Package 'brada'

January 24, 2023

Type Package Title Bayesian Response-Adaptive Design Analysis Version 1.0 Date 2023-01-18 Description Provides access to a range of functions for analyzing, applying and visualizing Bayesian response-adaptive trial designs for a binary endpoint. Includes the predictive probability approach and the predictive evidence value designs for binary endpoints. Imports methods, fbst, extraDistr, doParallel, foreach, parallel, doSNOW, progress, cli Suggests knitr, rmarkdown, DT License GPL-3 VignetteBuilder knitr NeedsCompilation no Author Riko Kelter [aut, cre] (<https://orcid.org/0000-0001-9068-5696>) Maintainer Riko Kelter <riko.kelter@uni-siegen.de> **Repository** CRAN Date/Publication 2023-01-24 10:40:11 UTC

R topics documented:

brada-package	2
access-method	
brada	3
brada-class	5
calibrate	5
generateData	6
monitor	7
names.brada	
plot.brada	
power	9
show.brada	
summary.brada	1

Index

brada-package

Description

Provides access to a range of functions for analyzing, applying and visualizing Bayesian responseadaptive trial designs for a binary endpoint. Includes the predictive probability approach and the predictive evidence value designs for binary endpoints.

Details

Provides access to a range of functions for analyzing, applying and visualizing Bayesian response-adaptive trial designs for a binary endpoint. Includes the predictive probability approach and the predictive evidence value designs for binary endpoints.

Package:	brada
Type:	Package
Title:	Bayesian Response-Adaptive Design Analysis
Version:	1.0
Date:	2023-01-18
Authors@R:	c(person(given = "Riko", family = "Kelter", role = c("aut", "cre"), email = "riko.kelter@uni-siegen.de", con
Description:	Provides access to a range of functions for analyzing, applying and visualizing Bayesian response-adaptive
Imports:	methods, fbst, extraDistr, doParallel, foreach, parallel, doSNOW, progress, cli
Suggests:	knitr, rmarkdown, DT
License:	GPL-3
VignetteBuilder:	knitr
Author:	Riko Kelter [aut, cre] (<https: 0000-0001-9068-5696="" orcid.org="">)</https:>
Maintainer:	Riko Kelter <riko.kelter@uni-siegen.de></riko.kelter@uni-siegen.de>

Index of help topics:

\$,brada-method	Returns an object from an object of class 'brada'.
brada	brada
brada-class	Class '"brada-class"'
brada-package	Bayesian Response-Adaptive Design Analysis
calibrate	calibrate
generateData	generateData
monitor	monitor
names.brada	names.brada
plot.brada	plot.brada
power	power
show.brada	show.brada
summary.brada	summary.brada

12

access-method

Author(s)

NA

Maintainer: NA

access-method

Returns an object from an object of class brada.

Description

Returns an object from an object of class brada

Details

-

Value

No return value.

Author(s)

Riko Kelter

brada

brada

Description

Performs a Bayesian response-adaptive design analysis for trials with a binary endpoint.

Usage

```
brada(a0=1,b0=1,Nmax=40,batchsize=5,nInit,p_true,p0,p1,
theta_T=0.90,theta_L=0.1,theta_U=1,nsim=100,
seed=42,method="PP",refFunc="flat",nu=0,
shape1=1,shape2=1,truncation=1,cores=2)
```

Arguments

a0	shape1 parameter of the beta prior.
b0	shape2 parameter of the beta prior.
Nmax	Maximum trial size.
batchsize	sample size after which an interim analysis is performed.
nInit	Initial sample size at which the first interim analysis is performed.
p_true	True binary response probability used for simulation.
p0	Right boundary of the null hypothesis to be tested.
p1	Left boundary of the alternative hypothesis to be tested.
theta_T	Threshold used in the designs for including trajectories as evidential.
theta_L	Stopping threshold for futility.
theta_U	Stopping threshold for efficacy.
nsim	Number of Monte Carlo iterations.
seed	Random number generator seed.
cores	Number of CPU cores to be used for computation. Defaults to 2, but 4 or larger is recommended.
method	Can be either "PP" or "PPe", depending on whether the predictive probability approach or the predictive evidence value design is desired. Note that the former is a special case of the latter.
refFunc	A string, either "flat", "beta", "binaryStep", "relu", "palu" or "lolu". See vignettes for explanation.
nu	A numeric value larger or equal to zero, indicating which evidence threshold if used in the predictive evidence value design.
shape1	shape1 parameter of the beta reference function, if used.
shape2	shape2 parameter of the beta reference function, if used.
truncation	Truncation point in case an artificial neural network reference function is used.

Value

Returns an object of class brada.

