Package ‘brainGraph’

April 4, 2024
Type Package
Version 3.1.0
Date 2024-04-03
Title Graph Theory Analysis of Brain MRI Data

Description A set of tools for performing graph theory analysis of brain MRI
data. It works with data from a Freesurfer analysis (cortical thickness,
volumes, local gyrification index, surface area), diffusion tensor
tractography data (e.g., from FSL) and resting-state fMRI data (e.g., from
DPABI). It contains a graphical user interface for graph visualization and
data exploration, along with several functions for generating useful
figures.

URL https://github.com/cwatson/brainGraph

BugReports https://groups.google.com/forum/?hl=en#!forum/brainGraph-help
LazyData true
Depends R (>=3.5.0), igraph (>=1.2.4),

Imports abind, data.table (>= 1.12.4), doParallel, foreach, grid,
lattice, MASS, Matrix, methods, permute, parallel

Suggests Hmisc, ade4, boot, car, expm, ggplot2, ggrepel, gridExtra,
mediation, oro.nifti, scales

License GPL-3
RoxygenNote 6.1.1

Collate 'glm_stats.R' 'brainGraph_ GLM.R' 'glm_methods.R' 'NBS.R'
'analysis_random_graphs.R' 'atlas.R' 'auc.R' 'boot_global.R'
'brainGraph_mediate.R' 'centr_lev.R' 'communicability.R’'
'contract_brainGraph.R' 'corr_matrix.R' 'count_edges.R’
'create_graphs.R' 'create_mats.R' 'data.R' 'data_tables.R’
'distances.R' 'edge_asymmetry.R' 'get_resid.R' 'glm_design.R'
'elm_fit.R' 'glm_randomise.R' 'graph_efficiency.R' 'hubs.R'
'import.R' 'individ_contrib.R' list.R' 'method_helpers.R'
'mtpc.R' 'methods.R' 'permute_group.R' 'plot_brainGraph.R'
'plot_brainGraph_multi.R' 'plot_global.R' ‘plot_group_means.R'

1

https://github.com/cwatson/brainGraph
https://groups.google.com/forum/?hl=en#!forum/brainGraph-help

2 R topics documented:

"‘plot_rich_norm.R' 'plot_vertex_measures.R' 'random_graphs.R'
'rich_club.R' 'robustness.R' 's_core.R'
'set_brainGraph_attributes.R' 'small_world.R' 'spatial_dist.R’
'utils.R' 'utils_matrix.R' 'vertex_roles.R' 'vulnerability.R'
'write_brainnet.R' 'zzz.R'

NeedsCompilation no

Author Christopher G. Watson [aut, cre]
(<https://orcid.org/0000-0002-7082-7631>)

Maintainer Christopher G. Watson <cgwatson@bu.edu>
Repository CRAN
Date/Publication 2024-04-04 05:03:07 UTC

R topics documented:

apply_thresholds 3
Atlas Helpers o o e 4
Attributes L. e e e e e e 6
Bootstrapping 8
Brain Atlases e e 10
brainGraph e e e 13
brainGraph-methods 13
brainGraphList 14
brainGraph_permute e e e e 18
Centr betwW_COMML o v e e e e e e e e e 20
centr_lev.o e e e e e e 21
check _SID e 22
coeff var L s 23
communicability oL L 23
contract_brainGraph 24
cordiffitest L 25
COIT.MALIIX &+ & o v v v e o e 26
CountEdges e 29
Create_MatsS o i e e e e e e e e e e 30
Creating_Graphs 0 e e e 32
Creating_Graphs_GLM 35
edge_asymmetry e e e 37
efficiency e e 38
GLM . . e 39
GLMbasicinfo e e e e e 44
GLMdesign o i e e 45
GLMits e 47
GLM influence measures o v i i i e e e e e e e e e 50
GLM model selection e e e e 52
GLM StatiStiCS v . v o e e e e e e e e e e e e e 53
Graph DataTables 55

Graph Distances e 56

https://orcid.org/0000-0002-7082-7631

apply_thresholds 3

hubness e e e e 57
IMPOTt_SCN oo e e e 58
IndividualContributions 59
Inverse e e e e 61
make_auc_brainGraph 63
make_ego_brainGraph 64
make_intersection_brainGraph oL oo 65
Matrix utilities e e e e e e e e 66
mean_diStanCe_Wt. e e e e e e e e e e e e e e e 68
Mediation 69
MIPC . o v v o e e e e e e e e e e 72
NBS . e e e 76
plotbrainGraph 79
plotbrainGraphList L 81
Plotting GLM graphs e e e e 82
plot_brainGraph_multi L 83
plot_global 85
plot_rich_norm e 86
PIOL_VETtEX_MEASUIES . . . « . v v v v e v e e e e e e e e e e e e e e e 87
plot_volumetric L e 88
Random Graphs 89
randomiSe e e e e e e 92
Residuals e e e 94
RichClub e 97
rich_club_attrs e 100
TODUSINESS o o e s e e e e e e e e e 101
small.world 102
S COTE o v v v v e e e e e e e s, 103
Vertex Roles e e e 104
viftbg_ GLM e e e 105
vulnerability 106
write_brainnet L e 107
Index 109
apply_thresholds Threshold additional set of matrices
Description

apply_thresholds thresholds an additional set of matrices (e.g., FA-weighted matrices for DTI
tractography) based on the matrices that have been returned from create_mats. This ensures that
the same connections are present in both sets of matrices.

Usage

apply_thresholds(sub.mats, group.mats, W.files, inds)

4 Atlas Helpers

Arguments
sub.mats List (length equal to number of thresholds) of numeric arrays (3-dim) for all
subjects
group.mats List (length equal to number of thresholds) of numeric arrays (3-dim) for group-
level data
W.files Character vector of the filenames of the files with connectivity matrices
inds List (length equal to number of groups) of integers; each list element should be
a vector of length equal to the group sizes
Details

The argument W. files accepts the same formats as A. files; see create_mats for details.

Value

List containing:

W A 3-d array of the raw connection matrices

W.norm. sub List of 3-d arrays of the normalized connection matrices for all given thresholds

W.norm.mean List of 3-d arrays of the normalized connection matrices averaged for each group
Author(s)

Christopher G. Watson, <cgwatson@bu. edu>

Examples

Not run:
W.mats <- apply_thresholds(A.norm.sub, A.norm.mean, f.W, inds)

End(Not run)

Atlas Helpers Atlas helper functions

Description

guess_atlas tries to determine which atlas is being used based on the data; i.e., the number of
vertices/regions.

as_atlas and create_atlas converts/coerces an object to a a data. table, or creates one, that is
compatible with brainGraph.

Atlas Helpers 5
Usage

guess_atlas(x)

as_atlas(object)

create_atlas(regions, coords, lobes, hemis, other = NULL)

Arguments
x, object An object to test or convert to an atlas data.table
regions Character vector of region names
coords Numeric matrix of spatial coordinates; must have 3 columns
lobes Character or factor vector of lobe membership
hemis Character or factor vector of hemisphere membership. There should probably
not be more than 3 unique elements (for left, right, and bi-hemispheric regions)
other A named list of vectors with other data. The names of the list will become
column names in the return object.
Value

guess_atlas - Character string; either the matched atlas or NA

as_atlas and create_atlas return a data. table that conforms to other atlases in the package,
or exits with an error.

Guessing the atlas from an object
There are several valid inputs to guess_atlas:
data.table The atlas will be guessed based on the number of columns (subtracting by 1 if a “Study
ID” column is present). This is the same behavior as for data. frame objects, as well.
igraph The vertex count

brainGraph If there is a atlas graph-level attribute, it will return that. Otherwise, the vertex
count.

matrix,array The number of rows, which should equal the number of columns if the input is a
connectivity matrix.

Note that this will only work properly for atlases that are currently in the package. If you are using
a custom atlas and you receive errors, please open an issue on GitHub.

Coercing to an atlas

There are several things as_atlas tries to do to make it work without error:

* Coerce the object to data.table
* Add a column of integers named index
* Change columns named 'x', 'y',or 'z' to have .mni at the end

¢ Convert the lobe and hemi columns to be factors

6 Attributes

Examples

my_atlas <- data.frame(name=paste('Region', 1:10), x.mni=rnorm(10),
y.mni=rnorm(10), z.mni=rnorm(10),
lobe=rep(c('Frontal', 'Parietal', 'Temporal', 'Occipital', 'Limbic'), 2),
hemi=c(rep('L', 5), rep('R', 5)))

my_atlas2 <- as_atlas(my_atlas)

str(my_atlas)

str(my_atlas2)

regions <- paste('Region', 1:10)

xyz <- matrix(rnorm(30), nrow=10, ncol=3)

lobe <- rep(c('Frontal', 'Parietal', 'Temporal', 'Occipital', 'Limbic'), 2)

hemi <- c(rep('L', 5), rep('R', 5))

other <- list(network=rep(c('Default mode', 'Task positive'), 5))

my_atlas <- create_atlas(regions, xyz, lobe, hemi, other)

str(my_atlas)

Attributes Set graph, vertex, and edge attributes common in MRI analyses

Description

set_brainGraph_attr is a convenience function that sets a number of graph, vertex, and edge
attributes for a given graph object. Specifically, it calculates measures that are common in MRI
analyses of brain networks.

Usage
set_brainGraph_attr(g, type = c("observed”, "random"),
use.parallel = TRUE, A = NULL, xfm.type = c("1/w", "-log(w)",
"1-w", "-loglo(w/max(w))", "-logl@(w/max(w)+1)"),
clust.method = "louvain”)

xfm.weights(g, xfm.type = c("1/w", "-log(w)", "1-w", "-logl@(w/max(w))",
"-logl@(w/max(w)+1)"), invert = FALSE)

Arguments
g A graph object
type Character string indicating the type of graphs. Default: observed

use.parallel Logical indicating whether to use foreach. Default: TRUE

A Numeric matrix; the (weighted) adjacency matrix, which can be used for faster
calculation of local efficiency. Default: NULL

xfm. type Character string specifying how to transform the weights. Default: 1/w

clust.method Character string indicating which method to use for community detection. De-
fault: 'louvain'

invert Logical indicating whether or not to invert the transformation. Default: FALSE

Attributes 7

Details

Including type="'random’' in the function call will reduce the number of attributes calculated. It
will only add graph-level attributes for: clustering coefficient, characteristic path length, rich club
coefficient, global efficiency, and modularity.

Value

A graph object with the following attributes:

Graph-level Density, connected component sizes, diameter, # of triangles, transitivity, aver-
age path length, assortativity, global & local efficiency, modularity, vulnerabil-
ity, hub score, rich-club coefficient, # of hubs, edge asymmetry

Vertex-level Degree, strength; betweenness, eigenvector, and leverage centralities; hubs; tran-
sitivity (local); k-core, s-core; local & nodal efficiency; color (community, lobe,
component); membership (community, lobe, component); gateway and partic-
ipation coefficients, within-module degree z-score; vulnerability; and coordi-
nates (X, y, and z)

Edge-level Color (community, lobe, component), edge betweenness, Euclidean distance (in

mm), weight (if weighted)

xfm.weights returns the same graph object, with transformed edge weights plus a graph attribute
(xfm. type) recording the method of transformation

Negative edge weights

If there are any negative edge weights in the graph, several of the distance-based metrics will not
be calculated, because they can throw errors which is undesirable when processing a large dataset.
The metrics are: local and nodal efficiency, diameter, characteristic path length, and hubness.

Transforming edge weights

For distance-based measures, it is important to transform the edge weights so that the strongest
connections are re-mapped to having the lowest weights. Then you may calculate e.g., the shortest
path length which will include the strongest connections.

xfm. type allows you to choose from 5 options for transforming edge weights when calculating
distance-based metrics (e.g., shortest paths). There is no “best-practice” for choosing one over the
other, but the reciprocal is probably most common.

1/w reciprocal (default)

-log(w) the negative (natural) logarithm

1-w subtract weights from 1

-logl@(w/max(w)) negative (base-10) log of normalized weights

-log10(w/max(w)+1) same as above, but add 1 before taking the log

To transform the weights back to original values, specify invert=TRUE.

8 Bootstrapping

Community detection

clust.method allows you to choose from any of the clustering (community detection) functions
available in igraph. These functions begin with cluster_; the function argument should not in-
clude this leading character string. There are a few possibilities, depending on the value and the
type of input graph:

1. By default, louvain is used, calling cluster_louvain

2. Uses spinglass if there are any negative edges and/or the selected method is spinglass

3. Uses walktrap if there are any negative edge weights and any other method (besides spinglass)
is selected

4. Automatically transforms the edge weights if edge_betweenness is selected and the graph is
weighted, because the algorithm considers edges as distances

Author(s)

Christopher G. Watson, <cgwatson@bu. edu>

See Also

components, diameter, centr_betw, betweenness, centr_eigen, transitivity, distances,
assortativity, coreness, communities, knn

Bootstrapping Bootstrapping for global graph measures

Description

Perform bootstrapping to obtain groupwise standard error estimates of a global graph measure.

The plot method returns two ggplot objects: one with shaded regions based on the standard error,
and the other based on confidence intervals (calculated using the normal approximation).

Usage

brainGraph_boot(densities, resids, R = 1000, measure = c("mod"”,
"E.global”, "Cp", "Lp", "assortativity”, "strength”, "mod.wt",
"E.global.wt"), conf = 0.95, .progress = getOption("bg.progress”),
xfm.type = c("1/w", "-log(w)", "1-w", "-logl@(w/max(w))",
"-logl@(w/max(w)+1)"))

S3 method for class 'brainGraph_boot'
summary(object, ...)

S3 method for class 'brainGraph_boot'
plot(x, ..., alpha = 0.4)

Bootstrapping 9

Arguments
densities Numeric vector of graph densities to loop through
resids An object of class brainGraph_resids (the output from get.resid)
R Integer; the number of bootstrap replicates. Default: 1e3
measure Character string of the measure to test. Default: mod
conf Numeric; the level for calculating confidence intervals. Default: .95
.progress Logical indicating whether or not to show a progress bar. Default: getOption('bg.progress')
xfm. type Character string specifying how to transform the weights. Default: 1/w
object, x A brainGraph_boot object

Unused

alpha A numeric indicating the opacity for the confidence bands

Details

The confidence intervals are calculated using the normal approximation at the 100 x con f% level
(by default, 95%).

For getting estimates of weighted global efficiency, a method for transforming edge weights must
be provided. The default is to invert them. See xfm.weights.

Value

brainGraph_boot — an object of class brainGraph_boot containing some input variables, in addi-
tion to a list of boot objects (one for each group).

plot — list with the following elements:

se A ggplot object with ribbon representing standard error
ci A ggplot object with ribbon representing confidence intervals
Author(s)

Christopher G. Watson, <cgwatson@bu. edu>

See Also

boot, boot.ci
Other Group analysis functions: GLM, Mediation, NBS, brainGraph_permute, mtpc

Other Structural covariance network functions: IndividualContributions, Residuals, brainGraph_permute,
corr.matrix, import_scn, plot_volumetric

Examples

Not run:
boot.E.global <- brainGraph_boot(densities, resids.all, 1e3, 'E.global')

End(Not run)

10 Brain Atlases

Brain Atlases Coordinates for data from brain atlases

Description

Datasets containing spatial coordinates for: the original AAL atlases, the newer AAL2 atlases,
Freesurfer atlases, Brainsuite, Craddock200, Dosenbach160, Harvard-Oxford, and LONI proba-
bilistic brain atlas. In addition to coordinates, there are indices for the major lobes and hemispheres
of the brain, the class variable (for Destrieux atlases), functional networks (for Dosenbach, Power,
and Gordon atlases; plus the Yeo network labels for the Brainnetome atlas).

Usage
aalllé

aaloe
aal2.120
aal2.94
destrieux
destrieux.scgm
dk

dk.scgm

dkt

dkt.scgm
brainsuite
craddock200
dosenbach160
hoal12
1pba40
hcp_mmp1.0

power264

Brain Atlases 11

brainnetome

gordon333

Format

A data frame with 90 or 116 (for the original AAL atlases), 94 or 120 (for the newer AAL?2 atlases),
148 or 162 (for Destrieux), 68 or 82 (for DK), 62 or 76 (for DKT), 74 (Brainsuite), 200 (Craddock),
160 (Dosenbach), 112 (Harvard-Oxford), 40 (LONI), 246 (Brainnetome), 360 (HCP), 264 (Power),
or 333 (Gordon) observations on (some of) the following 19 variables:

name a character vector of region names

x.mni anumeric vector of x-coordinates (in MNI space)

y.mni anumeric vector of y-coordinates (in MNI space)

z.mni anumeric vector of z-coordinates (in MNI space)

lobe afactor with some of levels Frontal Parietal Temporal Occipital InsulalLimbic Cingulate
SCGM Cerebellum (for aal116 and aal2.120) and Brainstem (for craddock200)

hemi a factor with levels L R and B (for dosenbach160)

index a numeric vector

name.full a character vector of full region names, for the DK and DKT atlases
class a factor with levels G G_and_S S, for the Destrieux atlases

network (dosenbach160) a factor with levels default fronto-parietal cingulo-opercular
sensorimotor cerebellumoccipital

gyrus (brainnetome) Abbreviated names of gyri/regions (including subcortical), with 24 unique
values

gyrus.full (brainnetome) Full names of gyrus

subregion (brainnetome) Abbreviated names of subregions (including subdivisions of subcortical
gray matter)

subregion.full (brainnetome) Full names of subregion

Yeo_7network (brainnetome) Factor with 8 levels consisting of SCGM plus the 7 networks from
Yeo et al.

Yeo_17network (brainnetome) Factor with 18 levels consisting of SCGM plus the 17 networks
from Yeo et al.

area (HCP) a factor with 23 cortical areas
Anatomy (power264) Full region/gyrus names for the Power atlas; contains 53 unique regions

Brodmann (power264) Integer values for Brodmann areas

Note

Use of the HCP parcellation is subject to the terms at https://balsa.wustl.edu/WN56. In par-
ticular: "I will acknowledge the use of WU-Minn HCP data and data derived from WU-Minn HCP
data when publicly presenting any results or algorithms that benefitted from their use."

Region names in the gordon333 atlas were chosen to match those of the hcp_mmp1.@ atlas. Many
were determined from the coordinates (using FSL’s atlasquery), while the rest were entered man-
ually by me. The lobe values were matched to the HCP atlas, as well.

https://balsa.wustl.edu/WN56

12 Brain Atlases

Source

https://neuroimaging-core-docs.readthedocs.io/en/latest/pages/atlases.html

References

Tzourio-Mazoyer, N. and Landeau, B. and Papathanassiou, D. and Crivello, F. and Etard, O. and
Delcroix, N. and Mazoyer, B. and Joliot, M. (2002) Automated anatomical labeling of activations
in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neu-
rolmage, 15(1), 273-289. doi: 10.1006/nimg.2001.0978

Rolls, E.T. and Joliot, M. and Tzourio-Mazoyer, N. (2015) Implementation of a new parcellation
of the orbitofrontal cortex in the automated anatomical labelling atlas. Neurolmage, 122, 1-5.
doi: 10.1016/j.neuroimage.2015.07.075

Destrieux, C. and Fischl, B. and Dale, A. and Halgren E. (2010) Automatic parcellation of hu-
man cortical gyri and sulci using standard anatomic nomenclature. Neurolmage, 53(1), 1-15.
doi: 10.1016/j.neuroimage.2010.06.010

Desikan, R.S. and Segonne, F. and Fischl, B. et al. (2006) An automated labeling system for sub-
dividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neurolmage,
31, 968-980. doi: 10.1016/j.neuroimage.2006.01.021

Klein, A. and Tourville, J. (2012) 101 labeled brain images and a consistent human cortical labeling
protocol. Front Neurosci, 6. doi: 10.3389/fnins.2012.00171

Shattuck, D.W. and Leahy, R.M. (2002) BrainSuite: an automated cortical surface identification
tool. Medical Image Analysis, 8(2), 129-142.

Pantazis, D. and Joshi, A.A. and Jintao, J. and Shattuck, D.W. and Bernstein, L.E. and Damasio, H.
and Leahy, R.M. (2009) Comparison of landmark-based and automatic methods for cortical surface
registration. Neurolmage, 49(3), 2479-2493.

Craddock, R.C. and James, G.A. and Holtzheimer, P.E. and Hu, X.P. and Mayberg, H.S. (2012)
A whole brain fMRI atlas generated via spatially constrained spectral clustering. Human Brain
Mapping, 33, 1914-1928. doi: 10.1002/hbm.21333

Dosenbach, N.U. and Nardos, B. and Cohen, A.L. and Fair, D.A. and Power, J.D. and Church, J.A.
and Nelson, S.M. and Wig, G.S. and Vogel, A.C. and Lessov-Schlaggar, C.N. and Barnes, K.A.
(2010) Prediction of individual brain maturity using fMRI. Science, 329(5997), 1358-1361.

Makris, N. and Goldstein, J.M. and Kennedy, D. et al. (2006) Decreased volume of left and total
anterior insular lobule in schizophrenia. Schizophr Res, 83(2-3), 155-171.

Shattuck, D.W. and Mirza, M. and Adisetiyo, V. and Hojatkashani, C. and Salamon, G. and Narr,
K.L. and Poldrack, R.A. and Bilder, R.M. and Toga, A.W. (2008) Construction of a 3D probabilistic
atlas of human cortical structures. Neurolmage, 39(3), 1064—1080. doi: 10.1016/j.neuroimage.2007.09.031

Glasser, M.F. and Coalson, T.S. and Robinson, E.C. and Hacker, C.D. and Harwell, J. and Yacoub,
E. and Ugurbil, K. and Andersson, J. and Beckmann, C.F. and Jenkinson, M. and Smith, S.M.
and van Essen, D.C. (2016) A multi-modal parcellation of human cerebral cortex. Nature, 536,
171-178. doi: 10.1038/nature18933. PMID: 27437579.

Power, J.D. and Cohen, A.L. and Nelson, S.M. and Wig, G.S. and Barnes, K.A. and Church, J.A.
and Vogel, A.C. and Laumann, T.O. and Miezin, EM. and Schlaggar, B.L. and Petersen, S.E.
(2011) Functional network organization of the human brain. Neuron, 72(4), 665-678. doi: 10.1016/
j-neuron.2011.09.006

https://neuroimaging-core-docs.readthedocs.io/en/latest/pages/atlases.html
https://doi.org/10.1006/nimg.2001.0978
https://doi.org/10.1016/j.neuroimage.2015.07.075
https://doi.org/10.1016/j.neuroimage.2010.06.010
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.3389/fnins.2012.00171
https://doi.org/10.1002/hbm.21333
https://doi.org/10.1016/j.neuroimage.2007.09.031
https://doi.org/10.1038/nature18933
https://doi.org/10.1016/j.neuron.2011.09.006
https://doi.org/10.1016/j.neuron.2011.09.006

brainGraph 13

Fan, L. and Li, H. and Zhuo, J. and Zhang, Y. and Wang, J. and Chen, L. and Yang, Z. and Chu,
C. and Xie, S. and Laird, A.R. and Fox, P.T. and Eickhoff, S.B. and Yu, C. and Jiang, T (2016)
The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional Architecture. Cerebral
Cortex, 26(8), 3508-3526. doi: 10.1093/cercor/bhw157

Gordon, E.M. and Laumann, T.O. and Adeyemo, B. and Huckins, J.F. and Kelley, W.M. and Pe-
tersen, S.E. (2014) Generation and Evaluation of a Cortical Area Parcellation from Resting-State
Correlations. Cerebral Cortex, 26(1), 288-303. doi: 10.1093/cercor/bhu239

brainGraph Default options for brainGraph

Description

brainGraph is a package for performing graph theory analysis of brain MRI data.

