmsfit created with the cmdstanr backend in a different R session,
several recompilations will be triggered because by default, cmdstanr writes the model executable
to a temporary directory. To avoid that, set option "cmdstanr_write_stan_file_dir"” to a non-
temporary path of your choice before creating the original brmsfit (see section ’Examples’ below).

Value

kfold returns an object that has a similar structure as the objects returned by the loo and waic
methods and can be used with the same post-processing functions.

See Also

loo, reloo

Examples

Not run:

fit1 <- brm(count ~ zAge + zBase * Trt + (1|patient) + (1|obs),
data = epilepsy, family = poisson())

throws warning about some pareto k estimates being too high

(lool <- loo(fit1))

perform 10-fold cross validation

(kfoldl <- kfold(fit1, chains = 1))

use joint likelihoods per fold for ELPD evaluation
kfold(fit1, chains = 1, joint = "fold")

124 kfold_predict

use the future package for parallelization of models

that is to fit models belonging to different folds in parallel
library(future)

plan(multisession, workers = 4)

kfold(fit1, chains = 1)

plan(sequential)

to avoid recompilations when running kfold() on a 'cmdstanr'-backend fit
in a fresh R session, set option 'cmdstanr_write_stan_file_dir' before
creating the initial 'brmsfit'
CAUTION: the following code creates some files in the current working
directory: two 'model_<hash>.stan' files, one 'model_<hash>(.exe)'
executable, and one 'fit_cmdstanr_<some_number>.rds' file
set.seed(7)
fname <- paste@("fit_cmdstanr_", sample.int(.Machine$integer.max, 1))
options(cmdstanr_write_stan_file_dir = getwd())
fit_cmdstanr <- brm(rate ~ conc + state, data = Puromycin,

backend = "cmdstanr”, file = fname)

now restart the R session and run the following (after attaching 'brms')
set.seed(7)
fname <- paste@("fit_cmdstanr_", sample.int(.Machine$integer.max, 1))
fit_cmdstanr <- brm(rate ~ conc + state,

data = Puromycin,

backend = "cmdstanr”,

file = fname)
kfold_cmdstanr <- kfold(fit_cmdstanr, K = 2)

n

End(Not run)

kfold_predict Predictions from K-Fold Cross-Validation

Description

Compute and evaluate predictions after performing K-fold cross-validation via kfold.

Usage
kfold_predict(x, method = "posterior_predict”, resp = NULL, ...)
Arguments
X Object of class 'kfold' computed by kfold. For kfold_predict to work, the
fitted model objects need to have been stored via argument save_fits of kfold.
method Method used to obtain predictions. Can be set to "posterior_predict” (the

default), "posterior_epred”, or "posterior_linpred”. For more details, see
the respective function documentations.

kidney 125

resp Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

Further arguments passed to prepare_predictions that control several aspects
of data validation and prediction.

Value

A list with two slots named 'y' and 'yrep'. Slot y contains the vector of observed responses.
Slot yrep contains the matrix of predicted responses, with rows being posterior draws and columns
being observations.

See Also
kfold

Examples

Not run:
fit <- brm(count ~ zBase * Trt + (1|patient),
data = epilepsy, family = poisson())

perform k-fold cross validation
(kf <- kfold(fit, save_fits = TRUE, chains = 1))

define a loss function

rmse <- function(y, yrep) {
yrep_mean <- colMeans(yrep)
sqrt(mean((yrep_mean - y)*2))

3

predict responses and evaluate the loss
kfp <- kfold_predict(kf)
rmse(y = kfp$y, yrep = kfp$yrep)

End(Not run)

kidney Infections in kidney patients

Description

This dataset, originally discussed in McGilchrist and Aisbett (1991), describes the first and second

(possibly right censored) recurrence time of infection in kidney patients using portable dialysis

equipment. In addition, information on the risk variables age, sex and disease type is provided.
Usage

kidney

126 lasso

Format
A data frame of 76 observations containing information on the following 7 variables.

time The time to first or second recurrence of the infection, or the time of censoring

recur A factor of levels 1 or 2 indicating if the infection recurred for the first or second time for
this patient

censored Either @ or 1, where @ indicates no censoring of recurrence time and 1 indicates right
censoring

patient The patient number

age The age of the patient

sex The sex of the patient

disease A factor of levels other, GN, AN, and PKD specifying the type of disease

Source

McGilchrist, C. A., & Aisbett, C. W. (1991). Regression with frailty in survival analysis. Biomet-
rics, 47(2), 461-466.

Examples

Not run:

performing surivival analysis using the "weibull” family

fit1l <- brm(time | cens(censored) ~ age + sex + disease,
data = kidney, family = weibull, init = "0@")

summary (fit1)

plot(fit1)

adding random intercepts over patients

fit2 <- brm(time | cens(censored) ~ age + sex + disease + (1|patient),
data = kidney, family = weibull(), init = "0@",
prior = set_prior(”cauchy(0,2)", class = "sd"))

summary (fit2)

plot(fit2)

End(Not run)

lasso (Defunct) Set up a lasso prior in brms

Description
This functionality is no longer supported as of brms version 2.19.2. Please use the horseshoe or
R2D2 shrinkage priors instead.

Usage

lasso(df = 1, scale = 1)

launch_shinystan.brmsfit 127

Arguments
df Degrees of freedom of the chi-square prior of the inverse tuning parameter. De-
faults to 1.
scale Scale of the lasso prior. Defaults to 1.
Value

An error indicating that the lasso prior is no longer supported.

References
Park, T., & Casella, G. (2008). The Bayesian Lasso. Journal of the American Statistical Associa-
tion, 103(482), 681-686.

See Also

set_prior, horseshoe, R2D2

launch_shinystan.brmsfit
Interface to shinystan

Description

Provide an interface to shinystan for models fitted with brms

Usage
launch_shinystan.brmsfit(object, rstudio = getOption(”shinystan.rstudio”), ...)
Arguments
object A fitted model object typically of class brmsfit.
rstudio Only relevant for RStudio users. The default (rstudio=FALSE) is to launch the
app in the default web browser rather than RStudio’s pop-up Viewer. Users can
change the default to TRUE by setting the global option
options(shinystan.rstudio = TRUE).
Optional arguments to pass to runApp
Value

An S4 shinystan object

See Also

launch_shinystan

128 LogisticNormal

Examples

Not run:

fit <- brm(rating ~ treat + period + carry + (1]|subject),
data = inhaler, family = "gaussian")

launch_shinystan(fit)

End(Not run)

LogisticNormal The (Multivariate) Logistic Normal Distribution

Description

Density function and random generation for the (multivariate) logistic normal distribution with
latent mean vector mu and covariance matrix Sigma.

Usage

1, log = FALSE, check = FALSE)

dlogistic_normal(x, mu, Sigma, refcat

rlogistic_normal(n, mu, Sigma, refcat = 1, check = FALSE)

Arguments
X Vector or matrix of quantiles. If x is a matrix, each row is taken to be a quantile.
mu Mean vector with length equal to the number of dimensions.
Sigma Covariance matrix.
refcat A single integer indicating the reference category. Defaults to 1.
log Logical; If TRUE, values are returned on the log scale.
check Logical; Indicates whether several input checks should be performed. Defaults

to FALSE to improve efficiency.

n Number of draws to sample from the distribution.

logit_scaled 129
logit_scaled Scaled logit-link
Description
Computes logit((x - 1b) / (ub - 1b))
Usage
logit_scaled(x, 1b = @, ub = 1)
Arguments
X A numeric or complex vector.
1b Lower bound defaulting to .
ub Upper bound defaulting to 1.
Value
A numeric or complex vector.
logm1 Logarithm with a minus one offset.
Description
Computes log(x - 1).
Usage
logm1(x, base = exp(1))
Arguments
X A numeric or complex vector.
base A positive or complex number: the base with respect to which logarithms are

computed. Defaults to e = exp(1).

130

log_lik.brmsfit

log_lik.brmsfit

Compute the Pointwise Log-Likelihood

Description

Compute the Pointwise Log-Likelihood

Usage

S3 method for class 'brmsfit'

log_lik(
object,
newdata

re_formula
resp = NULL,
NULL,

ndraws =

NULL,
NULL,

draw_ids = NULL,

pointwise

FALSE,

combine = TRUE,
add_point_estimate = FALSE,

cores =

Arguments

object
newdata

re_formula

resp

ndraws

draw_ids

pointwise

A fitted model object of class brmsfit.

An optional data.frame for which to evaluate predictions. If NULL (default), the
original data of the model is used. NA values within factors (excluding grouping
variables) are interpreted as if all dummy variables of this factor are zero. This
allows, for instance, to make predictions of the grand mean when using sum
coding. NA values within grouping variables are treated as a new level.

formula containing group-level effects to be considered in the prediction. If
NULL (default), include all group-level effects; if NA or ~@, include no group-
level effects.

Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

Positive integer indicating how many posterior draws should be used. If NULL
(the default) all draws are used. Ignored if draw_ids is not NULL.

An integer vector specifying the posterior draws to be used. If NULL (the default),
all draws are used.

A flag indicating whether to compute the full log-likelihood matrix at once (the
default), or just return the likelihood function along with all data and draws
required to compute the log-likelihood separately for each observation. The
latter option is rarely useful when calling log_lik directly, but rather when
computing waic or loo.

loo.brmsfit 131

combine Only relevant in multivariate models. Indicates if the log-likelihoods of the sub-
models should be combined per observation (i.e. added together; the default) or
if the log-likelihoods should be returned separately.

add_point_estimate
For internal use only. Ensures compatibility with the loo_subsample method.

cores Number of cores (defaults to 1). On non-Windows systems, this argument can
be set globally via the mc. cores option.

Further arguments passed to prepare_predictions that control several aspects
of data validation and prediction.

Details

NA values within factors in newdata, are interpreted as if all dummy variables of this factor are zero.
This allows, for instance, to make predictions of the grand mean when using sum coding.

In multilevel models, it is possible to allow new levels of grouping factors to be used in the pre-
dictions. This can be controlled via argument allow_new_levels. New levels can be sampled
in multiple ways, which can be controlled via argument sample_new_levels. Both of these ar-
guments are documented in prepare_predictions along with several other useful arguments to
control specific aspects of the predictions.

Value

Usually, an S x N matrix containing the pointwise log-likelihood draws, where S is the number of
draws and N is the number of observations in the data. For multivariate models and if combine is
FALSE, an S x N x R array is returned, where R is the number of response variables. If pointwise
= TRUE, the output is a function with a draws attribute containing all relevant data and posterior
draws.

loo.brmsfit Efficient approximate leave-one-out cross-validation (LOO)

Description

Perform approximate leave-one-out cross-validation based on the posterior likelihood using the loo
package. For more details see 1oo.

Usage

S3 method for class 'brmsfit'
loo(
X,

compare = TRUE,

resp = NULL,
pointwise = FALSE,
moment_match = FALSE,

132 loo.brmsfit

reloo = FALSE,

k_threshold = 0.7,
save_psis = FALSE,
moment_match_args = list(),
reloo_args = list(),
model_names = NULL

)
Arguments

X A brmsfit object.
More brmsfit objects or further arguments passed to the underlying post-processing
functions. In particular, see prepare_predictions for further supported argu-
ments.

compare A flag indicating if the information criteria of the models should be compared
to each other via 1oo_compare.

resp Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

pointwise A flag indicating whether to compute the full log-likelihood matrix at once or

separately for each observation. The latter approach is usually considerably
slower but requires much less working memory. Accordingly, if one runs into
memory issues, pointwise = TRUE is the way to go.

moment_match Logical; Indicate whether 1loo_moment_match should be applied on problem-
atic observations. Defaults to FALSE. For most models, moment matching will
only work if you have set save_pars = save_pars(all = TRUE) when fitting
the model with brm. See 1oo_moment_match.brmsfit for more details.

reloo Logical; Indicate whether reloo should be applied on problematic observations.
Defaults to FALSE.

k_threshold The Pareto k£ threshold for which observations 1oo_moment_match or reloo
is applied if argument moment_match or reloo is TRUE. Defaults to @.7. See
pareto_k_ids for more details.

save_psis Should the "psis” object created internally be saved in the returned object? For
more details see 1oo.

moment_match_args
Optional named 1ist of additional arguments passed to loo_moment_match.

reloo_args Optional named list of additional arguments passed to reloo. This can be
useful, among others, to control how many chains, iterations, etc. to use for the
fitted sub-models.

model_names If NULL (the default) will use model names derived from deparsing the call. Oth-
erwise will use the passed values as model names.
Details

See loo_compare for details on model comparisons. For brmsfit objects, LOO is an alias of 1oo.
Use method add_criterion to store information criteria in the fitted model object for later usage.

loo_compare.brmsfit 133

Value

If just one object is provided, an object of class 1oo. If multiple objects are provided, an object of
class loolist.

References

Vehtari, A., Gelman, A., & Gabry J. (2016). Practical Bayesian model evaluation using leave-
one-out cross-validation and WAIC. In Statistics and Computing, doi:10.1007/s11222-016-9696-4.
arXiv preprint arXiv:1507.04544.

Gelman, A., Hwang, J., & Vehtari, A. (2014). Understanding predictive information criteria for
Bayesian models. Statistics and Computing, 24, 997-1016.

Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely applicable
information criterion in singular learning theory. The Journal of Machine Learning Research, 11,
3571-3594.

Examples

Not run:

model with population-level effects only

fitl <- brm(rating ~ treat + period + carry,
data = inhaler)

(lool <- loo(fit1))

model with an additional varying intercept for subjects

fit2 <- brm(rating ~ treat + period + carry + (1|subject),
data = inhaler)

(loo2 <- loo(fit2))

compare both models
loo_compare(lool, loo2)

End(Not run)

loo_compare.brmsfit Model comparison with the loo package

Description

For more details see 1oo_compare.

Usage

S3 method for class 'brmsfit'
loo_compare(x, ..., criterion = c("loo"”, "waic", "kfold"), model_names = NULL)

134 loo_model_weights.brmsfit

Arguments
X A brmsfit object.
More brmsfit objects.
criterion The name of the criterion to be extracted from brmsfit objects.
model_names If NULL (the default) will use model names derived from deparsing the call. Oth-
erwise will use the passed values as model names.
Details

All brmsfit objects should contain precomputed criterion objects. See add_criterion for more
help.

Value

An object of class "compare.loo".

Examples

Not run:

model with population-level effects only

fitl <- brm(rating ~ treat + period + carry,
data = inhaler)

fitl <- add_criterion(fit1, "waic")

model with an additional varying intercept for subjects

fit2 <- brm(rating ~ treat + period + carry + (1|subject),
data = inhaler)

fit2 <- add_criterion(fit2, "waic")

compare both models
loo_compare(fitl, fit2, criterion = "waic")

End(Not run)

loo_model_weights.brmsfit
Model averaging via stacking or pseudo-BMA weighting.

Description
Compute model weights for brmsfit objects via stacking or pseudo-BMA weighting. For more
details, see 1oo: : 1loo_model_weights.

Usage

S3 method for class 'brmsfit'
loo_model_weights(x, ..., model_names = NULL)

loo_moment_match.brmsfit 135

Arguments
X A brmsfit object.
More brmsfit objects or further arguments passed to the underlying post-processing
functions. In particular, see prepare_predictions for further supported argu-
ments.
model_names If NULL (the default) will use model names derived from deparsing the call. Oth-
erwise will use the passed values as model names.
Value

A named vector of model weights.

Examples

Not run:
model with population-level effects only
fitl <- brm(rating ~ treat + period + carry,
data = inhaler, family = "gaussian")
model with an additional varying intercept for subjects
fit2 <- brm(rating ~ treat + period + carry + (1|subject),
data = inhaler, family = "gaussian")
loo_model_weights(fit1, fit2)

End(Not run)

loo_moment_match.brmsfit

Moment matching for efficient approximate leave-one-out cross-
validation

Description

Moment matching for efficient approximate leave-one-out cross-validation (LOO-CV). See 1loo_moment_match
for more details.

Usage

S3 method for class 'brmsfit'
loo_moment_match(

X7

loo = NULL,

k_threshold = 0.7,

newdata = NULL,

resp = NULL,

check = TRUE,

recompile = FALSE,

136

)

loo_moment_match.brmsfit

S3 method for class 'loo'
loo_moment_match(x, fit, ...)

Arguments

X

loo

k_threshold

newdata

resp

check

recompile

fit

Details

An R object of class brmsfit or 1loo depending on the method.

An R object of class 1oo. If NULL, brms will try to extract a precomputed loo
object from the fitted model, added there via add_criterion.

The Pareto k threshold for which observations moment matching is applied.
Defaults to @.7. See pareto_k_ids for more details.

An optional data.frame for which to evaluate predictions. If NULL (default), the
original data of the model is used. NA values within factors (excluding grouping
variables) are interpreted as if all dummy variables of this factor are zero. This
allows, for instance, to make predictions of the grand mean when using sum
coding. NA values within grouping variables are treated as a new level.

Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

Logical; If TRUE (the default), some checks check are performed if the 1oo object
was generated from the brmsfit object passed to argument fit.

Logical, indicating whether the Stan model should be recompiled. This may be
necessary if you are running moment matching on another machine than the one
used to fit the model. No recompilation is done by default.

Further arguments passed to the underlying methods. Additional arguments ini-
tially passed to loo, for example, newdata or resp need to be passed again to
loo_moment_match in order for the latter to work correctly.

An R object of class brmsfit.

The moment matching algorithm requires draws of all variables defined in Stan’s parameters block
to be saved. Otherwise loo_moment_match cannot be computed. Thus, please set save_pars =
save_pars(all = TRUE) in the call to brm, if you are planning to apply loo_moment_match to your

models.

Value

An updated object of class 1oo.

References

Paananen, T., Piironen, J., Buerkner, P.-C., Vehtari, A. (2021). Implicitly Adaptive Importance
Sampling. Statistics and Computing.

loo_predict.brmsfit 137

Examples

Not run:

fitl <- brm(count ~ zAge + zBase * Trt + (1|patient),
data = epilepsy, family = poisson(),
save_pars = save_pars(all = TRUE))

throws warning about some pareto k estimates being too high
(lool <- loo(fit1))

no more warnings after moment matching
(mmlool <- loo_moment_match(fitl, loo = lool))

End(Not run)

loo_predict.brmsfit Compute Weighted Expectations Using LOO

Description

These functions are wrappers around the E_loo function of the loo package.

Usage

S3 method for class 'brmsfit'
loo_predict(
object,
type = c("mean”, "var", "quantile"),
probs = 0.5,
psis_object = NULL,
resp = NULL,

S3 method for class 'brmsfit'
loo_epred(
object,
type = c("mean”, "var", "quantile"),
probs = 0.5,
psis_object = NULL,
resp = NULL,

loo_epred(object, ...)

S3 method for class 'brmsfit'

138 loo_predict.brmsfit

loo_linpred(

object,
type = c("mean”, "var", "quantile"),
probs = 0.5,
psis_object = NULL,
resp = NULL,
)
S3 method for class 'brmsfit'
loo_predictive_interval(object, prob = 0.9, psis_object = NULL, ...)
Arguments
object An object of class brmsfit.
type The statistic to be computed on the results. Can by either "mean” (default),
"var”, or "quantile”.
probs A vector of quantiles to compute. Only used if type = quantile.
psis_object An optional object returned by psis. If psis_object is missing then psis is
executed internally, which may be time consuming for models fit to very large
datasets.
resp Optional names of response variables. If specified, predictions are performed

only for the specified response variables.

Optional arguments passed to the underlying methods that is log_lik, as well
as posterior_predict, posterior_epred or posterior_linpred.

prob For loo_predictive_interval, a scalar in (0, 1) indicating the desired proba-
bility mass to include in the intervals. The default is prob = 0.9 (90% intervals).

Value

loo_predict, loo_epred, loo_linpred, and loo_predictive_interval all return a matrix with
one row per observation and one column per summary statistic as specified by arguments type and
probs. In multivariate or categorical models a third dimension is added to represent the response
variables or categories, respectively.

loo_predictive_interval(..., prob =p) isequivalent to loo_predict(..., type = "quantile”,
probs =c(a, 1-a)) witha=(1-p)/2.

Examples
Not run:
data from help("lm")
ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)

d <- data.frame(

weight = c(ctl, trt),

group = gl(2, 10, 20, labels = c("Ctl", "Trt"))
)
fit <- brm(weight ~ group, data = d)

loo_R2.brmsfit 139

loo_predictive_interval(fit, prob = 0.8)

optionally log-weights can be pre-computed and reused
psis <- loo::psis(-log_lik(fit), cores = 2)
loo_predictive_interval(fit, prob = 0.8, psis_object = psis)
loo_predict(fit, type = "var"”, psis_object = psis)
loo_epred(fit, type = "var", psis_object = psis)

End(Not run)

loo_R2.brmsfit Compute a LOO-adjusted R-squared for regression models

Description

Compute a LOO-adjusted R-squared for regression models

Usage

S3 method for class 'brmsfit'
loo_R2(

object,

resp = NULL,

summary = TRUE,

robust = FALSE,

probs = c(0.025, 0.975),

)
Arguments

object An object of class brmsfit.

resp Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

summary Should summary statistics be returned instead of the raw values? Default is
TRUE.

robust If FALSE (the default) the mean is used as the measure of central tendency and
the standard deviation as the measure of variability. If TRUE, the median and the
median absolute deviation (MAD) are applied instead. Only used if summary is
TRUE.

probs The percentiles to be computed by the quantile function. Only used if summary
is TRUE.

Further arguments passed to posterior_epred and log_lik, which are used in
the computation of the R-squared values.

140 loo_subsample.brmsfit

Value

If summary = TRUE, an M x C matrix is returned (M = number of response variables and ¢ =
length(probs) + 2) containing summary statistics of the LOO-adjusted R-squared values. If summary
= FALSE, the posterior draws of the LOO-adjusted R-squared values are returned in an S x M matrix
(S is the number of draws).

Examples

Not run:

fit <- brm(mpg ~ wt + cyl, data = mtcars)
summary (fit)

loo_R2(fit)

compute R2 with new data
nd <- data.frame(mpg = c(10, 20, 30), wt = c(4, 3, 2), cyl = c(8, 6, 4))
loo_R2(fit, newdata = nd)

End(Not run)

loo_subsample.brmsfit Efficient approximate leave-one-out cross-validation (LOO) using
subsampling

Description

Efficient approximate leave-one-out cross-validation (LOO) using subsampling

Usage

S3 method for class 'brmsfit'
loo_subsample(x, ..., compare = TRUE, resp = NULL, model_names = NULL)

Arguments

X A brmsfit object.

More brmsfit objects or further arguments passed to the underlying post-processing
functions. In particular, see prepare_predictions for further supported argu-
ments.

compare A flag indicating if the information criteria of the models should be compared
to each other via 1loo_compare.

resp Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

model_names If NULL (the default) will use model names derived from deparsing the call. Oth-
erwise will use the passed values as model names.

loss 141

Details

More details can be found on loo_subsample.

Examples

Not run:

model with population-level effects only

fitl <- brm(rating ~ treat + period + carry,
data = inhaler)

(loo1 <- loo_subsample(fit1))

model with an additional varying intercept for subjects

fit2 <- brm(rating ~ treat + period + carry + (1|subject),
data = inhaler)

(loo2 <- loo_subsample(fit2))

compare both models
loo_compare(lool, loo2)

End(Not run)

loss Cumulative Insurance Loss Payments

Description

This dataset, discussed in Gesmann & Morris (2020), contains cumulative insurance loss payments
over the course of ten years.

Usage

loss

Format
A data frame of 55 observations containing information on the following 4 variables.
AY Origin year of the insurance (1991 to 2000)
dev Deviation from the origin year in months

cum Cumulative loss payments

premium Achieved premiums for the given origin year

Source

Gesmann M. & Morris J. (2020). Hierarchical Compartmental Reserving Models. CAS Research
Papers.

142 ma

Examples

Not run:
non-linear model to predict cumulative loss payments
fit_loss <- brm(
bf(cum ~ ult * (1 - exp(-(dev/theta)“omega)),
ult ~ 1 + (1]AY), omega ~ 1, theta ~ 1,

nl = TRUE),

data = loss, family = gaussian(),

prior = c(
prior(normal (5000, 1000), nlpar = "ult"),
prior(normal(1, 2), nlpar = "omega"),
prior(normal(45, 10), nlpar = "theta")

),

control = list(adapt_delta = 0.9)

)

basic summaries
summary (fit_loss)
conditional_effects(fit_loss)

plot predictions per origin year
conditions <- data.frame(AY = unique(loss$AY))
rownames (conditions) <- unique(loss$AY)
me_loss <- conditional_effects(
fit_loss, conditions = conditions,
re_formula = NULL, method = "predict”

)
plot(me_loss, ncol = 5, points = TRUE)

End(Not run)

ma Set up MA(q) correlation structures

Description

Set up a moving average (MA) term of order q in brms. The function does not evaluate its argu-
ments — it exists purely to help set up a model with MA terms.

