
Package ‘blockForest’
March 31, 2023

Type Package

Title Block Forests: Random Forests for Blocks of Clinical and Omics
Covariate Data

Version 0.2.6

Date 2023-03-03

Author Roman Hornung, Marvin N. Wright

Maintainer Marvin N. Wright <cran@wrig.de>

Description A random forest variant 'block forest' ('BlockForest') tailored to the
prediction of binary, survival and continuous outcomes using block-structured
covariate data, for example, clinical covariates plus measurements of a certain
omics data type or multi-omics data, that is, data for which measurements of
different types of omics data and/or clinical data for each patient exist. Examples
of different omics data types include gene expression measurements, mutation data
and copy number variation measurements.
Block forest are presented in Hornung & Wright (2019). The package includes four
other random forest variants for multi-omics data: 'RandomBlock', 'BlockVarSel',
'VarProb', and 'SplitWeights'. These were also considered in Hornung & Wright (2019),
but performed worse than block forest in their comparison study based on 20 real
multi-omics data sets. Therefore, we recommend to use block forest ('BlockForest')
in applications. The other random forest variants can, however, be consulted for
academic purposes, for example, in the context of further methodological
developments.
Reference: Hornung, R. & Wright, M. N. (2019) Block Forests: random forests for blocks of clin-
ical and omics covariate data. BMC Bioinformatics 20:358. <doi:10.1186/s12859-019-2942-y>.

License GPL-3

Imports Rcpp (>= 0.11.2), Matrix, methods, survival

LinkingTo Rcpp, RcppEigen

Depends R (>= 3.1)

Suggests testthat

RoxygenNote 7.2.2

Encoding UTF-8

NeedsCompilation yes

1

https://doi.org/10.1186/s12859-019-2942-y

2 blockfor

URL https://github.com/bips-hb/blockForest

BugReports https://github.com/bips-hb/blockForest/issues

Repository CRAN

Date/Publication 2023-03-31 18:40:02 UTC

R topics documented:
blockfor . 2
blockForest . 5
predict.blockForest . 10
predictions.blockForest . 14
predictions.blockForest.prediction . 15
timepoints.blockForest . 15
timepoints.blockForest.prediction . 16
treeInfo . 17

Index 19

blockfor Random Forest variants for block-structured covariate data

Description

Implements five Random Forest variants for prediction of binary, survival and metric outcomes us-
ing block-structured covariate data, for example, clinical covariates plus measurements of a certain
omics data type or multi-omics data, that is, data for which measurements of different types of
omics data and/or clinical data for each patient exist. For example, for the task of predicting sur-
vival for each patient there might be available clinical covariates, gene expression measurements,
mutation data, and copy number variation measurements.
The group of covariates corresponding to one specific data type is denoted as a ’block’.
NOTE: We strongly recommend using the variant "BlockForest" (or "block forest") in applications.
The other four variants performed worse than "BlockForest" in the analysis by Hornung & Wright
(2019). Using 20 real multi-omics data sets Hornung & Wright (2019) compared all five variants
with each other and with alternatives, in particular with Random Survival Forest as existing refer-
ence method. The ranking of the performances of the five variants was as follows in the comparison
study by Hornung & Wright (2019): 1) "BlockForest", 2) "RandomBlock", 3) "BlockVarSel", 4)
"VarProb", 5) "SplitWeights".
Each of the five variants uses a different split selection algorithm. For details, see Hornung &
Wright (2019).
Note that this R package is a fork of the R package ranger.
NOTE ALSO: Including the clinical block mandatorily in the split point selection can considerably
improve the prediction performance. Whether or not this is the case, depends on the level of pre-
dictive information contained in the clinical block. We recommend trying out including the clinical
block mandatorily to see, whether this improves prediction performance in the particular applica-
tion. Note that in the case of including the clinical block mandatorily and having more than only
one omics block, "RandomBlock" performed (slightly) better than "BlockForest" in the comparison

https://github.com/bips-hb/blockForest
https://github.com/bips-hb/blockForest/issues

blockfor 3

study by Hornung & Wright (2019). Including the clinical block mandatorily can be performed by
setting the function argument ’always.select.block’ of ’blockfor()’ to the index of the clinical block
(e.g., if the clinical block would be the second block in order, we would set always.select.block=2).