Package options

brainGraph uses the following options to configure behavior:

bg.subject_id: character string specifying the name your project/study uses as a subject
identifier. All imported data (e.g., covariates tables) MUST have a column matching this. One
possible alternative is 'participant_id', recommended by BIDS. Default: 'Study.ID'

bg.group: character string specifying the name your project/study uses as a group identifier.
All imported data (e.g., covariates tables) MUST have a column matching this. One possible
alternative is 'group', recommended by BIDS. Default: 'Group'

bg.session: character string specifying the name your project/study uses as a “time” or
session identifier, in the case of longitudinal studies. All imported data (e.g., covariates tables)
MUST have a column matching this. One possible alternative is ' session_id', recommended
by BIDS. Default: 'Time'

bg.progress: logical indicating whether to show progress bars for functions that provide the
option. Default: TRUE

bg.ncpus: integer indicating the number of cores to use for parallel operations. Only used if
you have not already registered a parallel backend (see Chapter 5 of the User Guide or https:
//github.com/cwatson/brainGraph/blob/master/README.md for examples). Default: 2L

brainGraph-methods brainGraph generic methods

Description

These functions are S3 generics for various brainGraph-defined objects.

groups returns the “Group” graph attribute for each graph or observation in the object.

region.names is a generic method for extracting region names from various brainGraph objects.
These are generally convenience functions.

nregions is a generic method for extracting the number of regions from various brainGraph ob-

jects.

https://doi.org/10.1093/cercor/bhw157
https://doi.org/10.1093/cercor/bhu239
https://github.com/cwatson/brainGraph/blob/master/README.md
https://github.com/cwatson/brainGraph/blob/master/README.md

14 brainGraphList

Usage

S3 method for class 'brainGraphList'
groups(x)

S3 method for class 'corr_mats'
groups(x)

region.names(object)

S3 method for class 'data.table'
region.names(object)

nregions(object)
Arguments

X, object An object
Details

For a data. table, region.names assumes that it contains a factor column named region.

brainGraphList Create a list of brainGraph graphs

Description

make_brainGraphList creates a brainGraphList object, a list containing a set of graphs for all
subjects (or group-average graphs) in a study at a specific threshold (or density), in addition to some
graph-level attributes common to those graphs.

The [method will let you subset/slice the graphs for individual subjects and/or groups.

as_brainGraphList coerces a list of graphs to a brainGraphlList object. It is assumed that cer-
tain metadata attributes — threshold, package version, atlas, imaging modality, edge weighting, and
whether they are random graphs — are identical for all graphs in the list.

Usage

make_brainGraphList(x, atlas, type = c("observed”, "random"),
level = c("subject”, "group”, "contrast"), set.attrs = TRUE,
modality = NULL, weighting = NULL, threshold = NULL,
gnames = NULL, ...)

S3 method for class 'array'

make_brainGraphList(x, atlas, type = c("observed”,
"random”), level = c("subject”, "group”, "contrast"),
set.attrs = TRUE, modality = NULL, weighting = NULL,

brainGraphList 15

threshold = NULL, gnames = NULL, grpNames = NULL, subnet = NULL,
mode = "undirected”, weighted = NULL, diag = FALSE,
.progress = getOption("bg.progress”), ...)

S3 method for class 'corr_mats'

make_brainGraphList(x, atlas = x$atlas,
type = "observed”, level = "group", set.attrs = TRUE,
modality = NULL, weighting = NULL, threshold = x$densities,

gnames = names(x$r.thresh), grpNames = gnames, mode = "undirected”,
weighted = NULL, diag = FALSE,
.progress = getOption("bg.progress”"), ...)

S3 method for class 'brainGraphList'
x[i, g = NULL, drop = TRUE]

S3 method for class 'brainGraphList'
print(x, ...)

is.brainGraphlList(x)

S3 method for class 'brainGraphList'
nobs(object, ...)

as_brainGraphList(g.list, type = c("observed”, "random”),

level = c("subject”, "group”, "contrast"))
Arguments

X 3-D numeric array of all subjects’ connectivity matrices (for a single threshold)
or a corr_mats object

atlas Character string specifying the brain atlas

type Character string indicating the type of graphs. Default: observed

level Character string indicating whether the graphs are subject-, group-, or contrast-
specific. Default: 'subject'

set.attrs Logical indicating whether to assign all graph-, vertex-, and edge-level attributes
(via set_brainGraph_attr). Default: TRUE

modality Character string indicating imaging modality (e.g. ’dti’). Default: NULL

weighting Character string indicating how the edges are weighted (e.g., 'fa’, "pearson’,
etc.). Default: NULL

threshold Integer or number indicating the threshold used when “sparsifying” the connec-
tivity matrix (if any). Default: NULL

gnames Character vector of graph names (e.g., study IDs if level="subject"'). Default:
NULL

Other arguments passed to set_brainGraph_attr

grpNames Character (or factor) vector of group names. If level == 'group’, then you do
not need to include this argument (the group names will be the same as gnames).
Default: NULL)

16 brainGraphList

subnet Integer or character vector indicating the vertices to keep, if you are interested
in working with a subset of an atlas. By default, all vertices are used.

mode Character string defining how the matrix should be interpreted. Default: 'undirected’

weighted Logical specifying whether to create a weighted network

diag Logical indicating whether to include the diagonal of the connectivity matrix.
Default: FALSE

.progress Logical indicating whether to print a progress bar. Default: getOption('bg.progress')

i Integer, character, or logical vector for subsetting by subject, or by group (if
x$level="group")

g Integer, character, or logical vector for subsetting by group (if x$1level="subject"')

drop If TRUE (the default), then return only the list of graphs; otherwise, subset the
graphs and return the entire object

object A brainGraphList object

g.list List of graph objects

Details

In addition to creating the initial igraph graphs from the connectivity matrices, then attributes will
be calculated and assigned for each graph via set_brainGraph_attr if set.attrs=TRUE. Other ar-
guments can be passed to that function. You may display a progress bar by setting . progress=TRUE.

This object can be considered comparable to a 4-D NIfTI file, particularly that returned by FSL’s
TBSS “prestats” step since that file contains the FA volumes for all study subjects.

To convert an object with 3 “levels” (i.e., subject-level lists from an older brainGraph version), see
the code in the Examples below.

Value

make_brainGraphList returns an object of class brainGraphList with elements:

threshold The specified threshold/density

version The versions of R, igraph, and brainGraph used when creating the graphs
atlas The atlas common to all the graphs

modality The imaging modality (if supplied)

weighting A string indicating what edge weights represent (if applicable)

graphs A named list of brainGraph graphs; the names correspond to the individual

graphs’ Study IDs
[— A brainGraphList object (if drop=FALSE) or a list of graphs

Subsetting/extracting

The first index is for subsetting the individual graphs. The second index is for subsetting by group
membership and requires that the graphs have a Group graph attribute. When both are included, the
first index cannot have length or numeric value greater than the number of remaining subjects after
subsetting by group.

If the indexing vector(s) is (are) character, the vector(s) must contain one (or more) of the subject
or group names. If logical, its length must equal the number of subjects or groups.

brainGraphList 17

Note

If the input is a corr_mats object, and the extent of the 3-D array is greater than 1, then only the
first will be converted to a graph.

Author(s)

Christopher G. Watson, <cgwatson@bu. edu>

See Also

Other Graph creation functions: Creating_Graphs_GLM, Creating_Graphs, make_ego_brainGraph

Examples

Not run:
Create a list, one for each threshold
g <- vector('list', length(thresholds))
for (i in seqg_along(thresholds)) {
g[[i]] <- make_brainGraphList(A.norm.sub[[i]], thresholds[i], atlas,
covars.dti$Study.ID, covars.dti$Group, modality='dti', weighting='fa')
}

End(Not run)

Not run:

Subset the first 10 subjects, irrespective of group
my.bgl[1:10]

Return object for only 'Control' subjects
my.bgl[, 'Control']

Return object with graphs from groups 1 and 3
my.bgllg=c(1, 3), drop=FALSE]

Subset the first 10 subjects of group 2
my.bgl[1:10, 2]

End(Not run)
Not run:
Convert old version single-subject graph lists
g[[1]1] is group 1, g[[1J1IC[1]1] is threshold 1, g[[1JICL1JICL1]] is subj. 1
kNumThresholds <- length(g[[111)
g.1l <- vector('list', kNumThresholds)
for (i in seg_len(kNumThresholds)) {
g.1[[i]] <- as_brainGraphList(do.call(Map, c(c, g))[[ill)
}

End(Not run)

18

brainGraph_permute

brainGraph_permute Permutation test for group difference of graph measures

Description

brainGraph_permute draws permutations from linear model residuals to determine the signifi-
cance of between-group differences of a global or vertex-wise graph measure. It is intended for
structural covariance networks (in which there is only one graph per group), but can be extended to

other types of data.

Usage

brainGraph_permute(densities, resids, N = 5000, perms = NULL,
auc = FALSE, level = c("graph”, "vertex”, "other"),
measure = c("btwn.cent”, "coreness”, "degree", "eccentricity”,
"clo.cent”, "communicability”, "ev.cent”, "lev.cent”, "pagerank”,
"subg.cent”, "E.local”, "E.nodal”, "knn", "Lp", "transitivity"”,
"vulnerability"), .function = NULL)

S3 method for class 'brainGraph_permute'

summary(object, measure = object$measure,
alternative = c("two.sided”, "less"”, "greater”), alpha = 0.05,
p.sig = c("p", "p.fdr"), ...)

S3 method for class 'brainGraph_permute'

plot(x, measure

= x$measure,

alternative = c("two.sided”, "less"”, "greater”), alpha = 0.05,
p.sig = c("p", "p.fdr"), ptitle = NULL, ...)
Arguments
densities Numeric vector of graph densities
resids An object of class brainGraph_resids (the output from get.resid)
N Integer; the number of permutations (default: 5e3)
perms Numeric matrix of permutations, if you would like to provide your own (default:
NULL)
auc Logical indicating whether or not to calculate differences in the area-under-the-
curve of metrics (default: FALSE)
level A character string for the attribute “level” to calculate differences (default: graph)
measure A character string specifying the vertex-level metric to calculate, only used if
level="vertex' (default: btwn.cent). For the summary method, this is to
focus on a single graph-level measure (since multiple are calculated at once).
.function A custom function you can pass if level="other"'
object, x A brainGraph_permute object (output by brainGraph_permute).

brainGraph_permute 19

alternative Character string, whether to do a two- or one-sided test. Default: 'two.sided'’
alpha Numeric; the significance level. Default: 0.05
p.sig Character string specifying which p-value to use for displaying significant re-

sults (default: p)
Unused

ptitle Character string specifying a title for the plot (default: NULL)

Details

If you would like to calculate differences in the area-under-the-curve (AUC) across densities, then
specify auc=TRUE.

There are three possible “levels”:
1. graph Calculate modularity (Louvain algorithm), clustering coefficient, characteristic path
length, degree assortativity, and global efficiency.

2. vertex Choose one of: centrality metrics (betweenness, closeness, communicability, eigen-
vector, leverage, pagerank, subgraph); k-core; degree; eccentricity; nodal or local efficiency;
k-nearest neighbor degree; shortest path length; transitivity; or vulnerability.

3. other Supply your own function. This is useful if you want to calculate something that I
haven’t hard-coded. It must take as its own arguments: g (a list of lists of igraph graph
objects); and densities (numeric vector).

Value

An object of class brainGraph_permute with input arguments in addition to:

DT A data table with permutation statistics
obs.diff A data table of the observed group differences
Group Group names

The plot method returns a list of ggplot objects

Author(s)

Christopher G. Watson, <cgwatson@bu.edu>

See Also

Other Group analysis functions: Bootstrapping, GLM, Mediation, NBS, mtpc

Other Structural covariance network functions: Bootstrapping, IndividualContributions, Residuals,
corr.matrix, import_scn, plot_volumetric

20 centr_betw_comm

Examples

Not run:
myResids <- get.resid(lhrh, covars)
myPerms <- shuffleSet(n=nrow(myResids$resids.all), nset=1e3)
out <- brainGraph_permute(densities, m, perms=myPerms)
out <- brainGraph_permute(densities, m, perms=myPerms, level='vertex')
out <- brainGraph_permute(densities, m, perms=myPerms,
level="other', .function=myFun)

End(Not run)

centr_betw_comm Calculate communicability betweenness centrality

Description

centr_betw_comm calculates the communicability betweenness of the vertices of a graph. The

centrality for vertex r is
— (eATE(M)

1 (eA)pq Pq
o C zp: zq: (eA)pq

where C' = (n — 1)? — (n — 1) is a normalization factor.

Usage
centr_betw_comm(g, A = NULL)

Arguments

g An igraph graph object

A Numeric matrix; the adjacency matrix of the input graph. Default: NULL
Value

A numeric vector of the centrality for each vertex

Author(s)

Christopher G. Watson, <cgwatson@bu.edu>

References

Estrada, E. and Higham, D.J. and Hatano N. (2009) Communicability betweenness in complex
networks. Physica A, 388, 764-774. doi: 10.1016/j.physa.2008.11.011

See Also

Other Centrality functions: centr_lev

https://doi.org/10.1016/j.physa.2008.11.011

centr_lev 21

centr_lev Calculate a vertex’s leverage centrality

Description

Calculates the leverage centrality of each vertex in a graph.

Usage

centr_lev(g, A = NULL)

Arguments
An igraph graph object

Numeric matrix; the adjacency matrix of the input graph. Default: NULL

Details

The leverage centrality relates a vertex’s degree with the degree of its neighbors. The equation is:

1« ki—k
b= 2 W,
i jen i TRy

where k; is the degree of the i vertex and N; is the set of neighbors of i. This function replaces
NaN with NA (for functions that have the argument na.rm).

Value

A vector of the leverage centrality for all vertices.

Author(s)

Christopher G. Watson, <cgwatson@bu. edu>

References
Joyce, K.E. and Laurienti P.J. and Burdette J.H. and Hayasaka S. (2010) A new measure of centrality
for brain networks. PLoS One, 5(8), €12200. doi: 10.1371/journal.pone.0012200

See Also

Other Centrality functions: centr_betw_comm

https://doi.org/10.1371/journal.pone.0012200

22 check sID

check_sID Test if an object is a character vector of numbers

Description

check_sID is a convenience function to test if a vector (typically the subject ID column in a
data.table) is a character vector of numbers, a factor vector of numbers, or a numeric vector.
If so, it will zero-pad the variable to have equal width.

pad_zeros pads a vector with zeros to avoid issues with ordering a column of integers or integers
converted to character.

Usage
check_sID(x)

pad_zeros(x)

Arguments
X pad_zeros accepts either a vector (numeric or character) or a single integer.
check_sID accepts a character, numeric, or factor vector
Details

This function is meant to avoid issues that arise when sorting a vector of numbers that have been
converted to character. For example, import_scn automatically reads in the first column (with
FreeSurfer outputs this is the column of subject IDs) as a character variable. If the subject IDs had
been all numbers/integers, then sorting (i.e., setting the key in a data. table) would be incorrect:
e.g., itmightbe '1', '10", '2',

If “x” is a numeric vector, then the resultant string width will be determined by max (x) or x itself if
the input is a single integer. For example, if x=10, it will return '01', '02', ...,'10'. If “x”is a
character vector, then the output’s string width will be max(nchar(x)). For example, if x includes
both '1' and '1000", it will return '0001"', etc.

Value

check_sID returns either the input vector or a character vector padded with @

A character vector with zero-padded values

Examples

pad_zeros(10) # '01' '@2' ... '10'
x <= c(1, 10, 100)

pad_zeros(x) # '001' '010' '100'
X <- as.character(x)

pad_zeros(x) # '001' '010' '100'

coeff _var 23

coeff_var Calculate coefficient of variation

Description

coeff_var is a S3 generic that calculates the coefficient of variation, defined as

d
ov(a) =)
mean(x)
Usage
coeff_var(x, na.rm = FALSE, ...)
Default S3 method:
coeff_var(x, na.rm = FALSE, ...)
Arguments
X Numeric vector, matrix, or array
na.rm Logical indicating whether NA values should be stripped when calculating sums.
Default: FALSE
Unused
Details

If x is a matrix, it will calculate the CV for each column. If x is a 3D array, it will calculate the
coefficient of variation for each row-column combination. If the input dimensions are n X n X r, a
matrix with size n x n will be returned.

Value

A numeric vector or matrix

communicability Calculate communicability

Description
communicability calculates the communicability of a network, a measure which takes into account
all possible paths (including non-shortest paths) between vertex pairs.

Usage

communicability(g, weights = NULL)

24 contract_brainGraph

Arguments
g An igraph graph object
weights Numeric vector of edge weights; if NULL (the default), and if the graph has edge
attribute weight, then that will be used. To avoid using weights, this should be
NA.
Details

The communicability G, is a weighted sum of the number of walks from vertex p to g and is
calculated by taking the exponential of the adjacency matrix A:

Gpq = Z (k|)pq = (eA)pq
k=0 ’

where k is walk length.
For weighted graphs with D = diag(d;) a diagonal matrix of vertex strength,

—1/2 Ay—1/2
Gpg = (GD b)pa

Value

A numeric matrix of the communicability

Author(s)

Christopher G. Watson, <cgwatson@bu. edu>

References

Estrada, E. and Hatano, N. (2008) Communicability in complex networks. Physical Review E. 77,
036111. doi: 10.1103/PhysRevE.77.036111

Crofts, J.J. and Higham, D.J. (2009) A weighted communicability measure applied to complex brain
networks. J. R. Soc. Interface. 6, 411-414. doi: 10.1098/rsif.2008.0484

contract_brainGraph Contract graph vertices based on brain lobe and hemisphere

Description
Create a new graph after merging vertices within specified groups. By default, groups are brain lobe
and hemisphere membership.

Usage

contract_brainGraph(g, vgroup = "lobe.hemi")

https://doi.org/10.1103/PhysRevE.77.036111
https://doi.org/10.1098/rsif.2008.0484

cor.diff.test 25

Arguments
g A brainGraph graph object
vgroup Character string; the name of the vertex attribute to use when contracting the
graph. Default: 'lobe.hemi’
Details

The size vertex-level attribute of the resultant graph is equal to the number of vertices in each
group. The x-, y-, and z-coordinates of the new graph are equal to the mean coordinates of the
vertices per group. The new edge weights are equal to the number of inter-group connections of the
original graph.

Value
A new brainGraph graph object with vertex-level attributes representing the mean spatial coordi-
nates, and vertex- and edge-level attributes of color names

Author(s)

Christopher G. Watson, <cgwatson@bu. edu>

See Also

contract

cor.diff.test Calculate the p-value for differences in correlation coefficients

Description

Given two sets of correlation coefficients and sample sizes, this function calculates and returns the
z-scores and p-values associated with the difference between correlation coefficients.

Usage

cor.diff.test(r1, r2, n, alternative = c("two.sided”, "less”, "greater”))
Arguments

ri, r2 Numeric (vector or matrix) of correlation coefficients for both groups

n Integer vector; number of observations for both groups

alternative Character string, whether to do a two- or one-sided test. Default: 'two.sided'
Value

A list with elements p and z, the p-values and z-scores for the difference in correlations.

26 corr.matrix

Author(s)

Christopher G. Watson, <cgwatson@bu. edu>

Examples

Not run:
kNumSubjs <- summary(covars$Group)
corr.diffs <- cor.diff.test(corrs$R[, , 11, corrs$R[, , 2], kNumSubjs)
edge.diffs <- t(sapply(which(corr.diffs$p < .05), function(x)
mapply('CL',
dimnames(corr.diffs$p),
arrayInd(x, dim(corr.diffs$p)))
D)

End(Not run)

corr.matrix Calculate correlation matrix and threshold

Description

corr.matrix calculates the correlation between all column pairs of a given data frame, and thresh-
olds the resultant correlation matrix based on a given density (e.g., @. 1 if you want to keep only the
10% strongest correlations). If you want to threshold by a specific correlation coefficient (via the
thresholds argument), then the densities argument is ignored.

The plot method will plot “heat maps” of the correlation matrices.

Usage

corr.matrix(resids, densities, thresholds = NULL, what = c("resids”,
"raw”), exclude.reg = NULL, type = c("pearson”, "spearman”),
rand = FALSE)

S3 method for class 'corr_mats'
x[i, g = NULL]

S3 method for class 'corr_mats'

plot(x, mat.type = c("thresholded”, "raw"),
thresh.num = 1L, ordered = TRUE, order.by = "lobe",
graphs = NULL, grp.names = NULL, legend.title = NULL, ...)

S3 method for class 'corr_mats'
region.names(object)

S3 method for class 'corr_mats'
nregions(object)

corr.matrix

Arguments

resids

densities

thresholds
what

exclude.reg

type

rand

X, object
i

g

mat.type
thresh.num

ordered

order.by
graphs

grp.names

legend.title

Details

27

An object of class brainGraph_resids (the output from get.resid)

Numeric vector indicating the resultant network densities; keeps the top X% of
correlations

Numeric; absolute correlation value to threshold by (default: NULL)

Character string indicating whether to correlate the residuals or the raw struc-
tural MRI values (default: 'resids")

Character vector of regions to exclude (default: NULL)

Character string indicating which type of correlation coefficient to calculate (de-
fault: 'pearson')

Logical indicating whether the function is being called for permutation testing;
not intended for general use (default: FALSE)

A corr_mats object
Integer for subsetting by density/threshold
Integer, character, or logical for subsetting by group

Character string indicating whether to plot raw or thresholded (binarized) matri-
ces. Default: 'raw’

Integer specifying which threshold to plot (if mat. type='thresholded"). De-
fault: 1L

Logical indicating whether to order the vertices by some grouping. Default:
TRUE

Character string indicating how to group vertices. Default: 'lobe’

A brainGraphList object containing graphs with the vertex-level attribute of
interest. Default: NULL

Character vector specifying the names of each group of vertices. Default: NULL
Character string for the legend title. Default is to leave blank
Unused

If you wish to exclude regions from your analysis, you can give the indices of their columns with
the exclude. reg argument.

By default, the Pearson correlation coefficients are calculated, but you can return Spearman by
changing the type argument.

Value

A corr_mats object containing the following components:

R,P

r.thresh

Numeric arrays of correlation coefficients and P-values. The length of the 3rd
dimension equals the number of groups

A list of 3-d binary arrays indicating correlations that are above a certain thresh-
old. The length of the list equals the number of groups, and the length of the 3rd
dimension equals the number of thresholds/densities.

28 corr.matrix

thresholds Numeric matrix of the thresholds supplied. The number of columns equals the
number of groups.

what Residuals or raw values

exclude.reg Excluded regions (if any)

type Pearson or Spearman

atlas The brain atlas used

densities Numeric vector; the densities of the resulting graphs, if you chose to threshold

each group to have equal densities.

Plotting correlation matrices

There are several ways to control the plot appearance. First, you may plot the “raw” correlations, or
only those of the thresholded (binarized) matrices. Second, you may order the vertices by a given
vertex attribute; by default, they will be ordered by lobe, but you may also choose to order by, e.g.,
network (for the dosenbach160 atlas) or by community membership. In the latter case, you need to
pass a brainGraphList object to the graphs argument; each graph in the object must have a vertex
attribute specified in order.by. Finally, you can control the legend text with grp.names.

Author(s)

Christopher G. Watson, <cgwatson@bu. edu>

See Also

rcorr

Other Structural covariance network functions: Bootstrapping, IndividualContributions, Residuals,
brainGraph_permute, import_scn, plot_volumetric

Examples

Not run:
myResids <- get.resid(lhrh, covars)
corrs <- corr.matrix(myResids, densities=densities)))

End(Not run)

Not run:

corrs <- corr.matrix(myResids, densities)

plot(corrs, order.by='comm', graphs=g.list, grp.names='Community')

End(Not run)

Count Edges 29

Count Edges Count number of edges of a brain graph

Description

count_homologous counts the number of edges between homologous regions in a brain graph (e.g.
between L and R superior frontal).

count_inter counts the number of edges between and within all vertices in one group (e.g. lobe,
hemi, network, etc.).

