Package ‘blavaan’

January 8, 2025

Title Bayesian Latent Variable Analysis
Version 0.5-8

Description Fit a variety of Bayesian latent variable models, including confirmatory
factor analysis, structural equation models, and latent growth curve models. Refer-
ences: Merkle & Rosseel (2018) <doi:10.18637/jss.v085.104>; Merkle et al. (2021) <doi:10.18637/jss.v100.106>.

License GPL (>=3)
ByteCompile true
Depends R(>= 3.5.0), methods, Rcpp(>=0.12.15)

Imports stats, utils, graphics, lavaan(>= 0.6-18), coda, mnormt,
nonnest2(>= 0.5-7), loo(>= 2.0), rstan(>= 2.26.0),
rstantools(>= 1.5.0), RcppParallel (>= 5.0.1), bayesplot,
Matrix, future.apply, tmvnsim

LinkingTo StanHeaders (>= 2.26.0), rstan (>= 2.26.0), BH (>= 1.69.0),
Repp (>=0.12.15), ReppEigen (>= 0.3.3.4.0), ReppParallel (>=
5.0.1)

Suggests runjags(>= 2.0.4-3), modeest(>= 2.3.3), rjags, cmdstanr,
semTools, blavsam, tinytest

SystemRequirements GNU make

NeedsCompilation yes

URL https://ecmerkle.github.io/blavaan/,
https://github.com/ecmerkle/blavaan

BugReports https://github.com/ecmerkle/blavaan/issues

Additional_repositories https://stan-dev.r-universe.dev,
https://ecmerkle.github.io/drat
Config/Needs/website brms

Author Edgar Merkle [aut, cre] (<https://orcid.org/0000-0001-7158-0653>),
Yves Rosseel [aut],
Ben Goodrich [aut],
Mauricio Garnier-Villarreal [ctb]
(<https://orcid.org/0000-0002-2951-6647>, R/blav_compare.R,

1

https://doi.org/10.18637/jss.v085.i04
https://doi.org/10.18637/jss.v100.i06
https://ecmerkle.github.io/blavaan/
https://github.com/ecmerkle/blavaan
https://github.com/ecmerkle/blavaan/issues
https://stan-dev.r-universe.dev
https://ecmerkle.github.io/drat
https://orcid.org/0000-0001-7158-0653
https://orcid.org/0000-0002-2951-6647

2 bctfa
R/ctr_bayes_fit.R, vignettes),
Terrence D. Jorgensen [ctb] (<https://orcid.org/0000-0001-5111-6773>,
R/ctr_bayes_fit.R, R/ctr_ppmc.R, R/blav_predict.R),
Huub Hoofs [ctb] (R/ctr_bayes_fit.R),
Rens van de Schoot [ctb] (R/ctr_bayes_fit.R),
Andrew Johnson [ctb] (Makevars),
Matthew Emery [ctb] (loo moment_match)
Maintainer Edgar Merkle <merklee@missouri.edu>
Repository CRAN
Date/Publication 2025-01-08 19:20:09 UTC
Contents
befa . . . e 2
bgrowth 5
blavaan e 8
blavaan-class e e 11
blavCompare e e e 13
blavFitIndices e 14
blavinspect L 17
blavPredict e 19
blav_internal e 21
bsem e 21
dpriors e e e e e 24
plotblavaan 25
PPINC . . . o o e e e e e e 26
sampleData 30
standardizedPosterior 32
Index 34
bcfa Fit Confirmatory Factor Analysis Models
Description

Fit a Confirmatory Factor Analysis (CFA) model.

Usage

n

bcfa(..., cp = "srs",
dp = NULL, n.chains = 3, burnin, sample,
adapt, mcmcfile = FALSE, mcmcextra = list(), inits = "simple”,
convergence = "manual”, target = "stan"”, save.lvs = FALSE,
wiggle = NULL, wiggle.sd = 0.1, prisamp = FALSE, jags.ic = FALSE,
seed = NULL, bcontrol = list())

https://orcid.org/0000-0001-5111-6773

bcfa

Arguments

cp
dp

n.chains

burnin

sample

adapt

mcmcfile

mcmcextra

inits

convergence

Default lavaan arguments. See lavaan.

Handling of prior distributions on covariance parameters: possible values are
"srs” (default) or "fa". Option "fa" is only available for target="jags".

Default prior distributions on different types of parameters, typically the result
of acall to dpriors(). See the dpriors() help file for more information.

Number of desired MCMC chains.

Number of burnin/warmup iterations (not including the adaptive iterations, for
target="jags"). Defaults to 4000 or target="jags" and 500 for Stan targets.

The total number of samples to take after burnin. Defaults to 10000 for tar-
get="jags" and 1000 for Stan targets.

For target="jags", the number of adaptive iterations to use at the start of sam-
pling. Defaults to 1000.

If TRUE, the JAGS/Stan model will be written to file (in the lavExport directory).
Can also supply a character string, which serves as the name of the directory to
which files will be written.

A list with potential names syntax (unavailable for target="stan"), monitor,
data, and 1lnsamp. The syntax object is a text string containing extra code
to insert in the JAGS/Stan model syntax. The data object is a list of extra data
to send to the JAGS/Stan model. If moment_match_k_threshold is specified
within data the looic of the model will be calculated using moment matching.
The monitor object is a character vector containing extra JAGS/Stan parameters
to monitor. The 11nsamp object is only relevant to models with ordinal variables,
and specifies the number of samples that should be drawn to approximate the
model log-likelihood (larger numbers imply higher accuracy and longer time).
This log-likelihood is specifically used to compute information criteria.

If it is a character string, the options are currently "simple"” (default), "Mplus”,
"prior”, or "jags". In the first two cases, parameter values are set as though
they will be estimated via ML (see lavaan). The starting parameter value for
each chain is then perturbed from the original values through the addition of
random uniform noise. If "prior” is used, the starting parameter values are
obtained based on the prior distributions (while also trying to ensure that the
starting values will not crash the model estimation). If ” jags", no starting values
are specified and JAGS will choose values on its own (and this will probably
crash Stan targets). You can also supply a list of starting values for each chain,
where the list format can be obtained from, e.g., blavInspect(fit, "inits").
Finally, you can specify starting values in a similar way to lavaan, using the
lavaan start argument (see the lavaan documentation for all the options there).
In this case, you should also set inits="simple"”, and be aware that the same
starting values will be used for each chain.

Useful only for target="jags". If "auto”, parameters are sampled until con-
vergence is achieved (via autorun. jags()). In this case, the arguments burnin
and sample are passed to autorun. jags() as startburnin and startsample,
respectively. Otherwise, parameters are sampled as specified by the user (or by
the run. jags defaults).

4 bctfa

target Desired MCMC sampling, with "stan” (pre-compiled marginal approach) as
default. Also available is "vb"”, which calls the rstan function vb(). Other
options include " jags", "stancond”, and "stanclassic”, which sample latent
variables and provide some greater functionality (because syntax is written "on

the fly"). But they are slower and less efficient.

save.lvs Should sampled latent variables (factor scores) be saved? Logical; defaults to
FALSE
wiggle Labels of equality-constrained parameters that should be "approximately" equal.

non non

Can also be "intercepts", "loadings", "regressions", "means".

wiggle.sd The prior sd (of normal distribution) to be used in approximate equality con-
straints. Can be one value, or (for target="stan") a numeric vector of values that
is the same length as wiggle.

prisamp Should samples be drawn from the prior, instead of the posterior (target="stan"
only)? Logical; defaults to FALSE

jags.ic Should DIC be computed the JAGS way, in addition to the BUGS way? Logical;
defaults to FALSE

seed A vector of length n. chains (for target " jags") or an integer (for target "stan")
containing random seeds for the MCMC run. If NULL, seeds will be chosen
randomly.

bcontrol A list containing additional parameters passed to run. jags (or autorun. jags)

or stan. See the manpage of those functions for an overview of the additional
parameters that can be set.