Author(s)

Riko Kelter

Examples

brada-class

Description

Class for modelling the results of a Bayesian response-adaptive design analysis

Objects from the Class

Store the results of a Bayesian response-adaptive design analysis

Slots

data: Object of class "list" holding the results of the Bayesian response-adaptive design analysis. a0 and b0 store the beta prior shape parameters, Nmax and batchsize store the maximum trial size and the batchsize used for interim analyses. nInit is the minimum sample size at which the first interim analysis is conducted. p_true is the true response probability used for simulation, p0 is the right boundary of the null hypothesis and p1 the left boundary of the alternative hypothesis. ...

```
calibrate calibrate
```

Description

Calibrates a brada object to achieve specified false-positive and false-negative rates.

Usage

```
calibrate(brada_object, nsim = 100, cores = 2, seq,
alpha=NULL, beta=NULL, calibration = "nu")
```

Arguments

brada_object	An object of class brada
nsim	Number of Monte Carlo iterations
cores	Number of cores used for computation
seq	Sequence of values for the evidence threshold nu, or sequence of the futility threshold theta_L, depending on which value is passed to the function in the calibration argument. For example, $seq=seq(0,1,0.1)$ in combination with calibration="nu" and alpha=0.1 implies that the function tries to calibrate the false-positive rate to decrease below alpha=0.1 by iteratively increasing nu from zero to one in steps of size 0.1.

alpha	Upper bound for false-positive rate. Note that it is only possible to specify either alpha or beta. When alpha is passed as an argument, calibration should take the value "nu", while when beta is passed as an argument, calibration should take the value "theta_L".
beta	Upper bound for false-negative rate
calibration	String which specifies which parameter to calibrate. Can take the values "nu" or "theta_L".

Value

Prints the output to the console and returns the false-positive rate or false-negative rate of the calibrated design, depending on which value the calibration argument takes.

Author(s)

Riko Kelter

generateData generateData

Description

Generates a matrix of trial data.

Usage

generateData(p,Nmax,nsim,seed=420)

Arguments

р	true response probability
Nmax	Maximum trial size.
nsim	Number of Monte Carlo iterations.
seed	Random number generator seed.

Value

Returns a matrix with simulated trial data.

Author(s)

Riko Kelter

Examples

generateData(p=0.2,Nmax=40,nsim=100,seed=420)

monitor

monitor

monitor

Description

Monitors a running trial with a binary endpoint and calculates the predictive probability or predictive evidence that the trial will result in a success. Reports whether to stop early for futility or efficacy based on a vector of binary observations.

Usage

monitor(brada_object, obs)

Arguments

brada_object	An object of class brada.
obs	A vector of binary observations, where 1 is a success (response) and 0 a failure (no response).

Value

No return value, prints the result of the monitoring to the console.

Author(s)

Riko Kelter

Examples

names.brada

Description

Plots the names of the objects stored in the brada object of a Bayesian response-adaptive design analysis.

Usage

S3 method for class 'brada'
names(x)

Arguments

х

An Object of class "brada".

Details

Plots the names of the objects stored in the trials object of a Bayesian response-adaptive design analysis.

Value

Returns a list of names.

Author(s)

Riko Kelter

plot.brada plot.brada

Description

Plots the results of a Bayesian response-adaptive design analysis.

Usage

S3 method for class 'brada'
plot(x, trajectories = 100, ...)

Arguments

х	An Object of class "brada".
trajectories	Number of trajectories to be plotted. Defaults to 100.
	Additional parameters, see "plot(x,)".

power

Value

Returns a plot.

Author(s)

Riko Kelter

Examples

power

power

Description

Performs a power analysis for a brada object.

Usage

```
power(brada_object, p_true, nsim=100, cores=2)
```

Arguments

brada_object	An object of class brada
p_true	the true response probability used for the power analysis
nsim	the number of Monte Carlo simulation, defaults to 100.
cores	CPU cores used for computation. Defaults to 2.

Value

Returns an object of class brada.

Author(s)

Riko Kelter

Examples

Description

Prints the main results of a Bayesian response-adaptive design analysis to the console.

Usage

S3 method for class 'brada'
show(object)

Arguments

object An Object of class "brada".

Details

Shows the main results of a Bayesian response-adaptive design analysis stored in an object of class brada.

Value

Prints the results onto the console.

Author(s)

Riko Kelter

10

summary.brada summary.brada

Description

Prints the results of a Bayesian response-adaptive design analysis.

Usage

```
## S3 method for class 'brada'
summary(object, ...)
```

Arguments

object	An Object of class "brada".
	Additional parameters, see "summary(object,)".

Details

Summarises the results of a Bayesian response-adaptive design analysis.

Value

Prints the results onto the console.

Author(s)

Riko Kelter

Examples

Index

* classes
 brada-class, 5
* package
 brada-package, 2
\$,brada-method (access-method), 3

 $\verb+access-method, 3+$

brada, 3
brada-class, 5
brada-package, 2

calibrate, 5

generateData, 6

monitor,7

names(names.brada), 8
names.brada, 8

plot(plot.brada), 8
plot.brada, 8
power, 9

show(show.brada), 10
show.brada, 10
summary(summary.brada), 11
summary.brada, 11