Usage

count_homologous(g)

count_inter(g, group = c("lobe”, "hemi”, "network"”, "class"”, "gyrus”,
"Yeo_7network”, "Yeo_17network”, "area", "Brodmann"))
Arguments
g A brainGraph graph object
group Character string specifying which grouping to calculate edge counts for. De-
fault: 'lobe'
Value

count_homologous - a named vector of the edge ID’s connecting homologous regions

count_inter - a data. table of total, intra-, and inter-group edge counts

Author(s)

Christopher G. Watson, <cgwatson@bu. edu>

Examples

Not run:
g1.lobecounts <- count_inter(g[[111[[N]], 'lobe')

End(Not run)

30 create_mats

create_mats Create connection matrices for tractography or fMRI data

Description

create_mats creates arrays from connection matrices (e.g., fdt_network_matrix from FSL or ROICor-
relation.txt from DPABI). You may choose to normalize these matrices by the wayrotal or region
size (tractography), or not at all.

Usage
create_mats(A.files, modality = c("dti", "fmri"), divisor = c("none”,
"waytotal”, "size", "rowSums”), div.files = NULL,
threshold.by = c("consensus”, "density"”, "mean”, "consistency"”, "raw"),
mat.thresh = @, sub.thresh = 0.5, inds = list(seqg_along(A.files)),
algo = c("probabilistic”, "deterministic”), P = 5000, ...)
Arguments
A.files Character vector of the filenames with connection matrices
modality Character string indicating data modality (default: dti)
divisor Character string indicating how to normalize the connection matrices; either
‘none’ (default), *waytotal’, ’size’, or 'rowSums’ (ignored if modality equals
fmri)
div.files Character vector of the filenames with the data to normalize by (e.g. a list of

waytotal files) (default: NULL)

threshold. by Character string indicating how to threshold the data; choose density, mean,
or consistency if you want all resulting matrices to have the same densities
(default: consensus)

mat.thresh Numeric (vector) for thresholding connection matrices (default: 0)
sub.thresh Numeric (between 0 and 1) for thresholding by subject numbers (default: 0.5)
inds List (length equal to number of groups) of integers; each list element should be

a vector of length equal to the group sizes

algo Character string of the tractography algorithm used (default: 'probabilistic').
Ignored if modality is fmri.

P Integer; number of samples per seed voxel (default: 5000)

Arguments passed to symmetrize

Value
A list containing:

A A 3-d array of the raw connection matrices

A.norm A 3-d array of the normalized connection matrices

create_mats 31

A.bin A list of 3-d arrays of binarized connection matrices, one array for each thresh-
old
A.bin.sums A list of 3-d arrays of connection matrices, with each entry signifying the num-

ber of subjects with a connection present; the number of list elements equals the
length of mat. thresh, and the extent of the arrays equals the number of groups

A.inds A list of arrays of binarized connection matrices, containing 1 if that entry is to
be included

A.norm. sub List of 3-d arrays of the normalized connection matrices for all given thresholds

A.norm.mean List of 3-d arrays of connection matrices averaged for each group

Connection matrix files
The A.files argument is mandatory and may be specified in a few ways:

1. A character vector of the filenames (preferably with full path).

2. A single character string specifying the directory in which all connectivity matrices are lo-
cated. This will load all files in the directory.

3. A named list in which the names match the arguments to 1ist.files. This will load all files
in path that match the pattern argument, if present, and will load all files in child directories
if recursive=TRUE. See examples below.

The same options apply to div.files as well.

Thresholding methods

The argument threshold.by has 5 options:

1. consensus Threshold based on the raw (normalized, if selected) values in the matrices. If this
is selected, it uses the sub. thresh value to perform “consensus” thresholding.

2. density Threshold the matrices to yield a specific graph density (given by the mat. thresh
argument).

3. mean Keep only connections for which the cross-subject mean is at least 2 standard deviations
higher than the threshold (specified by mat. thresh)

4. consistency Threshold based on the coefficient of variation to yield a graph with a specific
density (given by mat. thresh). The edge weights will still represent those of the input matri-
ces. See Roberts et al. (2017) for more on “consistency-based” thresholding.

5. raw Threshold each subject’s matrix individually, irrespective of group membership. Ignores
sub. thresh.

The argument mat . thresh allows you to choose a numeric threshold, below which the connections
will be replaced with 0; this argument will also accept a numeric vector. The argument sub. thresh
will keep only those connections for which at least X% of subjects have a positive entry (the default
is 0.5, or 50%).

Author(s)

Christopher G. Watson, <cgwatson@bu. edu>

32 Creating_Graphs

References

Roberts, JA and Perry, A and Roberts, G and Mitchell, PB and Breakspear, M (2017) Consistency-
based thresholding of the human connectome. Neurolmage. 145, 118-129. doi: 10.1016/j.neuroimage.2016.09.053

Examples

Not run:

thresholds <- seq(from=0.001, to0=0.01, by=0.001)

fmri.mats <- create_mats(f.A, modality='fmri', threshold.by='consensus’,
mat.thresh=thresholds, sub.thresh=0.5, inds=inds)

dti.mats <- create_mats(f.A, divisor='waytotal',6 div.files=f.way,
mat.thresh=thresholds, sub.thresh=0.5, inds=inds)

Specify a directory and filename pattern
conn_files <- list(path='~/data', pattern='.xfdt_network_matrix')

dti.mats <- create_mats(conn_files, ...)

End(Not run)

Creating_Graphs Create a brainGraph object

Description

make_brainGraph is the main creation function for creating a brainGraph graph object. This is
simply an igraph graph object with additional attributes (at all levels). Several of the graph-level

attributes serve the purpose of providing metadata on how the connectivity matrices/networks were
created.

make_brainGraph.bg_mediate creates a graph only for vertex-level analyses.

make_empty_brainGraph creates an empty undirected brainGraph object with vertex count equal
to the atlas specified; i.e., it creates a graph with 0 edges. Typically used to present results from
an analysis in which edges don’t make sense (e.g., GLM comparing differences in a vertex-level

attribute).
Usage
make_brainGraph(x, atlas, type = c("observed”, "random"),
level = c("subject”, "group”, "contrast”), set.attrs = TRUE,
modality = NULL, weighting = NULL, threshold = NULL, ...)

S3 method for class 'igraph'
make_brainGraph(x, atlas, type = c("observed”,

"random”), level = c("subject”, "group”, "contrast"),
set.attrs = TRUE, modality = NULL, weighting = NULL,
threshold = NULL, name = NULL, Group = NULL, subnet = NULL, ...)

S3 method for class 'matrix'

https://doi.org/10.1016/j.neuroimage.2016.09.053

Creating_Graphs 33

make_brainGraph(x, atlas, type = c("observed”,
"random”), level = c("subject”, "group”, "contrast"),
set.attrs = TRUE, modality = NULL, weighting = NULL,
threshold = NULL, name = NULL, Group = NULL, subnet = NULL,
mode = "undirected”, weighted = NULL, diag = FALSE, ...)

S3 method for class 'bg_mediate'

make_brainGraph(x, atlas = x$atlas,
type = "observed”, level = "contrast”, set.attrs = FALSE,
modality = NULL, weighting = NULL, threshold = NULL, ...)

is.brainGraph(x)

S3 method for class 'brainGraph'
summary(object, print.attrs = c("all", "graph”,
"vertex"”, "edge", "none"), ...)

make_empty_brainGraph(atlas, type = c("observed”, "random"),
level = c("subject”, "group”, "contrast”), modality = NULL,
weighting = NULL, threshold = NULL, name = NULL, Group = NULL,

.2
Arguments

X An igraph graph object, numeric matrix, or bg_mediate object

atlas Character string specifying the brain atlas

type Character string indicating the type of graphs. Default: observed

level Character string indicating whether the graphs are subject-, group-, or contrast-
specific. Default: 'subject'

set.attrs Logical indicating whether to assign all graph-, vertex-, and edge-level attributes
(via set_brainGraph_attr). Default: TRUE

modality Character string indicating imaging modality (e.g. ’dti’). Default: NULL

weighting Character string indicating how the edges are weighted (e.g., 'fa’, "pearson’,
etc.). Default: NULL

threshold Integer or number indicating the threshold used when “sparsifying” the connec-
tivity matrix (if any). Default: NULL
Arguments passed to set_brainGraph_attr

name Character string indicating subject ID or group/contrast name, depending on the
level. Default: NULL

Group Character string indicating group membership. Default: NULL

subnet Integer or character vector indicating the vertices to keep, if you are interested
in working with a subset of an atlas. By default, all vertices are used.

mode Character string defining how the matrix should be interpreted. Default: 'undirected’

weighted Logical specifying whether to create a weighted network

34 Creating_Graphs

diag Logical indicating whether to include the diagonal of the connectivity matrix.
Default: FALSE
object A brainGraph object
print.attrs Character string indicating whether or not to list the object’s attributes (default:
all)
Value

A brainGraph graph object with additional graph-, vertex-, and edge-level attributes (see below).

The method for bg_mediate returns a brainGraph_mediate object, which has extra attributes:

Graph mediator, treat, outcome, nobs

Vertex b?.acme, p?.acme, b?.ade, p?.ade, b?.prop, p?.prop, b.tot, p.tot

make_empty_brainGraph — An empty brainGraph graph object

Graph-level attributes

Graph-level attributes added are:

version The R, brainGraph, and igraph package versions used to create the graph
date The creation date, from as.POSIXct

atlas Character string denoting the brain atlas used

type Character string specifying whether this is an observed or random graph

modality The imaging modality; you can choose anything you like, but the summary.brainGraph
knows about dti, fmri, thickness, area, and volume

weighting What edge weights represent; you can choose anything you like, but summary . brainGraph
knows about fa, sld (streamline density, tractography), pearson, spearman, kendall, and
partial (partial correlation coefficient)

threshold Numeric indicating the threshold used to create the final connectivity matrix (if any)

name Character string specifying the study ID or group/contrast name, depending on the level
argument

Group Character string specifying the experimental group that the given subject belongs to, or if
it is a group-level graph

subnet Integer vector, if subnet was specified in the call

Vertex attributes

Vertex-level attributes added are:

name The names of the brain regions in the network

lobe The names of the major brain lobes for each vertex

hemi The names of the hemisphere for each vertex (either 'L', 'R', or 'B")
lobe.hemi The lobe-hemisphere combination (represented as an integer vector)

class The tissue class (if applicable)

Creating_Graphs_ GLM 35

network The network (if the atlas is dosenbach160)

x,¥,Z The spatial coordinates of the (centers-of-mass) brain regions in MNI space
X.mni,y.mni,z.mni Same as above

color.lobe,color.class,color.network Colors for vertices of their respective membership

circle.layout Integer vector indicating the order (going counter-clockwise from the top) for circular
layouts

Edge attributes

Edge-level attributes added are:

color.lobe,color.class,color.network Correspond to the vertex attribute of the same name. Inter-
group edges will be colored gray

Specifying a subnetwork

You can create a graph for a subset of an atlas’s regions with the subnet argument. This can either
be a numeric or character vector. If the input object (either a matrix or an igraph graph) has fewer
rows/columns or vertices, respectively, than the atlas then the subnet graph attribute will also be
added to the return object. This may occur if, for example, you use make_auc_brainGraph on
graphs that were initially created from subnetworks.

See Also

Other Graph creation functions: Creating_Graphs_GLM, brainGraphlList, make_ego_brainGraph

Examples
Not run:

bg <- make_brainGraph(A, 'dkt', modality='dti', weighting='fa',
mode="undirected', diag=FALSE, weighted=TRUE)

End(Not run)

Creating_Graphs_GLM Create a graph list with GLM-specific attributes

Description

These methods create a brainGraphList with attributes specific to the results of brainGraph_GLM,
mtpc, or NBS. The graphs element of the returned object will contain one graph for each contrast.

36

Usage

Creating_Graphs_ GLM

S3 method for class 'bg_GLM'

make_brainGraphList(x, atlas = x$atlas,
type = "observed”, level = "contrast”, set.attrs = FALSE,
modality = NULL, weighting = NULL, threshold = NULL,
gnames = x$con.name, ...)

S3 method for class 'mtpc'

make_brainGraphList(x, atlas = x$atlas,
type = "observed”, level = "contrast”, set.attrs = FALSE,
modality = NULL, weighting = NULL, threshold = NULL,
gnames = x$con.name, ...)

S3 method for class 'NBS'

make_brainGraphList(x, atlas, type = "observed”,
level = "contrast”, set.attrs = TRUE, modality = NULL,
weighting = NULL, threshold = NULL, gnames = x$con.name,
mode = "undirected”, weighted = TRUE, diag = FALSE, ...)

Arguments

X

atlas

type
level

set.attrs

modality
weighting

threshold

gnames

mode
weighted
diag

Value

A bg_GLM, mtpc, or NBS object
Character string specifying the brain atlas to use
Character string indicating the type of graphs. Default: observed

Character string indicating whether the graphs are subject-, group-, or contrast-
specific. Default: 'subject'

Logical indicating whether to assign all graph-, vertex-, and edge-level attributes
(via set_brainGraph_attr). Default: TRUE

Character string indicating imaging modality (e.g. ’dti’). Default: NULL

Character string indicating how the edges are weighted (e.g., *fa’, ’pearson’,
etc.). Default: NULL

Integer or number indicating the threshold used when “sparsifying” the connec-
tivity matrix (if any). Default: NULL

Character vector of graph names (e.g., study IDs if level="subject"'). Default:
NULL

Other arguments passed to set_brainGraph_attr
Character string defining how the matrix should be interpreted. Default: 'undirected’
Logical specifying whether to create a weighted network

Logical indicating whether to include the diagonal of the connectivity matrix.
Default: FALSE

A brainGraphList object, with a graph object for each contrast with additional attributes:

edge_asymmetry 37

Graph name (contrast name), outcome (the outcome variable), alpha (the significance
level); for MTPC: tau.mtpc, S.mtpc, S.crit, A.crit

Vertex size2 (t-statistic); size (the t-stat transformed for visualization purposes); p (equal
to 1 — p); p.fdr (equal to 1 — prpg, the FDR-adjusted p-value); effect.size
(the contrast of parameter estimates for t-contrasts; the extra sum of squares for
F-contrasts); se (the standard error of gamma); A.mtpc, sig (binary indicating
whether A.mtpc > A.crit) (for MTPC)

make_brainGraphList.NBS returns graphs with additional attributes:

Vertex comp (integer vector indicating connected component membership), p.nbs (P-
value for each component)

Edge stat (the test statistic for each connection), p (the P-value)

Note

Only valid for vertex-level and NBS analyses.

See Also

brainGraph_GLM, mtpc, NBS

Other Graph creation functions: Creating_Graphs, brainGraphList, make_ego_brainGraph

edge_asymmetry Calculate an asymmetry index based on edge counts

Description

Calculate an asymmetry index, a ratio of intra-hemispheric edges in the left to right hemisphere of
a graph for brain MRI data.

Usage

edge_asymmetry(g, level = c("hemi”, "vertex"), A = NULL)

Arguments
g An igraph graph object
level Character string indicating whether to calculate asymmetry for each region, or

the hemisphere as a whole (default: "hemi')

A Numeric matrix; the adjacency matrix of the input graph. Default: NULL

38 efficiency

Details

The equation is:
Eiyn — Erp

T 05 x (B + Eyn)
where [h and rh are left and right hemispheres, respectively. The range of this measure is [—2, 2]
(although the limits will only be reached if all edges are in one hemisphere), with negative numbers
indicating more edges in the right hemisphere, and a value of 0 indicating equal number of edges in
each hemisphere.

The level argument specifies whether to calculate asymmetry for each vertex, or for the whole
hemisphere.
Value

A data table with edge counts for both hemispheres and the asymmetry index; if level is vertex,
the data table will have vcount (g) rows.

Author(s)

Christopher G. Watson, <cgwatson@bu. edu>

efficiency Calculate graph global, local, or nodal efficiency

Description
This function calculates the global efficiency of a graph or the local or nodal efficiency of each
vertex of a graph.

Usage

efficiency(g, type = c("local”, "nodal”, "global"), weights = NULL,
xfm = FALSE, xfm.type = NULL, use.parallel = TRUE, A = NULL,

D = NULL)
Arguments

g An igraph graph object

type Character string; either local, nodal, or global. Default: local

weights Numeric vector of edge weights; if NULL (the default), and if the graph has edge
attribute weight, then that will be used. To avoid using weights, this should be
NA.

xfm Logical indicating whether to transform the edge weights. Default: FALSE

xfm. type Character string specifying how to transform the weights. Default: 1/w

use.parallel Logical indicating whether or not to use foreach. Default: TRUE
A Numeric matrix; the adjacency matrix of the input graph. Default: NULL

D Numeric matrix; the graph’s “distance matrix”

GLM 39

Details
Local efficiency for vertex i is:
Bloa(i) = 5 3 Fgtona (Go)
local\l) = N ' global %
i€G
where G is the subgraph of neighbors of i, and N is the number of vertices in that subgraph.

Nodal efficiency for vertex i is:
1 1
Ernodai(1) =
i) = 57 2 4o
JjEG

Global efficiency for graph G with N vertices is:

1 1

Eglobal (G) = m %

i#jeCG

where d;; is the shortest path length between vertices i and j. Alternatively, global efficiency is
equal to the mean of all nodal efficiencies.

Value

A numeric vector of the efficiencies for each vertex of the graph (if type is local |nodal) or a single
number (if type is global).

Author(s)

Christopher G. Watson, <cgwatson@bu. edu>

References

Latora, V. and Marchiori, M. (2001) Efficient behavior of small-world networks. Phys Rev Lett,
87.19, 198701. doi: 10.1103/PhysRevLett.87.198701

Latora, V. and Marchiori, M. (2003) Economic small-world behavior in weighted networks. Eur
Phys J B, 32, 249-263. doi: 10.1140/epjb/e2003000955

GLM Fit General Linear Models at each vertex of a graph

Description

brainGraph_GLM specifies and fits a General Linear Model (GLM) at each vertex for a given vertex
measure (e.g. degree) or at the graph-level (e.g., global efficiency). Given a contrast matrix or list
of contrast(s), and contrast type (for t- or F-contrast(s), respectively) it will calculate the associated
statistic(s) for the given contrast(s).

https://doi.org/10.1103/PhysRevLett.87.198701
https://doi.org/10.1140/epjb/e2003-00095-5

40 GLM

The summary method prints the results, only for which p < «, where alpha comes from the bg_GLM
object. “Simple” P-values are used by default, but you may change this to the FDR-adjusted or
permutation P-values via the function argument p.sig. You may also choose to subset by contrast.

The plot method plots the GLM diagnostics (similar to that of plot.1m). There are a total of 6
possible plots, specified by the which argument; the behavior is the same as in plot. 1m. Please see
the help for that function.

The [method allows you to select observations (i.e., rows of X and y) and independent variables
(i.e., columns of X) from a bg_GLM object.
Usage

brainGraph_GLM(g.list, covars, measure, contrasts, con.type = c("t",
"f"), outcome = NULL, X = NULL, con.name = NULL,

alternative = c("two.sided”, "less"”, "greater”), alpha = 0.05,

level = c("vertex", "graph"), permute = FALSE,

perm.method = c("freedmanLane”, "terBraak”, "smith"”, "draperStoneman”,
"manly”, "stillWhite"”), part.method = c("beckmann”, "guttman",
"ridgway"”), N = 5000, perms = NULL, long = FALSE, ...)

S3 method for class 'bg_GLM'
print(x, ...)

S3 method for class 'bg_GLM'

summary(object, p.sig = c("p", "p.fdr", "p.perm”),
contrast = NULL, alpha = object$alpha, digits = max(3L,
getOption("digits"”) - 2L), print.head = TRUE, ...)

S3 method for class 'bg_GLM'
plot(x, region = NULL, which = c(1L:3L, 5L),
ids = TRUE, ...)

S3 method for class 'bg_GLM'

x[i, j]
Arguments

g.list A brainGraphList object

covars A data.table of covariates

measure Character string of the graph measure of interest

contrasts Numeric matrix (for T statistics) or list of matrices (for F statistics) specifying
the contrast(s) of interest; if only one contrast is desired, you can supply a vector
(for T statistics)

con. type Character string; either 't' or 'f' (for t or F-statistics). Default: 't'

outcome Character string specifying the name of the outcome variable, if it differs from
the graph metric (measure)

X Numeric matrix, if you wish to supply your own design matrix. Ignored if

outcome !=measure.

GLM

con.name

alternative
alpha

level
permute
perm.method

part.method

perms

long

object, x

p.sig

contrast

digits
print.head

region

which

ids

Details

41

Character vector of the contrast name(s); if contrasts has row/list names, those
will be used for reporting results

Character string, whether to do a two- or one-sided test. Default: 'two.sided’
Numeric; the significance level. Default: 0.05

Character string; either vertex (default) or graph

Logical indicating whether or not to permute group labels. Default: FALSE
Character string indicating the permutation method. Default: ' freedmanLane'

Character string; the method of partitioning the design matrix into covariates of
interest and nuisance. Default: 'beckmann’

Integer; number of permutations to create. Default: 5e3
Matrix of permutations, if you would like to provide your own. Default: NULL

Logical indicating whether or not to return all permutation results. Default:
FALSE

Arguments passed to brainGraph_GLM_design
A bg_GLM object

Character string specifying which P-value to use for displaying significant re-
sults (default: p)

Integer specifying the contrast to plot/summarize; defaults to showing results
for all contrasts

Integer specifying the number of digits to display for P-values

Logical indicating whether or not to print only the first and last 5 rows of the
statistics tables (default: TRUE)

Character string specifying which region’s results to plot; only relevant if level="vertex"'.
Default: NULL

Integer vector indicating which of the 6 plots to print to the plot device. Default:
c(1:3,5)

Logical indicating whether to plot subject ID’s for outliers. Otherwise plots the
integer index

Integer/character vector; the observation number(s) or row names to select or
remove

Integer/character vector; the design matrix column number(s) or names to select
or remove

The measure argument will be the graph- or vertex-level measure of interest. Often, this will serve
as the model’s outcome (or dependent, or response) variable; i.e., the variable typically denoted by y
in GLMs. In other cases, you may wish to choose some other variable as the outcome; e.g., 1Q, age,
etc. Then you could test for a direct association between the network measure and outcome of in-
terest, or test for another association while adjusting for the network metric. For these applications,
you must provide the variable name via the outcome argument. This is analogous to -evperdat in
FSL’s PALM and to --pvr in FreeSurfer.

42 GLM

Value

An object of class bg_GLM containing some input-specific variables (level, outcome, measure,
con.type, contrasts, con.name, alt, alpha, permute, perm.method, part.method, N) in addi-

tion to:

DT. Xy A data table from which the design matrices are created and the outcome vari-
able, for all regions.

X A named numeric matrix or a 3D array of the design matrix. Rownames are
subject IDs, column names are predictor variables, and dimnames along the 3rd
dimension are region names (if applicable). This is a 3D array only if outcome
!=measure and level == 'vertex"'.

y A named numeric matrix of the outcome variable. Rownames are Study IDs and
column names are regions. There will be multiple columns only if outcome ==
measure and level == 'vertex'.