Usage

blockfor(
X,
y,
blocks,
block.method = "BlockForest",
num.trees = 2000,
mtry = NULL,
nsets = 300,
num.trees.pre = 1500,
splitrule = "extratrees",
always.select.block = 0,
...

)

Arguments

X Covariate matrix. observations in rows, variables in columns.

y Target variable. If the outcome is binary, this is a factor with two levels. If
the outcome is metric, this is a numeric vector. If the outcome is a survival
outcome, this is a matrix with two columns, where the first column contains
the vector of survival/censoring times (one for each observation) and the second
column contains the status variable, that has the value ’1’ if the corresponding
time is a survival time and ’0’ if that time is a censoring time.

blocks A list of length equal to the number M of blocks considered. Each entry contains
the vector of column indices in ’X’ of the covariates in one of the M blocks.

block.method Forest variant to use. One of the following: "BlockForest" (default), "Ran-
domBlock", "BlockVarSel", "VarProb", "SplitWeights". The latter listing is or-
dered according to the performances of these variants in the comparison study
by Hornung & Wright (2019), with the best variant being listed first.

num.trees Number of trees in the forest.

mtry This is either a number specifying the number of variables sampled for each
split from all variables (for variants "VarProb" and "SplitWeights") or a vector
of length equal to the number of blocks, where the m-th entry of the vector
gives the number of variables to sample from block m (for variants "BlockFor-
est", "RandomBlock", and "BlockVarSel"). The default values are sqrt(p_1) +
sqrt(p_2) + ... sqrt(p_M) and (sqrt(p_1), sqrt(p_2), ..., sqrt(p_M)), respectively,
where p_m denotes the number of variables in the m-th block (m = 1, ..., M) and
sqrt() denoted the square root function.

nsets Number of sets of tuning parameter values generated randomly in the optimiza-
tion of the tuning parameters. Each variant has a tuning parameter for each
block, that is, there are M tuning parameters for each variant. These tuning

4 blockfor

parameters are optimized in the following way: 1. Generate random sets of tun-
ing parameter values and measure there adequateness: For j = 1,..., nsets: a)
Generate a random set of tuning parameter values; b) Construct a forest (with
num.trees.pre trees) using the set of tuning parameter values generated in a);
c) Record the out-of-bag (OOB) estimated prediction error of the forest con-
structed in b); 2. Use the set of tuning parameter values generated in 1. that is
associated with the smallest OOB estimated prediction error.

num.trees.pre Number of trees in each forest constructed during the optimization of the tuning
parameter values, see ’nsets’ for details.

splitrule Splitting rule. Default "extratrees" (for computational efficiency). For other
options see blockForest.

always.select.block

Number of block to make always available for splitting (e.g. clinical covariates).

... Parameters passed to blockForest, such as num.threads, etc. See blockForest
for details.

Value

blockfor returns a list containing the following components:

forest object of class "blockForest". Constructed forest.

paramvalues vector of length M. Optimized tuning parameter value for each block.
biased_oob_error_donotuse

numeric. OOB estimated prediction error. NOTE: This estimate should not
be used, because it is (highly) optimistic (i.e, too small), because the data set
was used twice - for optimizing the tuning parameter values and for estimating
the prediction error. Instead, cross-validation should be used to estimate the
prediction error.

Author(s)

Roman Hornung, Marvin N. Wright

References

• Hornung, R. & Wright, M. N. (2019) Block Forests: random forests for blocks of clinical and
omics covariate data. BMC Bioinformatics 20:358. doi:10.1186/s128590192942y.

• Breiman, L. (2001). Random forests. Mach Learn, 45(1), 5-32. doi:10.1023/A:1010933404324.

• Wright, M. N. & Ziegler, A. (2017). ranger: A Fast Implementation of Random Forests for
High Dimensional Data in C++ and R. J Stat Softw 77:1-17. doi:10.18637/jss.v077.i01.

Examples

NOTE: There is no association between covariates and response for the
simulated data below.
Moreover, the input parameters of blockfor() are highly unrealistic
(e.g., nsets = 10 is specified much too small).
The purpose of the shown examples is merely to illustrate the

https://doi.org/10.1186/s12859-019-2942-y
https://doi.org/10.1023/A%3A1010933404324
https://doi.org/10.18637/jss.v077.i01

blockForest 5

application of blockfor().