Usage

ma(time = NA, gr = NA, g = 1, cov = FALSE)

Arguments

time An optional time variable specifying the time ordering of the observations. By
default, the existing order of the observations in the data is used.

make_conditions

gr

cov

Value

143

An optional grouping variable. If specified, the correlation structure is assumed
to apply only to observations within the same grouping level.

A non-negative integer specifying the moving average (MA) order of the ARMA
structure. Default is 1.

A flag indicating whether ARMA effects should be estimated by means of resid-
ual covariance matrices. This is currently only possible for stationary ARMA
effects of order 1. If the model family does not have natural residuals, latent
residuals are added automatically. If FALSE (the default), a regression formu-
lation is used that is considerably faster and allows for ARMA effects of order
higher than 1 but is only available for gaussian models and some of its gener-
alizations.

An object of class 'arma_term', which is a list of arguments to be interpreted by the formula
parsing functions of brms.

See Also

autocor-terms, arma, ar

Examples

Not run:

data("LakeHuron")

LakeHuron <- as.data.frame(LakeHuron)
fit <- brm(x ~ ma(p = 2), data = LakeHuron)

summary (fit)

End(Not run)

make_conditions

Prepare Fully Crossed Conditions

Description

This is a helper function to prepare fully crossed conditions primarily for use with the conditions
argument of conditional_effects. Automatically creates labels for each row in the cond__ col-

umin.

Usage

make_conditions(x, vars, ...)

144 mcmc_plot.brmsfit

Arguments
X An R object from which to extract the variables that should be part of the con-
ditions.
vars Names of the variables that should be part of the conditions.
Arguments passed to rows2labels.
Details

For factor like variables, all levels are used as conditions. For numeric variables, mean + (=1:1) *
SD are used as conditions.

Value

A data. frame where each row indicates a condition.

See Also

conditional_effects, rows2labels

Examples
df <- data.frame(x = c("a", "b"), y = rnorm(10))
make_conditions(df, vars = c("x", "y"))
mcmc_plot.brmsfit MCMC Plots Implemented in bayesplot
Description

Convenient way to call MCMC plotting functions implemented in the bayesplot package.

Usage

S3 method for class 'brmsfit'
mcmc_plot(

object,

pars = NA,

type = "intervals”,

variable = NULL,

regex = FALSE,

fixed = FALSE,

)

mcmc_plot(object, ...)

mcmc_plot.brmsfit 145

Arguments

object An R object typically of class brmsfit

pars Deprecated alias of variable. Names of the parameters to plot, as given by a
character vector or a regular expression.

type The type of the plot. Supported types are (as names) hist, dens, hist_by_chain,
dens_overlay, violin, intervals, areas, acf, acf_bar,trace, trace_highlight,
scatter, rhat, rhat_hist, neff, neff_hist nuts_acceptance, nuts_divergence,
nuts_stepsize, nuts_treedepth, and nuts_energy. For an overview on the
various plot types see MCMC-overview.

variable Names of the variables (parameters) to plot, as given by a character vector or
a regular expression (if regex = TRUE). By default, a hopefully not too large
selection of variables is plotted.

regex Logical; Indicates whether variable should be treated as regular expressions.
Defaults to FALSE.

fixed (Deprecated) Indicates whether parameter names should be matched exactly
(TRUE) or treated as regular expressions (FALSE). Default is FALSE and only
works with argument pars.

Additional arguments passed to the plotting functions. See MCMC-overview for
more details.

Details
Also consider using the shinystan package available via method launch_shinystan in brms for
flexible and interactive visual analysis.

Value

A ggplot object that can be further customized using the ggplot2 package.

Examples

Not run:
model <- brm(count ~ zAge + zBase * Trt + (1]|patient),
data = epilepsy, family = "poisson")

plot posterior intervals
mcmc_plot(model)

only show population-level effects in the plots
mcmc_plot(model, variable = "*b_", regex = TRUE)

show histograms of the posterior distributions
mcmc_plot(model, type = "hist")

plot some diagnostics of the sampler
mcmc_plot(model, type = "neff")
mcmc_plot(model, type = "rhat")

146 me

plot some diagnostics specific to the NUTS sampler
mcmc_plot(model, type = "nuts_acceptance”)
mcmc_plot(model, type = "nuts_divergence")

End(Not run)

me Predictors with Measurement Error in brms Models

Description

(Soft deprecated) Specify predictors with measurement error. The function does not evaluate its
arguments — it exists purely to help set up a model.

Usage
me(x, sdx, gr = NULL)

Arguments
X The variable measured with error.
sdx Known measurement error of x treated as standard deviation.
gr Optional grouping factor to specify which values of x correspond to the same
value of the latent variable. If NULL (the default) each observation will have its
own value of the latent variable.
Details

For detailed documentation see help(brmsformula). me terms are soft deprecated in favor of the
more general and consistent mi terms. By default, latent noise-free variables are assumed to be
correlated. To change that, add set_mecor (FALSE) to your model formula object (see examples).

See Also

brmsformula, brmsformula-helpers

Examples

Not run:
sample some data
N <- 100
dat <- data.frame(
y = rnorm(N), x1 = rnorm(N),
x2 = rnorm(N), sdx = abs(rnorm(N, 1))
)
fit a simple error-in-variables model
fitl <- brm(y ~ me(x1, sdx) + me(x2, sdx), data = dat,
save_pars = save_pars(latent = TRUE))

mi 147

summary (fit1)

turn off modeling of correlations

bform <- bf(y ~ me(x1, sdx) + me(x2, sdx)) + set_mecor(FALSE)

fit2 <- brm(bform, data = dat, save_pars = save_pars(latent = TRUE))
summary (fit2)

End(Not run)

mi Predictors with Missing Values in brms Models

Description

Specify predictor term with missing values in brms. The function does not evaluate its arguments
— it exists purely to help set up a model. For documentation on how to specify missing values in
response variables, see resp_mi.

Usage

mi(x, idx = NA)

Arguments

X The variable containing missing values.

idx An optional variable containing indices of observations in ‘x‘ that are to be
used in the model. This is mostly relevant in partially subsetted models (via
resp_subset) but may also have other applications that I haven’t thought of.

Details

For detailed documentation see help(brmsformula).

See Also

brmsformula

Examples

Not run:
data("nhanes"”, package = "mice”
N <- nrow(nhanes)

simple model with missing data

bforml <- bf(bmi | mi() ~ age * mi(chl)) +
bf(chl | mi() ~ age) +
set_rescor(FALSE)

148 mixture

fitl <- brm(bform1, data = nhanes)

summary (fit1)
plot(conditional_effects(fitl, resp = "bmi"”), ask = FALSE)
loo(fit1, newdata = na.omit(fit1$data))

simulate some measurement noise
nhanes$se <- rexp(N, 2)

measurement noise can be handled within 'mi' terms
with or without the presence of missing values
bform2 <- bf(bmi | mi() ~ age * mi(chl)) +

bf(chl | mi(se) ~ age) +

set_rescor(FALSE)

fit2 <- brm(bform2, data = nhanes)

summary (fit2)
plot(conditional_effects(fit2, resp = "bmi"), ask = FALSE)

'mi' terms can also be used when some responses are subsetted
nhanes$sub <- TRUE

nhanes$sub[1:2] <- FALSE

nhanes$id <- 1:N

nhanes$idx <- sample(3:N, N, TRUE)

this requires the addition term 'index' being specified
in the subsetted part of the model
bform3 <- bf(bmi | mi() ~ age * mi(chl, idx)) +
bf(chl | mi(se) + subset(sub) + index(id) ~ age) +
set_rescor(FALSE)

fit3 <- brm(bform3, data = nhanes)

summary (fit3)
plot(conditional_effects(fit3, resp = "bmi"”), ask = FALSE)

End(Not run)

mixture Finite Mixture Families in brms

Description

Set up a finite mixture family for use in brms.

Usage

mixture(..., flist = NULL, nmix = 1, order = NULL)

mixture 149

Arguments

One or more objects providing a description of the response distributions to be
combined in the mixture model. These can be family functions, calls to fam-
ily functions or character strings naming the families. For details of supported
families see brmsfamily.

flist Optional list of objects, which are treated in the same way as objects passed via
the ... argument.

nmix Optional numeric vector specifying the number of times each family is repeated.
If specified, it must have the same length as the number of families passed via
. and flist.

order Ordering constraint to identify mixture components. If 'mu' or TRUE, population-
level intercepts of the mean parameters are ordered in non-ordinal models and
fixed to the same value in ordinal models (see details). If 'none' or FALSE, no
ordering constraint is applied. If NULL (the default), order is set to 'mu’ if all
families are the same and 'none' otherwise. Other ordering constraints may be
implemented in the future.

Details

Most families supported by brms can be used to form mixtures. The response variable has to be
valid for all components of the mixture family. Currently, the number of mixture components has to
be specified by the user. It is not yet possible to estimate the number of mixture components from
the data.

Ordering intercepts in mixtures of ordinal families is not possible as each family has itself a set of
vector of intercepts (i.e. ordinal thresholds). Instead, brms will fix the vector of intercepts across
components in ordinal mixtures, if desired, so that users can try to identify the mixture model via
selective inclusion of predictors.

For most mixture models, you may want to specify priors on the population-level intercepts via
set_prior to improve convergence. In addition, it is sometimes necessary to set init = @ in the
call to brm to allow chains to initialize properly.

For more details on the specification of mixture models, see brmsformula.

Value

An object of class mixfamily.

Examples

Not run:
simulate some data
set.seed(1234)
dat <- data.frame(
y = c(rnorm(200), rnorm(100, 6)),
X = rnorm(300),
sample(@:1, 300, TRUE)

)

fit a simple normal mixture model

150 mm

mix <- mixture(gaussian, gaussian)
prior <- c(
prior(normal(@, 7), Intercept, dpar = mul),
prior(normal(5, 7), Intercept, dpar = mu2)
)
fitl <= brm(bf(y ~ x + z), dat, family = mix,
prior = prior, chains = 2)
summary (fit1)
pp_check(fit1)

use different predictors for the components

fit2 <= brm(bf(y ~ 1, mul ~ x, mu2 ~ z), dat, family = mix,
prior = prior, chains = 2)

summary (fit2)

fix the mixing proportions

fit3 <= brm(bf(y ~ x + z, thetal = 1, theta2 = 2),
dat, family = mix, prior = prior,
init = @, chains = 2)

summary (fit3)

pp_check(fit3)

predict the mixing proportions

fit4 <- brm(bf(y ~ x + z, theta2 ~ x),
dat, family = mix, prior = prior,
init = @, chains = 2)

summary (fit4)

pp_check(fit4)

compare model fit
loo(fit1, fit2, fit3, fit4)

End(Not run)

mm Set up multi-membership grouping terms in brms

Description

Function to set up a multi-membership grouping term in brms. The function does not evaluate its
arguments — it exists purely to help set up a model with grouping terms.

Usage

mm (
weights = NULL,
scale = TRUE,
by = NULL,

mm 151

cor = TRUE,
id = NA,
cov = NULL,
dist = "gaussian”
)
Arguments
One or more terms containing grouping factors.
weights A matrix specifying the weights of each member. It should have as many
columns as grouping terms specified in If NULL (the default), equally
weights are used.
scale Logical; if TRUE (the default), weights are standardized in order to sum to one
per row. If negative weights are specified, scale needs to be set to FALSE.
by An optional factor matrix, specifying sub-populations of the groups. It should
have as many columns as grouping terms specified in For each level of the
by variable, a separate variance-covariance matrix will be fitted. Levels of the
grouping factor must be nested in levels of the by variable matrix.
cor Logical. If TRUE (the default), group-level terms will be modelled as correlated.
id Optional character string. All group-level terms across the model with the same
id will be modeled as correlated (if cor is TRUE). See brmsformula for more
details.
cov An optional matrix which is proportional to the withon-group covariance matrix
of the group-level effects. All levels of the grouping factor should appear as row-
names of the corresponding matrix. This argument can be used, among others, to
model pedigrees and phylogenetic effects. See vignette("brms_phylogenetics")
for more details. By default, levels of the same grouping factor are modeled as
independent of each other.
dist Name of the distribution of the group-level effects. Currently "gaussian” is the
only option.
See Also

brmsformula, mmc

Examples

Not run:

simulate some data

dat <- data.frame(

y = rnorm(100), x1 = rnorm(100), x2 = rnorm(100),

g1 = sample(1:10, 100, TRUE), g2 = sample(1:10, 100, TRUE)
)

multi-membership model with two members per group and equal weights
fitl <= brm(y ~ x1 + (1|mm(g1, g2)), data = dat)
summary (fit1)

152 mmc

weight the first member two times for than the second member

dat$wl <- rep(2, 100)

dat$w2 <- rep(1, 100)

fit2 <- brm(y ~ x1 + (1|mm(g1, g2, weights = cbind(w1, w2))), data = dat)
summary (fit2)

multi-membership model with level specific covariate values
dat$xc <- (dat$x1 + dat$x2) / 2

fit3 <= brm(y ~ xc + (1 + mmc(x1, x2) | mm(gl, g2)), data = dat)
summary (fit3)

End(Not run)

mmc Multi-Membership Covariates

Description

Specify covariates that vary over different levels of multi-membership grouping factors thus requir-
ing special treatment. This function is almost solely useful, when called in combination with mm.
Outside of multi-membership terms it will behave very much like cbind.

Usage
mmc(...)
Arguments
One or more terms containing covariates corresponding to the grouping levels
specified in mm.
Value

A matrix with covariates as columns.

See Also

mm

Examples

Not run:
simulate some data
dat <- data.frame(
y = rnorm(100), x1 = rnorm(100), x2 = rnorm(100),
gl = sample(1:10, 100, TRUE), g2 = sample(1:10, 100, TRUE)
)

mo 153

multi-membership model with level specific covariate values
dat$xc <- (dat$x1 + dat$x2) / 2

fit <= brm(y ~ xc + (1 + mmc(x1, x2) | mm(gl, g2)), data = dat)
summary (fit)

End(Not run)

mo Monotonic Predictors in brms Models

Description
Specify a monotonic predictor term in brms. The function does not evaluate its arguments — it
exists purely to help set up a model.

Usage

mo(x, id = NA)

Arguments
X An integer variable or an ordered factor to be modeled as monotonic.
id Optional character string. All monotonic terms with the same id within one
formula will be modeled as having the same simplex (shape) parameter vector.
If all monotonic terms of the same predictor have the same id, the resulting pre-
dictions will be conditionally monotonic for all values of interacting covariates
(Buirkner & Charpentier, 2020).
Details

See Biirkner and Charpentier (2020) for the underlying theory. For detailed documentation of the

formula syntax used for monotonic terms, see help(brmsformula) as well as vignette("brms_monotonic").
References

Biirkner P. C. & Charpentier E. (2020). Modeling Monotonic Effects of Ordinal Predictors in Re-

gression Models. British Journal of Mathematical and Statistical Psychology. doi:10.1111/bmsp.12195

See Also

brmsformula

154 model_weights.brmsfit

Examples

Not run:
generate some data
income_options <- c("below_20", "20_to_40", "40_to_100", "greater_100")
income <- factor(sample(income_options, 100, TRUE),
levels = income_options, ordered = TRUE)
mean_ls <- c(30, 60, 70, 75)
1s <- mean_ls[income] + rnorm(100, sd = 7)
dat <- data.frame(income, 1s)

fit a simple monotonic model

fit1l <- brm(ls ~ mo(income), data = dat)
summary (fit1)

plot(fitl, N = 6)
plot(conditional_effects(fit1), points = TRUE)

model interaction with other variables
dat$x <- sample(c(”a", "b", "c"), 100, TRUE)
fit2 <- brm(ls ~ mo(income)*x, data = dat)
summary (fit2)

plot(conditional_effects(fit2), points = TRUE)

ensure conditional monotonicity

fit3 <- brm(ls ~ mo(income, id = "i")xx, data = dat)
summary (fit3)

plot(conditional_effects(fit3), points = TRUE)

End(Not run)

model_weights.brmsfit Model Weighting Methods

Description

Compute model weights in various ways, for instance, via stacking of posterior predictive distribu-
tions, Akaike weights, or marginal likelihoods.

Usage
S3 method for class 'brmsfit'
model_weights(x, ..., weights = "stacking”, model_names = NULL)
model_weights(x, ...)

Arguments

X A brmsfit object.

MultiNormal 155

More brmsfit objects or further arguments passed to the underlying post-processing
functions. In particular, see prepare_predictions for further supported argu-
ments.

weights Name of the criterion to compute weights from. Should be one of "loo”,
"waic", "kfold", "stacking” (current default), "bma", or "pseudobma”. For
the former three options, Akaike weights will be computed based on the infor-
mation criterion values returned by the respective methods. For "stacking” and
"pseudobma”, method 1loo_model_weights will be used to obtain weights. For
"bma”, method post_prob will be used to compute Bayesian model averaging
weights based on log marginal likelihood values (make sure to specify reason-
able priors in this case). For some methods, weights may also be a numeric
vector of pre-specified weights.

model_names If NULL (the default) will use model names derived from deparsing the call. Oth-
erwise will use the passed values as model names.

Value

A numeric vector of weights for the models.

Examples

Not run:

model with 'treat' as predictor

fitl <- brm(rating ~ treat + period + carry, data = inhaler)
summary (fit1)

model without 'treat' as predictor
fit2 <- brm(rating ~ period + carry, data = inhaler)

summary (fit2)

obtain Akaike weights based on the WAIC
model_weights(fitl, fit2, weights = "waic")

End(Not run)

MultiNormal The Multivariate Normal Distribution

Description

Density function and random generation for the multivariate normal distribution with mean vector
mu and covariance matrix Sigma.

Usage
dmulti_normal(x, mu, Sigma, log = FALSE, check = FALSE)

rmulti_normal(n, mu, Sigma, check = FALSE)

156 MultiStudentT

Arguments
X Vector or matrix of quantiles. If x is a matrix, each row is taken to be a quantile.
mu Mean vector with length equal to the number of dimensions.
Sigma Covariance matrix.
log Logical; If TRUE, values are returned on the log scale.
check Logical; Indicates whether several input checks should be performed. Defaults
to FALSE to improve efficiency.
n Number of draws to sample from the distribution.
Details
See the Stan user’s manual https://mc-stan.org/documentation/ for details on the parameter-
ization
MultiStudentT The Multivariate Student-t Distribution
Description

Density function and random generation for the multivariate Student-t distribution with location
vector mu, covariance matrix Sigma, and degrees of freedom df.

Usage

dmulti_student_t(x, df, mu, Sigma, log = FALSE, check = FALSE)

rmulti_student_t(n, df, mu, Sigma, check = FALSE)

Arguments
X Vector or matrix of quantiles. If x is a matrix, each row is taken to be a quantile.
df Vector of degrees of freedom.
mu Location vector with length equal to the number of dimensions.
Sigma Covariance matrix.
log Logical; If TRUE, values are returned on the log scale.
check Logical; Indicates whether several input checks should be performed. Defaults
to FALSE to improve efficiency.
n Number of draws to sample from the distribution.
Details

See the Stan user’s manual https://mc-stan.org/documentation/ for details on the parameter-
ization

https://mc-stan.org/documentation/
https://mc-stan.org/documentation/

mvbind 157

mvbind Bind response variables in multivariate models

Description

Can be used to specify a multivariate brms model within a single formula. Outside of brmsformula,
it just behaves like cbind.

Usage
mvbind(...)

Arguments

Same as in cbind

See Also

brmsformula, mvbrmsformula

Examples

bf (mvbind(y1l, y2) ~ x)

mvbrmsformula Set up a multivariate model formula for use in brms

Description

Set up a multivariate model formula for use in the brms package allowing to define (potentially
non-linear) additive multilevel models for all parameters of the assumed response distributions.

Usage
mvbrmsformula(..., flist = NULL, rescor = NULL)
Arguments
Objects of class formula or brmsformula, each specifying a univariate model.
See brmsformula for details on how to specify univariate models.
flist Optional list of formulas, which are treated in the same way as formulas passed
via the . .. argument.
rescor Logical; Indicates if residual correlation between the response variables should

be modeled. Currently, this is only possible in multivariate gaussian and student
models. If NULL (the default), rescor is internally set to TRUE when possible.

158 ngrps.brmsfit

Details

See vignette("brms_multivariate”) for a case study.

Value

An object of class mvbrmsformula, which is essentially a 1ist containing all model formulas as
well as some additional information for multivariate models.

See Also

brmsformula, brmsformula-helpers

Examples

bf1 <= bf(yl ~ x + (1]g))
bf2 <- bf(y2 ~ s(z))
mvbf (bf1, bf2)

ngrps.brmsfit Number of Grouping Factor Levels

Description

Extract the number of levels of one or more grouping factors.

Usage
S3 method for class 'brmsfit'
ngrps(object, ...)
ngrps(object, ...)
Arguments
object An R object.

Currently ignored.

Value

A named list containing the number of levels per grouping factor.

nsamples.brmsfit 159

nsamples.brmsfit (Deprecated) Number of Posterior Samples

Description

Extract the number of posterior samples (draws) stored in a fitted Bayesian model. Method nsamples
is deprecated. Please use ndraws instead.

Usage
S3 method for class 'brmsfit'
nsamples(object, subset = NULL, incl_warmup = FALSE, ...)
Arguments
object An object of class brmsfit.
subset An optional integer vector defining a subset of samples to be considered.
incl_warmup A flag indicating whether to also count warmup / burn-in samples.

Currently ignored.

opencl GPU support in Stan via OpenCL

Description
Use OpenCL for GPU support in Stan via the brms interface. Only some Stan functions can be
run on a GPU at this point and so a lot of brms models won’t benefit from OpenCL for now.
Usage

opencl(ids = NULL)

Arguments
ids (integer vector of length 2) The platform and device IDs of the OpenCL device
to use for fitting. If you don’t know the IDs of your OpenCL device, c(@,9) is
most likely what you need.
Details

For more details on OpenCL in Stan, check out https://mc-stan.org/docs/2_26/cmdstan-guide/
parallelization.html#opencl aswellashttps://mc-stan.org/docs/2_26/stan-users-guide/
opencl.html.

https://mc-stan.org/docs/2_26/cmdstan-guide/parallelization.html#opencl
https://mc-stan.org/docs/2_26/cmdstan-guide/parallelization.html#opencl
https://mc-stan.org/docs/2_26/stan-users-guide/opencl.html
https://mc-stan.org/docs/2_26/stan-users-guide/opencl.html

160 pairs.brmsfit

Value

A brmsopencl object which can be passed to the opencl argument of brm and related functions.

Examples

Not run:

this model just serves as an illustration

OpenCL may not actually speed things up here

fit <- brm(count ~ zAge + zBase * Trt + (1|patient),
data = epilepsy, family = poisson(),
chains = 2, cores = 2, opencl = opencl(c(0, 0)),
backend = "cmdstanr”)

summary (fit)

End(Not run)

pairs.brmsfit Create a matrix of output plots from a brmsfit object

Description

A pairs method that is customized for MCMC output.

Usage

S3 method for class 'brmsfit'

pairs(x, pars = NA, variable = NULL, regex = FALSE, fixed = FALSE, ...)
Arguments

X An object of class brmsfit

pars Deprecated alias of variable. Names of the parameters to plot, as given by a

character vector or a regular expression.

variable Names of the variables (parameters) to plot, as given by a character vector or
a regular expression (if regex = TRUE). By default, a hopefully not too large
selection of variables is plotted.

regex Logical; Indicates whether variable should be treated as regular expressions.
Defaults to FALSE.

fixed (Deprecated) Indicates whether parameter names should be matched exactly
(TRUE) or treated as regular expressions (FALSE). Default is FALSE and only
works with argument pars.

Further arguments to be passed to mcmc_pairs.

Details

For a detailed description see mcmc_pairs.

parnames 161

Examples

Not run:
fit <- brm(count ~ zAge + zBase * Trt

+ (1|patient) + (1|visit),

data = epilepsy, family = "poisson”)
pairs(fit, variable = variables(fit)[1:3]1)
pairs(fit, variable = "*sd_", regex = TRUE)

End(Not run)

parnames Extract Parameter Names

Description

Extract all parameter names of a given model.

Usage
parnames(x, ...)
Arguments
X An R object
Further arguments passed to or from other methods.
Value

A character vector containing the parameter names of the model.

plot.brmsfit Trace and Density Plots for MCMC Draws

Description

Trace and Density Plots for MCMC Draws

Usage

S3 method for class 'brmsfit'
plot(
X,
pars = NA,
combo = c("hist"”, "trace"),
nvariables = 5,
N = NULL,

variable = NULL,
regex = FALSE,
fixed = FALSE,

bins = 30,
theme = NULL,
plot = TRUE,
ask = TRUE,

plot.brmsfit

newpage = TRUE,

Arguments

X

pars

combo

nvariables

N

variable

regex

fixed

bins

theme

plot

ask

An object of class brmsfit.