DT A data table with an entry for each vertex (region) containing statistics of interest

removed. subs A named integer vector in which the names are subject ID’s of those removed
due to incomplete data (if any). The integers correspond to the row number in
the input covars table.

runX If outcome !=measure and level == 'vertex', this will be a character vector
of the regions for which the design matrix is invertible. Otherwise, it is NULL.

runY Character vector of the regions for which the outcome variable has 0 variability.
For example, if level="'vertex' and measure='degree', some regions may
be disconnected or have the same degree for all subjects.

atlas Character string of the atlas used (guessed based on the vertex count).

perm A list containing: null.dist (the null distribution of maximum statistics), thresh
(the statistic value corresponding to the 100 x (1 — «)th% percentile of the null
distribution)

The plot method returns a /list of ggplot objects (if installed) or writes the plots to a PDF in the
current directory named bg_GLM_diagnostics.pdf

A bg_GLM object with the specified row(s) selected or removed from both X and y, and column(s)
selected/removed from X

Design matrix

The GLM'’s design matrix will often be identical to the model matrix associated with 1m objects

(if “dummy” coding, the default, is used) and is created from the input data. table and arguments

passed to brainGraph_GLM_design. The first column should have the name of getOption('bg.subject_id")
and its values must match the name graph-level attribute of the input graphs. The covariates table

must be supplied even if you provide your own design matrix X. If level="vertex' and outcome

== measure, there will be a single design for all regions but a separate model for each region (since

the graph measure varies by region). If level="vertex' and outcome !=measure, there will be a

separate design (and, therefore, a separate model) for each region even though the outcome is the

same in all models.

GLM 43

Contrasts and statistics

Either t- or F-contrasts can be calculated (specified by con.type). Multiple t-contrasts can be
specified by passing a multi-row matrix to contrasts. Multiple F-contrasts can be specified by
passing a list of matrices; all matrices must have the same number of columns. All F-contrasts
are necessarily rwo-sided; t-contrasts can be any direction, but only one can be chosen per function
call. If you choose con. type="f", the calculated effect size is represented by the ESS (“extra sum of
squares”), the additional variance explained for by the model parameters of interest (as determined
by the contrast matrix). The standard error for F-contrasts is the sum of squared errors of the full
model.

Non-parametric permutation tests

You can calculate permutations of the data to build a null distribution of the maximum statistic
which corrects for multiple testing. To account for complex designs, the design matrix must be
partitioned into covariates of interest and nuisance; the default method is the Beckmann method.
The default permutation strategy is that of Freedman & Lane (1983), and is the same as that in
FSL’s randomise. See randomise.

Note

The [method is used when calculating studentized residuals and other “leave-one-out” diagnostics,
and typically should not be called directly by the user.

Author(s)

Christopher G. Watson, <cgwatson@bu. edu>

See Also

plot.1lm
Other GLM functions: GLM design, GLM fits, mtpc

Other Group analysis functions: Bootstrapping, Mediation, NBS, brainGraph_permute, mtpc

Examples

Not run:
conmat <- matrix(c(@, @, @, 1), nrow=1)
rownames (conmat) <- 'Control > Patient'

res.1lm <- brainGraph_GLM(g[[6]], covars=covars.alll[tract == 1],
measure="'strength', contrasts=conmat, alt='greater', permute=TRUE, long=TRUE)

End(Not run)

Not run:

Save objects and then to multipage PDF
1mPlots <- plot(x)

ggsave('lmPlots.pdf', 1lmPlots)

Save all the GLM sub-objects from MTPC analysis
res.mtpc <- mtpc(...)

44 GLM basic info

glmPlots <- lapply(res.mtpc$res.glm, plot, which=1:6)
ml <- marrangeGrob(glmPlots, nrow=1, ncol=1)
ggsave('glmPlots.pdf', ml, width=8.5, height=11)

End(Not run)

GLM basic info Extract basic information from a bg_GLM object

Description

LEINT3

These functions return the terms, term labels, model formula, “case names”, “variable names”, re-
gion names, and number of observations for a bg_GLM object. The term labels are used for ANOVA
tables.

Usage

S3 method for class 'bg_GLM'
nobs(object, ...)

S3 method for class 'bg_GLM'
terms(x, ...)

S3 method for class 'bg_GLM'
formula(x, ...)

S3 method for class 'bg_GLM'
labels(object, ...)

S3 method for class 'bg_GLM'
case.names(object, ...)

S3 method for class 'bg_GLM'
variable.names(object, ...)

S3 method for class 'bg_GLM'
region.names(object)

S3 method for class 'bg_GLM'
nregions(object)

Arguments

Unused
x, object A bg_GLM object

GLM design 45

Value

terms returns a named integer list in which the names are the term labels and the list elements are
the column(s) of the design matrix for each term. nobs returns an integer. The other functions
return character vectors.

Note

formula returns a character string, not a formula object.

GLM design Create a design matrix for linear model analysis

Description

brainGraph_GLM_design takes a data. table of covariates and returns a design matrix to be used
in linear model analysis.

Usage
brainGraph_GLM_design(covars, coding = c("dummy”, "effects”,
"cell.means"), factorize = TRUE, binarize = NULL, int = NULL,
mean.center = FALSE, center.how = c("all”, "within-groups”),

center.by = getOption("bg.group”))

Arguments
covars A data. table of covariates
coding Character string indicating how factor variables will be coded. Default: 'dummy '
factorize Logical indicating whether to convert character columns into factor. Default:
TRUE
binarize Character vector specifying the column name(s) of the covariate(s) to be con-
verted from type factor to numeric. Default: NULL
int Character vector specifying the column name(s) of the covariate(s) to test for an
interaction. Default: NULL
mean.center Logical indicating whether to mean center non-factor variables. Default: FALSE
center.how Character string indicating whether to use the grand mean or groupwise means.
Default: 'all’
center.by Character string indicating which grouping variable to use for calculating means
(if applicable). Default: 'Group'
Details

There are three different ways to code factors: dummy, effects, or cell-means (chosen by the argu-
ment coding). Effects coding is sometimes referred to as deviation coding. Dummy coding is the
default when calling 1m. To understand the difference between these, see Chapter 8 of the User
Guide.

46 GLM design

Value

A numeric matrix. Rownames are subject ID’s and column names are the variable names. There will
be additional attributes recording the coding, factorize, and mean.center function arguments.
There will also be attributes for binarize and int if they are not NULL, and center.how and
center.by if mean.center=TRUE.

Character variables

The default behavior is to convert all character columns (excluding the Study ID column and any
that you list in the binarize argument) to factor variables. To change this, set factorize=FALSE.
So, if your covariates include multiple character columns, but you want to convert Scanner to bi-
nary instead of a factor, you may still specify binarize="'Scanner' and get the expected result.
binarize will convert the given factor variable(s) into numeric variable(s), which is performed
before centering (if applicable).

Centering

The argument mean.center will mean-center (i.e., subtract the mean of from each variable) any
non-factor variables (including any dummy/indicator covariates). This is done after “factorizing”
and “binarizing”. If center.how="all’, then the “grand mean” will be used; otherwise, the group-
wise means will be used. The grouping variable is determined by center.by and is by default
'"Group'.

Interactions

int specifies which variables should interact with one another. This argument accepts both nu-
meric/continuous (e.g., Age) and factor variables (e.g., Sex). All interaction combinations will be
generated: if you supply 3 variables, all two-way and the single three-way interaction will be gen-
erated. This variable must have at least two elements; it is otherwise ignored. It is generally recom-
mended that centering be performed when including interaction terms.

Author(s)

Christopher G. Watson, <cgwatson@bu. edu>

See Also
Other GLM functions: GLM fits, GLM, mtpc

Examples

Not run:
Recreate design matrix when "outcome == measure”
DT <- res.glm$DT.Xy[region == levels(region)[1L],
Ic('region', res.glm$outcome),
with=FALSE]
X <- do.call(brainGraph_GLM_design, c(list(covars=DT),
attributes(res.glm$X)[-c(1L, 2L)1))
all.equal(X, res.glm$X)

GLM fits 47

End(Not run)

GLM fits Fit design matrices to one or multiple outcomes

Description

These are the “base” model-fitting functions that solve the least squares problem to estimate model
coefficients, residuals, etc. for brain network data.

fastLmBG_t and fastLmBG_f calculate contrast-based statistics for T or F contrasts, respectively.
It accepts any number of contrasts (i.e., a multi-row contrast matrix).

Usage

fastLmBG(X, Y, QR = gr.default(X), Q = gqr_Q2(QR, n =n, p = p),
R = gr_R2(QR, p), n = dim(X)[1L]1, p = QR$rank, ny = dim(Y)[2L],
dfR = n - p, XtXinv = inv(QR))

fastLmBG_3d(X, Y, runX, QR = gr(X[, , runX, drop = FALSE]),
Q = lapply(QR, gr_Q2, n =n, p =p), R = lapply(QR, ar_R2, p),
n = dim(X)[1L], p = QRC[1L]I$rank, ny = length(runX), dfR = n -
p, XtXinv = inv(QR))

fastLmBG_3dY(X, Y, runX, QR = qr(X[, , runX, drop = FALSE]),
Q = lapply(QR, ar_Q2, n =n, p = p), R = lapply(QR, ar_R2, p),
n = dim(X)L1L], p = QRC[1L]I$rank, ny = length(runX), dfR = n -
p, XtXinv = inv(QR))

fastLmBG_3dY_1p(X, Y, runX, QR = gqr(X[, , runX, drop = FALSE]),
Q = lapply(QR, gr_Q2, diag(iL, n, 1L), n, 1L), R = lapply(QR,
function(r) r$qr[1L]), n = dim(X)[1L], p = 1L, ny = length(runX),
dfR = n - 1L, XtXinv = inv(QR))

fastLmBG_t(fits, contrasts, alternative = c("two.sided”, "less”,
"greater”), alpha = NULL)

fastLmBG_f(fits, contrasts, rkC = NULL, nC = length(contrasts))

Arguments
X Design matrix or 3D array of design matrices
Y Numeric matrix; there should be 1 column for each outcome variable (so that in
a graph-level analysis, this is a column matrix)
QR, Q,R The QR decomposition(s) and Q and R matrix(es) of the design matrix(es). If X

is a 3D array, these should be /ists

48

n, p, ny, dfR

XtXinv

runX
fits

contrasts

alternative
alpha
rkC, nC

Value

GLM fits

Integers; the number of observations, model rank, number of regions/outcome
variables, and residual degrees of freedom

Numeric matrix or array; the inverse of the cross-product of the design ma-
trix(es)

Character vector of the regions for which the design matrix is not singular
List object output by one of the model fitting functions (e.g., fastLmBG)

Numeric matrix (for T statistics) or list of matrices (for F statistics) specifying
the contrast(s) of interest; if only one contrast is desired, you can supply a vector
(for T statistics)

Character string, whether to do a two- or one-sided test. Default: 'two.sided'
Numeric; the significance level. Default: 0.05

Integers; the rank of the contrast matrix and number of contrasts, respectively
(for F contrasts)

A list with elements

coefficients
rank
df.residual
residuals
sigma
fitted.values
qr
cov.unscaled

Parameter estimates

Model rank

Residual degrees of freedom

Model residuals

The residual standard deviation, or root mean square error (RMSE)
Model fitted values

The design matrix QR decomposition(s)

The “unscaled covariance matrix”

fastLmBG_t — A multidimensional array with the third dimension equaling the number of contrasts;
each matrix contains the contrast of parameter estimates, standard error of the contrast, T-statistics,
P-values, FDR-adjusted P-values, and confidence intervals (if alpha is given)

fastLmBG_f — A numeric matrix with columns for the effect size, standard error, F statistic, P-
values, and FDR-adjusted P-values

Parameter estimation

These functions use the QR decomposition to calculate the least squares solution which is the same
as the base 1m function. If we substitute X = QR in the standard normal equations, the equation to
be solved reduces to

X"Xp=X"y=RE=Q"y

Since R is an upper-triangular matrix, we can use the backsolve function which is a bit faster than
solve. In some cases, the fastLmBG* functions are about as fast or faster (particularly when X is
not permuted) as one in which the normal equations are solved directly; additionally, using the OR
method affords greater numerical stability.

GLM fits 49

Different scenarios
There are a few different scenarios for fitting models of the data, with a separate function for each:

fastLmBG The main function for when there is a single design matrix X and any number of
outcome variables Y.

fastLmBG_3d Fits models when there is a different design matrix X for each region and a single
outcome variable Y, which in this case will be a column matrix.

fastLmBG_3dY Fits models when there is both a different design matrix X and outcome variable
Y for each region. Occurs under permutation for the Freedman-Lane, ter Braak, and Still-
White methods.

fastLmBG_3dY_1p Fits models when there is both a different design and outcome variable for
each region, and also when X is a rank-1 matrix (i.e., it has 1 column). Only occurs under
permutation with the Still-White method if there is a single regressor of interest.

In the last case above, model coefficients are calculated by simple (i.e., non-matrix) algebra.

Improving speed/efficiency

Speed/efficiency gains will be vast for analyses in which there is a single design matrix X for all re-
gions, there are multiple outcome variables (i.e., vertex-level analysis), and the permutation method
chosen does not permute X . Specifically, these are Freedman-Lane, ter Braak, and Manly methods.
Therefore, the QR decomposition, the ¢ and R matrices, and the “unscaled covariance matrix”
(which is (X7 X)~1) only need to be calculated once for the entire analysis. Other functions (e.g.,
1m. fit) would recalculate these for each permutation.

Furthermore, this (and the other model fitting functions in the package) will likely only work in
models with full rank. I sacrifice proper error checking in favor of speed, but hopefully any issues
with the model will be identified prior to the permutation step. Finally, the number of observations,
model rank, number of outcome variables, and degrees of freedom will not change and therefore do
not need to be recalculated (although these probably amount to a negligible speed boost).

In case there are multiple design matrices, or the permutation method permutes the design, then
the QR decomposition will need to be calculated each time anyway. For these cases, I use more
simplified functions qr_Q2 and qr_R2 to calculate the () and R matrices, and then the fitted values,
residuals, and residual standard deviation are calculated at the same time (whereas 1m.fit and
others would calculate these each time).

Contrast-based statistics
The contrast of parameter estimates, -y, for T contrasts is
v=0Cp
where C' is the contrast matrix with size k x p (where k is the number of contrasts) and B is the
matrix of parameter estimates with size p x r (where r is the number of regions). For F contrasts,
the effect size is the extra sum of squares and is calculated as
Ty \—1~T\—1.T
VCXTX)C7)y

The standard error of a T contrast is
F(XTX) !

50 GLM influence measures

where 6 is the residual standard deviation of the model and the second term is the unscaled covari-
ance matrix. The standard error for F contrasts is simply the residual sum of squares. P-values and
FDR-adjusted P-values (across regions) are also calculated. Finally, if « is provided for T contrasts,
confidence limits are calculated.

Author(s)

Christopher G. Watson, <cgwatson@bu. edu>

See Also

randomise
Other GLM functions: GLM design, GLM, mtpc

GLM influence measures
Influence measures for a bg_GLM object

Description

These functions compute common (leave-one-out) diagnostics for the models in a bg_GLM object.

Usage

S3 method for class 'bg_GLM'
rstandard(model, type = c("sd.1", "predictive"), ...)

S3 method for class 'bg_GLM'
rstudent(model, ...)

S3 method for class 'bg_GLM'
hatvalues(model, ...)

S3 method for class 'bg_GLM'
cooks.distance(model, ...)

dffits.bg_GLM(model)

S3 method for class 'bg_GLM'
dfbeta(model, ...)

S3 method for class 'bg_GLM'
dfbetas(model, ...)

covratio.bg_GLM(model)

S3 method for class 'bg_GLM'
influence(model, do.coef = TRUE, region = NULL, ...)

GLM influence measures 51

Arguments
model A bg_GLM object
type The type of standardized residuals. Default: 'sd.1'
Unused
do.coef Logical indicating whether to calculate dfbeta
region Character string of the region(s) to return results for. Default is to calculate for
all regions
Details

The influence method calculates all diagnostics present in 1m. influence and influence.measures,
consisting of the following functions:

rstandard Standardized residuals. Choosing type="predictive' returns leave-one-out cross val-
idation residuals. The “PRESS” statistic can be calculated as colSums(resids.p”*2)

rstudent Studentized residuals

hatvalues The leverage, or the diagonal of the hat/projection matrix

cooks.distance Cook’s distance

dffits.bg GLM The change in fitted values when deleting observations

dfbeta The change in parameter estimates (coefficients) when deleting observations

dfbetas The scaled change in parameter estimates

covratio.bg_GLM The covariance ratios, or the change in the determinant of the covariance matrix
of parameter estimates when deleting observations

Value

Most influence functions return a numeric matrix in which rownames are Study ID’s and column
names are regions. dfbeta and dfbetas return a numeric array in which each column is a parameter
estimate and the 3rd dimension is for each region. influence returns a list with class infl.bg_GLM
and elements:

infmat Numeric array (like dfbeta) with DFBETAs, DFFITs, covratios, Cook’s dis-
tance, and hat values

is.inf Logical array of the same data as infmat; values of TRUE indicate the subject-
variable-region combination is an outlier value

f The model formula

sigma The leave-one-out residual standard deviation

wt.res Model residuals

Outlier values

Each variable has a different criterion for determining outliers. In the following: x is the influence
variable (for DFBETA, the criterion applies to all DFBETAs); k is the number of columns of the
design matrix; dfR is the residual degrees of freedom; and n is the number of observations.

52 GLM model selection

DFBETAs If |z| > 1

DFFITs If 2| > 3./k/dfR
covratio If |1 — 2| > (3k/df R)
cook If Fy, 4rp(z) > 0.5

hat If x > 3k/n

The return object of influence has a print method which will list the subjects/variables/regions
for which an outlier was detected.

Author(s)

Christopher G. Watson, <cgwatson@bu. edu>

See Also
GLM

GLM model selection Model selection for bg_GLM objects

Description
These functions compute the log-likelihood and Akaike’s An Information Criterion (AIC) of a
bg_GLM object. See loglLik.1lm and extractAIC for details.

Usage

S3 method for class 'bg_GLM'
loglik(object, REML = FALSE, ...)

S3 method for class 'bg_GLM'
extractAIC(fit, scale = 0, k =2, ...)

Arguments

object, fit A bg_GLM object

REML Logical indicating whether to return the restricted log-likelihood. Default: FALSE
Unused
scale Should be left at its default
k Numeric; the weight of the equivalent degrees of freedom
Details

The functions AIC and BIC will also work for bg_GLM objects because they each call loglLik.

GLM statistics 53

Value

loglLik returns an object of class loglLik with several attributes. extractAIC returns a numeric
vector in which the first element is the equivalent degrees of freedom and the remaining are the
AIC’s for each region

GLM statistics Extract model fit statistics from a bg_GLM object

Description

These functions extract or calculate model fit statistics of a bg_GLM object. These can be found in
the output from summary . 1m.

Usage

S3 method for class 'bg_GLM'
coef(object, ...)

S3 method for class 'bg_GLM'
confint(object, parm, level = 0.95, ...)

S3 method for class 'bg_GLM'
fitted(object, ...)

S3 method for class 'bg_GLM'
residuals(object, type = c("response”, "partial”), ...)

S3 method for class 'bg_GLM'
deviance(object, ...)

coeff_determ(object, adjusted = FALSE)

S3 method for class 'bg_GLM'
df.residual(object, ...)

S3 method for class 'bg_GLM'
sigma(object, ...)

S3 method for class 'bg_GLM'
vcov(object, ...)

coeff_table(object, CI = FALSE, level = 0.95)

S3 method for class 'bg_GLM'
anova(object, region = NULL, ...)

54 GLM statistics

Arguments
object A bg_GLM object
Unused
parm Vector of parameters to calculate confidence intervals for. Default is to use all
parameters
level The confidence level. Default: @.95
type Character string specifying the type of residuals to return. Default: 'response’
adjusted Logical indicating whether to calculate the adjusted R-squared. Default: FALSE
CI Logical indicating whether to include confidence intervals of parameter esti-
mates in the coefficient summary table. Default: FALSE
region Character vector indicating the region(s) to calculate ANOVA statistics for. De-
fault: NULL (use all regions)
Details

These mimic the same functions that operate on 1m objects, and include:

coef Regression coefficients (parameter estimates)
confint Confidence intervals (by default, 95%) for parameter estimates
fitted Fitted (mean) values; i.e., the design matrix multiplied by the parameter estimates, X B

residuals Model residuals; i.e., the response/outcome variable minus the fitred values. Partial resid-
uals can also be calculated

deviance Model deviance, or the residual sum of squares

coeff_determ Calculate the coefficient of determination (or R?), adjusted or unadjusted
df.residual Residual degrees of freedom

sigma Residual standard deviation, sometimes called the root mean squared error (RMSE)

veov Variance-covariance matrix of the model parameters

coeff_table returns model coefficients, standard errors, T-statistics, and P-values for all model

terms and regions in a bg_GLM object. This is the same as running summary (x) $coefficients for
a 1m object.

Value
A named numeric vector, matrix, or array, depending on the function:

coef Matrix in which rownames are parameter names and column names are regions
fitted,residuals
Matrix in which rownames are Study ID’s and column names are regions. If
type='partial’', an array is returned in which columns are terms and the 3rd
dimension are regions
deviance,coeff_determ,sigma
Numeric vector with elements for each region

df.residual Single integer; the degrees of freedom

Graph Data Tables 55

confint,vcov,coeff_table
Numeric array; the extent of the third dimension equals the number of regions

anova returns a [ist of tables of class anova

ANOVA tables

The anova method calculates the so-called Type III test statistics for a bg_GLM object. These stan-
dard ANOVA statistics include: sum of squares, mean squares, degrees of freedom, F statistics, and
P-values. Additional statistics calculated are: 1%, partial 2, w?, and partial w? as measures of effect
size.

Note

sigma — The denominator is not the number of observations, but rather the model’s residual degrees
of freedom.

When calculating partial residuals, the parameter estimates are not re-calculated after removing
one of the model terms.

Author(s)

Christopher G. Watson, <cgwatson@bu. edu>

See Also

GLM, Anova

Graph Data Tables Create a data table with graph global and vertex measures

Description

graph_attr_dt is a helper function that takes a brainGraphlList or a list of graphs and creates a
data.table of global measures for each graph. Each row will be for a different graph.

vertex_attr_dt is a helper function that creates a data. table in which each row is a vertex and
each column is a different network measure (degree, centrality, etc.).

Usage
graph_attr_dt(bg.list)

vertex_attr_dt(bg.list)

Arguments

bg.list A brainGraphList object, or a list of graph objects

56 Graph Distances

Value

A data.table

See Also

graph_attr, graph_attr_names

vertex_attr, vertex_attr_names,graph_from_data_frame

Graph Distances Calculate Euclidean distance of edges and vertices

Description

edge_spatial_dist calculates the Euclidean distance of an igraph graph object’s edges. The
distances are in mm and based on MNI space. These distances are NOT along the cortical surface,
so can only be considered approximations, particularly concerning inter-hemispheric connections.
The input graph must have atlas as a graph-level attribute.

vertex_spatial_dist calculates, for each vertex of a graph, the average Euclidean distance across
all of that vertex’s connections.

Usage
edge_spatial_dist(g)

vertex_spatial_dist(g)

Arguments

g An igraph graph object

Value

edge_spatial_dist - a numeric vector with length equal to the edge count of the input graph,
consisting of the Euclidean distance (in mm) of each edge

vertex_spatial_dist - a named numeric vector with length equal to the number of vertices,
consisting of the average distance (in mm) for each vertex
Author(s)

Christopher G. Watson, <cgwatson@bu. edu>

References

Alexander-Bloch, A.F. and Vertes, P.E. and Stidd, R. et al. (2013) The anatomical distance of func-
tional connections predicts brain network topology in health and schizophrenia. Cerebral Cortex,
23, 127-138. doi: 10.1093/cercor/bhr388

https://doi.org/10.1093/cercor/bhr388

hubness 57

hubness Calculate vertex hubness

Description

hubness calculates the “hubness” (see reference) of the vertices in a graph. These are vertices
which meet at least two of the following four criteria:

1. Have high degree/strength

2. Have high betweenness centrality

3. Have low clustering coefficient

4. Have low average path length
For each criterion, “high” or “low” means “in the top 20%” across all vertices. Vertices meeting any
of the criteria get a value of 1 for that metric; these are summed to yield the hubness score which

ranges from 0-4. As in the reference article, vertices with a score of 2 or higher are to be considered
hubs, although that determination isn’t made in this function.