Generate data:
################

set.seed(1234)

Covariate matrix:
X <- cbind(matrix(nrow=40, ncol=5, data=rnorm(40*5)),

matrix(nrow=40, ncol=30, data=rnorm(40*30, mean=1, sd=2)),
matrix(nrow=40, ncol=100, data=rnorm(40*100, mean=2, sd=3)))

Block variable (list):
blocks <- rep(1:3, times=c(5, 30, 100))
blocks <- lapply(1:3, function(x) which(blocks==x))

Binary outcome:
ybin <- factor(sample(c(0,1), size=40, replace=TRUE), levels=c(0,1))

Survival outcome:
ysurv <- cbind(rnorm(40), sample(c(0,1), size=40, replace=TRUE))

Application to binary outcome:
################################

blockforobj <- blockfor(X, ybin, num.trees = 100, replace = TRUE, blocks=blocks,
nsets = 10, num.trees.pre = 50, splitrule="extratrees",
block.method = "BlockForest")

Tuning parameter estimates (see Hornung & Wright (2019)):
blockforobj$paramvalues

Application to survival outcome:
##################################

blockforobj <- blockfor(X, ysurv, num.trees = 100, replace = TRUE, blocks=blocks,
nsets = 10, num.trees.pre = 50, splitrule="extratrees",
block.method = "BlockForest")

blockforobj$paramvalues

blockForest blockForest

Description

Block forests without parameter tuning. Use blockfor for standard interface. This function is
called by blockfor and will rarely be considered directly by the user (since parameter tuning is
required in applications).

6 blockForest

Usage

blockForest(
formula = NULL,
data = NULL,
num.trees = 500,
mtry = NULL,
importance = "none",
write.forest = TRUE,
probability = FALSE,
min.node.size = NULL,
replace = TRUE,
sample.fraction = ifelse(replace, 1, 0.632),
case.weights = NULL,
splitrule = NULL,
num.random.splits = 1,
alpha = 0.5,
minprop = 0.1,
split.select.weights = NULL,
always.split.variables = NULL,
blocks = NULL,
block.method = "BlockForest",
block.weights = NULL,
respect.unordered.factors = NULL,
scale.permutation.importance = FALSE,
keep.inbag = FALSE,
holdout = FALSE,
quantreg = FALSE,
num.threads = NULL,
save.memory = FALSE,
verbose = TRUE,
seed = NULL,
dependent.variable.name = NULL,
status.variable.name = NULL,
classification = NULL

)

Arguments

formula Object of class formula or character describing the model to fit. Interaction
terms supported only for numerical variables.

data Training data of class data.frame, matrix, dgCMatrix (Matrix) or gwaa.data
(GenABEL).

num.trees Number of trees.
mtry This is either a number specifying the number of variables sampled for each

split from all variables (for variants "VarProb" and "SplitWeights") or a vector
of length equal to the number of blocks, where the m-th entry of the vector
gives the number of variables to sample from block m (for variants "BlockFor-
est", "RandomBlock", and "BlockVarSel"). The default values are sqrt(p_1) +

blockForest 7

sqrt(p_2) + ... sqrt(p_M) and (sqrt(p_1), sqrt(p_2), ..., sqrt(p_M)), respectively,
where p_m denotes the number of variables in the m-th block (m = 1, ..., M) and
sqrt() denoted the square root function.

importance Variable importance mode, one of ’none’, ’impurity’, ’impurity_corrected’, ’per-
mutation’. The ’impurity’ measure is the Gini index for classification, the vari-
ance of the responses for regression and the sum of test statistics (see splitrule)
for survival.

write.forest Save blockForest.forest object, required for prediction. Set to FALSE to re-
duce memory usage if no prediction intended.

probability Grow a probability forest as in Malley et al. (2012).

min.node.size Minimal node size. Default 1 for classification, 5 for regression, 3 for survival,
and 10 for probability.

replace Sample with replacement.
sample.fraction

Fraction of observations to sample. Default is 1 for sampling with replacement
and 0.632 for sampling without replacement. For classification, this can be a
vector of class-specific values.

case.weights Weights for sampling of training observations. Observations with larger weights
will be selected with higher probability in the bootstrap (or subsampled) samples
for the trees.

splitrule Splitting rule, default "extratrees". Other options are "gini" for classification and
probability estimation, "variance", or "maxstat" for regression and "logrank",
"C" or "maxstat" for survival.