Deprecated alias of variable. Names of the parameters to plot, as given by a
character vector or a regular expression.

A character vector with at least two elements. Each element of combo corre-
sponds to a column in the resulting graphic and should be the name of one of
the available MCMC functions (omitting the mcmc_ prefix).

The number of variables (parameters) plotted per page.
Deprecated alias of nvariables.

Names of the variables (parameters) to plot, as given by a character vector or
a regular expression (if regex = TRUE). By default, a hopefully not too large
selection of variables is plotted.

Logical; Indicates whether variable should be treated as regular expressions.
Defaults to FALSE.

(Deprecated) Indicates whether parameter names should be matched exactly
(TRUE) or treated as regular expressions (FALSE). Default is FALSE and only
works with argument pars.

Number of bins used for posterior histograms (defaults to 30).

A theme object modifying the appearance of the plots. For some basic themes
see ggtheme and theme_default.

Logical; indicates if plots should be plotted directly in the active graphic device.
Defaults to TRUE.

Logical; indicates if the user is prompted before a new page is plotted. Only
used if plot is TRUE.

posterior_average.brmsfit 163

newpage Logical; indicates if the first set of plots should be plotted to a new page. Only
used if plot is TRUE.

Further arguments passed to mcmc_combo.

Value

An invisible list of gtable objects.

Examples

Not run:
fit <- brm(count ~ zAge + zBase * Trt
+ (1|patient) + (1|visit),
data = epilepsy, family = "poisson”)
plot(fit)
plot population-level effects only
plot(fit, variable = "*b_", regex = TRUE)

—

End(Not run)

posterior_average.brmsfit
Posterior draws of parameters averaged across models

Description

Extract posterior draws of parameters averaged across models. Weighting can be done in various
ways, for instance using Akaike weights based on information criteria or marginal likelihoods.

Usage

S3 method for class 'brmsfit'
posterior_average(
X,
variable = NULL,
pars = NULL,
weights = "stacking”,
ndraws = NULL,
nsamples = NULL,
missing = NULL,
model_names = NULL,
control = list(),
seed = NULL

posterior_average(x, ...)

164 posterior_average.brmsfit

Arguments

X A brmsfit object.

More brmsfit objects or further arguments passed to the underlying post-processing
functions. In particular, see prepare_predictions for further supported argu-
ments.

variable Names of variables (parameters) for which to average across models. Only those
variables can be averaged that appear in every model. Defaults to all overlapping
variables.

pars Deprecated alias of variable.

weights Name of the criterion to compute weights from. Should be one of "loo”,
"waic", "kfold", "stacking” (current default), "bma", or "pseudobma”. For
the former three options, Akaike weights will be computed based on the infor-
mation criterion values returned by the respective methods. For "stacking” and
"pseudobma”, method 1oo_model_weights will be used to obtain weights. For
"bma”, method post_prob will be used to compute Bayesian model averaging
weights based on log marginal likelihood values (make sure to specify reason-
able priors in this case). For some methods, weights may also be a numeric
vector of pre-specified weights.

ndraws Total number of posterior draws to use.
nsamples Deprecated alias of ndraws.

missing An optional numeric value or a named list of numeric values to use if a model
does not contain a variable for which posterior draws should be averaged. De-
faults to NULL, in which case only those variables can be averaged that are
present in all of the models.

model_names If NULL (the default) will use model names derived from deparsing the call. Oth-
erwise will use the passed values as model names.

control Optional 1ist of further arguments passed to the function specified in weights.

seed A single numeric value passed to set.seed to make results reproducible.

Details

Weights are computed with the model_weights method.

Value

A data. frame of posterior draws.

See Also

model_weights, pp_average

Examples

Not run:
model with 'treat' as predictor
fit1 <- brm(rating ~ treat + period + carry, data = inhaler)

posterior_epred.brmsfit

summary (fit1)

model without 'treat' as predictor

fit2 <- brm(rating ~ period + carry, data = inhaler)

summary (fit2)

compute model-averaged posteriors of overlapping parameters
(fit1, fit2, weights = "waic”

posterior_average

End(Not run)

165

posterior_epred.brmsfit
Draws from the Expected Value of the Posterior Predictive Distribu-

tion

Description

Compute posterior draws of the expected value of the posterior predictive distribution. Can be
performed for the data used to fit the model (posterior predictive checks) or for new data. By
definition, these predictions have smaller variance than the posterior predictions performed by the
posterior_predict.brmsfit method. This is because only the uncertainty in the expected value
of the posterior predictive distribution is incorporated in the draws computed by posterior_epred
while the residual error is ignored there. However, the estimated means of both methods averaged
across draws should be very similar.

Usage

S3 method for class 'brmsfit'
posterior_epred(

object,

newdata = NULL,
re_formula = NULL,
re.form = NULL,

resp = NULL,
dpar = NULL,
nlpar = NULL,

ndraws = NULL

’

draw_ids = NULL,

sort = FALSE,

Arguments

object

An object of class brmsfit.

166

newdata

re_formula

re.form

resp

dpar

nlpar

ndraws

draw_ids

sort

Details

posterior_epred.brmsfit

An optional data.frame for which to evaluate predictions. If NULL (default), the
original data of the model is used. NA values within factors (excluding grouping
variables) are interpreted as if all dummy variables of this factor are zero. This
allows, for instance, to make predictions of the grand mean when using sum
coding. NA values within grouping variables are treated as a new level.

formula containing group-level effects to be considered in the prediction. If
NULL (default), include all group-level effects; if NA or ~@, include no group-
level effects.

Alias of re_formula.

Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

Optional name of a predicted distributional parameter. If specified, expected
predictions of this parameters are returned.

Optional name of a predicted non-linear parameter. If specified, expected pre-
dictions of this parameters are returned.

Positive integer indicating how many posterior draws should be used. If NULL
(the default) all draws are used. Ignored if draw_ids is not NULL.

An integer vector specifying the posterior draws to be used. If NULL (the default),
all draws are used.

Logical. Only relevant for time series models. Indicating whether to return
predicted values in the original order (FALSE; default) or in the order of the time
series (TRUE).

Further arguments passed to prepare_predictions that control several aspects
of data validation and prediction.

NA values within factors in newdata, are interpreted as if all dummy variables of this factor are zero.
This allows, for instance, to make predictions of the grand mean when using sum coding.

In multilevel models, it is possible to allow new levels of grouping factors to be used in the pre-
dictions. This can be controlled via argument allow_new_levels. New levels can be sampled
in multiple ways, which can be controlled via argument sample_new_levels. Both of these ar-
guments are documented in prepare_predictions along with several other useful arguments to
control specific aspects of the predictions.

Value

An array of draws. For categorical and ordinal models, the output is an S x N x C array. Otherwise,
the output is an S x N matrix, where S is the number of posterior draws, N is the number of
observations, and C is the number of categories. In multivariate models, an additional dimension is
added to the output which indexes along the different response variables.

Examples

Not run:
fit a model

posterior_interval.brmsfit 167

fit <- brm(rating ~ treat + period + carry + (1|subject),
data = inhaler)

compute expected predictions
ppe <- posterior_epred(fit)
str(ppe)

End(Not run)

posterior_interval.brmsfit
Compute posterior uncertainty intervals

Description

Compute posterior uncertainty intervals for brmsfit objects.

Usage
S3 method for class 'brmsfit'
posterior_interval(object, pars = NA, variable = NULL, prob = 0.95, ...)
Arguments
object An object of class brmsfit.
pars Deprecated alias of variable. For reasons of backwards compatibility, pars is
interpreted as a vector of regular expressions by default unless fixed = TRUE is
specified.
variable A character vector providing the variables to extract. By default, all variables

are extracted.

prob A value between 0 and 1 indicating the desired probability to be covered by the
uncertainty intervals. The default is 0.95.

More arguments passed to as.matrix.brmsfit.

Value

A matrix with lower and upper interval bounds as columns and as many rows as selected variables.

Examples

Not run:
fit <- brm(count ~ zAge + zBase * Trt,

data = epilepsy, family = negbinomial())
posterior_interval(fit)

End(Not run)

168

posterior_linpred.brmsfit

posterior_linpred.brmsfit

Posterior Draws of the Linear Predictor

Description

Compute posterior draws of the linear predictor, that is draws before applying any link functions
or other transformations. Can be performed for the data used to fit the model (posterior predictive

checks) or for new data.

Usage

S3 method for class 'brmsfit'

posterior_linpred(
object,

transform = FALSE,

newdata = NULL,

re_formula = NULL,

re.form = NULL,

resp = NULL,
dpar = NULL,
nlpar = NULL,

incl_thres = NULL,

ndraws = NULL,
draw_ids = NULL,
sort = FALSE,

Arguments

object
transform

newdata

re_formula

re.form

resp

An object of class brmsfit.

Logical; if FALSE (the default), draws of the linear predictor are returned. If
TRUE, draws of the transformed linear predictor, that is, after applying the inverse
link function are returned.

An optional data.frame for which to evaluate predictions. If NULL (default), the
original data of the model is used. NA values within factors (excluding grouping
variables) are interpreted as if all dummy variables of this factor are zero. This
allows, for instance, to make predictions of the grand mean when using sum
coding. NA values within grouping variables are treated as a new level.

formula containing group-level effects to be considered in the prediction. If
NULL (default), include all group-level effects; if NA or ~@, include no group-
level effects.

Alias of re_formula.

Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

posterior_predict.brmsfit 169

dpar Name of a predicted distributional parameter for which draws are to be returned.
By default, draws of the main distributional parameter(s) "mu” are returned.

nlpar Optional name of a predicted non-linear parameter. If specified, expected pre-
dictions of this parameters are returned.

incl_thres Logical; only relevant for ordinal models when transform is FALSE, and ig-
nored otherwise. Shall the thresholds and category-specific effects be included
in the linear predictor? For backwards compatibility, the default is to not include
them.

ndraws Positive integer indicating how many posterior draws should be used. If NULL
(the default) all draws are used. Ignored if draw_ids is not NULL.

draw_ids An integer vector specifying the posterior draws to be used. If NULL (the default),
all draws are used.

sort Logical. Only relevant for time series models. Indicating whether to return
predicted values in the original order (FALSE; default) or in the order of the time
series (TRUE).

Further arguments passed to prepare_predictions that control several aspects
of data validation and prediction.

See Also

posterior_epred.brmsfit

Examples

Not run:

fit a model

fit <- brm(rating ~ treat + period + carry + (1|subject),
data = inhaler)

extract linear predictor values
pl <- posterior_linpred(fit)
str(pl)

End(Not run)

posterior_predict.brmsfit
Draws from the Posterior Predictive Distribution

Description

Compute posterior draws of the posterior predictive distribution. Can be performed for the data
used to fit the model (posterior predictive checks) or for new data. By definition, these draws have
higher variance than draws of the expected value of the posterior predictive distribution computed by
posterior_epred.brmsfit. This is because the residual error is incorporated in posterior_predict.
However, the estimated means of both methods averaged across draws should be very similar.

posterior_predict.brmsfit

S3 method for class 'brmsfit'
posterior_predict(

object,

newdata = NULL,
re_formula = NULL,
re.form = NULL,
transform = NULL,
resp = NULL,
negative_rt = FALSE,
ndraws = NULL,
draw_ids = NULL,

sort = FALSE,
ntrys = 5,
cores = NULL,
)
Arguments
object An object of class brmsfit.
newdata An optional data.frame for which to evaluate predictions. If NULL (default), the

re_formula

original data of the model is used. NA values within factors (excluding grouping
variables) are interpreted as if all dummy variables of this factor are zero. This
allows, for instance, to make predictions of the grand mean when using sum
coding. NA values within grouping variables are treated as a new level.

formula containing group-level effects to be considered in the prediction. If
NULL (default), include all group-level effects; if NA or ~@, include no group-
level effects.

re.form Alias of re_formula.

transform (Deprecated) A function or a character string naming a function to be applied
on the predicted responses before summary statistics are computed.

resp Optional names of response variables. If specified, predictions are performed

negative_rt

only for the specified response variables.

Only relevant for Wiener diffusion models. A flag indicating whether response
times of responses on the lower boundary should be returned as negative values.
This allows to distinguish responses on the upper and lower boundary. Defaults
to FALSE.

ndraws Positive integer indicating how many posterior draws should be used. If NULL
(the default) all draws are used. Ignored if draw_ids is not NULL.

draw_ids An integer vector specifying the posterior draws to be used. If NULL (the default),
all draws are used.

sort Logical. Only relevant for time series models. Indicating whether to return

predicted values in the original order (FALSE; default) or in the order of the time
series (TRUE).

posterior_predict.brmsfit 171

ntrys Parameter used in rejection sampling for truncated discrete models only (de-
faults to 5). See Details for more information.

cores Number of cores (defaults to 7). On non-Windows systems, this argument can
be set globally via the mc. cores option.

Further arguments passed to prepare_predictions that control several aspects
of data validation and prediction.

Details

NA values within factors in newdata, are interpreted as if all dummy variables of this factor are zero.
This allows, for instance, to make predictions of the grand mean when using sum coding.

In multilevel models, it is possible to allow new levels of grouping factors to be used in the pre-
dictions. This can be controlled via argument allow_new_levels. New levels can be sampled
in multiple ways, which can be controlled via argument sample_new_levels. Both of these ar-
guments are documented in prepare_predictions along with several other useful arguments to
control specific aspects of the predictions.

For truncated discrete models only: In the absence of any general algorithm to sample from trun-
cated discrete distributions, rejection sampling is applied in this special case. This means that values
are sampled until a value lies within the defined truncation boundaries. In practice, this procedure
may be rather slow (especially in R). Thus, we try to do approximate rejection sampling by sam-
pling each value ntrys times and then select a valid value. If all values are invalid, the closest
boundary is used, instead. If there are more than a few of these pathological cases, a warning will
occur suggesting to increase argument ntrys.

Value

An array of draws. In univariate models, the output is as an S x N matrix, where S is the number
of posterior draws and N is the number of observations. In multivariate models, an additional
dimension is added to the output which indexes along the different response variables.

Examples

Not run:

fit a model

fit <- brm(time | cens(censored) ~ age + sex + (1 + age || patient),
data = kidney, family = "exponential”, init = "@")

predicted responses
pp <- posterior_predict(fit)
str(pp)

predicted responses excluding the group-level effect of age
pp <- posterior_predict(fit, re_formula = ~ (1 | patient))
str(pp)

predicted responses of patient 1 for new data
newdata <- data.frame(

sex = factor(c("male”, "female")),

age = c(20, 50),

172

patient = c(1,

)

posterior_samples.brmsfit

D)

pp <- posterior_predict(fit, newdata = newdata)

str(pp)

End(Not run)

posterior_samples.brmsfit

(Deprecated) Extract Posterior Samples

Description

Extract posterior samples of specified parameters. The posterior_samples method is deprecated.
We recommend using the more modern and consistent as_draws_#* extractor functions of the pos-
terior package instead.

Usage

S3 method for class 'brmsfit'
posterior_samples(

X,
pars = NA,

fixed = FALSE,
add_chain = FALSE,
subset = NULL,

as.matrix =

FALSE,

as.array = FALSE,

)
posterior_samples(x, pars = NA, ...)
Arguments

X An R object typically of class brmsfit

pars Names of parameters for which posterior samples should be returned, as given
by a character vector or regular expressions. By default, all posterior samples of
all parameters are extracted.

fixed Indicates whether parameter names should be matched exactly (TRUE) or treated
as regular expressions (FALSE). Default is FALSE.

add_chain A flag indicating if the returned data.frame should contain two additional
columns. The chain column indicates the chain in which each sample was
generated, the iter column indicates the iteration number within each chain.

subset A numeric vector indicating the rows (i.e., posterior samples) to be returned. If

NULL (the default), all posterior samples are returned.

posterior_smooths.brmsfit 173

as.matrix Should the output be a matrix instead of a data. frame? Defaults to FALSE.
as.array Should the output be an array instead of a data. frame? Defaults to FALSE.

Arguments passed to individual methods (if applicable).

Value

A data.frame (matrix or array) containing the posterior samples.

See Also

as_draws, as.data.frame

Examples

Not run:
fit <- brm(rating ~ treat + period + carry + (1]|subject),
data = inhaler, family = "cumulative")

extract posterior samples of population-level effects
samples1 <- posterior_samples(fit, pars = "*b")
head(samples1)

extract posterior samples of group-level standard deviations
samples2 <- posterior_samples(fit, pars = "#sd_")

head(samples?2)

End(Not run)

posterior_smooths.brmsfit
Posterior Predictions of Smooth Terms

Description

Compute posterior predictions of smooth s and t2 terms of models fitted with brms.

Usage

S3 method for class 'brmsfit'
posterior_smooths(

object,

smooth,

newdata = NULL,
resp = NULL,
dpar = NULL,
nlpar = NULL,

ndraws = NULL,

174 posterior_smooths.brmsfit

draw_ids = NULL,

)
posterior_smooths(object, ...)
Arguments

object An object of class brmsfit.

smooth Name of a single smooth term for which predictions should be computed.

newdata An optional data.frame for which to evaluate predictions. If NULL (default),
the original data of the model is used. Only those variables appearing in the
chosen smooth term are required.

resp Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

dpar Optional name of a predicted distributional parameter. If specified, expected
predictions of this parameters are returned.

nlpar Optional name of a predicted non-linear parameter. If specified, expected pre-
dictions of this parameters are returned.

ndraws Positive integer indicating how many posterior draws should be used. If NULL
(the default) all draws are used. Ignored if draw_ids is not NULL.

draw_ids An integer vector specifying the posterior draws to be used. If NULL (the default),
all draws are used.
Currently ignored.

Value

An S x N matrix, where S is the number of posterior draws and N is the number of observations.

Examples

Not run:

set.seed(0)

dat <- mgcv::gamSim(1, n = 200, scale = 2)

fit <= brm(y ~ s(x@) + s(x1) + s(x2) + s(x3), data = dat)
summary (fit)

newdata <- data.frame(x2 = seq(@, 1, 10))
str(posterior_smooths(fit, smooth = "s(x2)", newdata = newdata))

End(Not run)

posterior_summary 175

posterior_summary Summarize Posterior draws

Description

Summarizes posterior draws based on point estimates (mean or median), estimation errors (SD
or MAD) and quantiles. This function mainly exists to retain backwards compatibility. It will
eventually be replaced by functions of the posterior package (see examples below).

Usage

posterior_summary(x, ...)

Default S3 method:
posterior_summary(x, probs = c(0.025, 0.975), robust = FALSE, ...)

S3 method for class 'brmsfit'
posterior_summary(
X,
pars = NA,
variable = NULL,
probs = c(0.025, 0.975),
robust = FALSE,

)
Arguments
X An R object.
More arguments passed to or from other methods.
probs The percentiles to be computed by the quantile function.
robust If FALSE (the default) the mean is used as the measure of central tendency and
the standard deviation as the measure of variability. If TRUE, the median and the
median absolute deviation (MAD) are applied instead.
pars Deprecated alias of variable. For reasons of backwards compatibility, pars is
interpreted as a vector of regular expressions by default unless fixed = TRUE is
specified.
variable A character vector providing the variables to extract. By default, all variables
are extracted.
Value

A matrix where rows indicate variables and columns indicate the summary estimates.

See Also

summarize_draws

176 posterior._table

Examples

Not run:
fit <- brm(time ~ age * sex, data = kidney)
posterior_summary(fit)

recommended workflow using posterior
library(posterior)

draws <- as_draws_array(fit)
summarise_draws(draws, default_summary_measures())

End(Not run)

posterior_table Table Creation for Posterior Draws

Description
Create a table for unique values of posterior draws. This is usually only useful when summarizing
predictions of ordinal models.

Usage

posterior_table(x, levels = NULL)

Arguments
X A matrix of posterior draws where rows indicate draws and columns indicate
parameters.
levels Optional values of possible posterior values. Defaults to all unique values in x.
Value

A matrix where rows indicate parameters and columns indicate the unique values of posterior draws.

Examples

Not run:
fit <- brm(rating ~ period + carry + treat,

data = inhaler, family = cumulative())
pr <- predict(fit, summary = FALSE)
posterior_table(pr)

End(Not run)

post_prob.brmsfit 177

post_prob.brmsfit Posterior Model Probabilities from Marginal Likelihoods

Description

Compute posterior model probabilities from marginal likelihoods. The brmsfit method is just a
thin wrapper around the corresponding method for bridge objects.

Usage

S3 method for class 'brmsfit'

post_prob(x, ..., prior_prob = NULL, model_names = NULL)
Arguments

X A brmsfit object.

More brmsfit objects or further arguments passed to the underlying post-processing
functions. In particular, see prepare_predictions for further supported argu-
ments.

prior_prob Numeric vector with prior model probabilities. If omitted, a uniform prior is
used (i.e., all models are equally likely a priori). The default NULL corresponds
to equal prior model weights.

model_names If NULL (the default) will use model names derived from deparsing the call. Oth-
erwise will use the passed values as model names.

Details

Computing the marginal likelihood requires samples of all variables defined in Stan’s parameters
block to be saved. Otherwise post_prob cannot be computed. Thus, please set save_all_pars =
TRUE in the call to brm, if you are planning to apply post_prob to your models.

The computation of model probabilities based on bridge sampling requires a lot more posterior
samples than usual. A good conservative rule of thump is perhaps 10-fold more samples (read:
the default of 4000 samples may not be enough in many cases). If not enough posterior samples
are provided, the bridge sampling algorithm tends to be unstable leading to considerably different
results each time it is run. We thus recommend running post_prob multiple times to check the
stability of the results.

More details are provided under bridgesampling: :post_prob.

See Also

bridge_sampler, bayes_factor

178 pp_average.brmsfit

Examples
Not run:
model with the treatment effect
fitl <= brm(

count ~ zAge + zBase + Trt,

data = epilepsy, family = negbinomial(),
prior = prior(normal(@, 1), class = b),
save_all_pars = TRUE

)
summary (fit1)

model without the treatent effect

fit2 <= brm(
count ~ zAge + zBase,
data = epilepsy, family = negbinomial(),
prior = prior(normal(@, 1), class = b),
save_all_pars = TRUE

)
summary (fit2)

compute the posterior model probabilities
post_prob(fitl, fit2)

specify prior model probabilities
post_prob(fitl, fit2, prior_prob = c(0.8, 0.2))

End(Not run)

pp_average.brmsfit Posterior predictive draws averaged across models

Description
Compute posterior predictive draws averaged across models. Weighting can be done in various
ways, for instance using Akaike weights based on information criteria or marginal likelihoods.
Usage

S3 method for class 'brmsfit'
pp_average(

X,
weights = "stacking”,
method = "posterior_predict”,

ndraws = NULL,

nsamples = NULL,

summary = TRUE,

probs = c(0.025, 0.975),

pp_average.brmsfit 179

robust = FALSE,
model_names = NULL,
control = list(),

seed = NULL
)
pp_average(x, ...)
Arguments

X A brmsfit object.
More brmsfit objects or further arguments passed to the underlying post-processing
functions. In particular, see prepare_predictions for further supported argu-
ments.

weights Name of the criterion to compute weights from. Should be one of "loo”,
"waic", "kfold", "stacking” (current default), "bma", or "pseudobma”. For
the former three options, Akaike weights will be computed based on the infor-
mation criterion values returned by the respective methods. For "stacking"” and
"pseudobma”, method loo_model_weights will be used to obtain weights. For
"bma”, method post_prob will be used to compute Bayesian model averaging
weights based on log marginal likelihood values (make sure to specify reason-
able priors in this case). For some methods, weights may also be a numeric
vector of pre-specified weights.

method Method used to obtain predictions to average over. Should be one of "posterior_predict”
(default), "posterior_epred"”, "posterior_linpred"” or "predictive_error”.

ndraws Total number of posterior draws to use.

nsamples Deprecated alias of ndraws.

summary Should summary statistics (i.e. means, sds, and 95% intervals) be returned in-
stead of the raw values? Default is TRUE.

probs The percentiles to be computed by the quantile function. Only used if summary
is TRUE.

robust If FALSE (the default) the mean is used as the measure of central tendency and
the standard deviation as the measure of variability. If TRUE, the median and the
median absolute deviation (MAD) are applied instead. Only used if summary is
TRUE.

model_names If NULL (the default) will use model names derived from deparsing the call. Oth-
erwise will use the passed values as model names.

control Optional 1ist of further arguments passed to the function specified in weights.

seed A single numeric value passed to set.seed to make results reproducible.