Details

The bcfa function is a wrapper for the more general blavaan function, using the following default
lavaan arguments: int.ov.free = TRUE, int.1lv.free = FALSE, auto.fix.first = TRUE (unless
std.1lv =TRUE), auto.fix.single = TRUE, auto.var = TRUE, auto.cov.lv.x = TRUE, auto. th =
TRUE, auto.delta = TRUE, and auto.cov.y = TRUE.

Value

An object that inherits from class lavaan, for which several methods are available, including a
summary method.

References

Edgar C. Merkle, Ellen Fitzsimmons, James Uanhoro, & Ben Goodrich (2021). Efficient Bayesian
Structural Equation Modeling in Stan. Journal of Statistical Software, 100(6), 1-22. URL http://www.jstatsoft.org/v100/i06/.

Edgar C. Merkle & Yves Rosseel (2018). blavaan: Bayesian Structural Equation Models via Param-
eter Expansion. Journal of Statistical Software, 85(4), 1-30. URL http://www.jstatsoft.org/v85/i04/.

Yves Rosseel (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical
Software, 48(2), 1-36. URL http://www.jstatsoft.org/v48/i02/.

See Also

blavaan

bgrowth 5

Examples

data(HolzingerSwineford1939, package = "lavaan")

The Holzinger and Swineford (1939) example

HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '
Not run:
fit <- bcfa(HS.model, data = HolzingerSwineford1939)
summary (fit)

End(Not run)

A short run for rough results

fit <- bcfa(HS.model, data = HolzingerSwineford1939, burnin = 100, sample = 100,
n.chains = 2)

summary (fit)

bgrowth Fit Growth Curve Models

Description

Fit a Growth Curve model.

Usage
bgrowth(..., cp = "srs”, dp = NULL, n.chains = 3,
burnin, sample, adapt, mcmcfile = FALSE, mcmcextra = list(),
inits = "simple”, convergence = "manual”, target = "stan",

save.lvs = FALSE, wiggle = NULL, wiggle.sd = 0.1, prisamp = FALSE,
jags.ic = FALSE, seed = NULL, bcontrol = list())

Arguments

Default lavaan arguments. See lavaan.

cp Handling of prior distributions on covariance parameters: possible values are
"srs" (default) or "fa". Option "fa" is only available for target="jags".

dp Default prior distributions on different types of parameters, typically the result
of acall to dpriors(). See the dpriors() help file for more information.

n.chains Number of desired MCMC chains.

burnin Number of burnin/warmup iterations (not including the adaptive iterations, for
target="jags"). Defaults to 4000 or target="jags" and 500 for Stan targets.

sample The total number of samples to take after burnin. Defaults to 10000 for tar-

get="jags" and 1000 for Stan targets.

adapt

mcmefile

mcmcextra

inits

convergence

target

save.lvs

wiggle

wiggle.sd

bgrowth

For target="jags", the number of adaptive iterations to use at the start of sam-
pling. Defaults to 1000.

If TRUE, the JAGS/Stan model will be written to file (in the lavExport directory).
Can also supply a character string, which serves as the name of the directory to
which files will be written.

A list with potential names syntax (unavailable for target="stan"), monitor,
data, and 1lnsamp. The syntax object is a text string containing extra code
to insert in the JAGS/Stan model syntax. The data object is a list of extra data
to send to the JAGS/Stan model. If moment_match_k_threshold is specified
within data the looic of the model will be calculated using moment matching.
The monitor object is a character vector containing extra JAGS/Stan parameters
to monitor. The 11nsamp object is only relevant to models with ordinal variables,
and specifies the number of samples that should be drawn to approximate the
model log-likelihood (larger numbers imply higher accuracy and longer time).
This log-likelihood is specifically used to compute information criteria.

If it is a character string, the options are currently "simple"” (default), "Mplus”,
"prior”, or "jags". In the first two cases, parameter values are set as though
they will be estimated via ML (see lavaan). The starting parameter value for
each chain is then perturbed from the original values through the addition of
random uniform noise. If "prior” is used, the starting parameter values are
obtained based on the prior distributions (while also trying to ensure that the
starting values will not crash the model estimation). If ” jags", no starting values
are specified and JAGS will choose values on its own (and this will probably
crash Stan targets). You can also supply a list of starting values for each chain,
where the list format can be obtained from, e.g., blavInspect(fit, "inits").
Finally, you can specify starting values in a similar way to lavaan, using the
lavaan start argument (see the lavaan documentation for all the options there).
In this case, you should also set inits="simple”, and be aware that the same
starting values will be used for each chain.

Useful only for target="jags". If "auto”, parameters are sampled until con-
vergence is achieved (via autorun. jags()). In this case, the arguments burnin
and sample are passed to autorun. jags() as startburnin and startsample,
respectively. Otherwise, parameters are sampled as specified by the user (or by
the run. jags defaults).

Desired MCMC sampling, with "stan” (pre-compiled marginal approach) as
default. Also available is "vb"”, which calls the rstan function vb(). Other
options include " jags", "stancond”, and "stanclassic”, which sample latent
variables and provide some greater functionality (because syntax is written "on

the fly"). But they are slower and less efficient.

Should sampled latent variables (factor scores) be saved? Logical; defaults to
FALSE

Labels of equality-constrained parameters that should be "approximately" equal.

non non

Can also be "intercepts", "loadings", "regressions", "means".

The prior sd (of normal distribution) to be used in approximate equality con-
straints. Can be one value, or (for target="stan") a numeric vector of values that
is the same length as wiggle.

bgrowth 7

prisamp Should samples be drawn from the prior, instead of the posterior (target="stan"
only)? Logical; defaults to FALSE

jags.ic Should DIC be computed the JAGS way, in addition to the BUGS way? Logical,
defaults to FALSE

seed A vector of length n. chains (for target " jags") or an integer (for target "stan")
containing random seeds for the MCMC run. If NULL, seeds will be chosen
randomly.

bcontrol A list containing additional parameters passed to run. jags (or autorun. jags)

or stan. See the manpage of those functions for an overview of the additional
parameters that can be set.

Details

The bgrowth function is a wrapper for the more general blavaan function, using the following

default 1avaan arguments: meanstructure = TRUE, int.ov.free = FALSE, int.1lv.free = TRUE,
auto.fix.first = TRUE (unless std.1lv = TRUE), auto.fix.single = TRUE, auto.var = TRUE, auto.cov.1lv.x
=TRUE, auto.th = TRUE, auto.delta = TRUE, and auto.cov.y = TRUE.

Value

An object of class blavaan, for which several methods are available, including a summary method.

References

Edgar C. Merkle, Ellen Fitzsimmons, James Uanhoro, & Ben Goodrich (2021). Efficient Bayesian
Structural Equation Modeling in Stan. Journal of Statistical Software, 100(6), 1-22. URL http://www.jstatsoft.org/v100/i06/.

Edgar C. Merkle & Yves Rosseel (2018). blavaan: Bayesian Structural Equation Models via Param-
eter Expansion. Journal of Statistical Software, 85(4), 1-30. URL http://www.jstatsoft.org/v85/i04/.

Yves Rosseel (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical
Software, 48(2), 1-36. URL http://www.jstatsoft.org/v48/i02/.

See Also

blavaan

Examples

Not run:
linear growth model with a time-varying covariate
data(Demo.growth, package = "lavaan")
model.syntax <- '
intercept and slope with fixed coefficients
1=~ 1%t1 + 1*%t2 + 1xt3 + 1xt4
s =~ @xt1 + Txt2 + 2%t3 + 3*xt4

regressions
i~ x1 + x2
s ~ x1 + x2

8 blavaan

time-varying covariates

t1 ~ cl
t2 ~ c2
t3 ~ c3
t4 ~ c4

fit <- bgrowth(model.syntax, data = Demo.growth)
summary (fit)

End(Not run)

blavaan Fit a Bayesian Latent Variable Model

Description

Fit a Bayesian latent variable model.