num.random.splits

For "extratrees" splitrule.: Number of random splits to consider for each candi-
date splitting variable.

alpha For "maxstat" splitrule: Significance threshold to allow splitting.

minprop For "maxstat" splitrule: Lower quantile of covariate distribution to be considered
for splitting.

split.select.weights

Numeric vector with weights between 0 and 1, representing the probability to
select variables for splitting. Alternatively, a list of size num.trees, containing
split select weight vectors for each tree can be used. Use this for the "VarProb"
variant.

always.split.variables

Character vector with variable names to be always selected in addition to the
mtry variables tried for splitting.

blocks Block memberships of the variables. See blockfor for details.

block.method Variant to use. Options are: "BlockForest" (default), "RandomBlock", "Block-
VarSel", "SplitWeights".

block.weights Tuning parameter values for the blocks in the variants. A vector of length equal
to the number of blocks or a list with vectors containing tree-wise values. For
block.method=’RandomBlock’ these are the block sample probabilities.

8 blockForest

respect.unordered.factors

Handling of unordered factor covariates. One of ’ignore’, ’order’ and ’partition’.
For the "extratrees" splitrule the default is "partition" for all other splitrules ’ig-
nore’. Alternatively TRUE (=’order’) or FALSE (=’ignore’) can be used. See
below for details.

scale.permutation.importance

Scale permutation importance by standard error as in (Breiman 2001). Only
applicable if permutation variable importance mode selected.

keep.inbag Save how often observations are in-bag in each tree.

holdout Hold-out mode. Hold-out all samples with case weight 0 and use these for
variable importance and prediction error.

quantreg Prepare quantile prediction as in quantile regression forests (Meinshausen 2006).
Regression only. Set keep.inbag = TRUE to prepare out-of-bag quantile predic-
tion.

num.threads Number of threads. Default is number of CPUs available.

save.memory Use memory saving (but slower) splitting mode. No effect for survival and
GWAS data. Warning: This option slows down the tree growing, use only if you
encounter memory problems.

verbose Show computation status and estimated runtime.

seed Random seed. Default is NULL, which generates the seed from R. Set to 0 to
ignore the R seed.

dependent.variable.name

Name of dependent variable, needed if no formula given. For survival forests
this is the time variable.

status.variable.name

Name of status variable, only applicable to survival data and needed if no for-
mula given. Use 1 for event and 0 for censoring.

classification Only needed if data is a matrix. Set to TRUE to grow a classification forest.

Details

See blockfor and the ranger package.

Value

Object of class blockForest with elements

forest Saved forest (If write.forest set to TRUE). Note that the variable IDs in the
split.varIDs object do not necessarily represent the column number in R.

predictions Predicted classes/values, based on out of bag samples (classification and regres-
sion only).

variable.importance

Variable importance for each independent variable.
prediction.error

Overall out of bag prediction error. For classification this is the fraction of miss-
classified samples, for probability estimation and regression the mean squared
error and for survival one minus Harrell’s C-index.

blockForest 9

r.squared R squared. Also called explained variance or coefficient of determination (re-
gression only). Computed on out of bag data.

confusion.matrix

Contingency table for classes and predictions based on out of bag samples (clas-
sification only).

unique.death.times

Unique death times (survival only).

chf Estimated cumulative hazard function for each sample (survival only).

survival Estimated survival function for each sample (survival only).

call Function call.

num.trees Number of trees.
num.independent.variables

Number of independent variables.

mtry Value of mtry used.

min.node.size Value of minimal node size used.

treetype Type of forest/tree. classification, regression or survival.
importance.mode

Importance mode used.

num.samples Number of samples.

inbag.counts Number of times the observations are in-bag in the trees.

Author(s)

Marvin N. Wright

References

• Hornung, R. & Wright, M. N. (2019) Block Forests: random forests for blocks of clinical and
omics covariate data. BMC Bioinformatics 20:358. doi:10.1186/s128590192942y.

• Wright, M. N. & Ziegler, A. (2017). ranger: A Fast Implementation of Random Forests for
High Dimensional Data in C++ and R. J Stat Softw 77:1-17. doi:10.18637/jss.v077.i01.