Details

Weights are computed with the model_weights method.

Value

Same as the output of the method specified in argument method.

180 pp_check.brmsfit

See Also

model_weights, posterior_average

Examples

Not run:

model with 'treat' as predictor

fitl <- brm(rating ~ treat + period + carry, data = inhaler)
summary (fit1)

model without 'treat' as predictor
fit2 <- brm(rating ~ period + carry, data = inhaler)
summary (fit2)

compute model-averaged predicted values
(df <- unique(inhaler[, c("treat”, "period”, "carry")1))

pp_average(fitl, fit2, newdata = df)

compute model-averaged fitted values
pp_average(fitl, fit2, method = "fitted”, newdata = df)

End(Not run)

pp_check.brmsfit Posterior Predictive Checks for brmsfit Objects

Description

Perform posterior predictive checks with the help of the bayesplot package.

Usage

S3 method for class 'brmsfit'
pp_check(

object,

type,

ndraws = NULL,

prefix = c("ppc”, "ppd"),

group = NULL,

x = NULL,

newdata = NULL,

resp = NULL,

draw_ids = NULL,

nsamples = NULL,

subset = NULL,

pp_check.brmsfit

Arguments

object
type

ndraws

prefix

group

newdata

resp

draw_ids

nsamples

subset

Details

181

An object of class brmsfit.

Type of the ppc plot as given by a character string. See PPC for an overview of
currently supported types. You may also use an invalid type (e.g. type = "xyz")
to get a list of supported types in the resulting error message.

Positive integer indicating how many posterior draws should be used. If NULL
all draws are used. If not specified, the number of posterior draws is chosen
automatically. Ignored if draw_ids is not NULL.

ne

The prefix of the bayesplot function to be applied. Either ‘“"ppc"‘ (posterior
predictive check; the default) or “"ppd"* (posterior predictive distribution), the
latter being the same as the former except that the observed data is not shown
for CVVppdVVé‘

Optional name of a factor variable in the model by which to stratify the ppc plot.
This argument is required for ppc *_grouped types and ignored otherwise.

Optional name of a variable in the model. Only used for ppc types having an x
argument and ignored otherwise.

An optional data.frame for which to evaluate predictions. If NULL (default), the
original data of the model is used. NA values within factors (excluding grouping
variables) are interpreted as if all dummy variables of this factor are zero. This
allows, for instance, to make predictions of the grand mean when using sum
coding. NA values within grouping variables are treated as a new level.

Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

An integer vector specifying the posterior draws to be used. If NULL (the default),
all draws are used.

Deprecated alias of ndraws.
Deprecated alias of draw_ids.

Further arguments passed to predict.brmsfit as well as to the PPC function
specified in type.

For a detailed explanation of each of the ppc functions, see the PPC documentation of the bayesplot

package.

Value

A ggplot object that can be further customized using the ggplot2 package.

Examples

Not run:

fit <= brm(count ~ zAge + zBase * Trt

+ (1|patient) + (1|obs),
data = epilepsy, family = poisson())

182

pp_mixture.brmsfit

pp_check(fit) # shows dens_overlay plot by default

pp_check(fit,
pp_check(fit,
pp_check(fit,
pp_check(fit,
pp_check(fit,

get an over
pp_check(fit,

type
type
type
type
type

view
type

= "error_hist"”, ndraws = 11)

= "scatter_avg”, ndraws = 100)
= "stat_2d")

= "rootogram")

= "loo_pit")

of all valid types
= "xyz")

get a plot without the observed data
pp_check(fit, prefix = "ppd")

End(Not run

)

pp_mixture.brmsfit

Posterior Probabilities of Mixture Component Memberships

Description

Compute the posterior probabilities of mixture component memberships for each observation in-
cluding uncertainty estimates.

Usage

S3 method for class 'brmsfit'

pp_mixture(
X’

newdata = NULL,

re_formula

draw_ids =

summary = TRUE,
robust = FALSE,

= NULL,
resp = NULL,

ndraws = NULL,
NULL,
log = FALSE,

probs = c(0.025, 0.975),

pp_mixture(x,

Arguments

X

>

An R object usually of class brmsfit.

pp_mixture.brmsfit

newdata

re_formula

resp

ndraws

draw_ids

log

summary

robust

probs

Details

183

An optional data.frame for which to evaluate predictions. If NULL (default), the
original data of the model is used. NA values within factors (excluding grouping
variables) are interpreted as if all dummy variables of this factor are zero. This
allows, for instance, to make predictions of the grand mean when using sum
coding. NA values within grouping variables are treated as a new level.

formula containing group-level effects to be considered in the prediction. If
NULL (default), include all group-level effects; if NA or ~@, include no group-
level effects.

Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

Positive integer indicating how many posterior draws should be used. If NULL
(the default) all draws are used. Ignored if draw_ids is not NULL.

An integer vector specifying the posterior draws to be used. If NULL (the default),
all draws are used.

Logical; Indicates whether to return probabilities on the log-scale.

Should summary statistics be returned instead of the raw values? Default is
TRUE.

If FALSE (the default) the mean is used as the measure of central tendency and
the standard deviation as the measure of variability. If TRUE, the median and the
median absolute deviation (MAD) are applied instead. Only used if summary is
TRUE.

The percentiles to be computed by the quantile function. Only used if summary
is TRUE.

Further arguments passed to prepare_predictions that control several aspects
of data validation and prediction.

The returned probabilities can be written as P(K,, = k|Y},), that is the posterior probability that
observation n originates from component k. They are computed using Bayes’ Theorem

P(Kn = k|Yn) = P(Yn|Kn = k)P(Kn = k)/P(Yn)a

where P(Y,,|K,, = k) is the (posterior) likelihood of observation n for component k, P(K,, = k)
is the (posterior) mixing probability of component k (i.e. parameter theta<k>), and

P(Yn) = Z P(Yn|Kn = k)P(Kn = k)
k=1,.. K

is a normalizing constant.

Value

If summary = TRUE, an N x E x K array, where N is the number of observations, K is the number
of mixture components, and E is equal to length(probs) + 2. If summary = FALSE, an S x N x K
array, where S is the number of posterior draws.

184 predict.brmsfit

Examples

Not run:
simulate some data
set.seed(1234)
dat <- data.frame(
y = c(rnorm(100), rnorm(50, 2)),
X = rnorm(150)
)
fit a simple normal mixture model
mix <- mixture(gaussian, nmix = 2)
prior <- c(
prior(normal(@, 5), Intercept, nlpar = mul),
prior(normal(@, 5), Intercept, nlpar = mu2),
prior(dirichlet(2, 2), theta)
)
fit1l <- brm(bf(y ~ x), dat, family = mix,
prior = prior, chains = 2, init = 0)
summary (fit1)

compute the membership probabilities
ppm <- pp_mixture(fit1)
str(ppm)

extract point estimates for each observation
head(ppml, 1, 1)

classify every observation according to
the most likely component
apply(ppm[, 1, 1, 1, which.max)

End(Not run)

predict.brmsfit Draws from the Posterior Predictive Distribution

Description

This method is an alias of posterior_predict.brmsfit with additional arguments for obtaining
summaries of the computed draws.

Usage

S3 method for class 'brmsfit'
predict(

object,

newdata = NULL,

re_formula = NULL,

transform = NULL,

predict.brmsfit

resp = NULL,

185

negative_rt = FALSE,
ndraws = NULL,
draw_ids = NULL,

sort = FALSE,
ntrys = 5,
cores = NULL,

summary = TRUE,
robust = FALSE,
probs = c(0.025, 0.975),

Arguments

object

newdata

re_formula

transform

resp

negative_rt

ndraws

draw_ids

sort

ntrys

cores

summary

An object of class brmsfit.

An optional data.frame for which to evaluate predictions. If NULL (default), the
original data of the model is used. NA values within factors (excluding grouping
variables) are interpreted as if all dummy variables of this factor are zero. This
allows, for instance, to make predictions of the grand mean when using sum
coding. NA values within grouping variables are treated as a new level.

formula containing group-level effects to be considered in the prediction. If
NULL (default), include all group-level effects; if NA or ~@, include no group-
level effects.

(Deprecated) A function or a character string naming a function to be applied
on the predicted responses before summary statistics are computed.

Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

Only relevant for Wiener diffusion models. A flag indicating whether response
times of responses on the lower boundary should be returned as negative values.
This allows to distinguish responses on the upper and lower boundary. Defaults
to FALSE.

Positive integer indicating how many posterior draws should be used. If NULL
(the default) all draws are used. Ignored if draw_ids is not NULL.

An integer vector specifying the posterior draws to be used. If NULL (the default),
all draws are used.

Logical. Only relevant for time series models. Indicating whether to return
predicted values in the original order (FALSE; default) or in the order of the time
series (TRUE).

Parameter used in rejection sampling for truncated discrete models only (de-
faults to 5). See Details for more information.

Number of cores (defaults to 1). On non-Windows systems, this argument can
be set globally via the mc. cores option.

Should summary statistics be returned instead of the raw values? Default is
TRUE.

186 predict.brmsfit

robust If FALSE (the default) the mean is used as the measure of central tendency and
the standard deviation as the measure of variability. If TRUE, the median and the
median absolute deviation (MAD) are applied instead. Only used if summary is
TRUE.

probs The percentiles to be computed by the quantile function. Only used if summary
is TRUE.

Further arguments passed to prepare_predictions that control several aspects
of data validation and prediction.

Value

An array of predicted response values. If summary = FALSE the output resembles those of posterior_predict.brmsfit.

If summary = TRUE the output depends on the family: For categorical and ordinal families, the output
is an N x C matrix, where N is the number of observations, C is the number of categories, and the
values are predicted category probabilities. For all other families, the output is a N x E matrix where
E =2+ length(probs) is the number of summary statistics: The Estimate column contains point
estimates (either mean or median depending on argument robust), while the Est.Error column
contains uncertainty estimates (either standard deviation or median absolute deviation depending on
argument robust). The remaining columns starting with Q contain quantile estimates as specified
via argument probs.

See Also

posterior_predict.brmsfit

Examples

Not run:

fit a model

fit <- brm(time | cens(censored) ~ age + sex + (1 + age || patient),
data = kidney, family = "exponential”, init = "@")

predicted responses
pp <- predict(fit)
head(pp)

predicted responses excluding the group-level effect of age
pp <- predict(fit, re_formula = ~ (1 | patient))
head(pp)

predicted responses of patient 1 for new data
newdata <- data.frame(

sex = factor(c("male”, "female")),
age = c(20, 50),
patient = c(1, 1)

)

predict(fit, newdata = newdata)

End(Not run)

predictive_error.brmsfit

187

predictive_error.

brmsfit
Posterior Draws of Predictive Errors

Description

Compute posterior

draws of predictive errors, that is, observed minus predicted responses. Can be

performed for the data used to fit the model (posterior predictive checks) or for new data.

Usage

S3 method for class 'brmsfit'
predictive_error(

object,

newdata = NULL,

re_formula = NULL,

re.form = NULL,

method = "posterior_predict”,

resp = NULL,
ndraws = NULL

’

draw_ids = NULL,

sort = FALSE,

Arguments

object

newdata

re_formula

re.form

method

resp

ndraws

An object of class brmsfit.

An optional data.frame for which to evaluate predictions. If NULL (default), the
original data of the model is used. NA values within factors (excluding grouping
variables) are interpreted as if all dummy variables of this factor are zero. This
allows, for instance, to make predictions of the grand mean when using sum
coding. NA values within grouping variables are treated as a new level.

formula containing group-level effects to be considered in the prediction. If
NULL (default), include all group-level effects; if NA or ~@, include no group-
level effects.

Alias of re_formula.

Method used to obtain predictions. Can be set to "posterior_predict” (the
default), "posterior_epred”, or "posterior_linpred"”. For more details, see
the respective function documentations.

Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

Positive integer indicating how many posterior draws should be used. If NULL
(the default) all draws are used. Ignored if draw_ids is not NULL.

188 predictive_interval. brmsfit

draw_ids An integer vector specifying the posterior draws to be used. If NULL (the default),
all draws are used.

sort Logical. Only relevant for time series models. Indicating whether to return
predicted values in the original order (FALSE; default) or in the order of the time
series (TRUE).

Further arguments passed to prepare_predictions that control several aspects
of data validation and prediction.

Value

An S x N array of predictive error draws, where S is the number of posterior draws and N is the
number of observations.

Examples

Not run:

fit a model

fit <- brm(rating ~ treat + period + carry + (1|subject),
data = inhaler, cores = 2)

extract predictive errors
pe <- predictive_error(fit)

str(pe)

End(Not run)

predictive_interval.brmsfit
Predictive Intervals

Description

Compute intervals from the posterior predictive distribution.

Usage
S3 method for class 'brmsfit'
predictive_interval(object, prob = 0.9, ...)
Arguments
object An R object of class brmsfit.
prob A number p (0 < p < 1) indicating the desired probability mass to include in the

intervals. Defaults to 0. 9.

Further arguments passed to posterior_predict.

prepare_predictions.brmsfit 189

Value

A matrix with 2 columns for the lower and upper bounds of the intervals, respectively, and as many
rows as observations being predicted.

Examples

Not run:
fit <- brm(count ~ zBase, data = epilepsy, family = poisson())
predictive_interval(fit)

End(Not run)

prepare_predictions.brmsfit
Prepare Predictions

Description

This method helps in preparing brms models for certin post-processing tasks most notably various
forms of predictions. Unless you are a package developer, you will rarely need to call prepare_predictions
directly.

Usage

S3 method for class 'brmsfit'
prepare_predictions(
X,
newdata = NULL,
re_formula = NULL,
allow_new_levels = FALSE,

sample_new_levels = "uncertainty”,
incl_autocor = TRUE,

00s = NULL,

resp = NULL,

ndraws = NULL,
draw_ids = NULL,
nsamples = NULL,
subset = NULL,

nug = NULL,
smooths_only = FALSE,
offset = TRUE,
newdata2 = NULL,
new_objects = NULL,
point_estimate = NULL,
ndraws_point_estimate = 1,

190 prepare_predictions.brmsfit
)
prepare_predictions(x, ...)
Arguments
X An R object typically of class 'brmsfit'.
newdata An optional data.frame for which to evaluate predictions. If NULL (default), the
original data of the model is used. NA values within factors (excluding grouping
variables) are interpreted as if all dummy variables of this factor are zero. This
allows, for instance, to make predictions of the grand mean when using sum
coding. NA values within grouping variables are treated as a new level.
re_formula formula containing group-level effects to be considered in the prediction. If

NULL (default), include all group-level effects; if NA or ~@, include no group-
level effects.

allow_new_levels

A flag indicating if new levels of group-level effects are allowed (defaults to
FALSE). Only relevant if newdata is provided.

sample_new_levels

incl_autocor

00s

resp

ndraws

draw_ids

nsamples

subset

Indicates how to sample new levels for grouping factors specified in re_formula.
This argument is only relevant if newdata is provided and allow_new_levels is
set to TRUE. If "uncertainty” (default), each posterior sample for a new level
is drawn from the posterior draws of a randomly chosen existing level. Each
posterior sample for a new level may be drawn from a different existing level
such that the resulting set of new posterior draws represents the variation across
existing levels. If "gaussian”, sample new levels from the (multivariate) nor-
mal distribution implied by the group-level standard deviations and correlations.
This options may be useful for conducting Bayesian power analysis or predict-
ing new levels in situations where relatively few levels where observed in the
old_data. If "old_levels"”, directly sample new levels from the existing levels,
where a new level is assigned all of the posterior draws of the same (randomly
chosen) existing level.

A flag indicating if correlation structures originally specified via autocor should
be included in the predictions. Defaults to TRUE.

Optional indices of observations for which to compute out-of-sample rather than
in-sample predictions. Only required in models that make use of response values
to make predictions, that is, currently only ARMA models.

Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

Positive integer indicating how many posterior draws should be used. If NULL
(the default) all draws are used. Ignored if draw_ids is not NULL.

An integer vector specifying the posterior draws to be used. If NULL (the default),
all draws are used.

Deprecated alias of ndraws.

Deprecated alias of draw_ids.

print.brmsfit

nug

smooths_only

offset

newdata?

new_objects

point_estimate

191

Small positive number for Gaussian process terms only. For numerical rea-
sons, the covariance matrix of a Gaussian process might not be positive definite.
Adding a very small number to the matrix’s diagonal often solves this problem.
If NULL (the default), nug is chosen internally.

Logical; If TRUE only predictions related to smoothing splines (i.e., s or t2) will
be computed. Defaults to FALSE.

Logical; Indicates if offsets should be included in the predictions. Defaults to
TRUE.

A named list of objects containing new data, which cannot be passed via ar-
gument newdata. Required for some objects used in autocorrelation structures,
or stanvars.

Deprecated alias of newdata?2.

Shall the returned object contain only point estimates of the parameters instead
of their posterior draws? Defaults to NULL in which case no point estimate
is computed. Alternatively, may be set to "mean” or "median”. This argu-
ment is primarily implemented to ensure compatibility with the loo_subsample
method.

ndraws_point_estimate

Value

Only used if point_estimate is not NULL. How often shall the point estimate’s
value be repeated? Defaults to 1.

Further arguments passed to validate_newdata.

An object of class 'brmsprep' or 'mvbrmsprep’, depending on whether a univariate or multivariate

model is passed.

print.brmsfit

Print a summary for a fitted model represented by a brmsfit object

Description

Print a summary for a fitted model represented by a brmsfit object

Usage
S3 method for class 'brmsfit'
print(x, digits =2, ...)
Arguments
X An object of class brmsfit
digits The number of significant digits for printing out the summary; defaults to 2. The

effective sample size is always rounded to integers.

Additional arguments that would be passed to method summary of brmsfit.

192 prior_draws.brmsfit

See Also

summary.brmsfit

print.brmsprior Print method for brmsprior objects

Description

Print method for brmsprior objects

Usage
S3 method for class 'brmsprior'
print(x, show_df = NULL, ...)
Arguments
X An object of class brmsprior.
show_df Logical; Print priors as a single data. frame (TRUE) or as a sequence of sampling

statements (FALSE)?
Currently ignored.

prior_draws.brmsfit Extract Prior Draws

Description

Extract prior draws of specified parameters

Usage
S3 method for class 'brmsfit'
prior_draws(x, variable = NULL, pars = NULL, ...)
prior_draws(x, ...)
prior_samples(x, ...)
Arguments
X An R object typically of class brmsfit.
variable A character vector providing the variables to extract. By default, all variables
are extracted.
pars Deprecated alias of variable. For reasons of backwards compatibility, pars is
interpreted as a vector of regular expressions by default unless fixed = TRUE is
specified.

Arguments passed to individual methods (if applicable).

prior_summary.brmsfit 193

Details

To make use of this function, the model must contain draws of prior distributions. This can be
ensured by setting sample_prior = TRUE in function brm. Priors of certain parameters cannot be
saved for technical reasons. For instance, this is the case for the population-level intercept, which
is only computed after fitting the model by default. If you want to treat the intercept as part of all

the other regression coefficients, so that sampling from its prior becomes possible, use ... ~ 0 +
Intercept + ... in the formulas.
Value

A data. frame containing the prior draws.

Examples
Not run:
fit <- brm(rating ~ treat + period + carry + (1|subject),
data = inhaler, family = "cumulative”,
prior = set_prior("normal(@,2)", class = "b"),

sample_prior = TRUE)

extract all prior draws
draws1 <- prior_draws(fit)
head(draws1)

extract prior draws for the coefficient of 'treat'
draws2 <- prior_draws(fit, "b_treat")

head(draws2)

End(Not run)

prior_summary.brmsfit Priors of brms models

Description

Extract priors of models fitted with brms.

Usage
S3 method for class 'brmsfit'
prior_summary(object, all = TRUE, ...)
Arguments
object An object of class brmsfit.
all Logical; Show all parameters in the model which may have priors (TRUE) or only

those with proper priors (FALSE)?

Further arguments passed to or from other methods.

194 psis.brmsfit

Value

An brmsprior object.

Examples

Not run:
fit <= brm(
count ~ zAge + zBase * Trt + (1|patient) + (1]|obs),
data = epilepsy, family = poisson(),
prior = prior(student_t(5,0,10), class = b) +
prior(cauchy(0,2), class = sd)
)
prior_summary(fit)
prior_summary(fit, all = FALSE)
print(prior_summary(fit, all = FALSE), show_df = FALSE)

End(Not run)

psis.brmsfit Pareto smoothed importance sampling (PSIS)

Description

Implementation of Pareto smoothed importance sampling (PSIS), a method for stabilizing impor-
tance ratios. The version of PSIS implemented here corresponds to the algorithm presented in Ve-
htari, Simpson, Gelman, Yao, and Gabry (2024). For PSIS diagnostics see the pareto-k-diagnostic

page.

Usage

S3 method for class 'brmsfit'

psis(log_ratios, newdata = NULL, resp = NULL, model_name = NULL, ...)
Arguments

log_ratios A fitted model object of class brmsfit. Argument is named "log_ratios" to

match the argument name of the loo: : psis generic function.

newdata An optional data.frame for which to evaluate predictions. If NULL (default), the
original data of the model is used. NA values within factors (excluding grouping
variables) are interpreted as if all dummy variables of this factor are zero. This
allows, for instance, to make predictions of the grand mean when using sum
coding. NA values within grouping variables are treated as a new level.

resp Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

model_name Currently ignored.
Further arguments passed to log_lik and loo: :psis.

R2D2 195

Value

The psis() methods return an object of class "psis”, which is a named list with the following
components:

log_weights Vector or matrix of smoothed (and truncated) but unnormalized log weights. To get
normalized weights use the weights() method provided for objects of class "psis”.

diagnostics A named list containing two vectors:

* pareto_k: Estimates of the shape parameter k of the generalized Pareto distribution. See
the pareto-k-diagnostic page for details.

» n_eff: PSIS effective sample size estimates.
Objects of class "psis” also have the following attributes:
norm_const_log Vector of precomputed values of colLogSumExps(log_weights) that are used
internally by the weights method to normalize the log weights.
tail_len Vector of tail lengths used for fitting the generalized Pareto distribution.
r_eff If specified, the user’s r_eff argument.
dims Integer vector of length 2 containing S (posterior sample size) and N (number of observations).

method Method used for importance sampling, here psis.

References

Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-
out cross-validation and WAIC. Statistics and Computing. 27(5), 1413—-1432. doi:10.1007/s11222-
016-9696-4 (journal version, preprint arXiv:1507.04544).

Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. (2024). Pareto smoothed importance
sampling. Journal of Machine Learning Research, 25(72):1-58. PDF

Examples

Not run:
fit <- brm(rating ~ treat + period + carry, data = inhaler)
psis(fit)

End(Not run)

R2D2 R2D2 Priors in brms

Description
Function used to set up R2D2(M2) priors in brms. The function does not evaluate its arguments —
it exists purely to help set up the model.

Usage

R2D2(mean_R2 = 0.5, prec_R2 = 2, cons_D2 = 0.5, autoscale = TRUE, main = FALSE)

https://link.springer.com/article/10.1007/s11222-016-9696-4
https://arxiv.org/abs/1507.04544
https://jmlr.org/papers/v25/19-556.html

196 R2D2

Arguments
mean_R2 Mean of the Beta prior on the coefficient of determination R"2.
prec_R2 Precision of the Beta prior on the coefficient of determination R*2.
cons_D2 Concentration vector of the Dirichlet prior on the variance decomposition pa-
rameters. Lower values imply more shrinkage.
autoscale Logical; indicating whether the R2D2 prior should be scaled using the residual
standard deviation sigma if possible and sensible (defaults to TRUE). Autoscaling
is not applied for distributional parameters or when the model does not contain
the parameter sigma.
main Logical (defaults to FALSE); only relevant if the R2D2 prior spans multiple pa-
rameter classes. In this case, only arguments given in the single instance where
main is TRUE will be used. Arguments given in other instances of the prior will
be ignored. See the Examples section below.
Details

The prior does not account for scale differences of the terms it is applied on. Accordingly, please
make sure that all these terms have a comparable scale to ensure that shrinkage is applied properly.

Currently, the following classes support the R2D2(M2) prior: b (overall regression coefficients), sds
(SDs of smoothing splines), sdgp (SDs of Gaussian processes), ar (autoregressive coefficients), ma
(moving average coefficients), sderr (SD of latent residuals), sdcar (SD of spatial CAR structures),
sd (SD of varying coefficients).

When the prior is only applied to parameter class b, it is equivalent to the original R2D2 prior (with
Gaussian kernel). When the prior is also applied to other parameter classes, it is equivalent to the
R2D2M2 prior.

Even when the R2D2(M2) prior is applied to multiple parameter classes at once, the concentration
vector (argument cons_D2) has to be provided jointly in the the one instance of the prior where
main = TRUE. The order in which the elements of concentration vector correspond to the classes’
coefficients is the same as the order of the classes provided above.