Usage
blavaan(..., cp = "srs”,
dp = NULL, n.chains = 3, burnin, sample,
adapt, mcmcfile = FALSE, mcmcextra = list(), inits = "simple”,
convergence = "manual”, target = "stan", save.lvs = FALSE,
wiggle = NULL, wiggle.sd = 0.1, prisamp = FALSE, jags.ic = FALSE,
seed = NULL, bcontrol = list())
Arguments
Default lavaan arguments. See lavaan.
cp Handling of prior distributions on covariance parameters: possible values are
"srs” (default) or "fa”. Option "fa" is only available for target="jags".
dp Default prior distributions on different types of parameters, typically the result
of acall to dpriors(). See the dpriors() help file for more information.
n.chains Number of desired MCMC chains.
burnin Number of burnin/warmup iterations (not including the adaptive iterations, for
target="jags"). Defaults to 4000 or target="jags" and 500 for Stan targets.
sample The total number of samples to take after burnin. Defaults to 10000 for tar-
get="jags" and 1000 for Stan targets.
adapt For target="jags", the number of adaptive iterations to use at the start of sam-
pling. Defaults to 1000.
mcmcfile If TRUE, the JAGS/Stan model and data will be written to files (in the lavExport

directory). Can also supply a character string, which serves as the name of the
directory to which files will be written.

blavaan

mcmcextra

inits

convergence

target

save.lvs

wiggle

wiggle.sd

prisamp

jags.ic

A list with potential names syntax (unavailable for target="stan"), monitor,
data, and 11nsamp. The syntax object is a text string containing extra code
to insert in the JAGS/Stan model syntax. The data object is a list of extra data
to send to the JAGS/Stan model. If moment_match_k_threshold is specified
within data the looic of the model will be calculated using moment matching.
The monitor object is a character vector containing extra JAGS/Stan parameters
to monitor. The 11nsamp object is only relevant to models with ordinal variables,
and specifies the number of samples that should be drawn to approximate the
model log-likelihood (larger numbers imply higher accuracy and longer time).
This log-likelihood is specifically used to compute information criteria.

If it is a character string, the options are currently "simple"” (default), "Mplus”,
"prior”, or "jags". In the first two cases, parameter values are set as though
they will be estimated via ML (see lavaan). The starting parameter value for
each chain is then perturbed from the original values through the addition of
random uniform noise. If "prior” is used, the starting parameter values are
obtained based on the prior distributions (while also trying to ensure that the
starting values will not crash the model estimation). If " jags", no starting values
are specified and JAGS will choose values on its own (and this will probably
crash Stan targets). You can also supply a list of starting values for each chain,
where the list format can be obtained from, e.g., blavInspect(fit, "inits").
Finally, you can specify starting values in a similar way to lavaan, using the
lavaan start argument (see the lavaan documentation for all the options there).
In this case, you should also set inits="simple"”, and be aware that the same
starting values will be used for each chain.

Useful only for target="jags". If "auto”, parameters are sampled until con-
vergence is achieved (via autorun. jags()). In this case, the arguments burnin
and sample are passed to autorun. jags() as startburnin and startsample,
respectively. Otherwise, parameters are sampled as specified by the user (or by
the run. jags defaults).

Desired MCMC sampling, with "stan” (pre-compiled marginal approach) as
default. Also available is "vb"”, which calls the rstan function vb(). Other
options include " jags", "stancond”, and "stanclassic”, which sample latent
variables and provide some greater functionality (because syntax is written "on

the fly"). But they are slower and less efficient.

Should sampled latent variables (factor scores) be saved? Logical; defaults to
FALSE

Labels of equality-constrained parameters that should be "approximately" equal.

non non

Can also be "intercepts", "loadings", "regressions", "means".

The prior sd (of normal distribution) to be used in approximate equality con-
straints. Can be one value, or (for target="stan") a numeric vector of values that
is the same length as wiggle.

Should samples be drawn from the prior, instead of the posterior (target="stan"
only)? Logical; defaults to FALSE

Should DIC be computed the JAGS way, in addition to the BUGS way? Logical,
defaults to FALSE

10 blavaan

seed A vector of length n. chains (for target " jags") or an integer (for target "stan”)
containing random seeds for the MCMC run. If NULL, seeds will be chosen
randomly.

bcontrol A list containing additional parameters passed to run. jags (or autorun. jags)

or stan. See the manpage of those functions for an overview of the additional
parameters that can be set.

Value

An object that inherits from class lavaan, for which several methods are available, including a
summary method.

References

Edgar C. Merkle, Ellen Fitzsimmons, James Uanhoro, & Ben Goodrich (2021). Efficient Bayesian
Structural Equation Modeling in Stan. Journal of Statistical Software, 100(6), 1-22. URL http://www.jstatsoft.org/v100/i06/.

Edgar C. Merkle & Yves Rosseel (2018). blavaan: Bayesian Structural Equation Models via Param-
eter Expansion. Journal of Statistical Software, 85(4), 1-30. URL http://www.jstatsoft.org/v85/i04/.

Yves Rosseel (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical
Software, 48(2), 1-36. URL http://www.jstatsoft.org/v48/i02/.

See Also

bcfa, bsem, bgrowth

Examples

Not run:
data(HolzingerSwineford1939, package = "lavaan”)

The Holzinger and Swineford (1939) example

HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

fit <- blavaan(HS.model, data = HolzingerSwineford1939,
auto.var = TRUE, auto.fix.first = TRUE,
auto.cov.lv.x = TRUE)

summary (fit)

coef (fit)

End(Not run)

blavaan-class 11

blavaan-class Class For Representing A (Fitted) Bayesian Latent Variable Model

Description

The blavaan class contains the 1avaan class, representing a (fitted) Bayesian latent variable model.
It contains a description of the model as specified by the user, a summary of the data, an internal
matrix representation, and if the model was fitted, the fitting results.

Objects from the Class

Objects can be created via the bcfa, bsem, bgrowth or blavaan functions.

Slots

version: The lavaan package version used to create this objects
call: The function call as returned by match.call().

timing: The elapsed time (user+system) for various parts of the program as a list, including the
total time.

Options: Named list of options that were provided by the user, or filled-in automatically.

ParTable: Named list describing the model parameters. Can be coerced to a data.frame. In the
documentation, this is called the ‘parameter table’.

pta: Named list containing parameter table attributes.

Data: Object of internal class "Data”: information about the data.

SampleStats: Object of internal class "SampleStats”: sample statistics

Model: Object of internal class "Model”: the internal (matrix) representation of the model

Cache: List using objects that we try to compute only once, and reuse many times.

Fit: Object of internal class "Fit": the results of fitting the model. No longer used.

boot: List. Unused for Bayesian models.

optim: List. Information about the optimization.

loglik: List. Information about the loglikelihood of the model (if maximum likelihood was used).
implied: List. Model implied statistics.

vcov: List. Information about the variance matrix (vcov) of the model parameters.

test: List. Different test statistics.

h1: List. Information about the unrestricted h1 model (if available).

baseline: List. Information about a baseline model (often the independence model) (if available).

external: List. Includes Stan or JAGS objects used for MCMC.

12 blavaan-class

Methods

coef signature(object ="blavaan”, type = "free"): Returns the estimates of the parameters
in the model as a named numeric vector. If type="free", only the free parameters are re-
turned. If type="user", all parameters listed in the parameter table are returned, including
constrained and fixed parameters.

veov signature(object = "lavaan™): returns the covariance matrix of the estimated parameters.
show signature(object = "blavaan”): Print a short summary of the model fit

summary signature(object = "blavaan”, header = TRUE, fit.measures = FALSE, estimates

=TRUE, ci = TRUE, standardized = FALSE, rsquare = FALSE, std.nox = FALSE, psrf = TRUE,
neff = FALSE, postmedian = FALSE, postmode = FALSE, priors = TRUE, bf = FALSE, nd =
3L): Print a nice summary of the model estimates. If header = TRUE, the header section (in-
cluding fit measures) is printed. If fit.measures = TRUE, additional fit measures are added
to the header section. If estimates = TRUE, print the parameter estimates section. If ci =
TRUE, add confidence intervals to the parameter estimates section. If standardized = TRUE,
the standardized solution is also printed. Note that SEs and tests are still based on unstandard-
ized estimates. Use standardizedSolution to obtain SEs and test statistics for standardized
estimates. If rsquare=TRUE, the R-Square values for the dependent variables in the model
are printed. If std.nox = TRUE, the std.all column contains the the std.nox column from
the parameterEstimates() output. If psrf = TRUE, potential scale reduction factors (Rhats) are
printed. If neff = TRUE, effective sample sizes are printed. If postmedian or postmode are
TRUE, posterior medians or modes are printed instead of posterior means. If priors = TRUE,
parameter prior distributions are printed. If bf = TRUE, Savage-Dickey approximations of the
Bayes factor are printed for certain parameters. Nothing is returned (use lavInspect or an-
other extractor function to extract information from a fitted model).