Usage
hubness(g, xfm.type = g$xfm.type, weights = NULL, prop.keep = 0.2)

Arguments
g An igraph graph object
xfm. type Character string specifying how to transform the weights. Default: 1/w
weights Numeric vector of edge weights; if NULL (the default), and if the graph has edge
attribute weight, then that will be used. To avoid using weights, this should be
NA.
prop.keep Numeric (between 0 and 1) indicating the proportion of vertices to consider as
having a high score. Default: 0.2 (20%)
Value

A numeric vector with the vertices’ hubness score

Author(s)

Christopher G. Watson, <cgwatson@bu. edu>

References

van den Heuvel, M.P. and Mandl, R.C.W. and Stam, C.J. and Kahn, R.S. and Pol, H.E.H. (2010)
Aberrant frontal and temporal complex network structure in schizophrenia: a graph theoretical
analysis. The Journal of Neuroscience, 30(47), 15915-15926. doi: 10.1523/JNEUROSCI.2874-
10.2010

https://doi.org/10.1523/JNEUROSCI.2874-10.2010
https://doi.org/10.1523/JNEUROSCI.2874-10.2010

58 import_scn

import_scn Import data for structural connectivity analysis

Description

Given a directory, atlas name, and imaging modality/structural metric, this function imports data
for structural connectivity analysis. It expects files containing a table of region-wise structural
MRI measures (e.g., mean cortical thickness), with one file for each hemisphere. The first col-
umn of all files should contain the subject ID; the column name will be changed to the value of
getOption('bg.subject_id").

Usage

import_scn(datadir, atlas, modality = "thickness”, exclude.subs = NULL,
custom.atlas = NULL)

Arguments
datadir The path name of the directory containing the data files
atlas Character string specifying the atlas in use. For a custom atlas, please specify
'custom’, and provide the name to the custom. atlas argument
modality The structural imaging measure (default: 'thickness')

exclude.subs Vector indicating the subjects to exclude, if any (default: NULL)

custom.atlas Character string specifying the name of the R object for the atlas in use, if
atlas='custom' was also supplied (default: NULL)

Details

The files should have specific names; the second in the following list is only required for at-
lases/parcellations that include subcortical gray matter (e.g., dk.scgm).

e ${parcellation}_${hemi}_${modality}.csv for cortical volume, thickness, surface area,
or local gyrification index (LGI). Here, ${parcellation} can be aparc, aparc.DKTatlas40,
or aparc.a2009s. For example, for cortical thickness with the Desikan-Killiany atlas, the file-
name should be aparc_lh_thickness.csv. If you are using a custom atlas, see the Note be-
low. The ${hemi} variable is either 1h or rh. Finally, ${modality} should be either volume,
thickness, area, or 1gi.

e asegstats.csv for SCGM volume

Value
A list containing:

atlas Character string
modality Character string
lhrh A data. table of structural MRI measures for both hemispheres

IndividualContributions 59

aseg A data. table of structural MRI measures for subcortical gray matter, if appli-
cable

subs.excluded Vector of subject ID’s that were excluded

subs.missing Vector of subject ID’s that are not present in both the cortical and subcortical
tables (if applicable)

Note

When using a custom atlas, the name of the atlas’s data.table should match the ${parcellation}
portion of the filename (specification shown above). Furthermore, it must conform to the output of
Freesurfer’s aparcstats2table (and asegstats2table, if applicable). Otherwise, please contact
me for inclusion of a different data type.

The subject ID column will be zero-padded (to the left) to avoid issues when the variable is numeric;
this ensures that all ID’s will have the same number of characters and sorting will be done properly.

Author(s)

Christopher G. Watson, <cgwatson@bu. edu>

See Also
Other Structural covariance network functions: Bootstrapping, IndividualContributions, Residuals,
brainGraph_permute, corr.matrix, plot_volumetric

Examples

Not run:
raw_data <- import_scn('/home/cwatson/data', atlas='dkt',
exclude.subs=c('con@7', 'con23', 'patl5'))

End(Not run)

IndividualContributions
Approaches to estimate individual network contribution

Description

loo calculates the individual contribution to group network data for each subject in each group
using a “leave-one-out” approach. The residuals of a single subject are excluded, and a correlation
matrix is created. This is compared to the original correlation matrix using the Mantel test.

aop calculates the individual contribution using an “add-one-patient” approach. The residuals of
a single patient are added to those of a control group, and a correlation matrix is created. This is
repeated for all individual patients and each patient group.

The summary method prints the group/region-wise means and standard deviations.

The plot method is only valid for regional contribution estimates, and plots the average regional
contribution for each vertex/region.

60 IndividualContributions

Usage
loo(resids, corrs, level = c("global”, "regional”))
aop(resids, corrs, level = c("global”, "regional”), control.value = 1L)

S3 method for class 'IC'
summary (object, region = NULL, digits = max(3L,
getOption("digits") - 2L), ...)

S3 method for class 'IC'
plot(x, plot.type = c("mean”, "smooth", "boxplot"),

region = NULL, ids = TRUE, ...)
Arguments
resids An object of class brainGraph_resids (the output from get.resid)
corrs List of lists of correlation matrices (as output by corr.matrix).
level Character string; the level at which you want to calculate contributions (either

global or regional)
control.value Integer or character string specifying the control group (default: 1L)
object, x A IC object

region Character vector specifying which regions’ IC’s to print. Only relevant if method="Leave
one out'

digits Integer specifying the number of digits to display for P-values
Unused

plot.type Character string indicating the type of plot; the default is to plot the mean (along

with standard errors)

ids Logical indicating whether to plot Study ID’s for outliers. Otherwise plots the
integer index

Value

A data. table with columns for

Study.ID Subject identifier

Group Group membership

region If level="'regional’

IC,RC The value of the individual/regional contributions
Note

For aop, it is assumed by default that the control group is the first group.

Author(s)

Christopher G. Watson, <cgwatson@bu. edu>

Inverse 61

References

Saggar, M. and Hosseini, S.M.H. and Buno, J.L. and Quintin, E. and Raman, M.M. and Kesler, S.R.
and Reiss, A.L. (2015) Estimating individual contributions from group-based structural correlations
networks. Neurolmage, 120, 274-284. doi: 10.1016/j.neuroimage.2015.07.006

See Also

Other Structural covariance network functions: Bootstrapping, Residuals, brainGraph_permute,
corr.matrix, import_scn, plot_volumetric

Examples

Not run:
IC <- loo(resids.all, corrs)
RC <- loo(resids.all, corrs, level='regional')

End(Not run)

Not run:

IC <- aop(resids.all, corrs)

RC <- aop(resids.all, corrs, level='regional')

End(Not run)

Inverse Calculate the inverse of the cross product of a design matrix

Description

inv is a S3 generic that calculates the inverse of the cross product of a design matrix, also referred
to as the “unscaled covariance matrix”.

pinv calculates M+ = (MTM)~*M7 for full (column) rank matrices. However, it does not verify
the matrix’s rank.

Usage
inv(x, ...)

S3 method for class 'matrix'
inv(x, y = NULL, transpose = FALSE, ...)

S3 method for class 'array'
inv(x, y = NULL, transpose = FALSE, ...)

S3 method for class 'qr'
inv(x, p = x$rank, ...)

S3 method for class 'list'

https://doi.org/10.1016/j.neuroimage.2015.07.006

62 Inverse

inv(x, p = x[[1L]11$rank, r = length(x),
vnames = dimnames(x[[1L]11$qr)C[2L]1]1, nms = names(x), ...)
pinv(x)
Arguments
X A numeric matrix or array, a gr object, or a list of qr objects
Unused
y A numeric matrix or vector (for the matrix and array methods). If supplied,
this will be multiplied by x before the inverse is calculated. Default: NULL
transpose Logical. If FALSE (the default), take the cross product of the arguments. If TRUE,
use tcrossprod
p The rank of the original matrix
r The number of design matrices; i.e., the length of the input list
vnames Character vector of the design matrix’s variable names
nms The region names; i.e., the names of the input list
Details

If x is a matrix, the Cholesky decomposition of the cross product is calculated (or using tcrossprod
if transpose=TRUE), and the inverse is calculated from that result. That is,

inv(X) = (XTX)™!
inv(X, transpose = TRUE) = (X X1)~!
inv(X,y) = (XTy)™!

If x is a 3-dimensional array, then the inverse will be calculated for each matrix along the 3rd
dimension, with the same input arguments for each.

Finally, there is a method for objects with class gr, and lists of QR decomposition objects.

Value

A numeric matrix or array

pinv returns the input matrix’s pseudoinverse

Note

These methods should only be used on full-rank matrices, as there is no error checking being per-
formed.

make_auc_brainGraph 63

make_auc_brainGraph Calculate the AUC across densities of given attributes

Description

Given a list of brainGraphList objects, this function will calculate the area under the curve (AUC)
across all thresholds/densities for each subject or group.

Usage

make_auc_brainGraph(g.list, g.attr = NULL, v.attr = NULL,
norm = FALSE)

Arguments
g.list A list of brainGraphList objects
g.attr A character vector of graph attribute name(s). Default: NULL
v.attr A character vector of vertex attribute name(s). Default: NULL
norm Logical indicating whether to normalize threshold values to be between 0 and 1
(inclusive). Default: FALSE
Details

If the elements of the input list do not have a threshold element (or if it is NULL) then the AUC will
be calculated on the interval [0, 1] (inclusive). This has the same effect as specifying norm=TRUE in
the function call.

Value

A brainGraphList object with one graph for each subject

Examples

Not run:
g.auc <- make_auc_brainGraph(g.fa, g.attr="E.global.wt')

End(Not run)

64 make_ego_brainGraph

make_ego_brainGraph Create a graph of the union of multiple vertex neighborhoods

Description

This function accepts multiple vertices, creates graphs of their neighborhoods (of order 1), and
returns the union of those graphs.

Usage

make_ego_brainGraph(g, vs)

Arguments
g An igraph graph object
VS Either a character or integer vector (vertex names or indices, respectively) for
the vertices of interest
Value

An igraph graph object containing the union of all edges and vertices in the neighborhoods of the
input vertices; only the vertex attribute name will be present

Author(s)

Christopher G. Watson, <cgwatson@bu. edu>

See Also
ego

Other Graph creation functions: Creating_Graphs_GLM, Creating_Graphs, brainGraphList

Examples

Not run:
subg <- make_ego_brainGraph(g1[[N]], c(24, 58))
subg <- make_ego_brainGraph(g1[[N]], c('1IPCUN', 'rPCUN'))

End(Not run)

make_intersection_brainGraph 65

make_intersection_brainGraph
Create the intersection of graphs based on a logical condition

Description

Returns a graph object with vertices that meet certain criteria. By default, only vertices that meet
these criteria for all input graphs will be retained.

Usage
make_intersection_brainGraph(..., subgraph, keep.all.vertices = FALSE)
Arguments
Graph objects or lists of graph objects
subgraph Character string specifying an equation (logical condition) for the vertices to

subset
keep.all.vertices

Logical indicating whether to keep all vertices that meet the criteria in at least 1
input graph. Default: FALSE
Details

If no vertices meet criteria for all input graphs, then an igraph graph object with O vertices is
returned. If keep.all.vertices=TRUE, this is essentially performing a union of vertex sets that
meet the criteria. In any case, the return graph will have 0 edges.

Value

An igraph graph object

Author(s)

Christopher G. Watson, <cgwatson@bu. edu>

Examples

Not run:
res.mtpc <- mtpc(g, covars, ...)
g.mtpc <- make_glm_brainGraph(res.mtpc, atlas)

ALl vertices with a significant MTPC result for all contrasts:
g.mtpc.int <- make_intersection_brainGraph(g.mtpc, subgraph='sig == 1")

Return graphs with vertices with degree > @ for each group separately
tapply(g.list, groups(g.list), make_intersection_brainGraph,
subgraph="'degree > 0')

66 Matrix utilities

End(Not run)

Matrix utilities Matrix/array utility functions

Description

These functions are utility/helper functions when working with matrices or arrays.

diag_sq is a pared-down version of diag for square matrices. It does not return any dimnames,
does not check if x is a square matrix, and it cannot be used to create a matrix with a given value
along the diagonal. Meant to be used in code that is called repeatedly (thousands of times).

get_thresholds calculates the threshold values that would result in a specific graph density. These
depend, necessarily on the values in the matrix themselves.

gr.array will calculate the QR decomposition for each matrix in a 3D array.
gr_Q2 and gqr_R2 are simplified versions of qr.Q and gr.R.

symm_mean returns a symmetric matrix in which the off-diagonal elements A[i, j] and A[j, 7] are set
to the mean of the values in the input matrix.

symmetrize will symmetrize a numeric matrix (or each matrix in an array) by assigning to the
off-diagonal elements either the max (default), min, or average of {A(i,), A(4,4)}.

Usage
colMax(x, n = dim(x)[1L])

colMaxAbs(x, n = dim(x)[1L])
colMin(x, n = dim(x)[1L])
diag_sq(x, n = dim(x)[1L], inds = 1L + @L:(n - 1L) * (n + 1L))

get_thresholds(x, densities, emax = dim(x)[1L] * (dim(x)[1L] - 1L)/2,
)

is_binary(x)

S3 method for class 'array'
ar(x, ...)

gr_Q2(QR, y = diag(1, n, p), n = dim(QR$qr)[1L]1, p = QR$rank)
ar_R2(QR, p = QR$rank)

symm_mean (x)

Matrix utilities 67

symmetrize(x, ...)

S3 method for class 'matrix'

symmetrize(x, symm.by = c("max”", "min"”, "avg"), ...)
S3 method for class 'array'
symmetrize(x, symm.by = c("max”, "min", "avg"), ...)
Arguments
X Numeric matrix or array (the latter, for qr.array and symmetrize.array)
n, p Integer; the number of rows or rank (respectively) of the input matrix or QR
decomposition
inds Vector-based indices of the diagonal
densities Numeric vector of densities
emax Integer; the maximum number of edges
Arguments passed to either sort (for get_thresholds) or gr.default (for
gr.array). For the former, this will typically only be decreasing=TRUE, if that
is the desired behavior
QR A gr object
y A numeric matrix with 1 along the diagonal, of the same size as the input matrix
(i.e., QR$qr)
symm. by Character string; how to create symmetric off-diagonal elements. Default: max
Details

Given a vector of densities, get_thresholds returns the numeric values that will result in graphs
of the given densities after thresholding by those values. In the Examples section, the thresholds
should result in graphs with densities of 5, 15, ..., 55 percent.

Value

diag_sq returns an unnamed numeric vector with the values along the diagonal of the input matrix
get_thresholds returns a numeric vector of the thresholds
is_binary returns a logical of length 1

gr.array returns a list in which each element is the QR decomposition of each matrix along x’s
3rd dimension

Examples

X <= matrix(runif(25 * 25), 25, 25)

X <- symmetrize(x)

diag(x) <- @

densities <- seq(@.05, 0.55, by=0.1)
threshes <- get_thresholds(x, densities)
Verify that the densities are correct

68 mean_distance_wt

graphs <- lapply(threshes, function(th) {
graph_from_adjacency_matrix(x * (x > th), mode='undirected',
diag=FALSE, weighted=TRUE)
b))
sapply(graphs, graph.density)

mean_distance_wt Calculate weighted shortest path lengths

Description
Calculate graph or vertex average shortest path lengths. For vertices, this is just the row means of
the distance matrix. For the graph-level, it is the overall mean of the distance matrix.

Usage

mean_distance_wt(g, level = c("graph”, "vertex"), weights = NULL,
xfm = FALSE, xfm.type = NULL, D = NULL)

Arguments
g An igraph graph object
level Character string indicating whether to calculate vertex- or graph-level shortest
path length. Default: 'graph'’
weights Numeric vector of edge weights; if NULL (the default), and if the graph has edge
attribute weight, then that will be used. To avoid using weights, this should be
NA.
xfm Logical indicating whether to transform the edge weights. Default: FALSE
xfm. type Character string specifying how to transform the weights. Default: 1/w
D Numeric matrix; the graph’s “distance matrix”
Details

By default, edge weights are not transformed (e.g., inverted). However, if set to TRUE, then the
input graph must have a graph-level attribute called 'xfm. type' or you must supply a value in the
function call. If you supply a distance matrix (the D argument), it is not necessary to transform edge
weights, as it is assumed the the distance matrix was calculated from a graph with transformed edge
weights already.

Value

Numeric vector (if level="vertex') of each vertex’s shortest path length, or a single number for
the graph-level average

Mediation 69

Mediation Mediation analysis with brain graph measures as mediator variables

Description

brainGraph_mediate performs simple mediation analyses in which a given graph- or vertex-level
measure (e.g., weighted global efficiency) is the mediator M. The outcome (or dependent/response)
variable Y can be a neuropsychological measure (e.g., /Q) or can be a disease-specific metric (e.g.,

recovery time).

bg_to_mediate converts the results into an object of class mediate. In brainGraph, it is only
used for the summary.mediate method, but you can similarly use its output for the plot.mediate

Usage

method.

brainGraph_mediate(g.list, covars, mediator, treat, outcome, covar.names,
level = c("graph”, "vertex"), control.value = @, treat.value = 1,
int = FALSE, boot = TRUE, boot.ci.type = c("perc”, "bca"),
N = 1000, conf.level = .95, long = FALSE, ...)

S3 method for class 'bg_mediate'
summary(object, mediate = FALSE, region = NULL,
digits = max(3L, getOption("digits"”) - 2L), ...)

bg_to_mediate(x, region = NULL)

Arguments

g.list

covars

mediator
treat
outcome

covar.names

level
control.value
treat.value

int

boot

A brainGraphList object

A data table containing covariates of interest. It must include columns for
getOption('bg.subject_id'), treat, outcome, and covar.names.

Character string; the name of the graph measure acting as the mediating variable
Character string; the treatment variable (e.g., Group)
Character string; the name of the outcome variable of interest

Character vector of the column name(s) in covars to include in the models as
pre-treatment covariate(s).

Character string; either vertex (default) or graph
Value of treat to be used as the control condition. Default: @
Value of treat to be used as the treatment condition. Default: 1

Logical indicating whether or not to include an interaction of the mediator and
treatment. Default: FALSE

Logical indicating whether or not to perform bootstrapping. This should always
be done. Default: TRUE

70

boot.ci.type
N

conf.level

long

object

mediate

region

digits

X

Details

Mediation

Character string; which type of CI’s to calculate. Default: perc
Integer; the number of bootstrap samples to run. Default: 1e3

Numeric between 0 and 1; the level of the CI’s to calculate. Default: .95 for
the 2.5 and 97.5 percentiles)

Logical indicating whether or not to return all bootstrap samples. Default: FALSE

Other arguments passed to brainGraph_GLM_design (e.g., binarize) (unused
in the summary method)

A bg_mediate object

Logical indicating whether or not to use the summary method from mediate
(default: FALSE). If TRUE, only a single region can be printed.

Character string specifying which region’s results to summarize; only relevant
if level="vertex' (default: NULL)

Integer specifying the number of digits to display for P-values

Object output from brainGraph_mediate

This code was adapted closely from mediate in the mediation package, and the procedure is
exactly the same as theirs (see the references listed below). If you use this function, please cite their

work.

Value

An object of class bg_mediate with elements:

level
removed. subs

X.m, X.y

y.m,y.y

res.obs
res.ci

res.p

boot
boot.ci.type

res.boot
treat
mediator

outcome

Either graph or vertex.
A character vector of Study.ID’s removed due to incomplete data

Design matrix and numeric array for the model with the mediator as the outcome
variable (X.m) and for the model with the mediator as an additional predictor
(X.y), respectively

Outcome variables for the associated design matrices above. y.m will be a matrix
of size # subj. X # regions

A data. table of the observed values of the point estimates.

A data. table of the confidence intervals for the effect estimates.
A data. table of the two-sided p-values for the effect estimates
Logical, the boot argument.

Character string indicating which type of bootstrap confidence intervals were
calculated.

A data. table with N rows of the bootstrap results for all effects.
Character string of the treatment variable.
Character string of the mediator variable.

Character string of the outcome variable.

Mediation 71

covariates Returns NULL; not used in this package.

INT Logical indicating whether the models included an interaction between treat-
ment and mediator.

conf.level The confidence level.

control.value The value of the treatment variable used as the control condition.

treat.value The value of the treatment variable used as the treatment condition.
nobs Integer; the number of observations in the models.

sims Integer; the number of bootstrap replications.

covar.names The pre-treatment covariate names.

bg_to_mediate returns an object of class mediate

Note

As of brainGraph v2.0.9, this function has been tested only for a treatment (independent) variable
X being a factor (e.g., disease group, old vs. young, etc.). If your treatment variable has more than
2 levels, then you must explicitly specify the levels you would like to compare; otherwise, the
baseline and first levels are taken to be the control and treatment values, respectively. Be aware that
these are 0 indexed; that is, if you have 3 groups and you would like the treatment group to be the
3rd, you should specify as either the group’s character string or as treat.value=2.

Allowing for treatment-mediator interaction (setting int=TRUE) currently will only work properly
if the mediator is a continuous variable; since the mediator is always a graph metric, this should
always be the case.

Author(s)

Christopher G. Watson, <cgwatson@bu. edu>

References

Tingley, D. and Yamamoto, T. and Hirose, K. and Keele, L. and Imai, K. (2014) mediation: R
package for causal mediation analysis. Journal of Statistical Software, 59(5), 1-38. doi: 10.18637/
j88.v059.105

Imai, K. and Keele, L. and Yamamoto, T. (2010) Identification inference, and sensitivity analysis
for causal mediation effects. Statistical Science, 25(1), 51-71. doi: 10.1214/10STS321

Imai, K. and Keele, L. and Tingley, D. (2010) A general approach to causal mediation analysis.
Psychological Methods, 15(4), 309-334. doi: 10.1037/a0020761

Imai, K. and Keele, L. and Tingley, D. and Yamamoto, T. (2011) Unpacking the black box of
causality: learning about causal mechanisms from experimental and observational studies. Ameri-
can Political Science Review, 105(4), 765-789. doi: 10.1017/S0003055411000414

Imai, K. and Yamamoto, T. (2013) Identification and sensitivity analysis for multiple causal mecha-
nisms: revisiting evidence from framing experiments. Political Analysis, 21(2), 141-171. doi: 10.1093/
pan/mps040

https://doi.org/10.18637/jss.v059.i05
https://doi.org/10.18637/jss.v059.i05
https://doi.org/10.1214/10-STS321
https://doi.org/10.1037/a0020761
https://doi.org/10.1017/S0003055411000414
https://doi.org/10.1093/pan/mps040
https://doi.org/10.1093/pan/mps040

72 mtpc

See Also

mediate

Other Group analysis functions: Bootstrapping, GLM, NBS, brainGraph_permute, mtpc

Examples
Not run:
med.EglobWt.FSIQ <- brainGraph_mediate(g[[5]], covars.med, 'E.global.wt',
'Group', 'FSIQ', covar.names=c('age', 'gender'), N=1e4)
med.strength.FSIQ <- brainGraph_mediate(g[[5]], covars.med, 'strength',
'Group', 'FSIQ', covar.names=c('age', 'gender'), level='vertex')

End(Not run)

mtpc Multi-threshold permutation correction

Description

Applies the multi-threshold permutation correction (MTPC) method to perform inference in graph
theory analyses of brain MRI data.

Plot the statistics from an MTPC analysis, along with the maximum permuted statistics. The output
is similar to Figure 11 in Drakesmith et al. (2015).

Usage

mtpc(g.list, thresholds, covars, measure, contrasts, con.type = c("t",
"f"), outcome = NULL, con.name = NULL, level = c("vertex",
"graph"), clust.size = 3L, perm.method = c("freedmanLane”,

"terBraak"”, "smith”, "draperStoneman”, "manly"”, "stillWhite"),
part.method = c("beckmann”, "guttman”, "ridgway”), N = 500L,
perms = NULL, alpha = 0.05, res.glm = NULL, long = TRUE, ...)