References

Zhang, Y. D., Naughton, B. P, Bondell, H. D., & Reich, B. J. (2020). Bayesian regression using a
prior on the model fit: The R2-D2 shrinkage prior. Journal of the American Statistical Association.
https://arxiv.org/pdf/1609.00046

Aguilar J. E. & Biirkner P. C. (2022). Intuitive Joint Priors for Bayesian Linear Multilevel Models:
The R2D2M2 prior. ArXiv preprint. https://arxiv.org/pdf/2208.07132

See Also

set_prior

Examples

set_prior(R2D2(mean_R2 = 0.8, prec_R2 = 10))

https://arxiv.org/pdf/1609.00046
https://arxiv.org/pdf/2208.07132

ranef.brmsfit

197

specify the R2D2 prior across multiple parameter classes
set_prior(R2D2(mean_R2 = 0.8, prec_R2 = 10, main = TRUE), class = "b") +
set_prior(R2D2(), class = "sd")

ranef.brmsfit

Extract Group-Level Estimates

Description

Extract the group-level ("random’) effects of each level from a brmsfit object.

Usage

S3 method for class 'brmsfit'

ranef (
object,

summary = TRUE,
robust = FALSE,
probs = c(0.025, 0.975),

pars = NULL,

groups = NULL,

Arguments

object
summary

robust

probs
pars

groups

Value

An object of class brmsfit.

Should summary statistics be returned instead of the raw values? Default is
TRUE.

If FALSE (the default) the mean is used as the measure of central tendency and
the standard deviation as the measure of variability. If TRUE, the median and the
median absolute deviation (MAD) are applied instead. Only used if summary is
TRUE.

The percentiles to be computed by the quantile function. Only used if summary
is TRUE.

Optional names of coefficients to extract. By default, all coefficients are ex-
tracted.

Optional names of grouping variables for which to extract effects.

Currently ignored.

A list of 3D arrays (one per grouping factor). If summary is TRUE, the 1st dimension contains the
factor levels, the 2nd dimension contains the summary statistics (see posterior_summary), and the
3rd dimension contains the group-level effects. If summary is FALSE, the 1st dimension contains the
posterior draws, the 2nd dimension contains the factor levels, and the 3rd dimension contains the

group-level effects.

198 read_csv_as_stanfit

Examples

Not run:
fit <- brm(count ~ zAge + zBase * Trt + (1+Trt|visit),

data = epilepsy, family = gaussian(), chains = 2)
ranef(fit)

End(Not run)

read_csv_as_stanfit Read CmdStan CSV files as a brms-formatted stanfit object

Description

read_csv_as_stanfit is used internally to read CmdStan CSV files into a stanfit object that is
consistent with the structure of the fit slot of a brmsfit object.

Usage

read_csv_as_stanfit(
files,
variables = NULL,
sampler_diagnostics = NULL,

model = NULL,
exclude = "",
algorithm = "sampling"
)
Arguments
files Character vector of CSV files names where draws are stored.
variables Character vector of variables to extract from the CSV files.

sampler_diagnostics
Character vector of sampler diagnostics to extract.

model A compiled cmdstanr model object (optional). Provide this argument if you
want to allow updating the model without recompilation.

exclude Character vector of variables to exclude from the stanfit. Only used when variables
is also specified.
algorithm The algorithm with which the model was fitted. See brm for details.
Value

A stanfit object consistent with the structure of the fit slot of a brmsfit object.

recompile_model 199

Examples

Not run:

fit a model manually via cmdstanr

scode <- stancode(count ~ Trt, data = epilepsy)

sdata <- standata(count ~ Trt, data = epilepsy)

mod <- cmdstanr::cmdstan_model(cmdstanr::write_stan_file(scode))
stanfit <- mod$sample(data = sdata)

feed the Stan model back into brms

fit <- brm(count ~ Trt, data = epilepsy, empty = TRUE, backend = 'cmdstanr')
fit$fit <- read_csv_as_stanfit(stanfit$output_files(), model = mod)

fit <- rename_pars(fit)

summary (fit)

End(Not run)

recompile_model Recompile Stan models in brmsfit objects

Description

Recompile the Stan model inside a brmsfit object, if necessary. This does not change the model,
it simply recreates the executable so that sampling is possible again.

Usage

recompile_model (x, recompile = NULL)

Arguments
X An object of class brmsfit.
recompile Logical, indicating whether the Stan model should be recompiled. If NULL (the
default), recompile_model tries to figure out internally, if recompilation is nec-
essary. Setting it to FALSE will cause recompile_model to always return the
brmsfit object unchanged.
Value

A (possibly updated) brmsfit object.

200

reloo.brmsfit

reloo.brmsfit

Compute exact cross-validation for problematic observations

Description

Compute exact cross-validation for problematic observations for which approximate leave-one-out
cross-validation may return incorrect results. Models for problematic observations can be run in
parallel using the future package.

Usage

S3 method for class 'brmsfit'

reloo(
X,

loo = NULL,
k_threshold = 0.7,

newdata = NULL,

resp = NULL,

check = TRUE,
recompile = NULL,
future_args = list(),

)

S3 method for class 'loo'
reloo(x, fit,

reloo(x,

Arguments

X

loo

k_threshold

newdata

resp

check

.2

)

An R object of class brmsfit or 1loo depending on the method.

An R object of class 1oo. If NULL, brms will try to extract a precomputed 1oo
object from the fitted model, added there via add_criterion.

The threshold at which Pareto & estimates are treated as problematic. Defaults
to 0.7. See pareto_k_ids for more details.

An optional data.frame for which to evaluate predictions. If NULL (default), the
original data of the model is used. NA values within factors (excluding grouping
variables) are interpreted as if all dummy variables of this factor are zero. This
allows, for instance, to make predictions of the grand mean when using sum
coding. NA values within grouping variables are treated as a new level.

Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

Logical; If TRUE (the default), some checks check are performed if the 1oo object
was generated from the brmsfit object passed to argument fit.

rename_pars 201

recompile Logical, indicating whether the Stan model should be recompiled. This may be
necessary if you are running reloo on another machine than the one used to fit
the model.

future_args A list of further arguments passed to future for additional control over parallel

execution if activated.
Further arguments passed to update.brmsfit and log_lik.brmsfit.
fit An R object of class brmsfit.

Details

Warnings about Pareto k estimates indicate observations for which the approximation to LOO is
problematic (this is described in detail in Vehtari, Gelman, and Gabry (2017) and the loo package
documentation). If there are J observations with £ estimates above k_threshold, then reloo will
refit the original model J times, each time leaving out one of the J problematic observations. The
pointwise contributions of these observations to the total ELPD are then computed directly and
substituted for the previous estimates from these .J observations that are stored in the original loo
object.

Value

An object of the class loo.

See Also
loo, kfold

Examples

Not run:
fitl <- brm(count ~ zAge + zBase * Trt + (1|patient),
data = epilepsy, family = poisson())

throws warning about some pareto k estimates being too high
(lool <- loo(fit1))

no more warnings after reloo
(relool <- reloo(fit1, loo = lool, chains = 1))

End(Not run)

rename_pars Rename parameters in brmsfit objects

Description

Rename parameters within the stanfit object after model fitting to ensure reasonable parameter
names. This function is usually called automatically by brm and users will rarely be required to call
it themselves.

202 residuals.brmsfit

Usage

rename_pars(x)

Arguments

X A brmsfit object.

Details

Function rename_pars is a deprecated alias of rename_pars.

Value

A brmsfit object with adjusted parameter names.

Examples

Not run:

fit a model manually via rstan

scode <- stancode(count ~ Trt, data = epilepsy)

sdata <- standata(count ~ Trt, data = epilepsy)

stanfit <- rstan::stan(model_code = scode, data = sdata)

feed the Stan model back into brms

fit <- brm(count ~ Trt, data = epilepsy, empty = TRUE)
fit$fit <- stanfit

fit <- rename_pars(fit)

summary (fit)

End(Not run)

residuals.brmsfit Posterior Draws of Residuals/Predictive Errors

Description

This method is an alias of predictive_error.brmsfit with additional arguments for obtaining
summaries of the computed draws.

Usage

S3 method for class 'brmsfit'
residuals(

object,

newdata = NULL,

re_formula = NULL,

method = "posterior_predict”,

residuals.brmsfit

type = c("ordinary”, "pearson"),
resp = NULL,

ndraws = NULL,

draw_ids = NULL,

sort = FALSE,

summary = TRUE,

203

robust = FALSE,

probs = c(0.025, 0.975),
)
Arguments
object An object of class brmsfit.
newdata An optional data.frame for which to evaluate predictions. If NULL (default), the

re_formula

method

type

resp

ndraws

draw_ids

sort

summary

robust

probs

original data of the model is used. NA values within factors (excluding grouping
variables) are interpreted as if all dummy variables of this factor are zero. This
allows, for instance, to make predictions of the grand mean when using sum
coding. NA values within grouping variables are treated as a new level.

formula containing group-level effects to be considered in the prediction. If
NULL (default), include all group-level effects; if NA or ~@, include no group-
level effects.

Method used to obtain predictions. Can be set to "posterior_predict” (the
default), "posterior_epred”, or "posterior_linpred”. For more details, see
the respective function documentations.

The type of the residuals, either "ordinary” or "pearson”. More information
is provided under ’Details’.

Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

Positive integer indicating how many posterior draws should be used. If NULL
(the default) all draws are used. Ignored if draw_ids is not NULL.

An integer vector specifying the posterior draws to be used. If NULL (the default),
all draws are used.

Logical. Only relevant for time series models. Indicating whether to return
predicted values in the original order (FALSE; default) or in the order of the time
series (TRUE).

Should summary statistics be returned instead of the raw values? Default is
TRUE..

If FALSE (the default) the mean is used as the measure of central tendency and
the standard deviation as the measure of variability. If TRUE, the median and the
median absolute deviation (MAD) are applied instead. Only used if summary is
TRUE.

The percentiles to be computed by the quantile function. Only used if summary
is TRUE.

Further arguments passed to prepare_predictions that control several aspects
of data validation and prediction.

204 restructure

Details

Residuals of type 'ordinary' are of the form R =Y — Yrep, where Y is the observed and Yrep
is the predicted response. Residuals of type pearson are of the form R = (Y —Yrep)/SD(Yrep),
where SD(Y rep) is an estimate of the standard deviation of Yrep.

Value

An array of predictive error/residual draws. If summary = FALSE the output resembles those of
predictive_error.brmsfit. If summary = TRUE the output is an N x E matrix, where N is the
number of observations and E denotes the summary statistics computed from the draws.

Examples

Not run:

fit a model

fit <- brm(rating ~ treat + period + carry + (1|subject),
data = inhaler, cores = 2)

extract residuals/predictive errors
res <- residuals(fit)

head(res)

End(Not run)

restructure Restructure Old R Objects

Description

restructure is a generic function used to restructure old R objects to work with newer versions of
the package that generated them. Its original use is within the brms package, but new methods for
use with objects from other packages can be registered to the same generic.

Usage
restructure(x, ...)
Arguments
X An object to be restructured. The object’s class will determine which method to

apply

Additional arguments to pass to the specific methods

restructure.brmsfit 205

Details

Usually the version of the package that generated the object will be stored somewhere in the object
and this information will be used by the specific method to determine what transformations to
apply. See restructure.brmsfit for the default method applied for brms models. You can view
the available methods by typing: methods(restructure)

Value

An object of the same class as x compatible with the latest version of the package that generated it.

See Also

restructure.brmsfit

restructure.brmsfit Restructure Old brmsfit Objects

Description

Restructure old brmsfit objects to work with the latest brms version. This function is called
internally when applying post-processing methods. However, in order to avoid unnecessary run
time caused by the restructuring, I recommend explicitly calling restructure once per model after
updating brms.

Usage
S3 method for class 'brmsfit'
restructure(x, ...)

Arguments
X An object of class brmsfit.

Currently ignored.

Details

If you are restructuring an old spline model (fitted with brms < 2.19.3) to avoid prediction inconsis-
tencies between machines (see GitHub issue #1465), please make sure to restructure your model
on the machine on which it was originally fitted.

Value

A brmsfit object compatible with the latest version of brms.

206 s

rows2labels Convert Rows to Labels

Description

Convert information in rows to labels for each row.

Usage
rows2labels(x, digits = 2, sep =" & ", incl_vars = TRUE, ...)
Arguments
X A data. frame for which to extract labels.
digits Minimal number of decimal places shown in the labels of numeric variables.
sep A single character string defining the separator between variables used in the
labels.
incl_vars Indicates if variable names should be part of the labels. Defaults to TRUE.
Currently unused.
Value

A character vector of the same length as the number of rows of x.

See Also

make_conditions, conditional_effects

s Defining smooths in brms formulas

Description

Functions used in definition of smooth terms within a model formulas. The function does not
evaluate a (spline) smooth - it exists purely to help set up a model using spline based smooths.

Usage
s(...)
t2(...)

Arguments

Arguments passed to mgcv: :s ormgev: : t2.

sar 207
Details
The function defined here are just simple wrappers of the respective functions of the mgev package.
When using them, please cite the appropriate references obtained via citation("mgcv").
brms uses the "random effects" parameterization of smoothing splines as explained in mgcv : : gamm.
A nice tutorial on this topic can be found in Pedersen et al. (2019). The answers provided in this
Stan discourse post may also be helpful.
References
Pedersen, E. J., Miller, D. L., Simpson, G. L., & Ross, N. (2019). Hierarchical generalized additive
models in ecology: an introduction with mgcv. Peer].
See Also
brmsformula, mgcv::s, mgcv: :t2
Examples
Not run:
simulate some data
dat <- mgcv::gamSim(1, n = 200, scale = 2)
fit univariate smooths for all predictors
fitl <= brm(y ~ s(x@) + s(x1) + s(x2) + s(x3),
data = dat, chains = 2)
summary (fit1)
plot(conditional_smooths(fit1), ask = FALSE)
fit a more complicated smooth model
fit2 <= brm(y ~ t2(x0, x1) + s(x2, by = x3),
data = dat, chains = 2)
summary (fit2)
plot(conditional_smooths(fit2), ask = FALSE)
End(Not run)
sar Spatial simultaneous autoregressive (SAR) structures
Description
Set up an spatial simultaneous autoregressive (SAR) term in brms. The function does not evaluate
its arguments — it exists purely to help set up a model with SAR terms.
Usage

sar(M, type = "lag")

https://discourse.mc-stan.org/t/better-priors-non-flat-for-gams-brms/23012/4

208 sar

Arguments
M An object specifying the spatial weighting matrix. Can be either the spatial
weight matrix itself or an object of class 1istw or nb, from which the spatial
weighting matrix can be computed.
type Type of the SAR structure. Either "lag"” (for SAR of the response values) or
"error"” (for SAR of the residuals). More information is provided in the ’De-
tails’ section.
Details

The lagsar structure implements SAR of the response values:
y=pWy+n+e
The errorsar structure implements SAR of the residuals:
y=n+uu=pWu-+e

In the above equations, 7 is the predictor term and e are independent normally or t-distributed
residuals. Currently, only families gaussian and student support SAR structures.

Value

An object of class 'sar_term', which is a list of arguments to be interpreted by the formula parsing
functions of brms.

See Also

autocor-terms

Examples

Not run:

data(oldcol, package = "spdep”)

fit1 <- brm(CRIME ~ INC + HOVAL + sar(COL.nb, type = "lag"),
data = COL.OLD, data2 = 1list(COL.nb = COL.nb),
chains = 2, cores = 2)

summary (fit1)

plot(fit1)

fit2 <- brm(CRIME ~ INC + HOVAL + sar(COL.nb, type = "error"),
data = COL.OLD, data2 = 1list(COL.nb = COL.nb),
chains = 2, cores = 2)

summary (fit2)

plot(fit2)

End(Not run)

save_pars 209

save_pars Control Saving of Parameter Draws

Description

Control which (draws of) parameters should be saved in a brms model. The output of this function
is meant for usage in the save_pars argument of brm.

Usage
save_pars(group = TRUE, latent = FALSE, all = FALSE, manual = NULL)

Arguments

group A flag to indicate if group-level coefficients for each level of the grouping factors
should be saved (default is TRUE). Set to FALSE to save memory. Alternatively,
group may also be a character vector naming the grouping factors for which to
save draws of coefficients.

latent A flag to indicate if draws of latent variables obtained by using me and mi terms
should be saved (default is FALSE). Saving these draws allows to better use
methods such as posterior_predict with the latent variables but leads to very
large R objects even for models of moderate size and complexity. Alternatively,
latent may also be a character vector naming the latent variables for which to
save draws.

all A flag to indicate if draws of all variables defined in Stan’s parameters block
should be saved (default is FALSE). Saving these draws is required in order to
apply the certain methods such as bridge_sampler and bayes_factor.

manual A character vector naming Stan variable names which should be saved. These
names should match the variable names inside the Stan code before renaming.
This feature is meant for power users only and will rarely be useful outside of
very special cases.

Value

A list of class "save_pars”.

Examples

Not run:

don't store group-level coefficients

fit <- brm(count ~ zAge + zBase * Trt + (1|patient),
data = epilepsy, family = poisson(),
save_pars = save_pars(group = FALSE))

variables(fit)

End(Not run)

210

set_prior

set_prior

Prior Definitions for brms Models

Description

Define priors for specific parameters or classes of parameters.

Usage

set_prior(
prior,

class = "b",

nn

coef = R

nn

nn
’
nn

nlpar = R

check = TRUE

)

NA,

prior(prior,

prior_(prior,

)
)

prior_string(prior, ...)

empty_prior()

Arguments
prior

class

coef
group
resp
dpar
nlpar
1b

ub

A character string defining a distribution in Stan language

The parameter class. Defaults to "b"” (i.e. population-level effects). See 'De-

tails’ for other valid parameter classes.
Name of the coefficient within the parameter class.

Grouping factor for group-level parameters.

Name of the response variable. Only used in multivariate models.

Name of a distributional parameter. Only used in distributional models.

Name of a non-linear parameter. Only used in non-linear models.

Lower bound for parameter restriction. Currently only allowed for classes "b".

Defaults to NULL, that is no restriction.

Upper bound for parameter restriction. Currently only allowed for classes "b".

Defaults to NULL, that is no restriction.

set_prior 211

check Logical; Indicates whether priors should be checked for validity (as far as pos-
sible). Defaults to TRUE. If FALSE, prior is passed to the Stan code as is, and all
other arguments are ignored.

Arguments passed to set_prior.

Details

set_prior is used to define prior distributions for parameters in brms models. The functions
prior, prior_, and prior_string are aliases of set_prior each allowing for a different kind
of argument specification. prior allows specifying arguments as expression without quotation
marks using non-standard evaluation. prior_ allows specifying arguments as one-sided formulas
or wrapped in quote. prior_string allows specifying arguments as strings just as set_prior
itself.

Below, we explain its usage and list some common prior distributions for parameters. A complete
overview on possible prior distributions is given in the Stan Reference Manual available at https:
//mc-stan.org/.

To combine multiple priors, use c(. . .) or the + operator (see ’Examples’). brms does not check if
the priors are written in correct Stan language. Instead, Stan will check their syntactical correctness
when the model is parsed to C++ and returns an error if they are not. This, however, does not imply
that priors are always meaningful if they are accepted by Stan. Although brms trys to find common
problems (e.g., setting bounded priors on unbounded parameters), there is no guarantee that the
defined priors are reasonable for the model. Below, we list the types of parameters in brms models,
for which the user can specify prior distributions.

Below, we provide details for the individual parameter classes that you can set priors on. Often,
it may not be immediately clear, which parameters are present in the model. To get a full list of
parameters and parameter classes for which priors can be specified (depending on the model) use
function default_prior.

1. Population-level ("fixed’) effects

Every Population-level effect has its own regression parameter represents the name of the corre-
sponding population-level effect. Suppose, for instance, that y is predicted by x1 and x2 (i.e., y ~
x1 + x2 in formula syntax). Then, x1 and x2 have regression parameters b_x1 and b_x2 respectively.
The default prior for population-level effects (including monotonic and category specific effects) is
an improper flat prior over the reals. Other common options are normal priors or student-t priors.
If we want to have a normal prior with mean 0 and standard deviation 5 for x1, and a unit student-
t prior with 10 degrees of freedom for x2, we can specify this via set_prior("normal(e,5)",
class ="b", coef ="x1") and

set_prior("student_t(10, @, 1)", class ="b", coef = "x2"). To put the same prior on all
population-level effects at once, we may write as a shortcut set_prior(”"<prior>", class ="b").
This also leads to faster sampling, because priors can be vectorized in this case. Both ways of defin-
ing priors can be combined using for instance set_prior(”"normal(@, 2)", class ="b") and
set_prior("normal(@, 10)", class ="b", coef = "x1") at the same time. This will set a normal (0,
10@) prior on the effect of x1 and a normal(@, 2) prior on all other population-level effects. How-
ever, this will break vectorization and may slow down the sampling procedure a bit.

In case of the default intercept parameterization (discussed in the *Details’ section of brmsformula),
general priors on class "b" will not affect the intercept. Instead, the intercept has its own parameter
class named "Intercept” and priors can thus be specified via set_prior("<prior>", class =

https://mc-stan.org/
https://mc-stan.org/

212 set_prior

"Intercept”). Setting a prior on the intercept will not break vectorization of the other population-
level effects. Note that technically, this prior is set on an intercept that results when internally
centering all population-level predictors around zero to improve sampling efficiency. On this cen-
tered intercept, specifying a prior is actually much easier and intuitive than on the original intercept,
since the former represents the expected response value when all predictors are at their means. To
treat the intercept as an ordinary population-level effect and avoid the centering parameterization,
use @ + Intercept on the right-hand side of the model formula.

In non-linear models, population-level effects are defined separately for each non-linear parameter.
Accordingly, it is necessary to specify the non-linear parameter in set_prior so that priors we can
be assigned correctly. If, for instance, alpha is the parameter and x the predictor for which we
want to define the prior, we can write set_prior("<prior>", coef ="x", nlpar = "alpha").
As a shortcut we can use set_prior("<prior>", nlpar = "alpha") to set the same prior on all
population-level effects of alpha at once.

The same goes for specifying priors for specific distributional parameters in the context of distribu-
tional regression, for example, set_prior("<prior>", coef = "x", dpar = "sigma"). For most
other parameter classes (see below), you need to indicate non-linear and distributional parameters
in the same way as shown here.

If desired, population-level effects can be restricted to fall only within a certain interval using the
1b and ub arguments of set_prior. This is often required when defining priors that are not defined
everywhere on the real line, such as uniform or gamma priors. When defining a uniform(2,4)
prior, you should write set_prior("uniform(2,4)", 1b =2, ub=4). When using a prior that
is defined on the positive reals only (such as a gamma prior) set 1b = @. In most situations, it is
not useful to restrict population-level parameters through bounded priors (non-linear models are an
important exception), but if you really want to this is the way to go.

2. Group-level (‘random’) effects

Each group-level effect of each grouping factor has a standard deviation named sd_<group>_<coef>.
Consider, for instance, the formula y ~ x1 +x2 + (1 + x1 | g). We see that the intercept as well as
x1 are group-level effects nested in the grouping factor g. The corresponding standard deviation pa-
rameters are named as sd_g_Intercept and sd_g_x1 respectively. These parameters are restricted
to be non-negative and, by default, have a half student-t prior with 3 degrees of freedom and a scale
parameter that depends on the standard deviation of the response after applying the link function.
Minimally, the scale parameter is 2.5. This prior is used (a) to be only weakly informative in order
to influence results as few as possible, while (b) providing at least some regularization to consider-
ably improve convergence and sampling efficiency. To define a prior distribution only for standard
deviations of a specific grouping factor, use

set_prior("<prior>", class ="sd", group = "<group>"). To define a prior distribution only
for a specific standard deviation of a specific grouping factor, you may write
set_prior("<prior>", class ="sd", group = "<group>", coef = "<coef>").

If there is more than one group-level effect per grouping factor, the correlations between those ef-
fects have to be estimated. The prior 1kj_corr_cholesky(eta) or in short 1kj(eta) with eta >
0 is essentially the only prior for (Cholesky factors) of correlation matrices. If eta = 1 (the default)
all correlations matrices are equally likely a priori. If eta > 1, extreme correlations become less
likely, whereas @ < eta < 1 results in higher probabilities for extreme correlations. Correlation ma-
trix parameters in brms models are named as cor_<group>, (e.g., cor_g if g is the grouping factor).
To set the same prior on every correlation matrix, use for instance set_prior("1lkj(2)", class =
"cor"). Internally, the priors are transformed to be put on the Cholesky factors of the correlation

set_prior 213

matrices to improve efficiency and numerical stability. The corresponding parameter class of the
Cholesky factors is L, but it is not recommended to specify priors for this parameter class directly.