• Schmid, M., Wright, M. N. & Ziegler, A. (2016). On the use of Harrell’s C for clinical
risk prediction via random survival forests. Expert Syst Appl 63:450-459. doi:10.1016/
j.eswa.2016.07.018.

• Wright, M. N., Dankowski, T. & Ziegler, A. (2017). Unbiased split variable selection for
random survival forests using maximally selected rank statistics. Stat Med. doi:10.1002/
sim.7212.

• Breiman, L. (2001). Random forests. Mach Learn, 45(1), 5-32. doi:10.1023/A:1010933404324.

• Ishwaran, H., Kogalur, U. B., Blackstone, E. H., & Lauer, M. S. (2008). Random survival
forests. Ann Appl Stat 2:841-860. doi:10.1097/JTO.0b013e318233d835.

• Malley, J. D., Kruppa, J., Dasgupta, A., Malley, K. G., & Ziegler, A. (2012). Probability
machines: consistent probability estimation using nonparametric learning machines. Methods
Inf Med 51:74-81. doi:10.3414/ME00010052.

https://doi.org/10.1186/s12859-019-2942-y
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.1016/j.eswa.2016.07.018
https://doi.org/10.1016/j.eswa.2016.07.018
https://doi.org/10.1002/sim.7212
https://doi.org/10.1002/sim.7212
https://doi.org/10.1023/A%3A1010933404324
https://doi.org/10.1097/JTO.0b013e318233d835
https://doi.org/10.3414/ME00-01-0052

10 predict.blockForest

• Hastie, T., Tibshirani, R., Friedman, J. (2009). The Elements of Statistical Learning. Springer,
New York. 2nd edition.

• Geurts, P., Ernst, D., Wehenkel, L. (2006). Extremely randomized trees. Mach Learn 63:3-42.
doi:10.1007/s1099400662261.

• Meinshausen (2006). Quantile Regression Forests. J Mach Learn Res 7:983-999. https:
//www.jmlr.org/papers/v7/meinshausen06a.html.

See Also

predict.blockForest

Examples

require(blockForest)

Standard Block Forest
blockForest(Species ~ ., iris,

blocks = list(1:2, 3:4),
mtry = c(1, 2),
block.weights = c(0.1, 0.9),
block.method = "BlockForest")

Without blocks, grow standard random forest
blockForest(Species ~ ., iris)

predict.blockForest Prediction using Random Forest variants for block-structured covari-
ate data

Description

This function is to be applied to the entry ’forest’ of the output of blockfor. See the example
section for illustration.

Usage

S3 method for class 'blockForest'
predict(
object,
data = NULL,
predict.all = FALSE,
num.trees = object$num.trees,
type = "response",
se.method = "infjack",
quantiles = c(0.1, 0.5, 0.9),
seed = NULL,
num.threads = NULL,

https://doi.org/10.1007/s10994-006-6226-1
https://www.jmlr.org/papers/v7/meinshausen06a.html
https://www.jmlr.org/papers/v7/meinshausen06a.html

predict.blockForest 11

verbose = TRUE,
...

)

Arguments

object blockForest object.

data New test data of class data.frame or gwaa.data (GenABEL).

predict.all Return individual predictions for each tree instead of aggregated predictions for
all trees. Return a matrix (sample x tree) for classification and regression, a 3d
array for probability estimation (sample x class x tree) and survival (sample x
time x tree).

num.trees Number of trees used for prediction. The first num.trees in the forest are used.

type Type of prediction. One of ’response’, ’se’, ’terminalNodes’, ’quantiles’ with
default ’response’. See below for details.

se.method Method to compute standard errors. One of ’jack’, ’infjack’ with default ’inf-
jack’. Only applicable if type = ’se’. See below for details.

quantiles Vector of quantiles for quantile prediction. Set type = 'quantiles' to use.

seed Random seed. Default is NULL, which generates the seed from R. Set to 0 to
ignore the R seed. The seed is used in case of ties in classification mode.

num.threads Number of threads. Default is number of CPUs available.

verbose Verbose output on or off.

... further arguments passed to or from other methods.

Details

For type = 'response' (the default), the predicted classes (classification), predicted numeric val-
ues (regression), predicted probabilities (probability estimation) or survival probabilities (survival)
are returned. For type = 'se', the standard error of the predictions are returned (regression only).
The jackknife-after-bootstrap or infinitesimal jackknife for bagging is used to estimate the stan-
dard errors based on out-of-bag predictions. See Wager et al. (2014) for details. For type =
'terminalNodes', the IDs of the terminal node in each tree for each observation in the given
dataset are returned. For type = 'quantiles', the selected quantiles for each observation are esti-
mated. See Meinshausen (2006) for details.