S3 method for class 'mtpc'
summary(object, contrast = NULL, digits
getOption("digits"”) - 2L), print.head

max (3L,
TRUE, ...)

S3 method for class 'mtpc'
plot(x, contrast = 1L, region = NULL,
only.sig.regions = TRUE, show.null = TRUE, caption.stats = FALSE,
.

S3 method for class 'mtpc'
nobs(object, ...)

S3 method for class 'mtpc'

mtpc

terms(x,

73

S3 method for class 'mtpc'

formula(x,

S3 method for class 'mtpc'

labels(object,

.2

S3 method for class 'mtpc'
case.names(object, ...)

S3 method for class 'mtpc'
variable.names(object, ...)

S3 method for class 'mtpc'
df.residual(object, ...)

S3 method for class 'mtpc'
region.names(object)

S3 method for class 'mtpc'

perm.method

part.method

perms

nregions(object)
Arguments

g.list A list of brainGraphList objects for all thresholds

thresholds Numeric vector of the thresholds applied to the raw connectivity matrices.

covars A data. table of covariates

measure Character string of the graph measure of interest

contrasts Numeric matrix (for T statistics) or list of matrices (for F statistics) specifying
the contrast(s) of interest; if only one contrast is desired, you can supply a vector
(for T statistics)

con. type Character string; either 't' or 'f' (for t or F-statistics). Default: 't'

outcome Character string specifying the name of the outcome variable, if it differs from
the graph metric (measure)

con.name Character vector of the contrast name(s); if contrasts has row/list names, those
will be used for reporting results

level Character string; either vertex (default) or graph

clust.size Integer indicating the size of “clusters” (i.e., consecutive thresholds for which

the observed statistic exceeds the null) (default: 3L)
Character string indicating the permutation method. Default: ' freedmanLane'

Character string; the method of partitioning the design matrix into covariates of
interest and nuisance. Default: 'beckmann’

Integer; number of permutations to create. Default: 5e3

Matrix of permutations, if you would like to provide your own. Default: NULL

74 mtpc

alpha Numeric; the significance level. Default: 0.05

res.glm A list of bg_GLM objects, as output by a previous run of mtpc. Useful if you want
to change the cluster size without re-running all of the GLM’s and permutations
(default: NULL)

long Logical indicating whether or not to return all permutation results. Default:
FALSE

Other arguments passed to brainGraph_GLM and/or brainGraph_GLM_design

object, x A mtpc object

contrast Integer specifying the contrast to plot/summarize; defaults to showing results
for all contrasts

digits Integer specifying the number of digits to display for P-values

print.head Logical indicating whether or not to print only the first and last 5 rows of the

statistics tables (default: TRUE)

region Character string specifying which region’s results to plot; only relevant if level="vertex"'.
Default: NULL

only.sig.regions
Logical indicating whether to plot only significant regions (default: TRUE)

show.null Logical indicating whether to plot points of the maximum null statistics (per
permutation)

caption.stats Logical indicating whether to print the MTPC statistics in the caption of the plot.
Default: FALSE

Details

This is a multi-step procedure: (steps 3-4 are the time-consuming steps)
1. Apply thresholds 7 to the networks, and compute network metrics for all networks and thresh-
olds. (already done beforehand)
2. Compute test statistics S,ps for each threshold. (done by brainGraph_GLM)

3. Permute group assignments and compute test statistics for each permutation and threshold.
(done by brainGraph_GLM)

4. Build a null distribution of the maximum statistic across thresholds (and across brain regions)
for each permutation. (done by brainGraph_GLM)

5. Determine the critical value, S..,.;; from the null distribution of maximum statistics.
6. Identify clusters where S5 > S..i¢ and compute the AUC for these clusters (denoted A7 po).

7. Compute a critical AUC (A.,.;4) from the mean of the supra-critical AUC’s for the permuted
tests.

8. Reject Hy if A]quC > Acrit-

Value

An object of class mtpc with some input arguments plus the following elements:

mtpc

75

X,qr,cov.unscaled

contrasts
con.name
removed. subs

atlas

Design matrix, QR decomposition, and unscaled covariance matrix, if the design
is the same across thresholds

The contrast matrix or list of matrices
Contrast names
Named integer vector of subjects with incomplete data

The atlas of the input graphs

rank,df.residual

res.glm

DT

stats

null.dist

perm.order

The model rank and residual degrees of freedom

List with length equal to the number of thresholds; each list element is the output
from brainGraph_GLM

A data. table for all thresholds, combined from the outputs of brainGraph_GLM

A data.table containing S.mtpc (the max. observed statistic), tau.mtpc (the
threshold of the max. observed statistic), S.crit (the critical statistic value),
and A.crit (the critical AUC)

Numeric array with N columns and number of rows equal to the number of
thresholds. The 3rd dimension is for each contrast. Each element of the array is
the maximum statistic for that permutation, threshold, and contrast combination.

Numeric matrix; the permutation set applied for all thresholds (each row is a
separate permutation)

The plot method returns a trellis object or a list of ggplot objects

Author(s)

Christopher G. Watson, <cgwatson@bu. edu>

References

Drakesmith, M. and Caeyenberghs, K. and Dutt, A. and Lewis, G. and David, A.S. and Jones, D.K.
(2015) Overcoming the effects of false positives and threshold bias in graph theoretical analyses of
neuroimaging data. Neurolmage, 118, 313-333. doi: 10.1016/j.neuroimage.2015.05.011

See Also

Other Group analysis functions: Bootstrapping, GLM, Mediation, NBS, brainGraph_permute
Other GLM functions: GLM design, GLM fits, GLM

Examples

Not run:

diffs.mtpc <- mtpc(g.list=g.norm, thresholds=thresholds, N=N,
covars=covars.dti, measure='E.nodal.wt', coding='effects"',
contrasts=c(@, @, 0, @, -2), alt='greater',
binarize=c('Sex', 'Scanner'), con.name='Group 1 > Group 2')
sig.regions <- diffs.mtpc$DT[A.mtpc > A.crit]

https://doi.org/10.1016/j.neuroimage.2015.05.011

76

NBS

End(Not run)
Not run:
mtpcPlots <- plot(mtpc.diffs)

Arrange plots into 3x3 grids
ml <- marrangeGrob(mtpcPlots, nrow=3, ncol=3)

ggsave('mtpc.pdf', ml)

End(Not run)

NBS Network-based statistic for brain MRI data

Description

Calculates the network-based statistic (NBS), which allows for family-wise error (FWE) control
over network data, introduced for brain MRI data by Zalesky et al. Requires a three-dimensional
array of all subjects’ connectivity matrices and a data. table of covariates, in addition to a contrast
matrix or list. A null distribution of the largest connected component size is created by fitting a
GLM to permuted data. For details, see GLM.

Usage

NBS(A, covars, contrasts, con.type = c("t", "f"), X = NULL,
con.name = NULL, p.init = 0.001, perm.method = c("freedmanLane”,

"terBraak"”, "smith”, "draperStoneman”, "manly"”, "stillWhite"),
part.method = c("beckmann”, "guttman”, "ridgway”), N = 1000,

perms = NULL, symm.by = c("max"”, "min", "avg"),

alternative = c("two.sided”, "less"”, "greater"”), long = FALSE, ...)

S3 method for class 'NBS'
summary (object, contrast = NULL, digits = max(3L,
getOption("digits”) - 2L), ...)

S3 method for class 'NBS'
nobs(object, ...)

S3 method for class 'NBS'
terms(x, ...)

S3 method for class 'NBS'
formula(x, ...)

S3 method for class 'NBS'
labels(object, ...)

S3 method for class 'NBS'
case.names(object, ...)

NBS

77

S3 method for class 'NBS'
variable.names(object, ...)

S3 method for class 'NBS'
df.residual(object, ...)

S3 method for class 'NBS'

perm.method

part.method

N

perms

symm. by
alternative

long

object, x

contrast

digits

Details

nregions(object)
Arguments

A Three-dimensional array of all subjects’ connectivity matrices

covars A data. table of covariates

contrasts Numeric matrix (for T statistics) or list of matrices (for F statistics) specifying
the contrast(s) of interest; if only one contrast is desired, you can supply a vector
(for T statistics)

con.type Character string; either 't' or 'f' (for t or F-statistics). Default: 't'

X Numeric matrix, if you wish to supply your own design matrix. Ignored if
outcome !=measure.

con.name Character vector of the contrast name(s); if contrasts has row/list names, those
will be used for reporting results

p.init Numeric; the initial p-value threshold (default: 0.001)

Character string indicating the permutation method. Default: ' freedmanLane'

Character string; the method of partitioning the design matrix into covariates of
interest and nuisance. Default: 'beckmann’

Integer; number of permutations to create. Default: 5e3

Matrix of permutations, if you would like to provide your own. Default: NULL
Character string; how to create symmetric off-diagonal elements. Default: max
Character string, whether to do a two- or one-sided test. Default: 'two.sided'

Logical indicating whether or not to return all permutation results. Default:
FALSE

Arguments passed to brainGraph_GLM_design
A NBS object

Integer specifying the contrast to plot/summarize; defaults to showing results
for all contrasts

Integer specifying the number of digits to display for P-values

When printing a summary, you can include arguments to printCoefmat.

78 NBS

Value

An object of class NBS with some input arguments in addition to:

X The design matrix

removed.subs Character vector of subject ID’s removed due to incomplete data (if any)

T.mat 3-d array of (symmetric) numeric matrices containing the statistics for each edge
p.mat 3-d array of (symmetric) numeric matrices containing the P-values
components List containing data tables of the observed and permuted connected component

sizes and P-values

rank,df.residual,qgr,cov.unscaled

The rank, residual degrees of freedom, QR decomposition, and unscaled covari-
ance matrix of the design matrix

Note

It is assumed that the order of the subjects in covars matches that of the input array A. You will
need to ensure that this is the case. Prior to v3.0.0, the covars table was sorted by Study.ID
before creating the design matrix.

Author(s)

Christopher G. Watson, <cgwatson@bu. edu>

References

Zalesky, A. and Fornito, A. and Bullmore, E.T. (2010) Network-based statistic: identifying differ-
ences in brain networks. Neurolmage, 53(4), 1197-1207. doi: 10.1016/j.neuroimage.2010.06.041

See Also

Other Group analysis functions: Bootstrapping, GLM, Mediation, brainGraph_permute, mtpc

Examples

Not run:
max.comp.nbs <- NBS(A.norm.sub[[1]], covars.dti, N=5e3)

End(Not run)

https://doi.org/10.1016/j.neuroimage.2010.06.041

plot.brainGraph

79

plot.brainGraph Plot a brain graph with a specific spatial layout

Description

plot.brainGraph plots a graph in which the spatial layout of the nodes is important. The network
itself is plotted over a brain MRI slice from the MNI152 template by default (when mni=TRUE).

Usage
S3 method for class 'brainGraph'
plot(x, plane = c("axial”, "sagittal”, "circular"”),
hemi = c("both”, "L", "R"), mni = TRUE, subgraph = NULL,
main = NULL, subtitle = "default"”, label = NULL, side =1,
line = -2, adj = 0.025, cex = 2.5, col = "white"”, font = 2,
show.legend = FALSE, rescale = FALSE, asp = 0, ...)
Arguments
X A brainGraph graph object
plane Character string indicating which orientation to plot. Default: 'axial'’
hemi Character string indicating which hemisphere to plot. Default: 'both'
mni Logical indicating whether or not to plot over a slice of the brain. Default: TRUE
subgraph Character string specifying a logical condition for vertices to plot. Default: NULL
main Character string; the main title. Default: NULL
subtitle Character string; the subtitle. Default: 'default’
label Character string specifying text to display in one corner of the plot (e.g., 'A.").
Default: NULL
side Label placement. Default: 1 (bottom)
line Which margin line to place the text.
adj If side=1, a value closer to 0 places the text closer to the left margin. Default:
0.025
cex Amount of character expansion of the label text. Default: 2.5
col Label font color. Default: 'white'
font Integer specifying the font type. Default: 2 (bold face)

show. legend Logical indicating whether or not to show a legend. Default: FALSE

rescale

asp

Logical, whether to rescale the coordinates. Default: FALSE
Numeric constant; the aspect ratio. Default: 0

Other parameters (passed to plot.igraph). See plot.common for details.

80 plot.brainGraph

Selecting specific vertices to display

With the argument subgraph, you can supply a simple logical expression specifying which vertices
to show. For example, 'degree > 10’ will plot only vertices with a degree greater than 10. Combi-
nations of AND (i.e., &) and OR (i.e., |) are allowed. This requires that any vertex attribute in the
expression must be present in the graph; e.g., V(g) $degree must exist.

Title, subtitle, and label

By default, a title (i.e., text displayed at the top of the figure) is not included. You can include one
by passing a character string to main, and control the size with cex.main. A subtitle (i.e., text at
the bottom), is included by default and displays the number of vertices and edges along with the
graph density. To exclude this, specify subtitle=NULL. A “label” can be included in one corner of
the figure (for publications). For example, you can choose label="A."' or label="a)'. Arguments
controlling the location and appearance can be changed, but the default values are optimal for
bottom-left placement. See mtext for more details. The label-specific arguments are:

side The location. 1 is for bottom placement.

line If side=1 (bottom), a negative number places the text above the bottom of the figure; a
higher number could result in the bottom part of the text to be missing. This can differ if
plane='circular', in which case you may want to specify a positive number.

adj Seems to be the percentage away from the margin. So, for example, adj=0. 1 would place the
text closer to the center than the default value, and adj=0.5 places it in the center.

cex The degree of “character expansion”. A value of 1 would not increase the text size.
col The text color.

font The font type. The default font=2 is bold face. See par for details.

Author(s)

Christopher G. Watson, <cgwatson@bu. edu>

See Also

Other Plotting functions: Plotting GLM graphs, plot.brainGraphList, plot_brainGraph_multi

Examples

Not run:
plot(gl[1]], hemi='R")
plot(g[[11], subgraph='degree > 10 | btwn.cent > 50')

Place label in upper-left
plot(g.ex, label='A)', side=3, line=-2.5)

End(Not run)

plot.brainGraphList 81

plot.brainGraphList Plot a brainGraphList and write to PDF

Description

The plot method will write a PDF file containing plots for all graphs in the given object.

Usage

S3 method for class 'brainGraphList'
plot(x, plane, hemi, filename.base,

diffs = FALSE, ...)
Arguments
X A brainGraphList object
plane Character string indicating which orientation to plot. Default: 'axial’
hemi Character string indicating which hemisphere to plot. Default: 'both'

filename.base Character string specifying the base of the filename

diffs Logical, indicating whether edge differences should be highlighted. Default:
FALSE

Other parameters (passed to plot.brainGraph)

Details

You can choose to highlight edge differences between subsequent list elements; in this case, new/different
edges are colored pink. This is useful mostly for a list of group-level graphs.

Author(s)

Christopher G. Watson, <cgwatson@bu.edu>

See Also

Other Plotting functions: Plotting GLM graphs, plot.brainGraph, plot_brainGraph_multi

82 Plotting GLM graphs

Plotting GLM graphs Plot a graph with results from GLM-based analyses

Description

These methods are convenience functions for plotting a graph based on results from GLM-based
analyses (i.e., brainGraph_GLM,brainGraph_mediate, mtpc, NBS). There are several default ar-
guments which differ depending on the input object.

Usage

S3 method for class 'brainGraph_NBS'

plot(x, alpha = 0.05,
subgraph = paste("p.nbs >", 1 - alpha), vertex.label = NA,
vertex.color = "color.comp”, edge.color = "color.comp”,
subtitle = NULL, main = paste@("NBS: ", x$name), cex.main = 2, ...)

S3 method for class 'brainGraph_GLM'
plot(x, p.sig = c("p", "p.fdr"”, "p.perm”),

subgraph = NULL, main = paste@(x$outcome, ": ", x$name),
subtitle = NULL, cex.main = 2, ...)

S3 method for class 'brainGraph_mtpc'

plot(x, subgraph = "sig == 1",
main = paste@(x$outcome, ": ", x$name), subtitle = NULL,

cex.main = 2, ...)

S3 method for class 'brainGraph_mediate'
plot(x, subgraph = "p.acme > 0.95",
main = sprintf("Effect of \"%s\"” on\n\"%s\"\nmediated by \"%s\"",

x$treat, x$outcome, x$mediator), subtitle = NULL, cex.main =1, ...)
Arguments
X A brainGraph_GLM, brainGraph_mtpc, brainGraph_mediate, or brainGraph_NBS
object
alpha Numeric; the significance level. Default: 0.05
subgraph Character string specifying the condition for subsetting the graph.

vertex.label Character vector of the vertex labels to be displayed.

vertex.color Character string specifying the vertex attribute to color the vertices by.

edge.color Character string specifying the edge attribute to color the edges by.
subtitle Character string; the subtitle. Default: 'default’
main Character string; the main title. Default: NULL

cex.main Numeric; the scaling factor for text size; see par

plot_brainGraph_multi 83

Other arguments passed to plot.brainGraph

p.sig Character string indicating which p-value to use for determining significance
(default: p)
Details
The default arguments are specified so that the user only needs to type plot(x) at the console, if
desired. For all methods, the plot’s subtitle will be omitted.
NBS
By default, a subgraph will be plotted consisting of only those vertices which are part of a significant
connected component. Vertex/edge colors will correspond to connected component membership.
Vertex names will be omitted. Finally, the plot title will contain the contrast name.
brainGraph_GLM
By default, a subgraph will be plotted consisting of only those vertices for which p < «. It will also
include a plot title with the outcome measure and contrast name.
mtpc
By default, a subgraph will be plotted consisting of only those vertices for which Ap,pe > Acrit.
It will also include a plot title with the outcome measure and contrast name.
brainGraph_mediate
By default, a subgraph will be plotted consisting of only those vertices for which P,cpme < a. It
will also include a plot title with the treatment, mediator, and outcome variable names.
See Also

Other Plotting functions: plot.brainGraphlList, plot.brainGraph, plot_brainGraph_multi

plot_brainGraph_multi Save PNG of one or three views for all graphs in a brainGraphList

Description

plot_brainGraph_multi writes a PNG file to disk containing three views (columns) of 1 or more
brainGraph objects (from left-to-right): left sagittal, axial, and right sagittal. The number of rows
in the figure will equal the number of graphs to plot.

slicer writes a PNG file to disk containing a single view (i.e., either sagittal, axial, or circular) of
all brainGraph objects in the input list/brainGraphList.

plot_brainGraph_multi

Usage
plot_brainGraph_multi(g.list, filename = "orthoview.png",
subgraph = NULL, main = NULL, label = NULL, cex.main =1, ...)
slicer(g.list, nrows, ncols, plane = "axial”, hemi = "both”,
filename = "all.png"”, main = NULL, cex.main =1, ...)
Arguments
g.list A brainGraphList or a list of brainGraph objects
filename Character string of the filename of the PNG to be written.
subgraph A vector or list of character strings to (optionally) subset the graph(s), possibly

by multiple conditions

main A vector or list of character strings to be placed in the main title of the center
(axial) plot for each graph

label A vector or list of character strings to be placed in one of the corners of the left
plot (sagittal) in each row

cex.main Numeric specifying the level of character expansion for the plot titles. Default:
1 (no expansion)

Other arguments passed to plot.brainGraph

nrows Integer; the number of rows in the figure

ncols Integer; the number of columns in the figure

plane Character string indicating which orientation to plot. Default: 'axial'’
hemi Character string indicating which hemisphere to plot. Default: 'both'

Details

Whether the first input is a brainGraphList object or a 1ist of brainGraph objects, all graphs in
the object will be displayed in the figure. For plot_brainGraph_multi, this may be undesirable if
you have more than 4 or 5 graphs in one object. You can choose fewer by using simple subsetting
operations (see Examples below).

Using subgraphs, titles, and labels

There are three arguments that can differ for each graph to be displayed. Each follows the same
“rules”. If you would like the same value applied to all graphs, you can specify a character string.
If you would like a different value for each group, you must supply a vector or list with length
equal to the number of graphs. If its length is less than the number of graphs, values will be recycled.
To “skip” applying a value to one (or more) graph(s), you can use the NULL value only within a list
(see the Examples below).

subgraph Can be used to apply one or more conditions for subsetting the graph(s).

main Controls the main plot title, which appears in the axial view along with each graph’s name
attribute. Depending on the level of the brainGraphList, this will either be a Study ID,
Group name, or contrast name.

label Can be used to print a text label in a corner for each group/graph. For example, you can print
a letter if you will refer to, e.g., “Figure 1A”, “Figure 1B”, etc.

plot_global 85

Note

All other arguments (passed to plot.brainGraph) will be applied to all graphs. For example, if
you include vertex.label=NA in the function call, vertex labels will be omitted for all graphs.

Author(s)

Christopher G. Watson, <cgwatson@bu. edu>

See Also

Other Plotting functions: Plotting GLM graphs, plot.brainGraphlList, plot.brainGraph

Examples

Not run:

"g.hubs"” contains 2 groups; apply same subset to both

plot_brainGraph_multi(g.hubs, filename='Figure@1_hubs.png',
subgraph="'N > @', vertex.color='color.lobe', vertex.size=15,
show.legend=TRUE, vertex.label.cex=1.5)

Single group, different subgraphs for both plots

"g" is a "brainGraphList” object

gg <- glrep(1, 3), drop=FALSE]

plot_brainGraph_multi(gg, filename='groupl_5-6-7core.png’,
vertex.color="'color.lobe', edge.color="'color.lobe', vertex.label=NA,
subgraph=as.list(paste('coreness >', 5:7)),
main=as.list(paste('k-core', 5:7)))

Apply different subset for groups 1 & 3; no subset for group 2
plot_brainGraph_multi(g, groups=1:3, vertex.label=NA,
subgraph=1ist('degree > 5', NULL, 'degree > 4'))

End(Not run)

plot_global Plot global graph measures across densities

Description

Create a faceted line plot of global graph measures across a range of graph densities, calculated
from a list of brainGraphList objects. This requires that the variables of interest are graph-level
attributes of the input graphs.

Usage

plot_global(g.list, xvar = c("density”, "threshold”), vline = NULL,
level.names = "default”, exclude = NULL, perms = NULL,
alt = "two.sided”)

86 plot_rich_norm

Arguments
g.list List of brainGraphList objects; the length of this list should equal the number
of thresholds/densities in the study
xvar A character string indicating whether the variable of interest is “density” or
“threshold” (e.g. with DTI data)
vline Numeric of length 1 specifying the x-intercept if you would like to plot a vertical
dashed line (e.g., if there is a particular density of interest). Default: NULL
level.names Character vector of variable names, which are displayed as facet labels. If you
do not want to change them, specify NULL. By default, they are changed to pre-
set values.
exclude Character vector of variables to exclude. Default: NULL
perms A data. table of permutation group differences
alt Character vector of alternative hypotheses; required if perms is provided, but
defaults to “two.sided” for all variables
Details

You can choose to insert a dashed vertical line at a specific density/threshold of interest, rename the
variable levels (which become the facet titles), exclude variables, and include a brainGraph_permute
object of permutation data to add asterisks indicating significant group differences.

Value

Either a trellis or ggplot object

Author(s)

Christopher G. Watson, <cgwatson@bu. edu>

plot_rich_norm Plot normalized rich club coefficients against degree threshold

Description

Returns a line plot of the normalized rich club coefficient. Optionally, can include a shaded region
demarcating the rich_core cutoff (if you supply a list of graph objects to the g argument).