4. Smoothing Splines

Smoothing splines are implemented in brms using the ‘random effects’ formulation as explained
in gamm). Thus, each spline has its corresponding standard deviations modeling the variability
within this term. In brms, this parameter class is called sds and priors can be specified via
set_prior("<prior>", class = "sds", coef = "<term label>"). The default prior is the same
as for standard deviations of group-level effects.

5. Gaussian processes

Gaussian processes as currently implemented in brms have two parameters, the standard deviation
parameter sdgp, and characteristic length-scale parameter 1scale (see gp for more details). The
default prior of sdgp is the same as for standard deviations of group-level effects. The default prior
of 1scale is an informative inverse-gamma prior specifically tuned to the covariates of the Gaus-
sian process (for more details see https://betanalpha.github.io/assets/case_studies/gp_
part3/part3.html). This tuned prior may be overly informative in some cases, so please consider
other priors as well to make sure inference is robust to the prior specification. If tuning fails, a
half-normal prior is used instead.

6. Autocorrelation parameters

The autocorrelation parameters currently implemented are named ar (autoregression), ma (moving
average), sderr (standard deviation of latent residuals in latent ARMA models), cosy (compound
symmetry correlation), car (spatial conditional autoregression), as well as lagsar and errorsar
(spatial simultaneous autoregression).

Priors can be defined by set_prior("<prior>", class = "ar") for ar and similar for other auto-
correlation parameters. By default, ar and ma are bounded between -1 and 1; cosy, car, lagsar,
and errorsar are bounded between @ and 1. The default priors are flat over the respective definition
areas.

7. Parameters of measurement error terms

Latent variables induced via measurement error me terms require both mean and standard deviation
parameters, whose prior classes are named "meanme” and "sdme"”, respectively. If multiple latent
variables are induced this way, their correlation matrix will be modeled as well and corresponding
priors can be specified via the "corme” class. All of the above parameters have flat priors over their
respective definition spaces by default.

8. Distance parameters of monotonic effects

As explained in the details section of brm, monotonic effects make use of a special parameter vector
to estimate the ‘normalized distances’ between consecutive predictor categories. This is realized in
Stan using the simplex parameter type. This class is named "simo" (short for simplex monotonic)
in brms. The only valid prior for simplex parameters is the dirichlet prior, which accepts a vector
of length K - 1 (K = number of predictor categories) as input defining the ’concentration’ of the
distribution. Explaining the dirichlet prior is beyond the scope of this documentation, but we want
to describe how to define this prior syntactically correct. If a predictor x with K categories is modeled
as monotonic, we can define a prior on its corresponding simplex via

prior(dirichlet(<vector>), class =simo, coef =mox1). The 1 in the end of coef indicates
that this is the first simplex in this term. If interactions between multiple monotonic variables are
modeled, multiple simplexes per term are required. For <vector>, we can put in any R expression

https://betanalpha.github.io/assets/case_studies/gp_part3/part3.html
https://betanalpha.github.io/assets/case_studies/gp_part3/part3.html

214 set_prior

defining a vector of length K - 1. The default is a uniform prior (i.e. <vector>=rep(1, K-1)) over
all simplexes of the respective dimension.

9. Parameters for specific families

Some families need additional parameters to be estimated. Families gaussian, student, skew_normal,
lognormal, and gen_extreme_value need the parameter sigma to account for the residual stan-
dard deviation. By default, sigma has a half student-t prior that scales in the same way as the
group-level standard deviations. Further, family student needs the parameter nu representing the
degrees of freedom of Student-t distribution. By default, nu has prior gamma(2, @.1), which is close
to a penalized complexity prior (see Stan prior choice Wiki), and a fixed lower bound of 1. Fam-
ily negbinomial needs a shape parameter that has by default inv_gamma (0.4, @.3) prior which
is close to a penalized complexity prior (see Stan prior choice Wiki). Families gamma, weibull,
and inverse.gaussian, need a shape parameter that has a gamma(0.01, @.@1) prior by default.
For families cumulative, cratio, sratio, and acat, and only if threshold = "equidistant”,
the parameter delta is used to model the distance between two adjacent thresholds. By default,
delta has an improper flat prior over the reals. The von_mises family needs the parameter kappa,
representing the concentration parameter. By default, kappa has prior gamma(2, 0.01).

Every family specific parameter has its own prior class, so that set_prior("<prior>", class =
"<parameter>") is the right way to go. All of these priors are chosen to be weakly informative,
having only minimal influence on the estimations, while improving convergence and sampling effi-
ciency.

10. Shrinkage priors

To reduce the danger of overfitting in models with many predictor terms fit on comparably sparse
data, brms supports special shrinkage priors, namely the (regularized) horseshoe and the R2D2
prior. These priors can be applied on many parameter classes, either directly on the coefficient
classes (e.g., class b), if directly setting priors on them is supported, or on the corresponding stan-
dard deviation hyperparameters (e.g., class sd) otherwise. Currently, the following classes support
shrinkage priors: b (overall regression coefficients), sds (SDs of smoothing splines), sdgp (SDs of
Gaussian processes), ar (autoregressive coefficients), ma (moving average coefficients), sderr (SD
of latent residuals), sdcar (SD of spatial CAR structures), sd (SD of varying coefficients).

11. Fixing parameters to constants

Fixing parameters to constants is possible by using the constant function, for example, constant (1)
to fix a parameter to 1. Broadcasting to vectors and matrices is done automatically.

Value

An object of class brmsprior to be used in the prior argument of brm.

Functions

e prior(): Alias of set_prior allowing to specify arguments as expressions without quotation
marks.

e prior_(): Alias of set_prior allowing to specify arguments as as one-sided formulas or
wrapped in quote.

* prior_string(): Alias of set_prior allowing to specify arguments as strings.

* empty_prior(): Create an empty brmsprior object.

Shifted_Lognormal 215

See Also

default_prior

Examples

use alias functions

(prior1 <- prior(cauchy(@, 1), class = sd))

(prior2 <- prior_(~cauchy(@, 1), class = ~sd))

(prior3 <- prior_string(”cauchy(@, 1)", class = "sd"))
identical(prior1, prior2)

identical(priorl, prior3)

check which parameters can have priors
default_prior(rating ~ treat + period + carry + (1]|subject),
data = inhaler, family = cumulative())

define some priors
bprior <- c(prior_string(”"normal(0,10)", class = "b"),
prior(normal(1,2), class = b, coef = treat),
prior_(~cauchy(0@,2), class = ~sd,
group = ~subject, coef = ~Intercept))

verify that the priors indeed found their way into Stan's model code
stancode(rating ~ treat + period + carry + (1|subject),

data = inhaler, family = cumulative(),

prior = bprior)

use the horseshoe prior to model sparsity in regression coefficients
stancode(count ~ zAge + zBase * Trt,

data = epilepsy, family = poisson(),

prior = set_prior("horseshoe(3)"))

fix certain priors to constants

bprior <- prior(constant(1), class = "b") +
prior(constant(2), class = "b", coef = "zBase") +
prior(constant(@.5), class = "sd")

stancode(count ~ zAge + zBase + (1 | patient),
data = epilepsy, prior = bprior)

pass priors to Stan without checking
prior <- prior_string("target += normal_lpdf(b[1] | @, 1)", check = FALSE)
stancode(count ~ Trt, data = epilepsy, prior = prior)

define priors in a vectorized manner
useful in particular for categorical or multivariate models
set_prior("normal(@, 2)", dpar = c("muX", "muY", "muzZ"))

Shifted_Lognormal The Shifted Log Normal Distribution

216 Shifted_Lognormal

Description

Density, distribution function, quantile function and random generation for the shifted log normal
distribution with mean meanlog, standard deviation sdlog, and shift parameter shif't.

Usage

dshifted_lnorm(x, meanlog = @, sdlog = 1, shift = @, log = FALSE)

pshifted_lnorm(

q,
meanlog = 0,
sdlog = 1,
shift = o,
lower.tail = TRUE,
log.p = FALSE

)

gshifted_lnorm(
P,
meanlog = 0,
sdlog = 1,
shift = 0,
lower.tail = TRUE,
log.p = FALSE

)

rshifted_lnorm(n, meanlog = @, sdlog = 1, shift = @)

Arguments
X, q Vector of quantiles.
meanlog Vector of means.
sdlog Vector of standard deviations.
shift Vector of shifts.
log Logical; If TRUE, values are returned on the log scale
lower.tail Logical; If TRUE (default), return P(X <= x). Else, return P(X > x) .
log.p Logical; If TRUE, values are returned on the log scale
p Vector of probabilities.
n Number of draws to sample from the distribution.
Details

See vignette("brms_families™) for details on the parameterization.

SkewNormal 217

SkewNormal The Skew-Normal Distribution

Description

Density, distribution function, and random generation for the skew-normal distribution with mean
mu, standard deviation sigma, and skewness alpha.

Usage

dskew_normal (
X7
mu = 0,
sigma = 1,
alpha = 0,
xi = NULL,
omega = NULL,
log = FALSE

)

pskew_normal (
q,
mu = @,
sigma = 1,
alpha = 0,
xi = NULL,
omega = NULL,
lower.tail = TRUE,
log.p = FALSE

)

gskew_normal(
P,
mu = @
sigma = 1,
alpha = 0,
xi = NULL,
omega = NULL,
lower.tail = TRUE,
log.p = FALSE,
tol = 1e-08

)
rskew_normal(n, mu = @, sigma = 1, alpha = @, xi = NULL, omega = NULL)

Arguments

X, q Vector of quantiles.

218 stancode

mu Vector of mean values.

sigma Vector of standard deviation values.

alpha Vector of skewness values.

xi Optional vector of location values. If NULL (the default), will be computed inter-
nally.

omega Optional vector of scale values. If NULL (the default), will be computed inter-
nally.

log Logical; If TRUE, values are returned on the log scale.

lower.tail Logical; If TRUE (default), return P(X <= x). Else, return P(X > x) .

log.p Logical; If TRUE, values are returned on the log scale.

p Vector of probabilities.

tol Tolerance of the approximation used in the computation of quantiles.

n Number of draws to sample from the distribution.

Details

See vignette("brms_families") for details on the parameterization.

stancode Stan Code for Bayesian models

Description

stancode is a generic function that can be used to generate Stan code for Bayesian models. Its
original use is within the brms package, but new methods for use with objects from other packages
can be registered to the same generic.

Usage
stancode(object, ...)
make_stancode(formula, ...)
Arguments
object An object whose class will determine which method to apply. Usually, it will be
some kind of symbolic description of the model form which Stan code should
be generated.
Further arguments passed to the specific method.
formula Synonym of object for use in make_stancode.
Details

See stancode.default for the default method applied for brms models. You can view the avail-
able methods by typing: methods (stancode) The make_stancode function is an alias of stancode.

stancode.brmsfit

Value

Usually, a character string containing the generated Stan code. For pretty printing, we recommend

the returned object to be of class c(”"character”, "brmsmodel”).

See Also

stancode.default, stancode.brmsfit

Examples

stancode(rating ~ treat + period + carry + (1|subject),
data = inhaler, family = "cumulative")

stancode.brmsfit Extract Stan code from brmsfit objects

Description

Extract Stan code from a fitted brms model.

Usage

S3 method for class 'brmsfit'
stancode(

object,

version = TRUE,

regenerate = NULL,

threads = NULL,

backend = NULL,

)
Arguments
object An object of class brmsfit.
version Logical; indicates if the first line containing the brms version number should be
included. Defaults to TRUE.
regenerate Logical; indicates if the Stan code should be regenerated with the current brms
version. By default, regenerate will be FALSE unless required to be TRUE by
other arguments.
threads Controls whether the Stan code should be threaded. See threading for details.
backend Controls the Stan backend. See brm for details.
Further arguments passed to stancode if the Stan code is regenerated.
Value

Stan code for further processing.

220

stancode.default

stancode.default

Stan Code for brms Models

Description

Generate Stan code for brms models

Usage

Default S3 method:

stancode(
object,
data,

family = gaussian(),

prior = NULL,

autocor = NULL,

data2 = NULL,

cov_ranef = NULL,
sparse = NULL,

sample_prior

_— n

= "no",

stanvars = NULL,
stan_funs = NULL,

knots = NULL,

drop_unused_levels = TRUE,

threads = getOption("brms.threads”, NULL),
normalize = getOption("brms.normalize”, TRUE),
save_model = NULL,

Arguments

object

data

family

prior

An object of class formula, brmsformula, or mvbrmsformula (or one that can
be coerced to that classes): A symbolic description of the model to be fitted.
The details of model specification are explained in brmsformula.

An object of class data.frame (or one that can be coerced to that class) con-
taining data of all variables used in the model.

A description of the response distribution and link function to be used in the
model. This can be a family function, a call to a family function or a character
string naming the family. Every family function has a 1ink argument allowing to
specify the link function to be applied on the response variable. If not specified,
default links are used. For details of supported families see brmsfamily. By
default, a linear gaussian model is applied. In multivariate models, family
might also be a list of families.

One or more brmsprior objects created by set_prior or related functions and

combined using the ¢ method or the + operator. See also default_prior for
more help.

stancode.default

autocor

data?2

cov_ranef

sparse

sample_prior

stanvars

stan_funs

knots

221

(Deprecated) An optional cor_brms object describing the correlation structure
within the response variable (i.e., the *autocorrelation’). See the documentation
of cor_brms for a description of the available correlation structures. Defaults to
NULL, corresponding to no correlations. In multivariate models, autocor might
also be a list of autocorrelation structures. It is now recommend to specify auto-
correlation terms directly within formula. See brmsformula for more details.

A named list of objects containing data, which cannot be passed via argument
data. Required for some objects used in autocorrelation structures to specify
dependency structures as well as for within-group covariance matrices.

(Deprecated) A list of matrices that are proportional to the (within) covariance
structure of the group-level effects. The names of the matrices should corre-
spond to columns in data that are used as grouping factors. All levels of the
grouping factor should appear as rownames of the corresponding matrix. This
argument can be used, among others to model pedigrees and phylogenetic ef-
fects. It is now recommended to specify those matrices in the formula interface
using the gr and related functions. See vignette("brms_phylogenetics")
for more details.

(Deprecated) Logical; indicates whether the population-level design matrices
should be treated as sparse (defaults to FALSE). For design matrices with many
zeros, this can considerably reduce required memory. Sampling speed is cur-
rently not improved or even slightly decreased. It is now recommended to use
the sparse argument of brmsformula and related functions.

Indicate if draws from priors should be drawn additionally to the posterior draws.
Options are "no” (the default), "yes"”, and "only"”. Among others, these draws
can be used to calculate Bayes factors for point hypotheses via hypothesis.
Please note that improper priors are not sampled, including the default improper
priors used by brm. See set_prior on how to set (proper) priors. Please also
note that prior draws for the overall intercept are not obtained by default for
technical reasons. See brmsformula how to obtain prior draws for the intercept.
If sample_priorissetto "only", draws are drawn solely from the priors ignor-
ing the likelihood, which allows among others to generate draws from the prior
predictive distribution. In this case, all parameters must have proper priors.

An optional stanvars object generated by function stanvar to define additional
variables for use in Stan’s program blocks.

(Deprecated) An optional character string containing self-defined Stan func-
tions, which will be included in the functions block of the generated Stan code.
It is now recommended to use the stanvars argument for this purpose instead.
Optional list containing user specified knot values to be used for basis construc-
tion of smoothing terms. See gamm for more details.

drop_unused_levels

threads

Should unused factors levels in the data be dropped? Defaults to TRUE.

Number of threads to use in within-chain parallelization. For more control over
the threading process, threads may also be a brmsthreads object created by
threading. Within-chain parallelization is experimental! We recommend its
use only if you are experienced with Stan’s reduce_sum function and have a
slow running model that cannot be sped up by any other means. Can be set glob-
ally for the current R session via the "brms. threads” option (see options).

222 standata

normalize Logical. Indicates whether normalization constants should be included in the
Stan code (defaults to TRUE). Setting it to FALSE requires Stan version >=2.25 to
work. If FALSE, sampling efficiency may be increased but some post processing
functions such as bridge_sampler will not be available. Can be controlled
globally for the current R session via the ‘brms.normalize* option.

save_model Either NULL or a character string. In the latter case, the model’s Stan code is
saved via cat in a text file named after the string supplied in save_model.

Other arguments for internal usage only.

Value

A character string containing the fully commented Stan code to fit a brms model. It is of class
c("character”, "brmsmodel”) to facilitate pretty printing.

Examples

stancode(rating ~ treat + period + carry + (1|subject),
data = inhaler, family = "cumulative")

stancode(count ~ zAge + zBase * Trt + (1|patient),
data = epilepsy, family = "poisson”)

standata Stan data for Bayesian models

Description

standata is a generic function that can be used to generate data for Bayesian models to be passed
to Stan. Its original use is within the brms package, but new methods for use with objects from
other packages can be registered to the same generic.

Usage
standata(object, ...)
make_standata(formula, ...)
Arguments
object A formula object whose class will determine which method will be used. A

symbolic description of the model to be fitted.
Further arguments passed to the specific method.

formula Synonym of object for use in make_standata.

standata.brmsfit 223

Details
See standata.default for the default method applied for brms models. You can view the avail-
able methods by typing methods (standata). The make_standata function is an alias of standata.
Value

A named list of objects containing the required data to fit a Bayesian model with Stan.

See Also

standata.default, standata.brmsfit

Examples

sdatal <- standata(rating ~ treat + period + carry + (1|subject),
data = inhaler, family = "cumulative")
str(sdatal)

standata.brmsfit Extract data passed to Stan from brmsfit objects

Description

Extract all data that was used by Stan to fit a brms model.

Usage

S3 method for class 'brmsfit'
standata(

object,

newdata = NULL,

re_formula = NULL,

newdata2 = NULL,

new_objects = NULL,

incl_autocor = TRUE,

)
Arguments
object An object of class brmsfit.
newdata An optional data.frame for which to evaluate predictions. If NULL (default), the

original data of the model is used. NA values within factors (excluding grouping
variables) are interpreted as if all dummy variables of this factor are zero. This
allows, for instance, to make predictions of the grand mean when using sum
coding. NA values within grouping variables are treated as a new level.

224 standata.default

re_formula formula containing group-level effects to be considered in the prediction. If
NULL (default), include all group-level effects; if NA or ~@, include no group-
level effects.

newdata2 A named list of objects containing new data, which cannot be passed via ar-
gument newdata. Required for some objects used in autocorrelation structures,
or stanvars.

new_objects Deprecated alias of newdata?2.

incl_autocor A flagindicating if correlation structures originally specified via autocor should
be included in the predictions. Defaults to TRUE.

More arguments passed to standata.default. and validate_newdata.

Value

A named list containing the data passed to Stan.

standata.default Data for brms Models

Description

Generate data for brms models to be passed to Stan.

Usage

Default S3 method:

standata(
object,
data,
family = gaussian(),
prior = NULL,
autocor = NULL,
data2 = NULL,
cov_ranef = NULL,
sample_prior = "no",

stanvars = NULL,

threads = getOption("brms.threads”, NULL),
knots = NULL,

drop_unused_levels = TRUE,

Arguments

object An object of class formula, brmsformula, or mvbrmsformula (or one that can
be coerced to that classes): A symbolic description of the model to be fitted.
The details of model specification are explained in brmsformula.

standata.default

data

family

prior

autocor

data?2

cov_ranef

sample_prior

stanvars

threads

225

An object of class data.frame (or one that can be coerced to that class) con-
taining data of all variables used in the model.

A description of the response distribution and link function to be used in the
model. This can be a family function, a call to a family function or a character
string naming the family. Every family function has a 1ink argument allowing to
specify the link function to be applied on the response variable. If not specified,
default links are used. For details of supported families see brmsfamily. By
default, a linear gaussian model is applied. In multivariate models, family
might also be a list of families.

One or more brmsprior objects created by set_prior or related functions and
combined using the ¢ method or the + operator. See also default_prior for
more help.

(Deprecated) An optional cor_brms object describing the correlation structure
within the response variable (i.e., the *autocorrelation’). See the documentation
of cor_brms for a description of the available correlation structures. Defaults to
NULL, corresponding to no correlations. In multivariate models, autocor might
also be a list of autocorrelation structures. It is now recommend to specify auto-
correlation terms directly within formula. See brmsformula for more details.

A named list of objects containing data, which cannot be passed via argument
data. Required for some objects used in autocorrelation structures to specify
dependency structures as well as for within-group covariance matrices.

(Deprecated) A list of matrices that are proportional to the (within) covariance
structure of the group-level effects. The names of the matrices should corre-
spond to columns in data that are used as grouping factors. All levels of the
grouping factor should appear as rownames of the corresponding matrix. This
argument can be used, among others to model pedigrees and phylogenetic ef-
fects. It is now recommended to specify those matrices in the formula interface
using the gr and related functions. See vignette("brms_phylogenetics")
for more details.

Indicate if draws from priors should be drawn additionally to the posterior draws.
Options are "no"” (the default), "yes”, and "only"”. Among others, these draws
can be used to calculate Bayes factors for point hypotheses via hypothesis.
Please note that improper priors are not sampled, including the default improper
priors used by brm. See set_prior on how to set (proper) priors. Please also
note that prior draws for the overall intercept are not obtained by default for
technical reasons. See brmsformula how to obtain prior draws for the intercept.
If sample_prior is setto "only", draws are drawn solely from the priors ignor-
ing the likelihood, which allows among others to generate draws from the prior
predictive distribution. In this case, all parameters must have proper priors.

An optional stanvars object generated by function stanvar to define additional
variables for use in Stan’s program blocks.

Number of threads to use in within-chain parallelization. For more control over
the threading process, threads may also be a brmsthreads object created by
threading. Within-chain parallelization is experimental! We recommend its
use only if you are experienced with Stan’s reduce_sum function and have a
slow running model that cannot be sped up by any other means. Can be set glob-
ally for the current R session via the "brms. threads” option (see options).

226 stanvar

knots Optional list containing user specified knot values to be used for basis construc-
tion of smoothing terms. See gamm for more details.

drop_unused_levels
Should unused factors levels in the data be dropped? Defaults to TRUE.

Other arguments for internal use.

Value

A named list of objects containing the required data to fit a brms model with Stan.

Examples

sdatal <- standata(rating ~ treat + period + carry + (1|subject),
data = inhaler, family = "cumulative")
str(sdatal)

sdata2 <- standata(count ~ zAge + zBase * Trt + (1|patient),
data = epilepsy, family = "poisson")
str(sdata2)

stanvar User-defined variables passed to Stan

Description

Prepare user-defined variables to be passed to one of Stan’s program blocks. This is primarily use-
ful for defining more complex priors, for refitting models without recompilation despite changing
priors, or for defining custom Stan functions.

Usage
stanvar(
x = NULL,
name = NULL,
scode = NULL,
block = "data",
position = "start",
pll_args = NULL
)
Arguments
X An R object containing data to be passed to Stan. Only required if block =
'data’ and ignored otherwise.
name Optional character string providing the desired variable name of the object in x.

If NULL (the default) the variable name is directly inferred from x.

stanvar 227

scode Line of Stan code to define the variable in Stan language. If block = 'data’,
the Stan code is inferred based on the class of x by default.

block Name of one of Stan’s program blocks in which the variable should be defined.
Can be 'data', 'tdata' (transformed data), 'parameters', 'tparameters'’
(transformed parameters), 'model’, 'likelihood' (part of the model block
where the likelihood is given), 'genquant ' (generated quantities) or ' functions'.

position Name of the position within the block where the Stan code should be placed.
Currently allowed are 'start' (the default) and 'end’ of the block.

pll_args Optional Stan code to be put into the header of partial_log_lik functions.
This ensures that the variables specified in scode can be used in the likelihood
even when within-chain parallelization is activated via threading.

Details

The stanvar function is not vectorized. Instead, multiple stanvars objects can be added together
via + (see Examples).

Special attention is necessary when using stanvars to inject code into the 'likelihood' block
while having threading activated. In this case, your custom Stan code may need adjustments to
ensure correct observation indexing. Please investigate the generated Stan code via stancode to
see which adjustments are necessary in your case.

Value

An object of class stanvars.