If type = 'se' is selected, the method to estimate the variances can be chosen with se.method. Set
se.method = 'jack' for jackknife-after-bootstrap and se.method = 'infjack' for the infinitesi-
mal jackknife for bagging.

For classification and predict.all = TRUE, a factor levels are returned as numerics. To retrieve the
corresponding factor levels, use rf$forest$levels, if rf is the ranger object.

Value

Object of class blockForest.prediction with elements

predictions Predicted classes/values (only for classification and regression)
unique.death.times Unique death times (only for survival).

12 predict.blockForest

chf Estimated cumulative hazard function for each sample (only for survival).
survival Estimated survival function for each sample (only for survival).
num.trees Number of trees.
num.independent.variables Number of independent variables.
treetype Type of forest/tree. Classification, regression or survival.
num.samples Number of samples.

Author(s)

Marvin N. Wright

References

• Wright, M. N. & Ziegler, A. (2017). ranger: A Fast Implementation of Random Forests for
High Dimensional Data in C++ and R. J Stat Softw 77:1-17. doi:10.18637/jss.v077.i01.

• Wager, S., Hastie T., & Efron, B. (2014). Confidence Intervals for Random Forests: The
Jackknife and the Infinitesimal Jackknife. J Mach Learn Res 15:1625-1651. https://jmlr.
org/papers/v15/wager14a.html.

• Meinshausen (2006). Quantile Regression Forests. J Mach Learn Res 7:983-999. https:
//www.jmlr.org/papers/v7/meinshausen06a.html.

See Also

blockForest

Examples

NOTE: There is no association between covariates and response for the
simulated data below.
Moreover, the input parameters of blockfor() are highly unrealistic
(e.g., nsets = 10 is specified much too small).
The purpose of the shown examples is merely to illustrate the
application of predict.blockForest().

Generate data:
################

set.seed(1234)

Covariate matrix:
X <- cbind(matrix(nrow=40, ncol=5, data=rnorm(40*5)),

matrix(nrow=40, ncol=30, data=rnorm(40*30, mean=1, sd=2)),
matrix(nrow=40, ncol=100, data=rnorm(40*100, mean=2, sd=3)))

colnames(X) <- paste("X", 1:ncol(X), sep="")

Block variable (list):
block <- rep(1:3, times=c(5, 30, 100))
block <- lapply(1:3, function(x) which(block==x))

Binary outcome:

https://doi.org/10.18637/jss.v077.i01
https://jmlr.org/papers/v15/wager14a.html
https://jmlr.org/papers/v15/wager14a.html
https://www.jmlr.org/papers/v7/meinshausen06a.html
https://www.jmlr.org/papers/v7/meinshausen06a.html

predict.blockForest 13

ybin <- factor(sample(c(0,1), size=40, replace=TRUE), levels=c(0,1))

Survival outcome:
ysurv <- cbind(rnorm(40), sample(c(0,1), size=40, replace=TRUE))

Divide in training and test data:

Xtrain <- X[1:30,]
Xtest <- X[31:40,]

ybintrain <- ybin[1:30]
ybintest <- ybin[31:40]

ysurvtrain <- ysurv[1:30,]
ysurvtest <- ysurv[31:40,]

Binary outcome: Apply algorithm to training data and obtain predictions
for the test data:
###

Apply a variant to the training data:

blockforobj <- blockfor(Xtrain, ybintrain, num.trees = 100, replace = TRUE, block=block,
nsets = 10, num.trees.pre = 50, splitrule="extratrees",
block.method = "SplitWeights")

blockforobj$paramvalues

Obtain prediction for the test data:

(predres <- predict(blockforobj$forest, data = Xtest, block.method = "SplitWeights"))
predres$predictions

Survival outcome: Apply algorithm to training data and obtain predictions
for the test data:
###

Apply a variant to the training data:

blockforobj <- blockfor(Xtrain, ysurvtrain, num.trees = 100, replace = TRUE, block=block,
nsets = 10, num.trees.pre = 50, splitrule="extratrees",
block.method = "SplitWeights")

blockforobj$paramvalues

Obtain prediction for the test data:

14 predictions.blockForest

(predres <- predict(blockforobj$forest, data = Xtest, block.method = "SplitWeights"))
rowSums(predres$chf)

predictions.blockForest

blockForest predictions

Description

Extract training data predictions of blockForest object.