Usage

plot_rich_norm(rich.dt, facet.by = c("density"”, "threshold"”), densities,
alpha = 0.05, fdr = TRUE, g.list = NULL, smooth = TRUE)

plot_vertex_measures 87

Arguments
rich.dt A data. table with rich-club coefficients
facet.by A character string indicating whether the variable of interest is “density” or
“threshold” (e.g. with DTI data)
densities A numeric vector of the densities to plot
alpha The significance level. Default: @.05
fdr A logical, indicating whether or not to use the FDR-adjusted p-value for deter-
mining significance. Default: TRUE
g.list A list brainGraphList objects; required if you want to plot a shaded region
demarcating the rich_core
smooth Logical indicating whether or not to plot a smooth curve when data from mul-
tiple subjects (per group) are present. Default: TRUE. Ignored for group-level
data.
Value

A trellis or ggplot object

Author(s)

Christopher G. Watson, <cgwatson@bu. edu>

See Also

Other Rich-club functions: Rich Club, rich_club_attrs

Examples

Not run:
plot_rich_norm(rich.dt, facet.by='density', densities[N:(N+1)], g=g)

End(Not run)

plot_vertex_measures Plot vertex-level graph measures at a single density or threshold

Description

Creates boxplots of a single vertex-level graph measure at a single density or threshold, grouped
by the variable specified by group.by and optionally faceted by another variable (e.g., lobe or
network).

Usage

plot_vertex_measures(g.list, measure, facet.by = NULL,
group.by = getOption("bg.group”), type = c("violin"”, "boxplot”),
show.points = FALSE, ylabel = measure, ...)

88 plot_volumetric

Arguments
g.list A brainGraphList or a list of brainGraph objects
measure A character string of the graph measure to plot
facet.by Character string indicating the variable to facet by (if any). Default: NULL
group. by Character string indicating which variable to group the data by. Default: getOption('bg.group')
type Character string indicating the plot type. Default: 'violin'

show.points Logical indicating whether or not to show individual data points (default: FALSE)
ylabel A character string for the y-axis label

Arguments passed to geom_boxplot or geom_violin

Value

A trellis or ggplot object

Author(s)

Christopher G. Watson, <cgwatson@bu. edu>

Examples

Not run:
p.deg <- plot_vertex_measures(g[[1]], facet.by='network', measure='degree')

End(Not run)

plot_volumetric Plot group distributions of volumetric measures for a given brain re-
gion

Description

This function takes a “tidied” dataset of cortical volumetric measures (thickness, volume, LGI, etc.)
and plots a histogram or violin plot for 1 or more groups, and of 1 or more brain regions.

Usage

plot_volumetric(dat, regions, type = c("violin”, "histogram”),
all.vals = TRUE, modality = c("thickness”, "volume", "lgi", "area"))

Random Graphs 89

Arguments
dat A data table of volumetric data; needs columns for ’Group’, "region’, and "value’
regions A vector of character strings or integers of the brain region(s) to plot; if integer,
the region(s) is/are chosen from the input data table based on the index
type A character string indicating the plot type; either "histogram’ or ’violin’
all.vals A logical indicating whether or not to plot horizontal lines for all observations
(only valid for "violin’ plots) (default: TRUE)
modality A character string indicating the type of volumetric measure (’thickness’, *vol-
ume’, ’Igi’, or ’area’)
Value

A trellis or ggplot object

Author(s)

Christopher G. Watson, <cgwatson@bu. edu>

See Also

Other Structural covariance network functions: Bootstrapping, IndividualContributions, Residuals,
brainGraph_permute, corr.matrix, import_scn

Random Graphs Perform an analysis with random graphs for brain MRI data

Description

analysis_random_graphs performs the steps needed for doing typical graph theory analyses with
brain MRI data if you need to generate equivalent random graphs. This includes calculating small
world parameters and normalized rich club coefficients.

sim.rand.graph.par simulates N simple random graphs with the same clustering (optional) and
degree sequence as the input. Essentially a wrapper for sample_degseq (or, if you want to match
by clustering, sim.rand.graph.clust) and make_brainGraph. It uses foreach for parallel pro-
cessing.

sim.rand.graph.clust simulates a random graph with a given degree sequence and clustering
coefficient. Increasing the max.iters value will result in a closer match of clustering with the
observed graph.

sim.rand.graph.hgs generates a number of random covariance matrices using the Hirschberger-
Qi-Steuer (HQS) algorithm, and create graphs from those matrices.

90 Random Graphs

Usage
analysis_random_graphs(g.list, level = g.list[[1L]]$level, N = 100L,

savedir = ".", ...)

sim.rand.graph.par(g, level = c("subject”, "group”), N = 100L,
clustering = FALSE, rewire.iters = max(10 * ecount(g), 10000L),
cl = g$transitivity, max.iters = 100L, ...)

sim.rand.graph.clust(g, rewire.iters = 10000, cl = g$transitivity,
max.iters = 100)

sim.rand.graph.hqs(resids, level = c("subject”, "group”), N = 100L,

weighted = TRUE, r.thresh = NULL, ...)
Arguments

g.list List of brainGraphList objects; the length of this list should equal the number
of thresholds/densities in the study

level Character string indicating whether the graphs are subject-, group-, or contrast-
specific. Default: 'subject'

N Integer; the number of random graphs to simulate. Default: 100

savedir Character string specifying the directory in which to save the generated graphs.

Default: current working directory

Other arguments passed to make_brainGraph

g A graph object

clustering Logical; whether or not to control for clustering. Default: FALSE

rewire.iters Integer; number of rewiring iterations for the initial graph randomization. De-
fault: led

cl The clustering measure. Default: transitivity

max.iters The maximum number of iterations to perform; choosing a lower number may
result in clustering that is further away from the observed graph’s. Default: 100

resids A brainGraph_resids object, a data. table of residuals, or a numeric matrix

weighted Logical indicating whether to create weighted graphs. If true, a threshold must
be provided.

r.thresh Numeric value for the correlation threshold, if weighted=FALSE.

Details

analysis_random_graphs does the following:

1. Generate N random graphs for each graph and density/threshold

2. Write graphs to disk in savedir. Read them back into R and combine into lists; then write
these lists to disk. You can later delete the individual . rds files afterwards.

3. Calculate small world parameters, along with values for a few global graph measures that may
be of interest.

Random Graphs 91

4. Calculate normalized rich club coefficients and associated p-values.

If you do not want to match by clustering, then simple rewiring of the input graph is performed (the
number of rewires equaling the larger of 1e4 and 10 x m, where m is the graph’s edge count).

sim.rand.graph.hgs - The first step is to create the observed covariance of residuals (or whatever
matrix/data.table is provided). Then random covariance matrices are created with the same distri-
butional properties as the observed matrix, they are converted to correlation matrices, and finally
graphs from these matrices. By default, weighted graphs will be created in which the edge weights
represent correlation values. If you want binary matrices, you must provide a correlation threshold.

Value

analysis_random_graphs returns a /ist containing:

rich A data table containing normalized rich-club coefficients and p-values
small A data table with small-world parameters
rand A data table with some global graph measures for all random graphs generated

sim.rand.graph.par - a list of N random graphs with some additional vertex and graph attributes
sim.rand.graph.clust - A single igraph graph object

sim.rand.graph.hgs - A list of random graphs from the null covariance matrices

Author(s)

Christopher G. Watson, <cgwatson@bu. edu>

References

Bansal, S. and Khandelwal, S. and Meyers, L.A. (2009) Exploring biological network structure with
clustered random networks. BMC Bioinformatics, 10, 405-421. doi: 10.1186/1471210510405

Hirschberger M., Qi Y., Steuer R.E. (2007) Randomly generating portfolio-selection covariance
matrices with specified distributional characteristics. European Journal of Operational Research.
177, 1610-1625. doi: 10.1016/j.ejor.2005.10.014

See Also

small.world
rewire, sample_degseq, keeping_degseq
transitivity

Other Random graph functions: Rich Club

Examples

Not run:
rand_all <- analysis_random_graphs(g.norm, le2,
savedir='/home/cwatson/dti/rand', clustering=F)

End(Not run)

https://doi.org/10.1186/1471-2105-10-405
https://doi.org/10.1016/j.ejor.2005.10.014

92 randomise

Not run:

randl <- sim.rand.graph.par(g[[1JI[IN]], N=1e3)

randl.cl <- sim.rand.graph.par(gC[1JILIN]], N=1e2,
clustering=T, max.iters=1e3)

End(Not run)

randomise GLM non-parametric permutation testing

Description

randomise and randomise_3d perform non-parametric permutation testing for analyses in which
there is a single or multiple design matrix per region, respectively. In the latter case, X should be a
3D array.

partition partitions a full design matrix into separate matrices of covariates of interest and nui-
sance covariates based on a given contrast and partition method.

Usage

partition(M, contrast, part.method = c("beckmann”, "guttman", "ridgway"))

randomise(perm.method, part.method, N, perms, X, y, contrasts, ctype, nC,
skip = NULL, n = dim(X)[1L], p = gr.default(X)$rank,
ny = dim(y)[2L], dfR = n - p)

randomise_3d(perm.method, part.method, N, perms, X, y, contrasts, ctype,
nC, runX = dimnames(X)LL[3L]1], n = dim(X)[1L], p = qgr.default(X[, ,
1L])$rank, ny = length(runX), dfR = n - p)

Arguments

M Numeric matrix or array of the full design matrix(es)

contrast For partition, a numeric matrix with 1 or more rows (for T and F contrasts,
respectively) representing a single contrast.

part.method Character string; the method of partitioning the design matrix into covariates of
interest and nuisance. Default: 'beckmann’

perm.method Character string indicating the permutation method. Default: ' freedmanLane'

N Integer; number of permutations to create. Default: 5e3

perms Matrix of permutations, if you would like to provide your own. Default: NULL

X Numeric matrix or 3D array of the design matrix(es)

y Numeric matrix of outcome variables, with 1 column per region, or a single
column if there is a different design matrix per region

contrasts Numeric matrix (for T statistics) or list of matrices (for F statistics) specifying

the contrast(s) of interest; if only one contrast is desired, you can supply a vector
(for T statistics)

randomise 93

ctype The contrast type
nC Integer; the number of contrasts
skip Integer vector indicating which (if any) contrasts to skip. Only used by NBS.
n, p, ny, dfR Integers for the number of observations, design matrix columns (its rank), num-
ber of regions/outcome variables, and residual degrees of freedom, respectively
runX Character vector of regions with non-singular designs
Value

partition returns a list containing:

Mp Numeric array; the combined partitioned arrays

X Numeric array for the covariates of interest

Z Numeric array for the nuisance covariates

eCm The effective contrast, equivalent to the original, for the partitioned model [X,

Z] and considering all covariates

eCx Same as eCm, but considering only X
A numeric array with dimensions 7, X N xn.; the number of rows equals number of regions/outcome
variables, number of columns equals N, and the 3rd dimension is the number of contrasts

Model partitioning

Consider the matrix formulation of the general linear model:
Y =My+ €

where Y is the vector of outcomes, M is the full design matrix (including nuisance covariates), 1 is
the vector of parameter estimates, and € is the vector of error terms. In a permutation framework,
algorithms are applied differently depending on the presence/absence of nuisance covariates; thus
the model is separated depending on the contrast of interest:

Y =XB+Zvy+ €

where X contains covariates of interest, Z contains nuisance covariates, and $ and -y are the asso-
ciated parameter estimates.

The manner of partitioning depends on the method. For example, for the guttman method, X is
formed from the columns of contrast that have non-zero entries.
Permutation methods

The permutation methods can be split into 2 groups, depending on which part of the model they
permute. For full details, see Winkler et al., 2014.

Permute Y Freedman-Lane, Manly, and ter Braak

Permute X Smith, Draper-Stoneman, and Still-White

94

Residuals

Depending on the size of the data, it may be faster to use a method that permutes Y instead of X.
For example, in NBS with dense matrices (more than 400-500 edges), it will be somewhat faster to
use the “Smith” method compared to “Freedman-Lane”. If using brainGraph_GLM, the number of
vertices follows the same relationship.

Furthermore, all methods except Still-White include the Z (nuisance covariate) matrix when calcu-
lating the permuted statistics.

References

Beckmann, C.F. and Jenkinson, M. and Smith, S.M. (2001) General multi-level linear modelling
for group analysis in FMRI. Tech Rep. University of Oxford, Oxford.

Guttman, 1. (1982) Linear Models: An Introduction. Wiley, New York.
Ridgway, G.R. (2009) Statistical analysis for longitudinal MR imaging of dementia. PhD thesis.

Draper, N.R. and Stoneman, D.M. (1966) Testing for the inclusion of variables in linear regression
by a randomisation technique. Technometrics. 8(4), 695-699.

Freedman, D. and Lane, D. (1983) A nonstochastic interpretation of reported significance levels. J
Bus Econ Stat, 1(4), 292-298. doi: 10.1080/07350015.1983.10509354

Manly B.EJ. (1986) Randomization and regression methods for testing for associations with ge-
ographical, environmental, and biological distances between populations. Res Popul Ecol. 28(2),
201-218.

Nichols, T.E. and Holmes, A.P. (2001) Nonparametric permutation tests for functional neuroimag-
ing: A primer with examples. Human Brain Mapping. 15(1), 1-25. doi: 10.1002/hbm.1058

Smith, S.M. and Jenkinson, M. and Beckmann, C. and Miller, K. and Woolrich, M. (2007) Meaning-
ful design and contrast estimability in fMRI. Neurolmage. 34(1), 127-36. doi: 10.1016/j.neuroimage.2006.09.019

Still, A.W. and White, A.P. (1981) The approximate randomization test as an alternative to the F
test in analysis of variance. Br J Math Stat Psychol. 34(2), 243-252.

ter Braak, C.J.F. 1992. Permutation versus bootstrap significance tests in multiple regression and
ANOVA. Bootstrapping and related techniques. Springer, Berlin, Heidelberg. 79-85.

Winkler, A.M. and Ridgway, G.R. and Webster, M.A. and Smith, S.M. and Nichols, T.E. (2014)
Permutation inference for the general linear model. Neurolmage. 92, 381-397. doi: 10.1016/
j-neuroimage.2014.01.060

Residuals Linear model residuals in structural covariance networks

Description

get.resid runs linear models across brain regions listed in a data. table (e.g., cortical thickness),
adjusting for variables in covars (e.g. age, sex, etc.), and calculates the externally Studentized (or
leave-one-out) residuals.

The [method reorders or subsets residuals based on a given numeric vector. However, this is used
in bootstrap and permutation analysis and should generally not be called directly by the user.

https://doi.org/10.1080/07350015.1983.10509354
https://doi.org/10.1002/hbm.1058
https://doi.org/10.1016/j.neuroimage.2006.09.019
https://doi.org/10.1016/j.neuroimage.2014.01.060
https://doi.org/10.1016/j.neuroimage.2014.01.060

Residuals 95

The summary method prints the number of outliers per region, and the number of times a given
subject was an outlier (i.e., across regions).

The plot method lets you check the model residuals for each brain region in a structural covariance
analysis. It shows a ggplot of the studentized residuals, as output from get.resid.

Usage

get.resid(dt.vol, covars, method = c("comb.groups”, "sep.groups”),
use.mean = FALSE, exclude.cov = NULL, atlas = NULL, ...)

S3 method for class 'brainGraph_resids'
x[i, g = NULL]

S3 method for class 'brainGraph_resids'
summary (object, region = NULL,
outlier.thresh = 2, ...)

S3 method for class 'brainGraph_resids'
plot(x, region = NULL, outlier.thresh = 2,
cols = FALSE, ids = TRUE, ...)

S3 method for class 'brainGraph_resids'
nobs(object, ...)

S3 method for class 'brainGraph_resids'
case.names(object, ...)

S3 method for class 'brainGraph_resids'
groups(x)

S3 method for class 'brainGraph_resids'
region.names(object)

S3 method for class 'brainGraph_resids'

nregions(object)
Arguments

dt.vol A data. table containing all the volumetric measure of interest (i.e., the object
lhrh as output by import_scn)

covars A data. table of the covariates of interest

method Character string indicating whether to test models for subject groups separately
or combined. Default: comb.groups

use.mean Logical should we control for the mean hemispheric brain value (e.g. mean
LH/RH cortical thickness). Default: FALSE

exclude.cov Character vector of covariates to exclude. Default: NULL

atlas Character string indicating the brain atlas

96

X, object
i
g

region

outlier.thresh

cols

ids

Details

Residuals

Arguments passed to brainGraph_GLM_design (optional)
A brainGraph_resids object

Numeric vector of the indices

Character string indicating the group. Default: NULL

Character vector of region(s) to focus on; default behavior is to show summary
for all regions

Number indicating how many standard deviations above/below the mean indi-
cate an outlier. Default: 2

Logical indicating whether to color by group. Default: FALSE

Logical indicating whether to plot subject ID’s for outliers. Otherwise plots the
integer index

You can choose to run models for each of your subject groups separately or combined (the default)
via the method argument. You may also choose whether to include the mean, per-hemisphere
structural measure in the models. Finally, you can specify variables that are present in covars
which you would like to exclude from the models. Optional arguments can be provided that get
passed to brainGraph_GLM_design.

If you do not explicitly specify the atlas name, then it will be guessed from the size of your data.
This could cause problems if you are using a custom atlas, with or without the same number of
regions as a dataset in the package.

Value

get.resid - an object of class brainGraph_resids with elements:

data

method
use.mean
resids.all
Group

atlas

A data.table with the input volume/thickness/etc. data as well as the covariates
used in creating the design matrix.

The design matrix, if using default arguments. If use.mean=TRUE then it will
be a named list with a separate matrix for the left and right hemispheres. If
method="sep.groups', a nested named list for each group and hemisphere.

The input argument method

The input argument use .mean

The “wide” data. table of residuals
Group names

The atlas name

summary.brainGraph_resids returns a list with two data tables, one of the residuals, and one of
only the outlier regions

The plot method returns a trellis object or a list of ggplot objects

Rich Club 97

Note

It is assumed that dt . vol was created using import_scn. In older versions, there were issues when
the Study ID was specified as an integer and was not “zero-padded”. This is done automatically by
import_scn, so if you are using an external program, please be sure that the Study ID column is
matched in both dt.vol and covars.

Author(s)

Christopher G. Watson, <cgwatson@bu. edu>

See Also

influence.measures, qgnorm

Other Structural covariance network functions: Bootstrapping, IndividualContributions, brainGraph_permute,
corr.matrix, import_scn, plot_volumetric

Examples

Not run:
myresids <- get.resids(lhrh, covars)
residPlots <- plot(myresids, cols=TRUE)

Save as a multi-page PDF
ml <- marrangeGrob(residPlots, nrow=3, ncol=3)

ggsave('residuals.pdf', ml)

End(Not run)

Rich Club Rich club calculations

Description

rich_club_coeff calculates the rich club of a graph, returning the rich-club coefficient, ¢, and the
subgraph of rich club vertices.

rich_club_all is a wrapper for rich_club_coeff that calculates the rich-club coefficient for all
degrees present in the graph. It returns a data.table with the coefficients and vertex and edge
counts for each successive rich club.

rich_club_norm will (optionally) generate a number of random graphs, calculate their rich club co-
efficients (¢), and return ¢4, of the graph of interest, which is the observed rich-club coefficient
divided by the mean across the random graphs.

rich_core finds the boundary of the rich core of a graph, based on the decreasing order of vertex
degree. It also calculates the degree that corresponds to that rank, and the core size relative to the
total number of vertices in the graph.

98 Rich Club
Usage

rich_club_coeff(g, k = 1, weighted = FALSE, A = NULL)

rich_club_all(g, weighted = FALSE, A = NULL)

rich_club_norm(g, N = 100, rand = NULL, ...)

rich_core(g, weighted = FALSE, A = NULL)

Arguments
g An igraph graph object
k Integer; the minimum degree for including a vertex. Default: 1
weighted Logical indicating whether or not edge weights should be used. Default: FALSE
A Numeric matrix; the adjacency matrix of the input graph. Default: NULL
N Integer; the number of random graphs to generate. Default: 100
rand A list of igraph graph objects, if random graphs have already been generated.
Default: NULL
Other parameters (passed to sim.rand.graph.par)
Details

If random graphs have already been generated, you can supply a list as an argument.

For weighted graphs, the degree is substituted by a normalized weight:
ceiling(A/Wmin)

where w,y;,, is the minimum weight (that is greater than 0), and ceiling() is the ceiling function
that rounds up to the nearest integer.

Value

rich_club_coeff - a list with components:

phi The rich club coefficient, ¢.
graph A subgraph containing only the rich club vertices.
Nk, Ek The number of vertices/edges in the rich club graph.

rich_club_all - a data. table with components:

k A vector of all vertex degrees present in the original graph
phi The rich-club coefficient
Nk, Ek The number of vertices/edges in the rich club for each successive k

rich_club_norm - a data table with columns:

k Sequence of degrees

Rich Club 99

rand Rich-club coefficients for the random graphs
orig Rich-club coefficients for the original graph.
norm Normalized rich-club coefficients.

p P-values based on the distribution of rand
p.fdr The FDR-adjusted P-values

density The observed graph’s density

threshold, Group, name

rich_core - a data table with columns:

density The density of the graph.
rank The rank of the boundary for the rich core.
k.r The degree/strength of the vertex at the boundary.
core.size The size of the core relative to the graph size.
weighted Whether or not weights were used

Author(s)

Christopher G. Watson, <cgwatson@bu. edu>

References

Zhou, S. and Mondragon, R.J. (2004) The rich-club phenomenon in the internet topology. /EEE
Comm Lett, 8, 180-182. doi: 10.4018/9781591409939.ch066

Opsahl, T. and Colizza, V. and Panzarasa, P. and Ramasco, J.J. (2008) Prominence and control: the
weighted rich-club effect. Physical Review Letters, 101.16, 168702. doi: 10.1103/PhysRevLett.101.168702

Colizza, V. and Flammini, A. and Serrano, M.A. and Vespignani, A. (2006) Detecting rich-club
ordering in complex networks. Nature Physics, 2, 110-115. doi: 10.1038/nphys209

Ma, A and Mondragon, R.J. (2015) Rich-cores in networks. PLoS One, 10(3), e0119678. doi: 10.1371/
journal.pone.0119678

See Also

Other Rich-club functions: plot_rich_norm, rich_club_attrs

Other Random graph functions: Random Graphs

https://doi.org/10.4018/978-1-59140-993-9.ch066
https://doi.org/10.1103/PhysRevLett.101.168702
https://doi.org/10.1038/nphys209
https://doi.org/10.1371/journal.pone.0119678
https://doi.org/10.1371/journal.pone.0119678

100 rich_club_attrs

rich_club_attrs Assign graph attributes based on rich-club analysis

Description

Assigns vertex- and edge-level attributes based on the results of a rich-club analysis, based on a
range of vertex degrees in which the rich-club coefficient was determined to be significantly greater
than that of a set of random graphs (see rich_club_norm).

Usage
rich_club_attrs(g, deg.range = NULL, adj.vsize = FALSE)

Arguments
g An igraph graph object
deg.range Numeric vector of the range of degrees indicating inclusion in the rich-club; if
the default NULL, it will be from 1 to the maximum degree in the graph
adj.vsize Logical indicating whether to adjust vertex size proportional to degree. Default:
FALSE
Details

Vertices which are in the rich club will be assigned an attribute rich, taking on a binary value.
Their colors (attribute color.rich) will be either red or gray. Their sizes (attribute size.rich)
will either be 10 or will be proportional to their degree.

Edge attribute type.rich takes on three values: rich-club (if it connects two rich-club vertices),
feeder (if it connects a rich- to a non-rich-club vertex), and local (if it connects two non-rich-club
vertices). The color.rich attribute is red, orange, or green. Edge sizes (size.rich) will be largest
for rich-club connections, then smaller for feeder, and smallest for local.