References

Edgar C. Merkle, Ellen Fitzsimmons, James Uanhoro, & Ben Goodrich (2021). Efficient Bayesian
Structural Equation Modeling in Stan. Journal of Statistical Software, 100(6), 1-22. URL http://www.jstatsoft.org/v100/i06/.

Edgar C. Merkle & Yves Rosseel (2018). blavaan: Bayesian Structural Equation Models via Param-
eter Expansion. Journal of Statistical Software, 85(4), 1-30. URL http://www.jstatsoft.org/v85/i04/.

Yves Rosseel (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical
Software, 48(2), 1-36. URL http://www.jstatsoft.org/v48/i02/.

See Also

bcfa, bsem, bgrowth

Examples
Not run:
HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

fit <- bcfa(HS.model, data=HolzingerSwineford1939)

summary(fit, standardized=TRUE, fit.measures=TRUE, rsquare=TRUE)

blavCompare

coef (fit)

End(Not run)

13

blavCompare Bayesian model comparisons

Description

Bayesian model comparisons, including WAIC, LOO, and Bayes factor approximation.

Usage
blavCompare(object1, object2, ...)
Arguments
object1 An object of class blavaan.
object?2 A second object of class blavaan.
Other arguments to loo().
Details

This function computes Bayesian model comparison metrics, including a Bayes factor approxima-

tion, WAIC, and LOOIC.

The log-Bayes factor of the two models is based on the Laplace approximation to each model’s

marginal log-likelihood.

The WAIC and LOOIC metrics come from the loo package. The ELPD difference and SE specifi-

cally come from loo::loo_compare().

Value

A list containing separate results for log-Bayes factor, WAIC, LOOIC, and differences between

WAIC and LOOIC.

References

Raftery, A. E. (1993). Bayesian model selection in structural equation models. In K. A. Bollen &

J. S. Long (Eds.), Testing structural equation models (pp. 163-180). Beverly Hills, CA: Sage.

Vehtari A., Gelman A., Gabry J. (2017). Practical Bayesian model evaluation using leave-one-out

cross-validation and WAIC. Statistics and Computing, 27, 1413-1432.

14 blavFitIndices

Examples

Not run:
data(HolzingerSwineford1939, package = "lavaan")

hsml <- ' visual =~ x1 + x2 + x3 + x4
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

fitl <- bcfa(hsml, data = HolzingerSwineford1939)

hsm2 <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6 + x7
speed =~ x7 + x8 + x9 '

fit2 <- bcfa(hsm2, data = HolzingerSwineford1939)
blavCompare(fitl, fit2)

End(Not run)

blavFitIndices SEM Fit Indices for Bayesian SEM

Description

This function provides a posterior distribution of some x2-based fit indices to assess the global fit
of a latent variable model.

Usage

blavFitIndices(object, thin = 1L, pD = c("loo","waic","dic"),

rescale = c("devM", "ppmc”, "mecmc”),
fit.measures = "all"”, baseline.model = NULL)

S4 method for signature 'blavFitIndices'
S4 method for signature 'blavFitIndices'
summary (object, ...)

S3 method for class 'bfi'
summary(object, central.tendency = c("mean”,"median”,"mode"),
hpd = TRUE, prob = .90)

Arguments
object An object of class blavaan.
thin Optional integer indicating how much to thin each chain. Default is 1L, indi-

cating not to thin the chains.

blavFitIndices

pD

rescale

fit.measures

baseline.model

central.tendency

hpd

prob

Value

15

character indicating from which information criterion returned by fitMeasures(object)
to use the estimated number of parameters. The default is from the leave-one-out
information criterion (LOO-IC), which is most highly recommended by Vehtari

et al. (2017).

character indicating the method used to calculate fit indices. If rescale =
"devM” (default), the Bayesian analog of the 2 statistic (the deviance evaluated
at the posterior mean of the model parameters) is approximated by rescaling the
deviance at each iteration by subtracting the estimated number of parameters. If
rescale = "PPMC", the deviance at each iteration is rescaled by subtracting the
deviance of data simulated from the posterior predictive distribution (as in pos-
terior predictive model checking; see Hoofs et al., 2017). If rescale = "MCMC",
the fit measures are simply calculated using fitMeasures at each iteration of the
Markov chain(s), based on the model-implied moments at that iteration (NOT
advised when the model includes informative priors, in which case the model’s
estimated pD will deviate from the number of parameters used to calculate df in
fitMeasures).

If "all"”, all fit measures available will be returned. If only a single or a few
fit measures are specified by name, only those are computed and returned. If
rescale = "devM"” or "PPMC”, the currently available indices are "BRMSEA",
"BGammaHat", "adjBGammaHat", "BMc", "BCFI", "BTLI", or "BNFI". If rescale
= "MCMC", the user may request any indices returned by fitMeasures for objects
of class lavaan.

If not NULL, an object of class blavaan, representing a user-specified baseline
model. If a baseline.model is provided, incremental fit indices (BCFI, BTLI,
or BNFI) can be requested in fit.measures. Ignored if rescale = "MCMC".

Additional arguments to the summary method:

non non

Takes values "mean", "median", "mode", indicating which statistics should be
used to characterize the location of the posterior distribution. By default, all 3
statistics are returned. The posterior mean is labeled EAP for expected a poste-
riori estimate, and the mode is labeled MAP for modal a posteriori estimate.

A logical indicating whether to calculate the highest posterior density (HPD)
credible interval for each fit index (defaults to TRUE).

The "confidence" level of the credible interval(s) (defaults to 0.9).

An S4 object of class blavFitIndices consisting of 2 slots:

@details

@indices

A list containing the choices made by the user (or defaults; e.g., which values
of pD and rescale were set), as well as the posterior distribution of the x?
(deviance) statistic (rescaled, if rescale = "devM” or "PPMC").

A list containing the posterior distribution of each requested fit.measure.

The summary () method returns a data. frame containing one row for each requested fit.measure,
and columns containing the specified measure(s) of central. tendency, the posterior SD, and (if
requested) the HPD credible-interval limits.

16 blavFitIndices

Author(s)

Mauricio Garnier-Villareal (Vrije Universiteit Amsterdam; <mgv@pm.me>)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

rescale = "PPMC" based on:

Hoofs, H., van de Schoot, R., Jansen, N. W., & Kant, I. (2017). Evaluating model fit in Bayesian
confirmatory factor analysis with large samples: Simulation study introducing the BRMSEA. Edu-
cational and Psychological Measurement. doi:10.1177/0013164417709314

rescale = "devM"” based on:

Garnier-Villarreal, M., & Jorgensen, T. D. (2020). Adapting Fit Indices for Bayesian Structural
Equation Modeling: Comparison to Maximum Likelihood. Psychological Methods, 25(1), 46-70.
https://doi.org/dx.doi.org/10.1037/met0000224 (See also https://osf.io/afkcw/)

Other references:

Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-
out cross-validation and WAIC. Statistics and Computing, 27(5), 1413-1432. doi:10.1007/s11222-
016-9696-4

Examples

Not run:
data(HolzingerSwineford1939, package = "lavaan")

HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

fit target model
fitl <- bcfa(HS.model, data = HolzingerSwineford1939,
n.chains = 2, burnin = 1000, sample = 1000)

fit null model to calculate CFI, TLI, and NFI
null.model <- c(paste@("x", 1:9, " ~~ x", 1:9), pasted("x", 1:9, " ~1"))
fit@ <- bcfa(null.model, data = HolzingerSwineford1939,

n.chains = 2, burnin = 1000, sample = 1000)

calculate posterior distributions of fit indices

The default method mimics fit indices derived from ML estimation
ML <- blavFitIndices(fit1, baseline.model = fit®@)

ML

summary (ML)

other options:

- use Hoofs et al.'s (2017) PPMC-based method
- use the estimated number of parameters from WAIC instead of LOO-IC
PPMC <- blavFitIndices(fit1l, baseline.model = fito,

pD = "waic"”, rescale = "PPMC")

https://osf.io/afkcw/

blavInspect 17

issues a warning about using rescale="PPMC" with N < 1000 (see Hoofs et al.)