Examples
bprior <- prior(normal(mean_intercept, 10), class = "Intercept"”)
stanvars <- stanvar(5, name = "mean_intercept”)

stancode(count ~ Trt, epilepsy, prior = bprior,
stanvars = stanvars)

define a multi-normal prior with known covariance matrix

bprior <- prior(multi_normal(M, V), class = "b")
stanvars <- stanvar(rep(@, 2), "M", scode = " vector[K] M;") +
stanvar(diag(2), "V", scode = " matrix[K, K] V;")

stancode(count ~ Trt + zBase, epilepsy,
prior = bprior, stanvars = stanvars)

define a hierachical prior on the regression coefficients

bprior <- set_prior("normal(@, tau)", class = "b") +
set_prior(”"target += normal_lpdf(tau | @, 10)", check = FALSE)
stanvars <- stanvar(scode = "real<lower=0> tau;",
block = "parameters")

stancode(count ~ Trt + zBase, epilepsy,
prior = bprior, stanvars = stanvars)

ensure that 'tau' is passed to the likelihood of a threaded model
not necessary for this example but may be necessary in other cases
stanvars <- stanvar(scode = "real<lower=0> tau;",

228 StudentT

block = "parameters”, pll_args = "real tau")
stancode(count ~ Trt + zBase, epilepsy,
stanvars = stanvars, threads = threading(2))

StudentT The Student-t Distribution

Description

Density, distribution function, quantile function and random generation for the Student-t distribution
with location mu, scale sigma, and degrees of freedom df.

Usage
dstudent_t(x, df, mu = @, sigma = 1, log = FALSE)
pstudent_t(q, df, mu = @, sigma = 1, lower.tail = TRUE, log.p = FALSE)
gstudent_t(p, df, mu = @, sigma = 1, lower.tail = TRUE, log.p = FALSE)

rstudent_t(n, df, mu = @, sigma = 1)

Arguments
X Vector of quantiles.
df Vector of degrees of freedom.
mu Vector of location values.
sigma Vector of scale values.
log Logical; If TRUE, values are returned on the log scale.
q Vector of quantiles.
lower.tail Logical; If TRUE (default), return P(X <= x). Else, return P(X > x) .
log.p Logical; If TRUE, values are returned on the log scale.
p Vector of probabilities.
n Number of draws to sample from the distribution.
Details

See vignette("brms_families") for details on the parameterization.

See Also

TDist

summary.brmsfit 229

summary.brmsfit Create a summary of a fitted model represented by a brmsfit object

Description

Create a summary of a fitted model represented by a brmsfit object

Usage

S3 method for class 'brmsfit'
summary (

object,

priors = FALSE,

prob = 0.95,

robust = FALSE,

mc_se = FALSE,

Arguments
object An object of class brmsfit.
priors Logical; Indicating if priors should be included in the summary. Default is
FALSE.
prob A value between 0 and 1 indicating the desired probability to be covered by the
uncertainty intervals. The default is 0.95.
robust If FALSE (the default) the mean is used as the measure of central tendency and
the standard deviation as the measure of variability. If TRUE, the median and the
median absolute deviation (MAD) are applied instead.
mc_se Logical; Indicating if the uncertainty in Estimate caused by the MCMC sam-
pling should be shown in the summary. Defaults to FALSE.
Other potential arguments
Details

The convergence diagnostics Rhat, Bulk_ESS, and Tail_ESS are described in detail in Vehtari et
al. (2020).

References

Aki Vehtari, Andrew Gelman, Daniel Simpson, Bob Carpenter, and Paul-Christian Biirkner (2020).
Rank-normalization, folding, and localization: An improved R-hat for assessing convergence of
MCMC. *Bayesian Analysis*. 1-28. dpi:10.1214/20-BA1221

230 theme_black

theme_black (Deprecated) Black Theme for ggplot2 Graphics

Description

A black theme for ggplot graphics inspired by a blog post of Jon Lefcheck (https://jonlefcheck.
net/2013/03/11/black-theme-for-ggplot2-2/).

Usage

theme_black(base_size = 12, base_family = "")
Arguments

base_size base font size

base_family base font family
Details

When using theme_black in plots powered by the bayesplot package such as pp_check or stanplot,
I recommend using the "viridisC" color scheme (see examples).

Value

A theme object used in ggplot2 graphics.

Examples

Not run:
change default ggplot theme
ggplot2::theme_set(theme_black())

change default bayesplot color scheme
bayesplot: :color_scheme_set("viridisC")

fit a simple model
fit <- brm(count ~ zAge + zBase * Trt + (1|patient),

data = epilepsy, family = poisson(), chains = 2)
summary (fit)

create various plots

plot(marginal_effects(fit), ask = FALSE)

pp_check(fit)

mcmc_plot(fit, type = "hex", variable = c("b_Intercept”, "b_Trt1"))

End(Not run)

https://jonlefcheck.net/2013/03/11/black-theme-for-ggplot2-2/
https://jonlefcheck.net/2013/03/11/black-theme-for-ggplot2-2/

theme_detault 231

theme_default Default bayesplot Theme for ggplot2 Graphics

Description

This theme is imported from the bayesplot package. See theme_default for a complete documen-

tation.
Arguments
base_size base font size
base_family base font family
Value

A theme object used in ggplot2 graphics.

threading Threading in Stan

Description

Use threads for within-chain parallelization in Stan via the brms interface. Within-chain paral-
lelization is experimental! We recommend its use only if you are experienced with Stan’s reduce_sum
function and have a slow running model that cannot be sped up by any other means.

Usage

threading(threads = NULL, grainsize = NULL, static = FALSE, force = FALSE)

Arguments

threads Number of threads to use in within-chain parallelization.

grainsize Number of observations evaluated together in one chunk on one of the CPUs
used for threading. If NULL (the default), grainsize is currently chosen as
max (100, N/ (2 *x threads)), where N is the number of observations in the
data. This default is experimental and may change in the future without prior
notice.

static Logical. Apply the static (non-adaptive) version of reduce_sum? Defaults to
FALSE. Setting it to TRUE is required to achieve exact reproducibility of the model
results (if the random seed is set as well).

force Logical. Defaults to FALSE. If TRUE, this will force the Stan model to compile

with threading enabled without altering the Stan code generated by brms. This
can be useful if your own custom Stan functions use threading internally.

232 unstr

Details

The adaptive scheduling procedure used by reduce_sum will prevent the results to be exactly repro-
ducible even if you set the random seed. If you need exact reproducibility, you have to set argument
static = TRUE which may reduce efficiency a bit.

To ensure that chunks (whose size is defined by grainsize) require roughly the same amount of
computing time, we recommend storing observations in random order in the data. At least, please
avoid sorting observations after the response values. This is because the latter often cause variations
in the computing time of the pointwise log-likelihood, which makes up a big part of the parallelized
code.

Value

A brmsthreads object which can be passed to the threads argument of brm and related functions.

Examples

Not run:

this model just serves as an illustration

threading may not actually speed things up here

fit <- brm(count ~ zAge + zBase * Trt + (1|patient),
data = epilepsy, family = negbinomial(),
chains = 1, threads = threading(2, grainsize = 100),
backend = "cmdstanr"”)

summary (fit)

End(Not run)

unstr Set up UNSTR correlation structures

Description

Set up an unstructured (UNSTR) correlation term in brms. The function does not evaluate its
arguments — it exists purely to help set up a model with UNSTR terms.

Usage

unstr(time, gr)

Arguments
time An optional time variable specifying the time ordering of the observations. By
default, the existing order of the observations in the data is used.
gr An optional grouping variable. If specified, the correlation structure is assumed

to apply only to observations within the same grouping level.

update.brmsfit 233

Value
An object of class 'unstr_term', which is a list of arguments to be interpreted by the formula
parsing functions of brms.

See Also

autocor-terms

Examples

Not run:

add an unstructured correlation matrix for visits within the same patient
fit <- brm(count ~ Trt + unstr(visit, patient), data = epilepsy)

summary (fit)

End(Not run)

update.brmsfit Update brms models

Description

This method allows to update an existing brmsfit object.

Usage

S3 method for class 'brmsfit'
update(object, formula., newdata = NULL, recompile = NULL, ...)

Arguments
object An object of class brmsfit.
formula. Changes to the formula; for details see update.formula and brmsformula.
newdata Optional data. frame to update the model with new data. Data-dependent de-
fault priors will not be updated automatically.
recompile Logical, indicating whether the Stan model should be recompiled. If NULL (the
default), update tries to figure out internally, if recompilation is necessary. Set-
ting it to FALSE will cause all Stan code changing arguments to be ignored.
Other arguments passed to brm.
Details

When updating a brmsfit created with the cmdstanr backend in a different R session, a recompi-
lation will be triggered because by default, cmdstanr writes the model executable to a temporary
directory. To avoid that, set option "cmdstanr_write_stan_file_dir" to a nontemporary path of
your choice before creating the original brmsfit (see section ’Examples’ below).

234 update.brmsfit_multiple

Examples

Not run:

fit1l <- brm(time | cens(censored) ~ age * sex + disease + (1|patient),
data = kidney, family = gaussian(”log"))

summary (fit1)

remove effects of 'disease'
fit2 <- update(fitl, formula. = ~ . - disease)
summary (fit2)

remove the group specific term of 'patient' and

change the data (just take a subset in this example)

fit3 <- update(fit1, formula. = ~ . - (1|patient),
newdata = kidney[1:38, 1)

summary (fit3)

use another family and add population-level priors
fit4 <- update(fitl, family = weibull(), init = "0",

prior = set_prior(”normal(0,5)"))
summary (fit4)

to avoid a recompilation when updating a 'cmdstanr'-backend fit in a fresh
R session, set option 'cmdstanr_write_stan_file_dir' before creating the
initial 'brmsfit'
CAUTION: the following code creates some files in the current working
directory: two 'model_<hash>.stan' files, one 'model_<hash>(.exe)'
executable, and one 'fit_cmdstanr_<some_number>.rds' file
set.seed(7)
fname <- paste@("fit_cmdstanr_", sample.int(.Machine$integer.max, 1))
options(cmdstanr_write_stan_file_dir = getwd())
fit_cmdstanr <- brm(rate ~ conc + state,

data = Puromycin,

backend = "cmdstanr”,

file = fname)
now restart the R session and run the following (after attaching 'brms')
set.seed(7)
fname <- paste@("fit_cmdstanr_", sample.int(.Machine$integer.max, 1))
fit_cmdstanr <- brm(rate ~ conc + state,

data = Puromycin,

backend = "cmdstanr”,

file = fname)
upd_cmdstanr <- update(fit_cmdstanr,

formula. = rate ~ conc)

n

n

End(Not run)

update.brmsfit_multiple
Update brms models based on multiple data sets

update_adterms 235

Description

This method allows to update an existing brmsfit_multiple object.

Usage
S3 method for class 'brmsfit_multiple'
update(object, formula., newdata = NULL, ...)
Arguments
object An object of class brmsfit_multiple.
formula. Changes to the formula; for details see update.formula and brmsformula.
newdata List of data.frames to update the model with new data. Currently required

even if the original data should be used.

Other arguments passed to update.brmsfit and brm_multiple.

Examples

Not run:
library(mice)
imp <- mice(nhanes2)

initially fit the model
fit_imp1 <- brm_multiple(bmi ~ age + hyp + chl, data = imp, chains = 1)
summary (fit_imp1)

update the model using fewer predictors
fit_imp2 <- update(fit_imp1, formula. = . ~ hyp + chl, newdata = imp)
summary (fit_imp2)

End(Not run)

update_adterms Update Formula Addition Terms

Description

Update additions terms used in formulas of brms. See addition-terms for details.

Usage

update_adterms(formula, adform, action = c("update”, "replace"”))

236 validate_newdata

Arguments
formula Two-sided formula to be updated.
adform One-sided formula containing addition terms to update formula with.
action Indicates what should happen to the existing addition terms in formula. If
"update” (the default), old addition terms that have no corresponding term in
adform will be kept. If "replace”, all old addition terms will be removed.
Value

An object of class formula.

Examples

form <- y | trials(size) ~ x

update_adterms(form, ~ trials(10))
update_adterms(form, ~ weights(w))
update_adterms(form, ~ weights(w), action = "replace"”)
update_adterms(y ~ x, ~ trials(10))

validate_newdata Validate New Data

Description

Validate new data passed to post-processing methods of brms. Unless you are a package developer,
you will rarely need to call validate_newdata directly.

Usage

validate_newdata(
newdata,
object,
re_formula = NULL,
allow_new_levels = FALSE,
newdata2 = NULL,
resp = NULL,
check_response = TRUE,
incl_autocor = TRUE,
group_vars = NULL,
req_vars = NULL,

validate_prior

Arguments
newdata
object

re_formula

237

A data. frame containing new data to be validated.
A brmsfit object.

formula containing group-level effects to be considered in the prediction. If
NULL (default), include all group-level effects; if NA or ~@, include no group-
level effects.

allow_new_levels

newdata?

resp

check_response

incl_autocor

group_vars

reg_vars

Value

A flag indicating if new levels of group-level effects are allowed (defaults to
FALSE). Only relevant if newdata is provided.

A named list of objects containing new data, which cannot be passed via ar-
gument newdata. Required for some objects used in autocorrelation structures,
or stanvars.

Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

Logical; Indicates if response variables should be checked as well. Defaults to
TRUE.

A flag indicating if correlation structures originally specified via autocor should
be included in the predictions. Defaults to TRUE.

Optional names of grouping variables to be validated. Defaults to all grouping
variables in the model.

Optional names of variables required in newdata. If NULL (the default), all vari-
ables in the original data are required (unless ignored for some other reason).

Currently ignored.

A validated 'data.frame' based on newdata.

validate_prior

Validate Prior for brms Models

Description

Validate priors supplied by the user. Return a complete set of priors for the given model, including

default priors.

Usage

validate_prior(

prior,
formula,
data,

family = gaussian(),

sample_prior

n

= "no",

238

data2
knots

NULL,
NULL,

validate_prior

drop_unused_levels = TRUE,

Arguments

prior

formula

data

family

sample_prior

data?2

knots

One or more brmsprior objects created by set_prior or related functions and
combined using the ¢ method or the + operator. See also default_prior for
more help.

An object of class formula, brmsformula, or mvbrmsformula (or one that can
be coerced to that classes): A symbolic description of the model to be fitted.
The details of model specification are explained in brmsformula.

An object of class data.frame (or one that can be coerced to that class) con-
taining data of all variables used in the model.

A description of the response distribution and link function to be used in the
model. This can be a family function, a call to a family function or a character
string naming the family. Every family function has a 1ink argument allowing to
specify the link function to be applied on the response variable. If not specified,
default links are used. For details of supported families see brmsfamily. By
default, a linear gaussian model is applied. In multivariate models, family
might also be a list of families.

Indicate if draws from priors should be drawn additionally to the posterior draws.
Options are "no” (the default), "yes"”, and "only"”. Among others, these draws
can be used to calculate Bayes factors for point hypotheses via hypothesis.
Please note that improper priors are not sampled, including the default improper
priors used by brm. See set_prior on how to set (proper) priors. Please also
note that prior draws for the overall intercept are not obtained by default for
technical reasons. See brmsformula how to obtain prior draws for the intercept.
If sample_priorissetto "only", draws are drawn solely from the priors ignor-
ing the likelihood, which allows among others to generate draws from the prior
predictive distribution. In this case, all parameters must have proper priors.

A named list of objects containing data, which cannot be passed via argument
data. Required for some objects used in autocorrelation structures to specify
dependency structures as well as for within-group covariance matrices.

Optional list containing user specified knot values to be used for basis construc-
tion of smoothing terms. See gamm for more details.

drop_unused_levels

Value

Should unused factors levels in the data be dropped? Defaults to TRUE.

Other arguments for internal usage only.

An object of class brmsprior.

VarCorr.brmsfit 239

See Also

default_prior, set_prior.

Examples

prior1 <- prior(normal(@,10), class = b) +
prior(cauchy(0,2), class = sd)
validate_prior(prior1, count ~ zAge + zBase * Trt + (1|patient),
data = epilepsy, family = poisson())

VarCorr.brmsfit Extract Variance and Correlation Components

Description

This function calculates the estimated standard deviations, correlations and covariances of the
group-level terms in a multilevel model of class brmsfit. For linear models, the residual stan-
dard deviations, correlations and covariances are also returned.

Usage
S3 method for class 'brmsfit'
VarCorr(
X}
sigma = 1,
summary = TRUE,

robust = FALSE,
probs = c(0.025, 0.975),

)
Arguments

X An object of class brmsfit.

sigma Ignored (included for compatibility with VarCorr).

summary Should summary statistics be returned instead of the raw values? Default is
TRUE.

robust If FALSE (the default) the mean is used as the measure of central tendency and
the standard deviation as the measure of variability. If TRUE, the median and the
median absolute deviation (MAD) are applied instead. Only used if summary is
TRUE.

probs The percentiles to be computed by the quantile function. Only used if summary
is TRUE.

Currently ignored.

240 vcov.brmsfit

Value

A list of lists (one per grouping factor), each with three elements: a matrix containing the standard
deviations, an array containing the correlation matrix, and an array containing the covariance matrix
with variances on the diagonal.

Examples

Not run:
fit <- brm(count ~ zAge + zBase * Trt + (1+Trt]|visit),

data = epilepsy, family = gaussian(), chains = 2)
VarCorr(fit)

End(Not run)

vcov.brmsfit Covariance and Correlation Matrix of Population-Level Effects

Description

Get a point estimate of the covariance or correlation matrix of population-level parameters

Usage
S3 method for class 'brmsfit'
vcov(object, correlation = FALSE, pars = NULL, ...)
Arguments
object An object of class brmsfit.
correlation Logical; if FALSE (the default), compute the covariance matrix, if TRUE, compute
the correlation matrix.
pars Optional names of coefficients to extract. By default, all coefficients are ex-
tracted.

Currently ignored.

Details
Estimates are obtained by calculating the maximum likelihood covariances (correlations) of the
posterior draws.

Value

covariance or correlation matrix of population-level parameters

VonMises 241

Examples

Not run:
fit <- brm(count ~ zAge + zBase * Trt + (1+Trt]|visit),

data = epilepsy, family = gaussian(), chains = 2)
veov(fit)

End(Not run)

VonMises The von Mises Distribution

Description

Density, distribution function, and random generation for the von Mises distribution with location
mu, and precision kappa.

Usage

dvon_mises(x, mu, kappa, log = FALSE)
pvon_mises(q, mu, kappa, lower.tail = TRUE, log.p = FALSE, acc = 1e-20)

rvon_mises(n, mu, kappa)

Arguments
X, q Vector of quantiles between -pi and pi.
mu Vector of location values.
kappa Vector of precision values.
log Logical; If TRUE, values are returned on the log scale.
lower.tail Logical; If TRUE (default), return P(X <= x). Else, return P(X > x) .
log.p Logical; If TRUE, values are returned on the log scale.
acc Accuracy of numerical approximations.
n Number of draws to sample from the distribution.
Details

See vignette("brms_families™) for details on the parameterization.

242

waic.brmsfit

waic.brmsfit

Widely Applicable Information Criterion (WAIC)

Description

Compute the widely applicable information criterion (WAIC) based on the posterior likelihood
using the loo package. For more details see waic.

Usage

S3 method for class 'brmsfit'

waic(
X,

compare = TRUE,

resp = NULL,

pointwise = FALSE,

model_names =

Arguments

X

compare

resp

pointwise

model_names

Details

NULL

A brmsfit object.

More brmsfit objects or further arguments passed to the underlying post-processing

functions. In particular, see prepare_predictions for further supported argu-
ments.

A flag indicating if the information criteria of the models should be compared
to each other via 1loo_compare.

Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

A flag indicating whether to compute the full log-likelihood matrix at once or
separately for each observation. The latter approach is usually considerably
slower but requires much less working memory. Accordingly, if one runs into
memory issues, pointwise = TRUE is the way to go.

If NULL (the default) will use model names derived from deparsing the call. Oth-
erwise will use the passed values as model names.

See loo_compare for details on model comparisons. For brmsfit objects, WAIC is an alias of waic.
Use method add_criterion to store information criteria in the fitted model object for later usage.

Value

If just one object is provided, an object of class loo. If multiple objects are provided, an object of

class loolist.

Wiener 243

References

Vehtari, A., Gelman, A., & Gabry J. (2016). Practical Bayesian model evaluation using leave-
one-out cross-validation and WAIC. In Statistics and Computing, doi:10.1007/s11222-016-9696-4.
arXiv preprint arXiv:1507.04544.

Gelman, A., Hwang, J., & Vehtari, A. (2014). Understanding predictive information criteria for
Bayesian models. Statistics and Computing, 24, 997-1016.

Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely applicable
information criterion in singular learning theory. The Journal of Machine Learning Research, 11,
3571-3594.

Examples

Not run:

model with population-level effects only

fitl <- brm(rating ~ treat + period + carry,
data = inhaler)

(waicl <- waic(fit1))

model with an additional varying intercept for subjects

fit2 <- brm(rating ~ treat + period + carry + (1|subject),
data = inhaler)

(waic2 <- waic(fit2))

compare both models
loo_compare(waicl, waic2)

End(Not run)

Wiener The Wiener Diffusion Model Distribution

Description

Density function and random generation for the Wiener diffusion model distribution with boundary
separation alpha, non-decision time tau, bias beta and drift rate delta.

Usage

dwiener(
X,
alpha,
tau,
beta,
delta,
resp = 1,
log = FALSE,

244 Wiener

backend = getOption("wiener_backend”, "Rwiener")
)
rwiener(
n,
alpha,
tau,
beta,
delta,
types = c("q", "resp”),
backend = getOption("wiener_backend”, "Rwiener")
)
Arguments
X Vector of quantiles.
alpha Boundary separation parameter.
tau Non-decision time parameter.
beta Bias parameter.
delta Drift rate parameter.
resp Response: "upper” or "lower"”. If no character vector, it is coerced to logical
where TRUE indicates "upper"” and FALSE indicates "lower".
log Logical; If TRUE, values are returned on the log scale.
backend Name of the package to use as backend for the computations. Either "Rwiener”
(the default) or "rtdists”. Can be set globally for the current R session via the
"wiener_backend" option (see options).
n Number of draws to sample from the distribution.
types Which types of responses to return? By default, return both the response times
"q" and the dichotomous responses "resp”. If either "q" or "resp”, return only
one of the two types.
Details

These are wrappers around functions of the RWiener or rtdists package (depending on the chosen
backend). See vignette(”"brms_families") for details on the parameterization.

See Also

wienerdist, Diffusion

Zerolnflated 245

ZerolInflated Zero-Inflated Distributions

Description

Density and distribution functions for zero-inflated distributions.

Usage
dzero_inflated_poisson(x, lambda, zi, log = FALSE)
pzero_inflated_poisson(q, lambda, zi, lower.tail = TRUE, log.p = FALSE)

FALSE)

dzero_inflated_negbinomial (x, mu, shape, zi, log
pzero_inflated_negbinomial(q, mu, shape, zi, lower.tail = TRUE, log.p = FALSE)
dzero_inflated_binomial(x, size, prob, zi, log = FALSE)
pzero_inflated_binomial(q, size, prob, zi, lower.tail = TRUE, log.p = FALSE)
dzero_inflated_beta_binomial(x, size, mu, phi, zi, log = FALSE)

pzero_inflated_beta_binomial(
q,
size,
mu,
phi,
zi,
lower.tail = TRUE,
log.p = FALSE
)

dzero_inflated_beta(x, shapel, shape2, zi, log = FALSE)

pzero_inflated_beta(q, shapel, shape2, zi, lower.tail = TRUE, log.p = FALSE)

Arguments
X Vector of quantiles.
zi zero-inflation probability
log Logical; If TRUE, values are returned on the log scale.
q Vector of quantiles.
lower.tail Logical; If TRUE (default), return P(X <= x). Else, return P(X > x) .

log.p Logical; If TRUE, values are returned on the log scale.

246 Zerolnflated

mu, lambda location parameter
shape, shape1l, shape2
shape parameter

size number of trials
prob probability of success on each trial
phi precision parameter

Details

The density of a zero-inflated distribution can be specified as follows. If z = 0 set f(xz) =6+ (1 —
0) x g(0). Else set f(x) = (1 —) * g(x), where g(x) is the density of the non-zero-inflated part.