Value

An igraph graph object with additional attributes:

rich Binary indicating membership in the rich-club
type.rich Edge attribute indicating the type of connection
color.rich Edge and vertex attributes
size.rich Edge and vertex attributes

Author(s)

Christopher G. Watson, <cgwatson@bu. edu>

See Also

Other Rich-club functions: Rich Club, plot_rich_norm

robustness 101

Examples
Not run:
g <- rich_club_attrs(g, rich.dt[density == densities[N] & p.fdr < .01,
range(k)1)
End(Not run)
robustness Analysis of network robustness

Description

This function performs a “targeted attack” of a graph or a “random failure” analysis, calculating the
size of the largest component after edge or vertex removal.

Usage
robustness(g, type = c("vertex", "edge"), measure = c("btwn.cent”,
"degree"”, "random”), N = 1000)
Arguments
g An igraph graph object
type Character string; either 'vertex' or 'edge' removals. Default: vertex
measure Character string; sort by either 'btwn.cent' or 'degree', or choose 'random'.
Default: 'btwn.cent'’
N Integer; the number of iterations if 'random’ is chosen. Default: 1e3
Details

In a targeted attack, it will sort the vertices by either degree or betweenness centrality (or sort edges
by betweenness), and successively remove the top vertices/edges. Then it calculates the size of the
largest component.

In a random failure analysis, vertices/edges are removed in a random order.

Value

Data table with elements:

type Character string describing the type of analysis performed

measure The input argument measure

comp.size The size of the largest component after edge/vertex removal

comp.pct Numeric vector of the ratio of maximal component size after each removal to

the observed graph’s maximal component size
removed.pct Numeric vector of the ratio of vertices/edges removed

Group Character string indicating the subject group, if applicable

102 small.world

Author(s)

Christopher G. Watson, <cgwatson@bu. edu>

References

Albert, R. and Jeong, H. and Barabasi, A. (2000) Error and attack tolerance of complex networks.
Nature, 406, 378-381. doi: 10.1038/35019019

small.world Calculate graph small-worldness

Description
small.world calculates the normalized characteristic path length and clustering coefficient based
on observed and random graphs, used to calculate the small-world coefficient o.

Usage

small.world(g.list, rand)

Arguments

g.list A brainGraphList object or list of graphs

rand List of (lists of) equivalent random graphs (output from sim.rand.graph.par)
Value

A data.table with the following components:

density The range of density thresholds used.

N The number of random graphs that were generated.
Lp,Lp.rand,Lp.norm

The observed, average random, and normalized characteristic path length.
Cp,Cp.rand,Cp.norm

The observed, average random, and normalized clustering coefficient.

sigma The small-world measure of the graph.

Author(s)

Christopher G. Watson, <cgwatson@bu. edu>

References

Watts, D.J. and Strogatz S.H. (1998) Collective dynamics of "small-world" networks. Nature, 393,
440-442. doi: 10.1038/30918

https://doi.org/10.1038/35019019
https://doi.org/10.1038/30918

s_core 103

s_core Calculate the s-core of a network

Description

Calculates the s-core decomposition of a network. This is analogous to the k-core decomposition,
but takes into account the strength of vertices (i.e., in weighted networks). If an unweighted network
is supplied, then the output of the function coreness is returned.

Usage

s_core(g, W = NULL)

Arguments

g An igraph graph object

W Numeric matrix of edge weights (default: NULL)
Details

The s-core consists of all vertices ¢ with s; > s, where s is some threshold value. The s core is the
entire network, and the threshold value of the s,, core is

Sp—1 = MiNn;s;

for all vertices ¢ in the s,,_1 core.

Note that in networks with a wide distribution of vertex strengths, in which there are almost as many
unique values as there are vertices, then several separate cores will have a single vertex. See the
reference provided below.

Value

Integer vector of the vertices’ s-core membership

Author(s)

Christopher G. Watson, <cgwatson@bu. edu>

References
Eidsaa, M and Almaas, E. (2013) s-core network decomposition: a generalization of k-core analysis
to weighted networks. Physical Review E, 88, 062819. doi: 10.1103/PhysRevE.88.062819

See Also

coreness

https://doi.org/10.1103/PhysRevE.88.062819

104 Vertex Roles

Vertex Roles Gateway coefficient, participation coefficient, and within-mod degree
z-score

Description

gateway_coeff calculates the gateway coefficient of each vertex, based on community member-
ship.

part_coeff calculates the participation coefficient of each vertex, based on community member-
ship.

within_module_deg_z_score is a measure of the connectivity from a given vertex to other vertices
in its module/community.

Usage

gateway_coeff(g, memb, centr = c("btwn.cent”, "degree”, "strength"),
A = NULL, weighted = FALSE)

part_coeff(g, memb, A = NULL, weighted = FALSE)

within_module_deg_z_score(g, memb, A = NULL, weighted = FALSE)

Arguments
g An igraph graph object
memb A numeric vector of membership indices of each vertex
centr Character string; the type of centrality to use in calculating GC. Default: btwn.cent
A Numeric matrix; the adjacency matrix of the input graph. Default: NULL
weighted Logical indicating whether to calculate metrics using edge weights. Default:
FALSE
Details

The gateway coefficient G; of vertex i is:

N o 2
Gi:1_2<,f) (g:5)?

S=1

where ;s is the number of edges from vertex i to vertices in module S, and «; is the degree of
vertex i. Njs equals the number of modules. g;; is a weight, defined as:
9is =1 — Kiscig
where
_ RisS
Ris =
> i Fis

vit.bg GLM 105

for all nodes j in node ¢’s module, and
cis = cis/maz(cn)

The participation coefficient P; of vertex i is:

Ny o 2
ne1-3 (%)

s=1
where r;5 is the number of edges from vertex i to vertices in module s, and « is the degree of vertex
i. Njs equals the number of modules.

As discussed in Guimera et al., P; = 0 if vertex i is connected only to vertices in the same module,
and P; = 1 if vertex i is equally connected to all other modules.

The within-module degree z-score is:

K; — /_{si

Z; =
U,gsi

where x; is the number of edges from vertex i to vertices in the same module s;, K, is the average
of over all vertices in s;, and 0,,_ is the standard deviation.

Value
A vector of the participation coefficients, within-module degree z-scores, or gateway coefficients
for each vertex of the graph.

Author(s)

Christopher G. Watson, <cgwatson@bu. edu>

References

Vargas, E.R. and Wahl, L.M. (2014) The gateway coefficient: a novel metric for identifying critical
connections in modular networks. Eur Phys J B, 87, 161-170. doi: 10.1140/epjb/e2014408007

Guimera, R. and Amaral, L.A.N. (2005) Cartography of complex networks: modules and universal
roles. Journal of Statistical Mechanics: Theory and Experiment, 02, P02001. doi: 10.1088/1742-
5468/2005/02/P02001

vif.bg_GLM Variance inflation factors for bg_GLM objects

Description

Variance inflation factors for bg_GLM objects

Usage
vif.bg_GLM(mod, ...)

https://doi.org/10.1140/epjb/e2014-40800-7
https://doi.org/10.1088/1742-5468/2005/02/P02001
https://doi.org/10.1088/1742-5468/2005/02/P02001

106 vulnerability

Arguments
mod A bg_GLM object
Unused
Value

A named array of VIFs; names of the 3rd dimension are regions

vulnerability Calculate graph vulnerability

Description

This function calculates the vulnerability of the vertices of a graph. Here, vulnerability is considered
to be the proportional drop in global efficiency when a given vertex is removed from the graph. The
vulnerability of the graph is considered the maximum across all vertices.

Usage

vulnerability(g, use.parallel = TRUE, weighted = FALSE)

Arguments
g An igraph graph object
use.parallel Logical indicating whether or not to use foreach (default: TRUE)
weighted Logical indicating whether weighted efficiency should be calculated (default:
FALSE)
Value

A numeric vector of length equal to the vertex count of g

Author(s)

Christopher G. Watson, <cgwatson@bu. edu>

References
Latora, V. and Marchiori, M. (2005) Variability and protection of infrastructure networks. Physical
Review E, 71, 015103. doi: 10.1103/physreve.71.015103

See Also

efficiency

https://doi.org/10.1103/physreve.71.015103

write_brainnet 107

write_brainnet Write files to be used for visualization with BrainNet Viewer

Description

Write the . node and . edge files necessary for visualization with the BrainNet Viewer software.

Usage
write_brainnet(g, vcolor = "none"”, vsize = "constant”,
edge.wt = NULL, file.prefix = "")
Arguments
g The igraph graph object of interest
vcolor Character string indicating how to color the vertices (default: 'none")
vsize Character string indicating what size the vertices should be; can be any vertex-
level attribute (default: 'constant')
edge.wt Character string indicating the edge attribute to use to return a weighted adja-
cency matrix (default: NULL)
file.prefix Character string for the basename of the . node and . edge files that are written
Details

For the . node file, there are 6 columns:

* Columns 1-3: Vertex x-, y-, and z-coordinates
e Column 4: Vertex color
e Column 5: Vertex size

* Column 6: Vertex label
The .edge file is the graph’s associated adjacency matrix; a weighted adjacency matrix can be
returned by using the edge.wt argument.
Author(s)

Christopher G. Watson, <cgwatson@bu.edu>

References

Xia, M. and Wang, J. and He, Y. (2013). BrainNet Viewer: a network visualization tool for human
brain connectomics. PLoS One, 8(7), €68910. doi: 10.1371/journal.pone.0068910

https://doi.org/10.1371/journal.pone.0068910

108 write_brainnet

Examples

Not run:
write_brainnet(g, vcolor='community', vsize='degree',6 edge.wt='t.stat')

End(Not run)

Index

x Centrality functions
centr_betw_comm, 20
centr_lev, 21

* GLM functions
GLM, 39
GLM design, 45
GLM fits, 47
mtpc, 72

x Graph creation functions
brainGraphList, 14
Creating_Graphs, 32
Creating_Graphs_GLM, 35
make_ego_brainGraph, 64

* Group analysis functions
Bootstrapping, 8
brainGraph_permute, 18
GLM, 39
Mediation, 69
mtpc, 72
NBS, 76

* Plotting functions
plot.brainGraph, 79
plot.brainGraphList, 81
plot_brainGraph_multi, 83
Plotting GLM graphs, 82

* Random graph functions
Random Graphs, 89
Rich Club, 97

x Rich-club functions
plot_rich_norm, 86
Rich Club, 97
rich_club_attrs, 100

* Structural covariance network functions
Bootstrapping, 8
brainGraph_permute, 18
corr.matrix, 26
import_scn, 58
IndividualContributions, 59
plot_volumetric, 88

109

Residuals, 94
+ datasets

Brain Atlases, 10
[.bg_GLM (GLM), 39
[.brainGraphlList (brainGraphList), 14
[.brainGraph_resids (Residuals), 94
[.corr_mats (corr.matrix), 26

aal116 (Brain Atlases), 10

aal2.120 (Brain Atlases), 10

aal2.94 (Brain Atlases), 10

aalge (Brain Atlases), 10

AIC, 52

analysis_random_graphs (Random Graphs),
89

Anova, 55

anova.bg_GLM (GLM statistics), 53

aop (IndividualContributions), 59

apply_thresholds, 3

as.POSIXct, 34

as_atlas (Atlas Helpers), 4

as_brainGraphList (brainGraphlList), 14

assortativity, 8

Atlas Helpers, 4

Attributes, 6

backsolve, 48

betweenness, 8

bg_to_mediate, 69

bg_to_mediate (Mediation), 69

BIC, 52

boot, 9

boot.ci, 9

Bootstrapping, 8, 19, 28, 43, 59, 61, 72, 75,
78, 89, 97

Brain Atlases, 10

brainGraph, 13

brainGraph-methods, 13

brainGraph-options (brainGraph), 13

brainGraph-package (brainGraph), 13

110

brainGraph_boot (Bootstrapping), 8
brainGraph_GLM, 35, 37, 74, 75, 82, 94
brainGraph_GLM (GLM), 39
brainGraph_GLM_design, 41, 42,70, 74, 77.
96
brainGraph_GLM_design (GLM design), 45
brainGraph_mediate, 70, 82
brainGraph_mediate (Mediation), 69
brainGraph_permute, 9, 18, 18, 28, 43, 59,
61,72,75,78, 89, 97
brainGraphList, 14, 35, 37, 64
brainnetome (Brain Atlases), 10
brainsuite (Brain Atlases), 10

case.names.bg_GLM (GLM basic info), 44

case.names.brainGraph_resids
(Residuals), 94

case.names.mtpc (mtpc), 72

case.names.NBS (NBS), 76

centr_betw, 8

centr_betw_comm, 20, 2/

centr_eigen, 8

centr_lev, 20, 21

check_sID, 22

cluster_louvain, 8

coef.bg_GLM(GLM statistics), 53

coeff_determ (GLM statistics), 53

coeff_table (GLM statistics), 53

coeff_var, 23

colMax (Matrix utilities), 66

colMaxAbs (Matrix utilities), 66

colMin (Matrix utilities), 66

communicability, 23

communities, 8§

components, 8

confint.bg_GLM (GLM statistics), 53

contract, 25

contract_brainGraph, 24

cooks.distance.bg_GLM (GLM influence
measures), 50

cor.diff.test, 25

coreness, 8, 103

corr.matrix, 9, 19, 26, 59-61, 89, 97

Count Edges, 29

count_homologous (Count Edges), 29

count_inter (Count Edges), 29

covratio.bg_GLM (GLM influence
measures), 50

craddock200 (Brain Atlases), 10

INDEX

create_atlas (Atlas Helpers), 4
create_mats, 3, 4, 30
Creating_Graphs, 17,32, 37, 64
Creating_Graphs_GLM, 17, 35, 35, 64

data.table, 86

destrieux (Brain Atlases), 10

deviance.bg_GLM (GLM statistics), 53

df.residual.bg_GLM(GLM statistics), 53

df.residual.mtpc (mtpc), 72

df.residual.NBS (NBS), 76

dfbeta.bg_GLM (GLM influence measures),
50

dfbetas.bg_GLM (GLM influence
measures), 50

dffits.bg_GLM (GLM influence measures),
50

diag, 66

diag_sqg (Matrix utilities), 66

diameter, 8

distances, 8

dk (Brain Atlases), 10

dkt (Brain Atlases), 10

dosenbach160 (Brain Atlases), 10

edge_asymmetry, 37

edge_spatial_dist (Graph Distances), 56

efficiency, 38, 106

ego, 64

Extract.brainGraph_resids (Residuals),
94

Extract.brainGraphList
(brainGraphList), 14

Extract.corr_mats (corr.matrix), 26

extractAIC, 52

extractAIC.bg_GLM (GLM model
selection), 52

fastLmBG (GLM fits), 47
fastLmBG_3d (GLM fits), 47
fastLmBG_3dY (GLM fits), 47
fastLmBG_3dY_1p (GLM fits), 47
fastLmBG_f (GLM fits), 47
fastLmBG_t (GLM fits), 47
fitted.bg_GLM (GLM statistics), 53
foreach, 89

formula.bg_GLM (GLM basic info), 44
formula.mtpc (mtpc), 72
formula.NBS (NBS), 76

INDEX

gateway_coeff (Vertex Roles), 104

get.resid, 9, 18, 27, 60, 95

get.resid (Residuals), 94

get_thresholds (Matrix utilities), 66

GLM, 9, 19, 39, 46, 50, 52, 55,72, 75, 76, 78

GLM basic info, 44

GLM design, 45

GLM fits, 47

GLM influence measures, 50

GLM model selection, 52

GLM statistics, 53

gordon333 (Brain Atlases), 10

Graph Data Tables, 55

Graph Distances, 56

graph_attr, 56

graph_attr_dt (Graph Data Tables), 55

graph_attr_names, 56

graph_from_data_frame, 56

groups.brainGraph_resids (Residuals), 94

groups.brainGraphList
(brainGraph-methods), 13

groups.corr_mats (brainGraph-methods),
13

guess_atlas (Atlas Helpers), 4

hatvalues.bg_GLM (GLM influence

measures), 50
hcp_mmp1.0 (Brain Atlases), 10
hoal12 (Brain Atlases), 10
hubness, 57

import_scn, 9, 19, 22, 28, 58, 61, 89, 95, 97

IndividualContributions, 9, 19, 28, 59, 59,
89, 97

influence.bg_GLM (GLM influence
measures), 50

influence.measures, 51, 97

inv (Inverse), 61

Inverse, 61

is.brainGraph (Creating_Graphs), 32

is.brainGraphlList (brainGraphlList), 14

is_binary (Matrix utilities), 66

keeping_degseq, 91
knn, 8

labels.bg_GLM (GLM basic info), 44
labels.mtpc (mtpc), 72
labels.NBS (NBS), 76

111

list.files, 31

1m, 48, 54

Im.influence, 51

loglLik.bg_GLM (GLM model selection), 52
loglLik.1m, 52

loo (IndividualContributions), 59
1pba40 (Brain Atlases), 10

make_auc_brainGraph, 35, 63
make_brainGraph, 89, 90
make_brainGraph (Creating_Graphs), 32
make_brainGraphList (brainGraphlList), 14
make_brainGraphList.bg_GLM
(Creating_Graphs_GLM), 35
make_brainGraphList.mtpc
(Creating_Graphs_GLM), 35
make_brainGraphList.NBS
(Creating_Graphs_GLM), 35
make_ego_brainGraph, 17, 35, 37, 64
make_empty_brainGraph
(Creating_Graphs), 32
make_intersection_brainGraph, 65
Matrix utilities, 66
mean_distance_wt, 68
mediate, 69, 70, 72
Mediation, 9, 19, 43,69, 75,78
mtext, 80
mtpc, 9, 19, 35, 37,43, 46, 50, 72,72, 78, 82

NBS, 9, 19, 35, 37,43, 72,75,76, 82, 93, 94

nobs.bg_GLM (GLM basic info), 44

nobs.brainGraph_resids (Residuals), 94

nobs.brainGraphList (brainGraphList), 14

nobs.mtpc (mtpc), 72

nobs.NBS (NBS), 76

nregions (brainGraph-methods), 13

nregions.bg_GLM (GLM basic info), 44

nregions.brainGraph_resids (Residuals),
94

nregions.corr_mats (corr.matrix), 26

nregions.mtpc (mtpc), 72

nregions.NBS (NBS), 76

options, 13

pad_zeros (check_sID), 22

par, 80, 82

part_coeff (Vertex Roles), 104
partition (randomise), 92

112

pinv (Inverse), 61
plot.bg_GLM (GLM), 39
plot.brainGraph, 79, 81, 83-85
plot.brainGraph_boot (Bootstrapping), 8
plot.brainGraph_GLM (Plotting GLM
graphs), 82
plot.brainGraph_mediate (Plotting GLM
graphs), 82
plot.brainGraph_mtpc (Plotting GLM
graphs), 82
plot.brainGraph_NBS (Plotting GLM
graphs), 82
plot.brainGraph_permute
(brainGraph_permute), 18
plot.brainGraph_resids (Residuals), 94
plot.brainGraphList, 80, 81, 83, 85
plot.common, 79
plot.corr_mats (corr.matrix), 26
plot.IC (IndividualContributions), 59
plot.igraph, 79
plot.1lm, 40,43
plot.mediate, 69
plot.mtpc (mtpc), 72
plot_brainGraph_multi, 80, 81, 83, 83
plot_global, 85
plot_rich_norm, 86, 99, 100
plot_vertex_measures, 87
plot_volumetric, 9, 19, 28, 59, 61, 88, 97
Plotting GLM graphs, 82
power264 (Brain Atlases), 10
print.bg_GLM (GLM), 39
print.brainGraphList (brainGraphList),
14
printCoefmat, 77

ggnorm, 97

gr.array (Matrix utilities), 66
gr.default, 67

qgr.Q, 66

gr.R, 66

gr_Q2 (Matrix utilities), 66
gr_R2 (Matrix utilities), 66

Random Graphs, 89

randomise, 43, 92

randomise_3d (randomise), 92

rcorr, 28

region.names (brainGraph-methods), 13
region.names.bg_GLM (GLM basic info), 44

INDEX

region.names.brainGraph_resids
(Residuals), 94
region.names.corr_mats (corr.matrix), 26
region.names.mtpc (mtpc), 72
Residuals, 9, 19, 28, 59, 61, 89, 94
residuals.bg_GLM(GLM statistics), 53
rewire, 91
Rich Club, 97
rich_club_all, 98
rich_club_all (Rich Club), 97
rich_club_attrs, 87, 99, 100
rich_club_coeff, 97, 98
rich_club_coeff (Rich Club), 97
rich_club_norm, 98, 100
rich_club_norm (Rich Club), 97
rich_core, 86, 87, 99
rich_core (Rich Club), 97
robustness, 101
rstandard.bg_GLM (GLM influence
measures), 50
rstudent.bg_GLM (GLM influence
measures), 50

s_core, 103
sample_degseq, 89, 91
set_brainGraph_attr, 15, 16, 33, 36
set_brainGraph_attr (Attributes), 6
sigma.bg_GLM (GLM statistics), 53
sim.rand.graph.clust, 89
sim.rand.graph.clust (Random Graphs), 89
sim.rand.graph.hgs (Random Graphs), 89
sim.rand.graph.par, 98, 102
sim.rand.graph.par (Random Graphs), 89
slicer (plot_brainGraph_multi), 83
small.world, 97, 102
solve, 48
sort, 67
summary.bg_GLM (GLM), 39
summary.bg_mediate (Mediation), 69
summary.brainGraph (Creating_Graphs), 32
summary.brainGraph_boot
(Bootstrapping), 8
summary.brainGraph_permute
(brainGraph_permute), 18
summary.brainGraph_resids, 96
summary.brainGraph_resids (Residuals),
94
summary.IC (IndividualContributions), 59
summary.1lm, 53

INDEX

summary.mediate, 69
summary .mtpc (mtpc), 72
summary .NBS (NBS), 76

symm_mean (Matrix utilities), 66
symmetrize, 30

symmetrize (Matrix utilities), 66

tcrossprod, 62

terms.bg_GLM (GLM basic info), 44
terms.mtpc (mtpc), 72

terms.NBS (NBS), 76
transitivity, 8, 91

variable.names.bg_GLM (GLM basic info),
44

variable.names.mtpc (mtpc), 72

variable.names.NBS (NBS), 76

vcov.bg_GLM (GLM statistics), 53

Vertex Roles, 104

vertex_attr, 56

vertex_attr_dt (Graph Data Tables), 55

vertex_attr_names, 56

vertex_spatial_dist (Graph Distances),
56

vif.bg_GLM, 105

vulnerability, 106

within_module_deg_z_score (Vertex
Roles), 104
write_brainnet, 107

xfm.weights, 9
xfm.weights (Attributes), 6

113

	apply_thresholds
	Atlas Helpers
	Attributes
	Bootstrapping
	Brain Atlases
	brainGraph
	brainGraph-methods
	brainGraphList
	brainGraph_permute
	centr_betw_comm
	centr_lev
	check_sID
	coeff_var
	communicability
	contract_brainGraph
	cor.diff.test
	corr.matrix
	Count Edges
	create_mats
	Creating_Graphs
	Creating_Graphs_GLM
	edge_asymmetry
	efficiency
	GLM
	GLM basic info
	GLM design
	GLM fits
	GLM influence measures
	GLM model selection
	GLM statistics
	Graph Data Tables
	Graph Distances
	hubness
	import_scn
	IndividualContributions
	Inverse
	make_auc_brainGraph
	make_ego_brainGraph
	make_intersection_brainGraph
	Matrix utilities
	mean_distance_wt
	Mediation
	mtpc
	NBS
	plot.brainGraph
	plot.brainGraphList
	Plotting GLM graphs
	plot_brainGraph_multi
	plot_global
	plot_rich_norm
	plot_vertex_measures
	plot_volumetric
	Random Graphs
	randomise
	Residuals
	Rich Club
	rich_club_attrs
	robustness
	small.world
	s_core
	Vertex Roles
	vif.bg_GLM
	vulnerability
	write_brainnet
	Index