- specify only the desired measures of central tendency
- specify a different "confidence” level for the credible intervals
summary (PPMC, central.tendency = c("mean”,"mode"), prob = .95)

Access the posterior distributions for further investigation
head(distML <- data.frame(ML@indices))

For example, diagnostic plots using the bayesplot package:

distinguish chains
nChains <- blavInspect(fit1l, "n.chains")
distML$Chain <- rep(1:nChains, each = nrow(distML) / nChains)

library(bayesplot)

mcmc_pairs(distML, pars = c("BRMSEA","BMc", "BGammaHat","BCFI",6"BTLI"),
diag_fun = "hist")

Indices are highly correlated across iterations in both chains

Compare to PPMC method

distPPMC <- data.frame(PPMC@indices)

distPPMC$Chain <- rep(1:nChains, each = nrow(distPPMC) / nChains)

mcmc_pairs(distPPMC, pars = c("BRMSEA","BMc","BGammaHat","BCFI", "BTLI"),
diag_fun = "dens")

nonlinear relation between BRMSEA, related to the floor effect of BRMSEA

that Hoofs et al. found for larger (12-indicator) models

End(Not run)

blavInspect Inspect or Extract Information from a Fitted blavaan Object

Description

The blavInspect() and blavTech() functions can be used to inspect/extract information that
is stored inside (or can be computed from) a fitted blavaan object. This is similar to lavaan’s
lavInspect () function.

Usage

blavInspect(blavobject, what, ...)

blavTech(blavobject, what, ...)

18 blavInspect

Arguments
blavobject An object of class blavaan.
what Character. What needs to be inspected/extracted? See Details for Bayes-specific
options, and see lavaan’s lavInspect () for additional options. Note: the what
argument is not case-sensitive (everything is converted to lower case.)
lavaan arguments supplied to lavInspect(); see lavaan.
Details

Below is a list of Bayesian-specific values for the what argument; additional values can be found in
the lavInspect () documentation.

"start”: A list of starting values for each chain, unless inits="jags" is used during model esti-

n on

mation. Aliases: "starting.values”, "inits".

"rhat"”: Each parameter’s potential scale reduction factor for convergence assessment. Can also
use "psrf" instead of "rhat"

"ac.10": Each parameter’s estimated lag-10 autocorrelation.
"neff": Each parameters effective sample size, taking into account autocorrelation.

"memc”: An object of class mcme containing the individual parameter draws from the MCMC run.
Aliases: "draws”, "samples”.

"mcobj”: The underlying run.jags or stan object that resulted from the MCMC run.
"n.chains"”: The number of chains sampled.

n

cp”: The approach used for estimating covariance parameters ("srs” or "fa"); these are only
relevant if using JAGS.

"dp": Default prior distributions used for each type of model parameter.
"postmode”: Estimated posterior mode of each free parameter.
"postmean”: Estimated posterior mean of each free parameter.
"postmedian”: Estimated posterior median of each free parameter.

"lvs": An object of class mcmc containing latent variable (factor score) draws. In two-level models,
use level =1 or level = 2 to specify which factor scores you want.

"lvmeans”: A matrix of mean factor scores (rows are observations, columns are variables). Use
the additional level argument in the same way.

"hpd”: HPD interval of each free parameter. In this case, the prob argument can be used to specify
a number in (0,1) reflecting the desired percentage of the interval.

See Also

lavInspect, bcfa, bsem, bgrowth

blavPredict 19

Examples

Not run:
The Holzinger and Swineford (1939) example
data(HolzingerSwineford1939, package = "lavaan")

HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

fit <- bcfa(HS.model, data = HolzingerSwineford1939,
bcontrol = list(method = "rjparallel”))

extract information
blavInspect(fit, "psrf")
blavInspect(fit, "hpd"”, prob = .9)

End(Not run)

blavPredict Predict the values of latent variables, observed variables, and missing
variables.

Description

The purpose of the blavPredict() function is to compute various types of model predictions,
conditioned on observed data. This differs somewhat from lavPredict() in lavaan.

Usage

blavPredict(object, newdata = NULL, type = "1lv", level = 1L)

Arguments

object An object of class blavaan.

newdata An optional data.frame, containing the same variables as the data.frame used
when fitting the model in object.

type A character string. If "1v", estimated values for the latent variables in the model
are computed. If "ov” or "yhat", predicted means for the observed variables in
the model are computed. If "ypred” or "ydist", predicted values for the ob-
served variables (including residual noise) are computed. If "ymis"” or "ovmis”,
model predicted values ("imputations") for the missing data are computed. See
details for further information.

level For type = "1v", used to specify whether one desires the level 1 latent variables

or level 2 latent variables.

20 blavPredict

Details

The predict() function calls the blavPredict() function with its default options.

Below, we provide more information about each type option. Most options only work for tar-
get="stan", and "number of samples" is defined as the number of posterior samples across all chains.

type="1v": The posterior distribution of latent variables conditioned on observed variables. Re-
turns a list with "number of samples" entries, where each entry is a matrix where rows are observa-
tions and columns are latent variables.

type="yhat": The posterior expected value of observed variables conditioned on the sampled latent
variables. Returns a list with "number of samples" entries, where each entry is a matrix where rows
are observations and columns are observed variables.

type="ypred": The posterior predictive distribution of observed variables conditioned on the sam-
pled latent variables (including residual variability). Returns a list with "number of samples" entries,
where each entry is a data frame where rows are observations and columns are observed variables.

type="ymis": The posterior predictive distribution of missing values conditioned on observed vari-
ables. Returns a matrix with "number of samples" rows and "number of missing variables" columns.

See Also

Users may also wish to generate the posterior predictive distribution of observed data, not condi-
tioned on the latent variables. This would often be viewed as data from new clusters (people) that
were not observed in the original dataset. For that, see sampleData().

Examples

Not run:
data(HolzingerSwineford1939, package = "lavaan")

fit model

HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

fit <- bcfa(HS.model, data = HolzingerSwineford1939, save.lvs = TRUE)
lapply(blavPredict(fit)[1:2], head) # first 6 rows of first 10 posterior samples
head(blavPredict(fit, type = "yhat")[[1]1]) # top of first posterior sample

multigroup models return a list of factor scores (one per group)
mgfit <- bcfa(HS.model, data = HolzingerSwineford1939, group = "school”,

non

group.equal = c("loadings”,"intercepts”), save.lvs = TRUE)

lapply(blavPredict(fit)[1:2], head)
head(blavPredict(fit, type = "ypred”)[[111)

End(Not run)

blav_internal

21

blav_internal

blavaan internal functions

Description

Internal functions related to Bayesian model estimation. Not to be called by the user.

bsem

Fit Structural Equation Models

Description

Fit a Structural Equation Model (SEM).