Index

+ datasets
epilepsy, 94
inhaler, 115
kidney, 125
loss, 141

acat (brmsfamily), 33

acformula, /9

acformula (brmsformula-helpers), 49

add_criterion, 10, 12, 62, 132, 134, 136,
200, 242

add_ic, 61

add_ic (add_loo), 12

add_ic<- (add_loo), 12

add_loo, 12

add_rstan_model, 13

add_waic (add_loo), 12

addition-terms, 8

and (draws-index-brms), 91

ar, 13,15,19,71, 143

arma, 14, 14, 19, 72, 143

as.array.brmsfit
(as.data.frame.brmsfit), 16

as.brmsprior, 15

as.data.frame, 16, 173

as.data.frame.brmsfit, 16

as.matrix.brmsfit, 167

as.matrix.brmsfit
(as.data.frame.brmsfit), 16

as.mcmc (as.memc.brmsfit), 17

as.mcmc.brmsfit, 17

as_draws, 17, 173

as_draws (draws-brms), 89

as_draws_x, 16, 17, 172

as_draws_array (draws-brms), 89

as_draws_df (draws-brms), 89

as_draws_list (draws-brms), 89

as_draws_matrix (draws-brms), 89

as_draws_rvars (draws-brms), 89

asym_laplace (brmsfamily), 33

247

AsymLaplace, 18
attributes, /95

autocor (autocor.brmsfit), 19
autocor-terms, 19
autocor.brmsfit, 19

bayes_factor, 6, 24, 177

bayes_factor (bayes_factor.brmsfit), 20

bayes_factor.brmsfit, 20

bayes_R2 (bayes_R2.brmsfit), 21

bayes_R2.brmsfit, 21

bayesplot, 6, 181

bernoulli (brmsfamily), 33

Beta (brmsfamily), 33

beta_binomial (brmsfamily), 33

BetaBinomial, 23

bf (brmsformula), 40

bf-helpers (brmsformula-helpers), 49

bridge_sampler, 20, 28, 177, 222

bridge_sampler
(bridge_sampler.brmsfit), 23

bridge_sampler.brmsfit, 23

bridge_sampler.stanfit, 24

bridgesampling: :bayes_factor, 20

bridgesampling: :bridge_sampler, 24

bridgesampling: :post_prob, 177

brm, 6, 7, 9, 25, 38, 40, 41, 54, 55, 57,78, 111,
122,132, 136, 149, 198, 201, 209,
213,214,219, 233

brm_multiple, 43, 54, 235

brms, 31, 39, 40

brms (brms-package), 6

brms-package, 6

brmsfamily, 7, 26, 30, 31, 33, 40,47, 55, 81,
82, 85, 149, 220, 225, 238

brmsfit, 7, 31

brmsfit (brmsfit-class), 39

brmsfit-class, 39

brmsfit_needs_refit, 30, 57

248

brmsformula, 6-9, 19, 26, 27, 30, 31, 38—40,
40, 49, 51, 53-56, 80, 82, 85, 86,
107-109, 146, 147, 149, 151, 153,
157, 158, 207, 211, 220, 221, 224
225,233,235, 238

brmsformula-helpers, 49

brmshypothesis, 52, 114

brmsprior, 39

brmsprior (set_prior), 210

brmsprior-class (set_prior), 210

brmsterms, 53, 119, 121

car, 19,58,73

cat, 29, 222

cat (addition-terms), 8

categorical (brmsfamily), 33

cbind, 152, 157

cens (addition-terms), 8

chains, (draws-index-brms), 91

coef.brmsfit, 59, 113

combine_models, 56, 60

compare_ic, 61

conditional_effects, 6, 69, 143, 144, 206

conditional_effects
(conditional_effects.brmsfit),
62

conditional_effects.brmsfit, 62

conditional_smooths
(conditional_smooths.brmsfit),
67

conditional_smooths.brmsfit, 67

constant, 69

control_params, 70

cor_ar,71,72,73

cor_arma, 71,72,73,77

cor_arma-class (cor_arma), 72

cor_brms, 19, 26, 40, 41, 55,73, 85, 221, 225

cor_brms-class (cor_brms), 73

cor_car, 73,73

cor_cosy, 75

cor_cosy-class (cor_cosy), 75

cor_errorsar (cor_sar), 77

cor_fixed, 73,75

cor_icar (cor_car), 73

cor_lagsar (cor_sar), 77

cor_ma, 72, 73,76

cor_sar, 73,77

cosy, 19,75,78

cov_fixed (cor_fixed), 75

INDEX

cox (brmsfamily), 33

cratio (brmsfamily), 33
create_priorsense_data.brmsfit, 79
cs, 80

cse (cs), 80

cumulative (brmsfamily), 33
custom_family, 33, 81
customfamily, 38

customfamily (custom_family), 81
cv_varsel, 104

dasym_laplace (AsymLaplace), 18

dbeta_binomial (BetaBinomial), 23

ddirichlet (Dirichlet), 89

dec (addition-terms), 8

default_prior, 26, 30, 55, 84, 86, 211, 215,
220, 225, 238, 239

default_prior.default, 84, 85

density, 87

density_ratio, 87

dexgaussian (ExGaussian), 95

dfrechet (Frechet), 101

dgen_extreme_value (GenExtremeValue),
102

dhurdle_gamma (Hurdle), 112

dhurdle_lognormal (Hurdle), 112

dhurdle_negbinomial (Hurdle), 112

dhurdle_poisson (Hurdle), 112

diagnostic-quantities, 88

Diffusion, 244

dinv_gaussian (InvGaussian), 117

Dirichlet, 89

dirichlet (brmsfamily), 33

dlogistic_normal (LogisticNormal), 128

dmulti_normal (MultiNormal), 155

dmulti_student_t (MultiStudentT), 156

draws, 90

draws-brms, 89

draws-index-brms, 91

draws. (draws-index-brms), 91

dshifted_lnorm (Shifted_Lognormal), 215

dskew_normal (SkewNormal), 217

dstudent_t (StudentT), 228

dvon_mises (VonMises), 241

dwiener (Wiener), 243

dzero_inflated_beta (ZeroInflated), 245

dzero_inflated_beta_binomial
(ZeroInflated), 245

INDEX

dzero_inflated_binomial (ZeroInflated),
245

dzero_inflated_negbinomial
(ZeroInflated), 245

dzero_inflated_poisson (ZeroInflated),
245

E_loo, 137

emm_basis.brmsfit
(emmeans-brms-helpers), 92

emmeans-brms-helpers, 92

empty_prior (set_prior), 210

environment, 82

epilepsy, 94

ExGaussian, 95

exgaussian (brmsfamily), 33

exponential (brmsfamily), 33

expose_functions
(expose_functions.brmsfit), 96

expose_functions.brmsfit, 96

expose_stan_functions, 96

expp1, 96

extend_family, 105

extract_draws
(prepare_predictions.brmsfit),
189

facet_wrap, 65
family, 33, 38
family.brmsfit, 97

fcor, 19,75,97
fitted.brmsfit, 98

fixef (fixef.brmsfit), 100
fixef.brmsfit, 60, 100
formula, 26, 53, 55, 85, 220, 224, 238
Frechet, 101

frechet (brmsfamily), 33
future, 29, 122, 201

gam, 42

gamm, 27, 42, 56, 86, 213, 221, 226, 238
Gamma, 38

gen_extreme_value (brmsfamily), 33
GenExtremeValue, 102
geom_contour, 65

geom_errorbar, 65

geom_jitter, 65

geom_point, 65

geom_raster, 65

geom_rug, 65
geom_smooth, 65

geometric (brmsfamily), 33
get_dpar, 103

get_prior (default_prior), 84
get_refmodel, 105
get_refmodel.brmsfit, 104
ggplot, 66, 145
ggtheme, 52, 65, 162

gp, 42, 106, 213
gr,27,42,55,108, 221, 225
gtable, 163

horseshoe, 109, 126, 127, 214
Hurdle, 112

hurdle_cumulative (brmsfamily), 33

hurdle_gamma (brmsfamily), 33

hurdle_lognormal (brmsfamily), 33
hurdle_negbinomial (brmsfamily), 33
hurdle_poisson (brmsfamily), 33
hypothesis, 27, 52, 53, 55, 221, 225, 238
hypothesis (hypothesis.brmsfit), 113

hypothesis.brmsfit, 113

Index (draws-index-brms), 91
index (addition-terms), 8
inhaler, 115
init_refmodel, 105
inv_logit_scaled, 117
InvGaussian, 117
is.brmsfit, 118
is.brmsfit_multiple, 118
is.brmsformula, 119
is.brmsprior, 119
is.brmsterms, 119

is.cor_arma (is.cor_brms), 120
is.cor_brms, 120

is.cor_car (is.cor_brms), 120
is.cor_cosy (is.cor_brms), 120

is.cor_fixed (is.cor_brms), 120

is.cor_sar (is.cor_brms), 120
is.mvbrmsformula, 120
is.mvbrmsterms, 121

iterations, (draws-index-brms), 91

kfold, 124, 125, 201

kfold (kfold.brmsfit), 121
kfold-helpers, 123
kfold.brmsfit, 105, 121

249

250

kfold_predict, 124
kidney, 125

lasso, 126

launch_shinystan, 127, 145

launch_shinystan
(launch_shinystan.brmsfit), 127

launch_shinystan.brmsfit, 127

1f (brmsformula-helpers), 49

log_lik, 82, 138, 139, 194

log_lik (log_lik.brmsfit), 130

log_lik.brmsfit, 130, 201

log_posterior (diagnostic-quantities),
88

log_prob, 13

logistic_normal (brmsfamily), 33

LogisticNormal, 128

logit_scaled, 129

loglLik.brmsfit (log_lik.brmsfit), 130

logm1, 129

lognormal (brmsfamily), 33

LOO (1loo.brmsfit), 131

loo, 6,61, 62, 123, 130-132, 136, 201

loo (loo.brmsfit), 131

LOO.brmsfit (loo.brmsfit), 131

loo.brmsfit, 131

loo: :kfold_split_grouped, 123

loo: :kfold_split_stratified, /123

loo::loo_model_weights, 134

loo: :psis, 194

loo_compare, 61, 62, 122, 132, 133, 140, 242

loo_compare (loo_compare.brmsfit), 133

loo_compare.brmsfit, 133

loo_epred (loo_predict.brmsfit), 137

loo_linpred (loo_predict.brmsfit), 137

loo_model_weights, 155, 164, 179

loo_model_weights
(loo_model_weights.brmsfit),
134

loo_model_weights.brmsfit, 134

loo_moment_match, 132, 135

loo_moment_match
(loo_moment_match.brmsfit), 135

loo_moment_match.brmsfit, 7132, 135

loo_predict (loo_predict.brmsfit), 137

loo_predict.brmsfit, 137

loo_predictive_interval
(loo_predict.brmsfit), 137

loo_R2 (1loo_R2.brmsfit), 139

INDEX

loo_R2.brmsfit, 139

loo_subsample, 131, 141, 191

loo_subsample (loo_subsample.brmsfit),
140

loo_subsample.brmsfit, 140

loss, 141

ma, 14, 15, 19, 76, 142

make_conditions, 63, 143, 206

make_stancode (stancode), 218

make_standata (standata), 222

marginal_effects
(conditional_effects.brmsfit),
62

marginal_smooths
(conditional_smooths.brmsfit),
67

MCMC, 162

mcmc_combo, /163

mcmc_pairs, 160

mcmc_plot (memc_plot.brmsfit), 144

mcmc_plot.brmsfit, 144

me, 51, 146, 213

mgcv: : gamm, 207

mgev: :s, 206, 207

mgev: :t2, 206, 207

mi, 43,45, 146, 147

mixture, 47, 148

mm, 42, 150, 152

mme, 151, 152

mo, 153

model_weights, 164, 179, 180

model_weights (model_weights.brmsfit),
154

model_weights.brmsfit, 154

multinomial (brmsfamily), 33

MultiNormal, 155

MultiStudentT, 156

mvbf, 47

mvbf (mvbrmsformula), 157

mvbind, 157

mvbrmsformula, 26, 47, 51, 53-55, 85, 157,
157, 220, 224, 238

nchains (draws-index-brms), 91

ndraws (draws-index-brms), 91
neff_ratio (diagnostic-quantities), 88
negbinomial (brmsfamily), 33

ngrps (ngrps.brmsfit), 158

INDEX

ngrps.brmsfit, 158

niterations (draws-index-brms), 91

nlf (brmsformula-helpers), 49

nsamples (nsamples.brmsfit), 159
nsamples.brmsfit, 159

nuts_params (diagnostic-quantities), 88
nvariables (draws-index-brms), 91

opencl, 28, 39, 159
options, 28-30, 56, 57,221, 225, 244

pairs, 160
pairs.brmsfit, 160
pareto-k-diagnostic, 194, 195
pareto_k_ids, 132, 136, 200
parnames, 161
parse_bf (brmsterms), 53
pasym_laplace (AsymLaplace), 18
pbeta_binomial (BetaBinomial), 23
pexgaussian (ExGaussian), 95
pfrechet (Frechet), 101
pgen_extreme_value (GenExtremeValue),
102
phurdle_gamma (Hurdle), 112
phurdle_lognormal (Hurdle), 112
phurdle_negbinomial (Hurdle), 112
phurdle_poisson (Hurdle), 112
pinv_gaussian (InvGaussian), 117
plan, 29
plot.brms_conditional_effects
(conditional_effects.brmsfit),
62
plot.brmsfit, 161
plot.brmshypothesis (brmshypothesis), 52
post_prob, 20, 24, 155, 164, 179
post_prob (post_prob.brmsfit), 177
post_prob.brmsfit, 177
posterior_average, 180
posterior_average
(posterior_average.brmsfit),
163
posterior_average.brmsfit, 163
posterior_epred, 22, 65, 82, 138, 139
posterior_epred
(posterior_epred.brmsfit), 165
posterior_epred.brmsfit, 93, 98-100, 165,
169
posterior_interval
(posterior_interval.brmsfit),

251
167
posterior_interval.brmsfit, 167
posterior_linpred, 138
posterior_linpred
(posterior_linpred.brmsfit),
168
posterior_linpred.brmsfit, 93, 168
posterior_predict, 65, 82, 138, 188
posterior_predict
(posterior_predict.brmsfit),
169
posterior_predict.brmsfit, 165, 169, 184,
186

posterior_samples
(posterior_samples.brmsfit),
172

posterior_samples.brmsfit, 172

posterior_smooths
(posterior_smooths.brmsfit),
173

posterior_smooths.brmsfit, 173

posterior_summary, 60, 101, 175, 197

posterior_table, 176

powerscale, 79

pp_average, 164

pp_average (pp_average.brmsfit), 178

pp_average.brmsfit, 178

pp_check, 6

pp_check (pp_check.brmsfit), 180

pp_check.brmsfit, 180

pp_expect (posterior_epred.brmsfit), 165

pp_mixture (pp_mixture.brmsfit), 182

pp_mixture.brmsfit, 182

PPC, 181

predict.brmsfit, 181, 184

predict.refmodel, 7105

predictive_error
(predictive_error.brmsfit), 187

predictive_error.brmsfit, 187, 202, 204

predictive_interval
(predictive_interval.brmsfit),
188

predictive_interval.brmsfit, 188

prepare_predictions, 99, 103, 125, 131,
132, 135, 140, 155, 164, 166, 169,
171,177,179, 183, 186, 188, 203,
242

prepare_predictions

252

(prepare_predictions.brmsfit),
189

prepare_predictions.brmsfit, 189

print.brmsfit, 191

print.brmshypothesis (brmshypothesis),
52

print.brmsprior, 192

print.brmssummary (print.brmsfit), 191

print.default, 52

prior (set_prior), 210

prior_ (set_prior), 210

prior_draws (prior_draws.brmsfit), 192

prior_draws.brmsfit, 192

prior_samples (prior_draws.brmsfit), 192

prior_string (set_prior), 210

prior_summary (prior_summary.brmsfit),
193

prior_summary.brmsfit, 193

proj_linpred, 105

proj_predict, 105

pshifted_lnorm (Shifted_Lognormal), 215

psis, 138

psis (psis.brmsfit), 194

psis.brmsfit, 194

pskew_normal (SkewNormal), 217

pstudent_t (StudentT), 228

pvon_mises (VonMises), 241

pzero_inflated_beta (ZeroInflated), 245

pzero_inflated_beta_binomial
(ZeroInflated), 245

pzero_inflated_binomial (ZeroInflated),
245

pzero_inflated_negbinomial
(ZeroInflated), 245

pzero_inflated_poisson (ZeroInflated),
245

gasym_laplace (AsymLaplace), 18

gfrechet (Frechet), 101

ggen_extreme_value (GenExtremeValue),
102

gshifted_lnorm (Shifted_Lognormal), 215

gskew_normal (SkewNormal), 217

gstudent_t (StudentT), 228

quantile, 175

R2D2, 126, 127,195, 214
ranef (ranef.brmsfit), 197
ranef.brmsfit, 60, 113, 197

INDEX

rasym_laplace (AsymLaplace), 18
rate (addition-terms), 8
rbeta_binomial (BetaBinomial), 23
rdirichlet (Dirichlet), 89
read_csv_as_stanfit, 198
recompile_model, 199
recover_data.brmsfit
(emmeans-brms-helpers), 92
reloo, 123, 132
reloo (reloo.brmsfit), 200
reloo.brmsfit, 200
rename_pars, 201
residuals.brmsfit, 202
resp_bhaz (addition-terms), 8
resp_cat (addition-terms), 8
resp_cens (addition-terms), 8
resp_dec (addition-terms), 8
resp_index (addition-terms), 8
resp_mi, 147
resp_mi (addition-terms), 8
resp_rate (addition-terms), 8
resp_se (addition-terms), 8
resp_subset (addition-terms), 8
resp_thres (addition-terms), 8
resp_trials (addition-terms), 8
resp_trunc (addition-terms), 8
resp_vint (addition-terms), 8
resp_vreal (addition-terms), 8
resp_weights (addition-terms), 8
restructure, 204
restructure.brmsfit, 205, 205
rexgaussian (ExGaussian), 95
rfrechet (Frechet), 101
rgen_extreme_value (GenExtremeValue),
102
rhat (diagnostic-quantities), 88
rinv_gaussian (InvGaussian), 117
rlogistic_normal (LogisticNormal), 128
rmulti_normal (MultiNormal), 155
rmulti_student_t (MultiStudentT), 156
rows2labels, /144, 206
rshifted_lnorm (Shifted_Lognormal), 215
rskew_normal (SkewNormal), 217
rstan: :stan_model, 29
rstudent_t (StudentT), 228
runApp, 127
rvon_mises (VonMises), 241
rwiener (Wiener), 243

INDEX

s, 42,206

sampling, 30

sar, 19, 77,207

save_pars, 27,209

saveRDS, 11, 29, 56, 57

scale_colour_gradient, 66

scale_colour_grey, 66

se (addition-terms), 8

set.seed, 105, 114, 164, 179

set_mecor (brmsformula-helpers), 49

set_nl (brmsformula-helpers), 49

set_prior, 26, 27, 30, 45, 46, 55, 70, 84, 86,
111,127, 149, 196, 210, 220, 221,
225,238, 239

set_rescor (brmsformula-helpers), 49

Shifted_Lognormal, 215

shifted_lognormal (brmsfamily), 33

skew_normal (brmsfamily), 33

SkewNormal, 217

sratio (brmsfamily), 33

Stan, 6

stan, 29, 31, 70

stancode, 6, 218, 219, 227

stancode.brmsfit, 279, 219

stancode.default, 218, 219, 220

standata, 6, 222

standata.brmsfit, 223, 223

standata.default, 223, 224, 224

stanfit, 39

stanmodel, /3

stanplot, 6

stanplot (memc_plot.brmsfit), 144

stanvar, 27, 56, 82, 221, 225, 226

stanvars, 39, 191, 224, 237

stanvars (stanvar), 226

student (brmsfamily), 33

StudentT, 228

subset (addition-terms), 8

subset_draws, 16, 17, 90

summarize_draws, 175

summary, 6

summary.brmsfit, 192, 229

t2, 42

t2 (s), 206

TDist, 228

theme, 52, 65, 162

theme_black, 230
theme_default, 52, 65, 162, 231, 231

253

threading, 28, 39, 219, 221, 225, 227, 231
thres (addition-terms), 8
trials (addition-terms), 8
trunc (addition-terms), 8

unstr, 19, 232

update, 27, 56
update.brmsfit, 201, 233,235
update.brmsfit_multiple, 234
update.formula, 233, 235
update_adterms, 235

validate_newdata, 191, 224, 236
validate_prior, 237

VarCorr, 239

VarCorr (VarCorr.brmsfit), 239
VarCorr.brmsfit, 239
variables, 113

variables (draws-index-brms), 91
variables, (draws-index-brms), 91
variables.brmsfit (draws-index-brms), 91
varsel, 104

vb, 30

vcov.brmsfit, 240

Vectorize, 96

vint (addition-terms), 8
von_mises (brmsfamily), 33
VonMises, 241

vreal (addition-terms), 8

WAIC (waic.brmsfit), 242
waic, 6, 61, 130, 242

waic (waic.brmsfit), 242
WAIC.brmsfit (waic.brmsfit), 242
waic.brmsfit, 242

weibull (brmsfamily), 33
weights (addition-terms), 8
weights(), 195

Wiener, 243

wiener (brmsfamily), 33
wienerdist, 244

zero_inflated_beta (brmsfamily), 33

zero_inflated_beta_binomial
(brmsfamily), 33

zero_inflated_binomial (brmsfamily), 33

zero_inflated_negbinomial (brmsfamily),
33

zero_inflated_poisson (brmsfamily), 33

254 INDEX

zero_one_inflated_beta (brmsfamily), 33
ZeroInflated, 245

	brms-package
	addition-terms
	add_criterion
	add_loo
	add_rstan_model
	ar
	arma
	as.brmsprior
	as.data.frame.brmsfit
	as.mcmc.brmsfit
	AsymLaplace
	autocor-terms
	autocor.brmsfit
	bayes_factor.brmsfit
	bayes_R2.brmsfit
	BetaBinomial
	bridge_sampler.brmsfit
	brm
	brmsfamily
	brmsfit-class
	brmsformula
	brmsformula-helpers
	brmshypothesis
	brmsterms
	brm_multiple
	car
	coef.brmsfit
	combine_models
	compare_ic
	conditional_effects.brmsfit
	conditional_smooths.brmsfit
	constant
	control_params
	cor_ar
	cor_arma
	cor_brms
	cor_car
	cor_cosy
	cor_fixed
	cor_ma
	cor_sar
	cosy
	create_priorsense_data.brmsfit
	cs
	custom_family
	default_prior
	default_prior.default
	density_ratio
	diagnostic-quantities
	Dirichlet
	draws-brms
	draws-index-brms
	emmeans-brms-helpers
	epilepsy
	ExGaussian
	expose_functions.brmsfit
	expp1
	family.brmsfit
	fcor
	fitted.brmsfit
	fixef.brmsfit
	Frechet
	GenExtremeValue
	get_dpar
	get_refmodel.brmsfit
	gp
	gr
	horseshoe
	Hurdle
	hypothesis.brmsfit
	inhaler
	InvGaussian
	inv_logit_scaled
	is.brmsfit
	is.brmsfit_multiple
	is.brmsformula
	is.brmsprior
	is.brmsterms
	is.cor_brms
	is.mvbrmsformula
	is.mvbrmsterms
	kfold.brmsfit
	kfold_predict
	kidney
	lasso
	launch_shinystan.brmsfit
	LogisticNormal
	logit_scaled
	logm1
	log_lik.brmsfit
	loo.brmsfit
	loo_compare.brmsfit
	loo_model_weights.brmsfit
	loo_moment_match.brmsfit
	loo_predict.brmsfit
	loo_R2.brmsfit
	loo_subsample.brmsfit
	loss
	ma
	make_conditions
	mcmc_plot.brmsfit
	me
	mi
	mixture
	mm
	mmc
	mo
	model_weights.brmsfit
	MultiNormal
	MultiStudentT
	mvbind
	mvbrmsformula
	ngrps.brmsfit
	nsamples.brmsfit
	opencl
	pairs.brmsfit
	parnames
	plot.brmsfit
	posterior_average.brmsfit
	posterior_epred.brmsfit
	posterior_interval.brmsfit
	posterior_linpred.brmsfit
	posterior_predict.brmsfit
	posterior_samples.brmsfit
	posterior_smooths.brmsfit
	posterior_summary
	posterior_table
	post_prob.brmsfit
	pp_average.brmsfit
	pp_check.brmsfit
	pp_mixture.brmsfit
	predict.brmsfit
	predictive_error.brmsfit
	predictive_interval.brmsfit
	prepare_predictions.brmsfit
	print.brmsfit
	print.brmsprior
	prior_draws.brmsfit
	prior_summary.brmsfit
	psis.brmsfit
	R2D2
	ranef.brmsfit
	read_csv_as_stanfit
	recompile_model
	reloo.brmsfit
	rename_pars
	residuals.brmsfit
	restructure
	restructure.brmsfit
	rows2labels
	s
	sar
	save_pars
	set_prior
	Shifted_Lognormal
	SkewNormal
	stancode
	stancode.brmsfit
	stancode.default
	standata
	standata.brmsfit
	standata.default
	stanvar
	StudentT
	summary.brmsfit
	theme_black
	theme_default
	threading
	unstr
	update.brmsfit
	update.brmsfit_multiple
	update_adterms
	validate_newdata
	validate_prior
	VarCorr.brmsfit
	vcov.brmsfit
	VonMises
	waic.brmsfit
	Wiener
	ZeroInflated
	Index