Usage

S3 method for class 'blockForest'
predictions(x, ...)

Arguments

x blockForest object.

... Further arguments passed to or from other methods.

Value

Predictions: Classes for Classification forests, Numerical values for Regressions forests and the
estimated survival functions for all individuals for Survival forests.

Author(s)

Marvin N. Wright

See Also

blockForest

predictions.blockForest.prediction 15

predictions.blockForest.prediction

blockForest predictions

Description

Extract predictions of blockForest prediction object.

Usage

S3 method for class 'blockForest.prediction'
predictions(x, ...)

Arguments

x blockForest prediction object.

... Further arguments passed to or from other methods.

Value

Predictions: Classes for Classification forests, Numerical values for Regressions forests and the
estimated survival functions for all individuals for Survival forests.

Author(s)

Marvin N. Wright

See Also

blockForest

timepoints.blockForest

blockForest timepoints

Description

Extract unique death times of blockForest Survival forest

Usage

S3 method for class 'blockForest'
timepoints(x, ...)

16 timepoints.blockForest.prediction

Arguments

x blockForest Survival forest object.

... Further arguments passed to or from other methods.

Value

Unique death times

Author(s)

Marvin N. Wright

See Also

blockForest

timepoints.blockForest.prediction

blockForest timepoints

Description

Extract unique death times of blockForest Survival prediction object.

Usage

S3 method for class 'blockForest.prediction'
timepoints(x, ...)

Arguments

x blockForest Survival prediction object.

... Further arguments passed to or from other methods.

Value

Unique death times

Author(s)

Marvin N. Wright

See Also

blockForest

treeInfo 17

treeInfo Tree information in human readable format

Description

Extract tree information of a blockForest object.

Usage

treeInfo(object, tree = 1)

Arguments

object blockForest object.

tree Number of the tree of interest.

Details

Node and variable ID’s are 0-indexed, i.e., node 0 is the root node. If the formula interface is used
in the blockForest call, the variable ID’s are usually different to the original data used to grow the
tree. Refer to the variable name instead to be sure.

Splitting at unordered factors (nominal variables) depends on the option respect.unordered.factors
in the blockForest call. For the "ignore" and "order" approaches, all values smaller or equal the
splitval value go to the left and all values larger go to the right, as usual. However, with "order"
the values correspond to the order in object$forest$covariate.levels instead of the original
order (usually alphabetical). In the "partition" mode, the splitval values for unordered factor are
comma separated lists of values, representing the factor levels (in the original order) going to the
left.

Value

A data.frame with the columns

nodeID The nodeID, 0-indexed.
leftChild ID of the left child node, 0-indexed.
rightChild ID of the right child node, 0-indexed.
splitvarID ID of the splitting variable, 0-indexed. Caution, the variable order changes if the formula interface is used.
splitvarName Name of the splitting variable.
splitval The splitting value. For numeric or ordinal variables, all values smaller or equal go to the left, larger values to the right. For unordered factor variables see above.
terminal Logical, TRUE for terminal nodes.
prediction One column with the predicted class (factor) for classification and the predicted numerical value for regression. One probability per class for probability estimation in several columns. Nothing for survival, refer to object$forest$chf for the CHF node predictions.

Author(s)

Marvin N. Wright

18 treeInfo

Examples

require(blockForest)
rf <- blockForest(Species ~ ., data = iris)
treeInfo(rf, 1)

Index

blockfor, 2, 5, 7, 8, 10
blockForest, 4, 5, 12, 14–16

predict.blockForest, 10, 10
predictions

(predictions.blockForest.prediction),
15

predictions.blockForest, 14
predictions.blockForest.prediction, 15

timepoints (timepoints.blockForest), 15
timepoints.blockForest, 15
timepoints.blockForest.prediction, 16
treeInfo, 17

19

	blockfor
	blockForest
	predict.blockForest
	predictions.blockForest
	predictions.blockForest.prediction
	timepoints.blockForest
	timepoints.blockForest.prediction
	treeInfo
	Index