Usage
bsem(..., cp = "srs",
dp = NULL, n.chains = 3, burnin, sample,
adapt, mcmcfile = FALSE, mcmcextra = list(), inits = "simple”,
convergence = "manual”, target = "stan”, save.lvs = FALSE,
wiggle = NULL, wiggle.sd = 0.1, prisamp = FALSE, jags.ic = FALSE,
seed = NULL, bcontrol = list())
Arguments
Default lavaan arguments. See lavaan.
cp Handling of prior distributions on covariance parameters: possible values are
"srs” (default) or "fa". Option "fa" is only available for target="jags".
dp Default prior distributions on different types of parameters, typically the result
of a call to dpriors(). See the dpriors() help file for more information.
n.chains Number of desired MCMC chains.
burnin Number of burnin/warmup iterations (not including the adaptive iterations, for
target="jags"). Defaults to 4000 or target="jags" and 500 for Stan targets.
sample The total number of samples to take after burnin. Defaults to 10000 for tar-
get="jags" and 1000 for Stan targets.
adapt For target="jags", the number of adaptive iterations to use at the start of sam-
pling. Defaults to 1000.
mcmcfile If TRUE, the JAGS/Stan model will be written to file (in the lavExport directory).

Can also supply a character string, which serves as the name of the directory to
which files will be written.

22

mcmcextra

inits

convergence

target

save.lvs

wiggle

wiggle.sd

prisamp

jags.ic

bsem

A list with potential names syntax (unavailable for target="stan"), monitor,
data, and 11nsamp. The syntax object is a text string containing extra code
to insert in the JAGS/Stan model syntax. The data object is a list of extra data
to send to the JAGS/Stan model. If moment_match_k_threshold is specified
within data the looic of the model will be calculated using moment matching.
The monitor object is a character vector containing extra JAGS/Stan parameters
to monitor. The 11nsamp object is only relevant to models with ordinal variables,
and specifies the number of samples that should be drawn to approximate the
model log-likelihood (larger numbers imply higher accuracy and longer time).
This log-likelihood is specifically used to compute information criteria.

If it is a character string, the options are currently "simple"” (default), "Mplus”,
"prior”, or "jags". In the first two cases, parameter values are set as though
they will be estimated via ML (see lavaan). The starting parameter value for
each chain is then perturbed from the original values through the addition of
random uniform noise. If "prior” is used, the starting parameter values are
obtained based on the prior distributions (while also trying to ensure that the
starting values will not crash the model estimation). If " jags", no starting values
are specified and JAGS will choose values on its own (and this will probably
crash Stan targets). You can also supply a list of starting values for each chain,
where the list format can be obtained from, e.g., blavInspect(fit, "inits").
Finally, you can specify starting values in a similar way to lavaan, using the
lavaan start argument (see the lavaan documentation for all the options there).
In this case, you should also set inits="simple"”, and be aware that the same
starting values will be used for each chain.

Useful only for target="jags". If "auto”, parameters are sampled until con-
vergence is achieved (via autorun. jags()). In this case, the arguments burnin
and sample are passed to autorun. jags() as startburnin and startsample,
respectively. Otherwise, parameters are sampled as specified by the user (or by
the run. jags defaults).

Desired MCMC sampling, with "stan” (pre-compiled marginal approach) as
default. Also available is "vb"”, which calls the rstan function vb(). Other
options include " jags", "stancond”, and "stanclassic”, which sample latent
variables and provide some greater functionality (because syntax is written "on

the fly"). But they are slower and less efficient.

Should sampled latent variables (factor scores) be saved? Logical; defaults to
FALSE

Labels of equality-constrained parameters that should be "approximately" equal.

non non

Can also be "intercepts", "loadings", "regressions", "means".

The prior sd (of normal distribution) to be used in approximate equality con-
straints. Can be one value, or (for target="stan") a numeric vector of values that
is the same length as wiggle.

Should samples be drawn from the prior, instead of the posterior (target="stan"
only)? Logical; defaults to FALSE

Should DIC be computed the JAGS way, in addition to the BUGS way? Logical,
defaults to FALSE

bsem 23

seed A vector of length n. chains (for target " jags") or an integer (for target "stan”)
containing random seeds for the MCMC run. If NULL, seeds will be chosen
randomly.

bcontrol A list containing additional parameters passed to run. jags (or autorun. jags)

or stan. See the manpage of those functions for an overview of the additional
parameters that can be set.

Details

The bsem function is a wrapper for the more general blavaan function, using the following default
lavaan arguments: int.ov.free = TRUE, int.1lv.free = FALSE, auto.fix.first = TRUE (unless
std.1lv =TRUE), auto.fix.single = TRUE, auto.var = TRUE, auto.cov.lv.x = TRUE, auto. th =
TRUE, auto.delta = TRUE, and auto.cov.y = TRUE.

Value

An object of class lavaan, for which several methods are available, including a summary method.

References

Edgar C. Merkle, Ellen Fitzsimmons, James Uanhoro, & Ben Goodrich (2021). Efficient Bayesian
Structural Equation Modeling in Stan. Journal of Statistical Software, 100(6), 1-22. URL http://www.jstatsoft.org/v100/i06/.

Edgar C. Merkle & Yves Rosseel (2018). blavaan: Bayesian Structural Equation Models via Param-
eter Expansion. Journal of Statistical Software, 85(4), 1-30. URL http://www.jstatsoft.org/v85/i04/.

Yves Rosseel (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical
Software, 48(2), 1-36. URL http://www.jstatsoft.org/v48/i02/.

See Also

blavaan

Examples

The industrialization and Political Democracy Example
Bollen (1989), page 332
data(PoliticalDemocracy, package = "lavaan”)

model <- '
latent variable definitions
ind60 =~ x1 + x2 + x3
dem6@ =~ y1 + axy2 + bxy3 + c*y4
dem65 =~ y5 + axy6 + bxy7 + cxy8

regressions
dem6@ ~ ind60@
dem65 ~ ind6@ + dem60@

residual correlations
yl ~~y5
y2 ~~ y4 + y6

24 dpriors

y3 ~~ y7

y4 ~~ y8

y6 ~~ y8
Not run:

mildly informative priors for mv intercepts and loadings
fit <- bsem(model, data = PoliticalDemocracy,

dp = dpriors(nu = "normal(5,10)", lambda = "normal(1,.5)"))
summary (fit)

End(Not run)

A short run for rough results

fit <- bsem(model, data = PoliticalDemocracy, burnin = 100, sample = 100,
dp = dpriors(nu = "normal(5,10)", lambda = "normal(1,.5)"),
n.chains = 2)

summary (fit)

dpriors Specify Default Prior Distributions

Description

Specify "default" prior distributions for classes of model parameters.

Usage
dpriors(..., target = "stan")
Arguments
Parameter names paired with desired priors (see example below).
target Are the priors for jags, stan (default), or stanclassic?
Details

The prior distributions always use JAGS/Stan syntax and parameterizations. For example, the nor-
mal distribution in JAGS is parameterized via the precision, whereas the normal distribution in Stan
is parameterized via the standard deviation.

User-specified prior distributions for specific parameters (using the prior() operator within the
model syntax) always override prior distributions set using dpriors().

The parameter names are:

* nu: Observed variable intercept parameters.
* alpha: Latent variable intercept parameters.

* lambda: Loading parameters.

plot.blavaan 25

* beta: Regression parameters.

* itheta: Observed variable precision parameters.

* ipsi: Latent variable precision parameters.

* rho: Correlation parameters (associated with covariance parameters).

* ibpsi: Inverse covariance matrix of blocks of latent variables (used for target="jags").
¢ tau: Threshold parameters (ordinal data only).

o delta: Delta parameters (ordinal data only).

Value

A character vector containing the prior distribution for each type of parameter.

References

Edgar C. Merkle, Ellen Fitzsimmons, James Uanhoro, & Ben Goodrich (2021). Efficient Bayesian
Structural Equation Modeling in Stan. Journal of Statistical Software, 100(6), 1-22. URL http://www.jstatsoft.org/v100/i06/.

Edgar C. Merkle & Yves Rosseel (2018). blavaan: Bayesian Structural Equation Models via Param-
eter Expansion. Journal of Statistical Software, 85(4), 1-30. URL http://www.jstatsoft.org/v85/i04/.

See Also

bcfa, bsem, bgrowth

Examples

dpriors(nu = "normal(@,10)", lambda = "normal(@,1)", rho = "beta(3,3)")

plot.blavaan blavaan Diagnostic Plots

Description

Convenience functions to create plots of blavaan objects, via the bayesplot package.

Usage

S3 method for class 'blavaan'
plot(x, pars = NULL, plot.type = "trace"”, showplot = TRUE, ...)

26 ppmc

Arguments
X An object of class blavaan.
pars Parameter numbers to plot, where the numbers correspond to the order of param-
eters as reported by coef () (also as shown in the ’free’ column of the parTable).
If no numbers are provided, all free parameters will be plotted.
plot.type The type of plot desired. This should be the name of a MCMC function, without
the memc_ prefix.
showplot Should the plot be sent to the graphic device? Defaults to TRUE.
Other arguments sent to the bayesplot function.
Details

In previous versions of blavaan, the plotting functionality was handled separately for JAGS and for
Stan (using plot functionality in packages runjags and rstan, respectively). For uniformity, all plot-
ting functionality is now handled by bayesplot. If users desire additional functionality that is not im-
mediately available, they can extract the matrix of MCMC draws via as.matrix(blavInspect(x,
'memec')).

Value

An invisible ggplot object that, if desired, can be further customized.

Examples

Not run:
data(HolzingerSwineford1939, package = "lavaan")

HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

fit <- bcfa(HS.model, data = HolzingerSwineford1939)

trace plots of free loadings
plot(fit, pars = 1:6)

End(Not run)

ppmc Posterior Predictive Model Checks

Description

This function allows users to conduct a posterior predictive model check to assess the global or
local fit of a latent variable model using any discrepancy function that can be applied to a lavaan
model.

ppmc

Usage

ppmc(object, thin = 1, fit.measures = c("srmr","chisq"”), discFUN = NULL,

conditional = FALSE)

S4 method for signature 'blavPPMC'

summary (object,

L)

S3 method for class 'ppmc'
summary (object, discFUN, dist = c("obs"”,"sim"),

non non

central.tendency = c("mean”,"median”, "mode"),

hpd = TRUE, prob

.95, to.data.frame = FALSE, diag = TRUE,

sort.by = NULL, decreasing = FALSE)

S3 method for class 'blavPPMC'
plot(x, ..., discFUN, element, central.tendency = s
hpd = TRUE, prob = .95, nd = 3)

nn

S3 method for class 'blavPPMC'

hist(x, ..., discFUN, element, hpd = TRUE, prob = .95,
printLegend = TRUE, legendArgs = list(x = "topleft”),
densityArgs = list(), nd = 3)

S3 method for class 'blavPPMC'
pairs(x, discFUN, horInd = 1:DIM, verInd = 1:DIM,
printlLegend = FALSE, ...)

Arguments

object, x
thin

fit.measures

discFUN

conditional

element

horInd, verInd

An object of class blavaan.

27

Optional integer indicating how much to thin each chain. Default is 1L, indi-

cating not to thin the chains in object.

character vector indicating the names of global discrepancy measures returned
by fitMeasures. Ignored unless discFUNis NULL, but users may include fitMeasures
in the 1ist of discrepancy functions in discFUN. For ordinal models, the "1ogl”

or "chisq"” computations are done via lavaan.

function, or a list of functions, that can be called on an object of class lavaan.
Each function must return an object whose mode is numeric, but may be a
vector, matrix, or multidimensional array. In the summary and plot methods,
discFUN is a character indicating which discrepancy function to summarize.

logical indicating whether or not, during artificial data generation, we should
condition on the estimated latent variables. Requires the model to be estimated

with save.lvs = TRUE.

numeric or character indicating the index (in each dimension of the discFUN

output, if multiple) to plot.

Similar to element, but a numeric or character vector indicating the indices
of amatrix to plot in a scatterplot matrix. If horInd==verInd, histograms will

be plotted in the upper triangle.

28 ppmc

dist character indicating whether to summarize the distribution of discFUN on ei-
ther the observed or simulated data.

central.tendency
character indicating which statistics should be used to characterize the location
of the posterior (predictive) distribution. By default, all 3 statistics are returned
for the summary method, but none for the plot method. The posterior mean is
labeled EAP for expected a posteriori estimate, and the mode is labeled MAP for
modal a posteriori estimate.

hpd logical indicating whether to calculate the highest posterior density (HPD)
credible interval for discFUN.

prob The "confidence" level of the credible interval(s).

nd The number of digits to print in the scatterplot.

to.data.frame logical indicating whether the summary of a symmetric 2-dimensional matrix
returned by discFUN should have its unique elements stored in rows of adata. frame
that can be sorted for convenience of identifying large discrepancies. If discFUN
returns an asymmetric 2-dimensional matrix, the list of matrices returned by the
summary can also be converted to a data. frame.

diag Passed to lower. tri if to.data. frame=TRUE.

sort.by character. If summary returns a data. frame, it can be sorted by this column
name using order. Note that if discFUN returns an asymmetric 2-dimensional
matrix, each data. frame in the returned 1ist will be sorted independently, so
the rows are unlikely to be consistent across summary statistics.

decreasing Passed to order if !is.null(sort.by).
Additional graphical parameters to be passed to plot.default.
printLegend logical. If TRUE (default), a legend will be printed with the histogram

legendArgs list of arguments passed to the 1egend function. The default argument is a list
placing the legend at the top-left of the figure.

densityArgs list of arguments passed to the density function, used to obtain densities for
the hist method.

Value

An S4 object of class blavPPMC consisting of 5 1ist slots:

@discFUN The user-supplied discFUN, or the call to fitMeasures thatreturns fit.measures.
@dims The dimensions of the object returned by each discFUN.

@PPP The posterior predictive p value for each discFUN element.

@obsDist The posterior distribution of realize values of discFUN applied to observed data.
@simDist The posterior predictive distribution of values of discFUN applied to data simu-

lated from the posterior samples.

The summary () method returns a numeric vector if discFUN returns a scalar, a data. frame with
one discrepancy function per row if discFUN returns a numeric vector, and a 1ist with one sum-
mary statistic per element if discFUN returns a matrix or multidimensional array.

ppmc 29

The plot and pairs methods invisibly return NULL, printing a plot (or scatterplot matrix) to the
current device.

The hist method invisibly returns a 1ist or arguments that can be passed to the function for which
the 1ist element is named. Users can edit the arguments in the list to customize their histograms.
Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Levy, R. (2011). Bayesian data—model fit assessment for structural equation modeling. Structural
Equation Modeling, 18(4), 663—685. doi:10.1080/10705511.2011.607723

Examples

Not run:
data(HolzingerSwineford1939, package = "lavaan")

HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

fit single-group model
fit <- bcfa(HS.model, data = HolzingerSwineford1939,
n.chains = 2, burnin = 1000, sample = 500)
fit multigroup model
fitg <- bcfa(HS.model, data = HolzingerSwineford1939,
n.chains = 2, burnin = 1000, sample = 500, group = "school”)

Use fit.measures as a shortcut for global fitMeasures only

- Note that indices calculated from the "df" are only appropriate under
noninformative priors, such that pD approximates the number of estimated
parameters counted under ML estimation; incremental fit indices

introduce further complications)

AFIs <- ppmc(fit, thin = 10, fit.measures = c("srmr"”,"chisq”,"rmsea”,"cfi"))
summary (AFIs) # summarize the whole vector in a data.frame
hist(AFIs, element = "rmsea”) # only plot one discrepancy function at a time
plot(AFIs, element = "srmr")

define a list of custom discrepancy functions
- (global) fit measures
- (local) standardized residuals

discFUN <- list(global = function(fit) {
fitMeasures(fit, fit.measures = c("cfi”,"rmsea”,"srmr","chisq"))
}l
std.cov.resid = function(fit) lavResiduals(fit, zstat = FALSE,
summary = FALSE)$cov,
std.mean.resid = function(fit) lavResiduals(fit, zstat = FALSE,

30

sampleData

summary = FALSE)$mean)
outlg <- ppmc(fit, discFUN = discFUN)

summarize first discrepancy by default (fit indices)

summary (outl1g)
some model-implied correlations look systematically over/underestimated
summary (outlg, discFUN = "std.cov.resid”, central.tendency = "EAP")

hist(outlg, discFUN = "std.cov.resid”, element = c(1, 7))

plot(outlg, discFUN = "std.cov.resid”, element = c("x1","x7"))

For ease of investigation, optionally export summary as a data.frame,

sorted by size of average residual

summary(outlg, discFUN = "std.cov.resid”, central.tendency = "EAP",
to.data.frame = TRUE, sort.by = "EAP")

or sorted by size of PPP

summary(outlg, discFUN = "std.cov.resid”, central.tendency = "EAP",
to.data.frame = TRUE, sort.by = "PPP_sim_LessThan_obs")

define a list of custom discrepancy functions for multiple groups
(return each group's numeric output using a different function)

disc2g <- list(global = function(fit) {
fitMeasures(fit, fit.measures = c("cfi”,"rmsea”,"mfi","srmr","chisq"))
3
cor.residl = function(fit) lavResiduals(fit, zstat = FALSE,
type = "cor.bollen”,
summary = FALSE)[[1]]1$cov,
cor.resid2 = function(fit) lavResiduals(fit, zstat = FALSE,
type = "cor.bollen”,
summary = FALSE)[[2]1$cov)
out2g <- ppmc(fitg, discFUN = disc2g, thin = 2)
some residuals look like a bigger problem in one group than another

"

pairs(out2g, discFUN = "cor.residl1”, horInd = 1:3, verInd = 7:9) # group 1

”

pairs(out2g, discFUN = "cor.resid2”, horInd = 1:3, verInd = 7:9) # group 2

print all to file: must be a LARGE picture. First group 1
png(”cor.residl.png”, width = 1600, height = 1200)
pairs(out2g, discFUN = "cor.resid1")

dev.off()

... then group 2

png("cor.resid2.png”, width = 1600, height = 1200)
pairs(out2g, discFUN = "cor.resid2")

dev.off()

End(Not run)

sampleData Sample data from the posterior (or prior) distribution.

sampleData 31

Description

The purpose of the sampleData() function is to simulate new data from a model that has already
been estimated. This can faciliate posterior predictive checks, as well as prior predictive checks
(setting prisamp = TRUE during model estimation).

Usage
sampleData(object, nrep = NULL, conditional = FALSE, type = "response”,
simplify = FALSE, ...)
Arguments
object An object of class blavaan.
nrep How many datasets to generate? If not supplied, defaults to the total number of
posterior samples.
conditional Logical indicating whether to sample from the distribution that is marginal over
latent variables (FALSE; default) or from the distribution that conditions on la-
tent variables (TRUE). For TRUE, you must set save.lvs = TRUE during model
estimation.
type The type of data desired (only relevant to ordinal data). The type = "response”
option generates ordinal data. The type = "1ink" option generates continuous
variables underlying ordinal data (which would be cut by thresholds to yield
ordinal data).
simplify For single-group models, should the list structure be simplified? This makes
each dataset a single list entry, instead of a list within a list (which reflects group
1 of dataset 1). Defaults to FALSE.
Other arguments, which for now is only parallel. Parallelization via future_lapply ()
is available by setting parallel = TRUE.
Details

This is a convenience function to generate data for posterior or prior predictive checking. The
underlying code is also used to generate data for posterior predictive p-value computation.

See Also

This function overlaps with blavPredict(). The blavPredict() function is more focused on
generating pieces of data conditioned on other pieces of observed data (i.e., latent variables condi-
tioned on observed variables; missing variables conditioned on observed variables). In contrast, the
sampleData() function is more focused on generating new data given the sampled model parame-
ters.

Examples

Not run:
data(HolzingerSwineford1939, package = "lavaan")

fit model

32 standardizedPosterior

HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

fit <- bcfa(HS.model, data = HolzingerSwineford1939)

1 dataset generated from the posterior
out <- sampleData(fit, nrep = 1)

nested lists: 1 list entry per nrep.
then, within a rep, 1 list entry per group
so our dataset is here:

dim(out[[1]ICL111)

1 posterior dataset per posterior sample:
out <- sampleData(fit)

obtain the data on x1 across reps and summarize:
xldat <- sapply(out, function(x) x[[1]1I[,1]1)

summary(as.numeric(xldat))

End(Not run)

standardizedPosterior Standardized Posterior

Description

Standardized posterior distribution of a latent variable model.

Usage
standardizedPosterior(object, ...)
Arguments
object An object of class blavaan.
Additional arguments passed to lavaan’s standardizedSolution()
Value

A matrix containing standardized posterior draws, where rows are draws and columns are parame-
ters.
Note

The only allowed standardizedSolution() arguments are type, cov.std, remove.eq, remove.ineq,
and remove.def. Other arguments are not immediately suited to posterior distributions.

standardizedPosterior

Examples

Not run:
data(PoliticalDemocracy, package = "lavaan")

model <- '
latent variable definitions
ind60 =~ x1 + x2 + x3
dem6@ =~ y1 + a*xy2 + bxy3 + cxy4
dem65 =~ y5 + axy6 + bxy7 + c*y8

regressions
dem6@ ~ ind60@
dem65 ~ ind6@ + dem60@

residual correlations

y1 ~~ y5
y2 ~~ y4 + y6
y3 ~~ y7
y4 ~~ y8
y6 ~~ y8

fit <- bsem(model, data = PoliticalDemocracy,
dp = dpriors(nu = "normal(5, 10)"))

standardizedPosterior(fit)

End(Not run)

33

Index

bcfa, 2, 10-12, 18, 25

BF (blavCompare), 13

bgrowth, 5, 10-12, 18, 25

blav_internal, 21

blav_model_test (blav_internal), 21

blavaan, 4,7,8,11, 14, 15,19, 23,27, 31, 32

blavaan-class, 11

blavCompare, 13

blavFitIndices, 14

blavFitIndices-class (blavFitIndices),
14

blavInspect, 17

blavPPMC-class (ppmc), 26

blavPredict, 19

blavpredict (blavPredict), 19

blavTech (blavInspect), 17

bsem, 10-12, 18, 21, 25

coef,blavaan-method (blavaan-class), 11
coeffun (blav_internal), 21

density, 28
dpriors, 24

fitMeasures, 15, 27, 28
hist.blavPPMC (ppmc), 26

labelfun (blav_internal), 21
lavaan, 3-10, 15, 18, 21-23, 26, 27
lavInspect, I8

legend, 28

lower.tri, 28

MCMC, 26
mode, 27

order, 28

pairs.blavPPMC (ppmc), 26
par, 28

34

plot.blavaan, 25

plot.blavPPMC (ppmc), 26

plot.default, 28

ppmc, 26

predict,blavaan-method (blavaan-class),
11

sampleData, 30

sampledata (sampleData), 30

set_inits (blav_internal), 21

set_phantoms (blav_internal), 21

set_priors (blav_internal), 21

show,blavaan-method (blavaan-class), 11

show,blavFitIndices-method
(blavFitIndices), 14

show, blavPPMC-method (ppmc), 26

standardizedPosterior, 32

standardizedposterior
(standardizedPosterior), 32

standardizedSolution, /2

summary,blavaan-method (blavaan-class),
11

summary,blavFitIndices-method
(blavFitIndices), 14

summary, blavPPMC-method (ppmc), 26

summary.bfi (blavFitIndices), 14

summary . ppmc (ppmc), 26

	bcfa
	bgrowth
	blavaan
	blavaan-class
	blavCompare
	blavFitIndices
	blavInspect
	blavPredict
	blav_internal
	bsem
	dpriors
	plot.blavaan
	ppmc
	sampleData
	standardizedPosterior
	Index

